TIOTA II PHILE 133 17 Occasion Este custicos.	1 1 0 11 1 11 1 a 11 1 b a 1 t 5 c v	7/ = 0 = 7
Nome	No USP	

1	2	3	4	5	6	7	8	9	10

1. Sejam X,Y variáveis aleatórias com a distribuição p(x,y) = P(X=x,Y=y) dada de seguinte forma:

$$p(0,-1) = 1/6$$
, $p(0,0) = 1/6$, $p(0,2) = 1/6$
 $p(1,-1) = 1/6$, $p(1,0) = 1/6$, $p(1,2) = c$

Escolha alternativa correta:

- a) c = 1/5 e X, Y não são independentes;
- b) c = 1/3 e X, Y não são independentes;
- c) c = 1/3 e X, Y são independentes;
- d) c = 1/4 e X, Y são independentes;
- e) nenhuma das alternativas anteriores.
- 2. Em condições do item anterior escolha alternativa correta.

a)
$$E(X|Y = -1) \neq E(X|Y = 2)$$
;

b)
$$E(X|Y=2) = \frac{1}{2} + c$$
;

c)
$$E(X|Y = -1) \neq E(X) = 0.5$$
;

d)
$$E(X|Y = -1) = E(X) = 0.5$$
;

e)
$$E(X) = \frac{1}{2} + c$$
.

3. Ponto P = (X, Y) é uniformemente distribuído em triangulo $T = \{(x, y) : x \ge 0, y \ge 0, ex + y \le 1\}$. Sabendo que Y = 0.7, escolha alternativa correta:

a)
$$X|Y = 0.7 \sim U[0, 0.3];$$

b)
$$X|Y = 0.7 \sim U[0, 1];$$

c)
$$X|Y = 0.7 \sim U[0, 0.7];$$

d)
$$X|Y = 0.7 \sim U[-1, 1];$$

e) nenhuma das alternativas anteriores.

4. Seja $Y \sim U[1,3]$. Sabemos que dado valor de Y = y, a variável X tem distribuição exponencial com a taxa y: $X|Y = y \sim \exp(y)$. Escolha alternativa correta.

a)
$$E(X) = 1/2$$
;

b)
$$E(X) = 1/9$$
;

c)
$$E(X) = \ln(3)/2$$
;

d)
$$E(X) = \infty$$
;

e)
$$E(X) = e^2/2$$
.

- **5.** Seja (X,Y) uniformemente distribuído em área $Q = \{(x,y): |x| + |y| \le 1\}$. Sabendo que Y = 0.5 a densidade f(x|Y = 0.5) de X neste caso é
- a) f(x|Y=0.5)=0.5, quando $x \in [-1,1]$ e 0 caso contrário;
- b) f(x|Y = 0.5) = 2, quando $x \in [0, 0.5]$ e 0 caso contrário;
- c) f(x|Y = 0.5) = 1, quando $x \in [-0.5, 0.5]$ e 0 caso contrário;
- d) f(x|Y = 0.5) = 1, quando x + y = 0.5 e 0 caso contrário;
- e) nenhuma das alternativas anteriores.
- **6.** Em condições de item anterior escolha alternativa correta.
- a) X, Y não são independentes, mas E(X|Y=y)=0 para qualquer $y \in [-1,1]$;
- b) X, Y são independentes, e E(X|Y=y)=1/3 para qualquer $y \in [-1,1]$;
- c) X, Y não são independentes, e E(X|Y=y)=y+1;
- d) *X*, *Y* são independentes, e E(X|Y=y)=2y+1;
- e) nenhuma das alternativas anteriores.
- **7.** A distribuição conjunta de duas variáveis contínuas e positivas X e Y é dada pela densidade conjunta: $f_{X,Y}(x,y) = xe^{-x(1+y)}$, $x,y \ge 0$. Calcule E(X) e escolha alternativa correta.
- a) X, Y são independentes, e E(X) = 1/(1 + y);
- b) X, Y são independentes, e E(X) = y + 1;
- c) X, Y não são independentes, e E(X) = 1;
- d) X, Y não são independentes, e E(X) = y + 1;
- e) nenhuma das alternativas anteriores.
- **8.** O sistema S é composto de dois componentes A e B que estão conectados em serie (isso significa, que o sistema S falha quando um dos componentes falha). Suponha que o tempos de vida T_A , T_B dos componentes A e B têm a distribuição exponencial com taxas λ_A e λ_B respectivamente. Nessas condições o tempo de funcionamento do sistema $T = \min (T_A, T_B)$ tem distribuição:
- a) exponencial com média $\lambda_A \lambda_B / (\lambda_A + \lambda_B)$;
- b) exponencial com média $1/(\lambda_A + \lambda_B)$;
- c) exponencial com taxa $\lambda_A \lambda_B / (\lambda_A + \lambda_B)$;
- d) exponencial com taxa $1/\lambda_A + 1/\lambda_B$;
- e) nenhuma das alternativas anteriores.

9. A densidade de v.a. X é dada pela seguinte formula: f(x) = 2(1-x), se $x \in (0,1)$ e f(x) = 0 caso contrário. Escolha alternativa correta.

a)
$$P\left(X > \frac{2}{3} | X > \frac{1}{2}\right) = \frac{2}{3}$$
;

b)
$$P(X > \frac{2}{3} | X > \frac{1}{2}) = (\frac{2}{3})^2$$
;

c)
$$P\left(X > \frac{2}{3} | X > \frac{1}{2}\right) = \frac{1}{3}$$
;

d)
$$P(X > \frac{2}{3} | X > \frac{1}{2}) = (\frac{1}{3})^2$$
;

e) nenhuma das alternativas anteriores.

10. Para variável aleatória do item anterior escolha alternativa correta sobre a função falha r(t) := f(t)/P(X > t).

a)
$$r(t) = \frac{2}{1-t}$$
, se $t \in (0,1)$

a)
$$r(t) = \frac{2}{1-t}$$
, se $t \in (0,1)$;
b) $r(t) = \frac{2(1+t)}{1-t^2-2t}$, se $t \in (0,1)$;
c) $r(t) = \frac{2(1-t)}{1-t^2+2t}$, se $t \in (0,1)$;
d) $r(t) = \frac{2}{(1-t)^2}$, se $t \in (0,1)$;

c)
$$r(t) = \frac{2(1-t)}{1-t^2+2t}$$
, se $t \in (0,1)$

d)
$$r(t) = \frac{1-t}{2}$$
, se $t \in (0,1)$;

e) nenhuma das alternativas anteriores.

Prova 1. *MAE0499 Processos Estocásticos*. Prof. A.Iambartsev

/13/09/2019

	, -, -, -,
Nome	No USP

1	2	3	4	5	6	7	8	9	10
	X								

1. Sejam X,Y variáveis aleatórias com a distribuição p(x,y) = P(X=x,Y=y) dada de seguinte forma:

$$p(0,-1) = 1/6$$
, $p(0,0) = 1/6$, $p(0,2) = 1/6$

$$p(1,-1) = 1/6$$
, $p(1,0) = 1/6$, $p(1,2) = 1/6$

Escolha alternativa correta:

- a) E(X) = 1/2, E(X|Y = -1) = 1/6;
- b) E(X|Y) é variável aleatória com distribuição Bernoulli, B(1/6);
- c) E(X|Y) é o número e igual à 1/2;
- d) E(X) = E(X|Y = -1) = 0.5;
- e) nenhuma das alternativas anteriores.
- **2.** Distribuição conjunta de duas variáveis continuas X,Y é dada pela densidade conjunta $f(x,y)=c(x^2+y), x,y\in(0,1)$. Achar: constante c e densidade condicional $f_{X|Y}(x|y)$ solucionando no espaço abaixo.

Solução:

- **3.** X, Y, Z são variáveis aleatórias i.i.d. com distribuição exponencial com média 3. Seja $m = \min(X, Y, Z)$ e $M = \max(X, Y, Z)$. Escolha alternativa correta.
- a) $P(m > z) = e^{-z}, z > 0$;
- b) $P(M > z) = 1 e^{-z}, z > 0$;
- c) $m \sim \exp(9)$;
- d) $M \sim \exp(3)$;
- e) nenhuma das alternativas anteriores.
- **4.** Seja $Y \sim U[0,1]$. Sabemos que dado valor de Y = y, a variável X tem distribuição exponencial com a taxa y: $X|Y = y \sim \exp(\sqrt{y})$. Escolha alternativa correta.
- a) E(X) = 1/2;
- b) E(X) = 2;
- c) $E(X) = \ln(3)/2$;
- d) $E(X) = \infty$;
- e) $E(X) = e^2/2$.
- **5.** Seja (X,Y) uniformemente distribuído em área $Q=\{(x,y)\colon |x|+|y|\leq 1\}$. Sabendo que $Y=y\in (-1,1)$ achar a função de distribuição cumulativa de X.
- a) $X \sim U[-(1-y), -(y-1)];$
- b) $X \sim U[-|y|, |y|];$
- c) $X \sim U[-|1-y|, |1-y|];$
- d) $X \sim U[|y| 1, 1 |y|];$
- e) nenhuma das alternativas anteriores.
- **6.** Em condições de item anterior escolha alternativa correta sobre Z = X + Y.
- a) E(Z) = 0;
- b) P(Z > 0) = 1/3;
- c) E(Z|Y = y) = y + 1;
- d) E(Z|X = x) = 2x + 1;
- e) nenhuma das alternativas anteriores.
- **7.** A distribuição conjunta de duas variáveis contínuas e positivas X e Y é dada pela densidade conjunta: $f_{X,Y}(x,y) = e^{-(x+y)}, \ x,y \ge 0$. Calcule E(XY).
- a) 1;
- b) 3;
- c) 2:
- d) 1/2;
- e) nenhuma das alternativas anteriores.

- **8.** *X*, *Y* são i.i.d. com distribuição exponencial com média 3. Seja $Z = \min \left(\frac{X}{3}, \frac{Y}{2} \right)$.
- a) $Z \sim \exp(2.5)$;
- b) $Z \sim \exp(4.5)$;
- c) $Z \sim \exp(15)$;
- d) $Z \sim \exp(9)$;
- e) nenhuma das alternativas anteriores.
- **9**. A densidade de v.a. X é dada pela seguinte formula: f(x) = 1 |x|, se $x \in (-1,1) \ e \ f(x) = 0$ caso contrário. Seja p = P(X > 1/2 | X > -1/2).
- a) p = 2;
- b) p = 1/2;
- c) p = 1/7;
- d) p = 1/8;
- e) nenhuma das alternativas anteriores.
- 10. Para variável aleatória do item anterior escolha alternativa correta sobre a função falha r(t).
- a) $r(t) = \frac{2(1+t)}{1-t^2-2t}$, se $t \in (-1,1)$; b) $r(t) = \frac{2(1+t)}{1-t^2-2t}$, se $t \in (-1,0)$; c) $r(t) = \frac{2(1-t)}{1-t^2+2t}$, se $t \in (0,1)$; d) $r(t) = \frac{2(1+t)}{(1-t)^2}$, se $t \in (0,1)$;

- e) nenhuma das alternativas anteriores.