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Objective

• To present a numerical method for calculating the basins of attraction (BoA) of
a non-linear equation;

• To discuss how to obtain two measurements of dynamic integrity;

• To present an example of basins of attraction obtained for a 1-dof system;

• To introduce the study of higher-order models.
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De�nitions

• Attractor: Roughly speaking, is the solution of a system obtained when t →∞.
Can be either a point in the phase space or a periodic orbit. Can also present
distinct topologies;

• Basins of Attraction: Set of initial conditions associated with a particular
attractor;

• Focus of this class: The grid-of-start and the modi�ed cell-mapping methods
applied to a (non-autonomous) harmonically forced system.
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First steps

• Firstly, we need to de�ne a region in the phase space to be considered in the
analysis. For a one degree-of-freedom system, this implies in the selection of a
particular region of interest on the plane u × u̇;

• The region is discretized in a number of cells. It is usual to consider rectangular
(ou prismatic, for higher-order models) cells. It is clear that the larger the
number of cells employed in the analysis, the more re�ned the BoAs are.
However, this increases the computational cost;

• The attractors are identi�ed as the center of the cells to which the trajectory
initiated at a particular initial condition converges when t →∞;

• Aiming at knowing your system, it is desirable to simulate the response for some
initial conditions. For a non-autonomous system, you can simulate for a number
of forcing period (say, for example, 500) and neglecting the �rst 100 (for
example) periods as the transitory regime. The attractor can be identi�ed by
considering the stroboscopic Poincaré's sections for the last 400 periods.
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The discrete mapped space

• Once you have selected the region of interest and the discretization to be
employed, each cell must be numbered. So, you must be able to associate the
center of the cell with its number and vice-versa. In above �gure, the number of
each cell is indicated in red. Notice that the dimension y was discretized in 10
elements and the direction ẏ in 9 elements;
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De�ning the trajectory

• We �rstly start the simulations considering as initial condition the center of the
cell number 1. Imagine that, at the end of the transitory you choose (for
example, after 100 periods of the forcing), the trajectory falls inside cell number
17. In this class, the trajectories are highlighted in purple. So the �rst two cells
visited by trajectory 1 are 1→ 17;

• We simulate the system for one forcing period using as initial condition the
point obtained at the end of the transitory. It is important to remark that, if the
classical cell mapping is used, you need to adopt as initial condition the center
of the cell to which the trajectory lies at the end of the transitory response;

• Imagine that, after one period, the trajectory stops in a point pertaining to cell
38. Hence, the updated trajectory number 1 is 1→ 17→ 38. Repeating the
procedure and simulating for another period, the trajectory falls in a certain
point of cell 55. The updated trajectory 1 is, then, 1→ 17→ 38→ 55;

• Consider that, repeating the procedure, the simulation which starts at the end
of the previous simulation leads, after one period, to another point inside cell
55. In this case, the center of cell 55 is a period-1 attractor, to which we will
assign number 2. It is common to use odd number for the trajectory (basins of
attraction) and even numbers for the attractors. So, part of the basin of
attraction of attractor 2 is 1→ 17→ 38.
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Continuing

• We start to compute the new trajectory (trajectory 3) using as initial condition
the center of cell 2. We repeat the approach and we �nd, for example, that
trajectory 3 is given by 2→ 33→ 52→ 64→ 67;

• Imagine that the numerical integration for one period using as initial condition
the last mapped point (not the center of cell 67) leads to a point pertaining to
cell 64. In this case, cells 64 and 67 compose attractor 4 and trajectory 3 is
2→ 33→ 52.

• It is natural to start trajectory 5 using as initial condition the center of cell 3.
Imagine that, at the end of the transitory, the trajectory falls in a point inside
cell 38. So, the updated trajectory 5 is 3→ 38.
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Continuing

• Imagine that, after another forcing period, the trajectory visits cell 55. Notice
that this cell has already been visited and corresponds to attractor 2. In this
case, you must assign 1 to this trajectory, provided it is part of the basins of
attraction of attractor 2;
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Extended domain

• What happens when the trajectory scapes the mapped region?

• There are three choices.

1 If you are considering the extended region de�ned by ghost-cells and the
trajectory falls in this extended region, you can wait a number of cycles
(for example, 20) for the trajectory returning to the mapped region. In
this case, you can proceed with the calculations;

2 If the trajectory does not return to the mapped region after a certain
number of cycles, you consider it as part of the basins of attraction of the
divergent attractor, assigning to it -1;

3 If the trajectory visits a point outside the extended region, you assign to it
the divergent attractor.

• The consideration of the ghost cells is important, provided it avoids to assign
the divergent attractor to a trajectory that escapes the mapped region just for
some periods.
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Chaotic attractor

• Lets assume the the trajectory does not visit the same cell twice. In this case,
we can assign the chaotic attractor to a trajectory of length larger than a
certain number (typically 1000). Notice that a 1001-periodic attractor is, then,
assumed to be a chaotic one;

• It is important to emphasize that the proposed algorithm has two
approximations. The �rst one is associated with numerical approximations
inherently of the integration of the mathematical model. The second one arises
from the discretization of the phase space into cells.
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Plotting

• At the end of the algorithm, you will have a vector of length equal to product of
the adopted discretizations in the two directions of the phase space;

• This vector contains even numbers (attractors), odd numbers (basins) or -1
(divergent attractor). Now, you choose colors for the basins (for example, basin
of attraction 1 and attractor 2 are colored in blue and you include a marker for
identifying the attractor);

• The plot can be made by converting this vector into a matrix and using
standard functions such as, for example, patch (in MATLAB®).
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LIM/IF

• Local Integrity Measurement (LIM): Largest normalized radius of the circle,
centered at the attractor, fully inside the basins of attraction;

• Integrity Factor (IF): Largest normalized radius of the circle fully inside the
basins of attraction;

• Both LIM and IF can be obtained using functions for binary image processing.

1 Convert your basins of attraction into a binary matrix, in which 1 is the
basins you would like to analyze;

2 Functions bwdist (MATLAB®) and DistanceTransform (Mathematica®)
calculate, for a binary image, the distance (in pixels) between the number
assigned as 1 and the closest zero for each position of the matrix;

3 If your basin has equal discretization in the y(0) and ẏ(0) direction, you
just need to re-scale. For a more general case, you need to program your
own tool;

4 With the distance calculated for each point of the basin, the distance
associated with the attractor is readily obtained (LIM). The IF is the
maximum distance and the center of this circle is also easily found from
the corresponding position in the matrix.
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Application to a Helmholtz-Du�ng oscillator

• Mathematical model

ÿ + aẏ + by + cy2 + dy3 = e sin Ωt (1)

• Investigated scenarios

Scenario a b c d e Ω

1
0.10 1.20 −0.30 2

0.020
1.17

2 0.077
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Scenario 1 - two attractors are identi�ed

Attractor 1: Red crosses indicate the Poincaré's sections.
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Scenario 1 - two attractors are identi�ed

Attractor 2: Red crosses indicate the Poincaré's sections.
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Scenario 1

• Two attractors (white crosses) identi�ed as the center of the cells;

• Compact basins of attractions;

• 500× 500 grid: 1.8 hour for running the basins
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Scenario 2

• Four attractors (white crosses) identi�ed as the center of the cells;

• Not compact basins of attractions;

• 500× 500 grid: 1.8 hour for running the basins
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LIM/IF

• In this case, the adopted discretization is the same in the two directions. The
dashed circle represents LIM and the continuous one is associated with IF.

• For plotting the integrity pro�les, you need to compute the basins of attraction
and the dynamic integrity measurements for each varied parameter (in the case,
the amplitude of the external excitation).
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An introduction to higher-order systems

• If the system has more than one degree of freedom, some alternatives appear.
The �rst one is to extent the mentioned idea.

• For a 2-dof system and using a discretization of 100 cells in each direction, you
need to map 108 cells. This has a huge computational cost and tools such as
MATLAB® are not useful (the group has the idea of creating an in-house code
name PoliBoA®, based on C++);

• You can proceed with the bidimensional grid-of-start method, in which you
discretize the complete phase space but just use as initial conditions those
constrained to a bidimensional cross-section;

• You can also use the above idea, but combined with the bidimensional
cell-mapping. In this case, if the trajectory crosses the bi-dimensional
cross-section (a hyper-volume, speci�cally), you compute this point in the
trajectory, saving some time if compared to the grid-of-start method.
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Example

• Consider the 2-dof system governed by

ÿ − β1 sin θθ̈ − β1 cos θθ̇2 + β2ẏ + (1+ δ sin nτ)y = 0

θ̈ −
1

r̂
sin θÿ + β3θ̇ = 0

An example of bidimensional basins of attractor is presented below. More
cross-sections are needed for studying the problem. Ongoing work!
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