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a uniform gravitational field, since such a field in no way affects the equa-

tions of motion for the relative co-ordinates r∗
i . Note that a laboratory is

subjected to other external forces besides the Earth’s gravitational field,

since it is supported by the ground. Indeed if the Earth were removed, but

the supporting forces somehow retained, there would be no observable dif-

ference inside the laboratory, which would of course be accelerated upwards

with acceleration g! This was an important consideration in the argument

which led to Einstein’s general theory of relativity.

8.6 Summary

The centre of mass of any system moves like a particle of mass M acted

on by a force equal to the total force on the system. The contribution of

this motion to the angular momentum or kinetic energy may be completely

separated from the contributions of the relative motion, and J or T may

be written as a sum of two corresponding terms. (Of course, the only

contribution to P comes from the centre-of-mass motion.)

When the internal forces are central, the rate of change of angular mo-

mentum is equal to the sum of the moments of the external forces. When

they are conservative, the rate of change of the kinetic energy plus the in-

ternal potential energy is equal to the rate of working of the external forces.

In both cases, the same thing is true for the motion relative to the centre

of mass.

If the external forces are also central, or conservative, then the total

angular momentum, or total energy (including external potential energy),

respectively, are conserved. In particular, for an isolated system, P , J and

T + Vint are all constants.

Problems

1. A rocket is launched from the surface of the Earth, to reach a height of

50km. Find the required velocity impulse, neglecting the variation of

g with height (and the Earth’s rotation). Given that the mass of the

payload and rocket without fuel is 100kg, and the ejection velocity is

2 km s−1, find the required initial mass.

2. A satellite is orbiting the Earth in a circular orbit 230km above the

equator. Calculate the total velocity impulse needed to place it in a
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synchronous orbit (see Chapter 4, Problem 1), using an intermediate

semi-elliptical transfer orbit which just touches both circles. (Hint :

From the orbit parameters a and ae, find l, and hence the velocities.)

Given that the final mass to be placed in orbit is 30 kg, and the ejection

velocity of the rocket is 2.5 kms−1, find the necessary initial mass.

3. Assume that the residual mass of a rocket, without payload or fuel, is

a given fraction λ of the initial mass including fuel (but still without

payload). Show that the total take-off mass required to accelerate a

payload m to velocity v is

M0 = m
1 − λ

e−v/u − λ
.

If λ = 0.15, what is the upper limit to the velocity attainable with an

ejection velocity of 2.5 kms−1?

4. Find a formula analogous to that of Problem 3 for a two-stage rocket,

in which each stage produces the same velocity impulse. (The first-

stage rocket is discarded when its fuel is burnt out.) With the figures

of Problem 3, what is the minimum number of stages required to reach

escape velocity (11.2 km s−1)? With that number, what take-off mass

is required, if the payload mass is 100 kg?

5. Find the velocity impulse needed to launch the spacecraft on its trip

to Jupiter, described in Chapter 4, Problem 16. (Hint : Use energy

conservation to find the velocity at the surface of the Earth needed to

give the appropriate relative velocity for the spacecraft once it has es-

caped.) If a three-stage rocket is used, and the parameter λ of Problem

3 is 0.1, what is the minimum required ejection velocity? Given that

u = 2.5 km s−1, and that the mass of the payload is 500kg, find the

total take-off mass.

6. Find the gain in kinetic energy when a rocket emits a small amount of

matter. Hence calculate the total energy which must be supplied from

chemical or other sources to accelerate the rocket to a given velocity.

Show that this is equal to the energy required if an equal amount of

matter is ejected while the rocket is held fixed on a test-bed.

7. *A rocket with take-off mass M0 is launched vertically upward, as in

Problem 1. Consider the effect of a finite burn-up time. Show that, if

the rocket ejects matter at a constant rate a, then its height at time t

is

z = ut− uM

a
ln
M0

M
− 1

2gt
2, with M = M0 − at.
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Hence, show that if it burns out after a time t1, leaving a final mass

M1, then [provided that t1 < (u/g) ln(M0/M1)], the maximum height

reached is

z =
u2

2g

(

ln
M0

M1

)2

− ut1

(

M0

M0 −M1
ln
M0

M1
− 1

)

.

Using the same values of u, M0 and M1 as in Problem 1, find the

maximum height reached if the burn-up time is (a) 10 s, and (b) 30 s.

8. *A satellite is to be launched into a synchronous orbit directly from the

surface of the Earth, using a rocket launched vertically from a point

on the equator. Find the required launch speed to achieve the desired

apogee, and the required velocity increment. With the same figures as

in Problem 2, find the required take-off mass.

9. Two billiard balls are resting on a smooth table, and just touching. A

third identical ball moving along the table with velocity v perpendicu-

lar to their line of centres strikes both balls simultaneously. Find the

velocities of the three balls immediately after impact, assuming that

the collision is elastic.

10. A spherical satellite of radius r is moving with velocity v through a

uniform tenuous atmosphere of density ρ. Find the retarding force on

the satellite if each particle which strikes it (a) adheres to the surface,

and (b) bounces off it elastically. Can you explain why the two answers

are equal, in terms of the scattering cross-section of a hard sphere?

11. *If the orbit of the satellite of Problem 10 is highly elliptical, the re-

tarding force is concentrated almost entirely in the lowest part of the

orbit. Replace it by an impulsive force of impulse I delivered once

every orbit, at perigee. By considering changes in energy and angular

momentum, find the changes in the parameters a and l. Show that

δl = δa(1− e)2, and hence that the effect is to decrease the period and

apogee distance, while leaving the perigee distance unaffected. (The

orbit therefore becomes more and more circular with time.) Show that

the velocity at apogee increases, while that at perigee decreases.

12. *Suppose that the satellite of Problems 10 and 11 has achieved a cir-

cular orbit of radius a. Find the rates of change of energy and angular

momentum, and hence show that the rates of change of a and l are

equal, so that the orbit remains approximately circular. Show also

that the velocity of the satellite must increase.

13. If the satellite orbit of Problem 12 is 500km above the Earth’s sur-

face, the mass and radius of the satellite are 30 kg and 0.7m, and
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ρ = 10−13 kgm−3, find the changes in orbital period and height in a

year. If the height is 200km and ρ = 10−10 kgm−3, find the changes in

a single orbit.

14. Find the lengths of the ‘day’ and the ‘month’ (a) when the Moon was

10 Earth radii away, and (b) when the solar and lunar tides become

equal in magnitude. (See Chapter 6, Problem 16.)

15. Show that in a conservative N -body system, a state of minimal total

energy for a given total z-component of angular momentum is necessar-

ily one in which the system is rotating as a rigid body about the z-axis.

[Use the method of Lagrange multipliers (see Appendix A, Problem

11), and treat the components of the positions ri and velocities ṙi as

independent variables.]

16. *A planet of massM is surrounded by a cloud of small particles in orbits

around it. Their mutual gravitational attraction is negligible. Due to

collisions between the particles, the energy will gradually decrease from

its initial value, but the angular momentum will remain fixed, J = J 0,

say. The system will thus evolve towards a state of minimum energy,

subject to this constraint. Show that the particles will tend to form

a ring around the planet. [As in Problem 15, the constraint may be

imposed by the method of Lagrange multipliers. In this case, because

there are three components of the constraint equation, we need three

Lagrange multipliers, say ωx, ωy, ωz. We have to minimize the function

E − ω · (J − J0) with respect to variations of the positions ri and

velocities ṙi, and with respect to ω. Show by minimizing with respect

to ṙi that once equilibrium has been reached the cloud rotates as a rigid

body, and by minimizing with respect to ri that all particles occupy the

same orbit.] What happens to the energy lost? Why does the argument

not necessarily apply to a cloud of particles around a hot star?

17. *An N -body system is interacting only through the gravitational forces

between the bodies. Show that the potential energy function V satisfies

the equation

∑

i

ri · ∇iV = −V,

where ∇i = (∂/∂xi, ∂/∂yi, ∂/∂zi). (Hint : Show that each two-body

term Vij satisfies this equation. This condition expresses the fact that

V is a homogeneous function of the co-ordinates of degree −1.)
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18. *Under the conditions of Problem 17, show that the total kinetic and

potential energies T and V satisfy the virial equation,

2T + V =
d2K

dt2
, where K = 1

2

∑

i

mir
2
i .

(Note that K relates to the overall scale of the system. We may define

a root-mean-square radius r by K = 1
2Mr2.) Deduce that, if the scale

of the system as measured by K is, on average, neither growing nor

shrinking, then the time-averaged value of the total energy is equal

to minus the time-averaged value of the kinetic energy — the virial

theorem. (Compare Chapter 4, Problem 19.)
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In general, it is convenient to describe the rotational motion in terms of

a set of principal axes. Normally these rotate with the body, though in the

special case of a symmetric rigid body (with I1 = I2) they may be chosen as

in §9.9. In that case, the orientation of the body is conveniently described

by Euler’s angles. We shall see in the following chapter that the Lagrangian

method is very useful for obtaining equations of motion in terms of Euler’s

angles.

Problems

1. A uniform solid cube of edge length 2a is suspended from a horizontal

axis along one edge. Find the length of the equivalent simple pendulum.

Given that the cube is released from rest with its centre of mass level

with the axis, find its angular velocity when it reaches the lowest point.

2. An insect of mass 100mg is resting on the edge of a flat uniform disc

of mass 3 g and radius 50mm, which is rotating at 60 r.p.m. about

a smooth pivot. The insect crawls in towards the centre of the disc.

Find the angular velocity when it reaches it, and the gain in kinetic

energy. Where does this kinetic energy come from, and what happens

to it when the insect crawls back out to the edge?

3. A uniform solid cube of edge 2a is sliding with velocity v on a smooth

horizontal table when its leading edge is suddenly brought to rest by

a small ridge on the table. Which dynamical variables are conserved

(a) before impact, (b) during impact, and (c) after impact? Find the

angular velocity immediately after impact, and the fractional loss of

kinetic energy. Determine the minimum value of v for which the cube

topples over rather than falling back.

4. A pendulum consists of a light rigid rod of length 250mm, with two

identical uniform solid spheres of radius 50mm attached one on either

side of its lower end. Find the period of small oscillations (a) perpen-

dicular to the line of centres, and (b) along it.

5. A uniform rod of mass M and length 2a hangs from a smooth hinge

at one end. Find the length of the equivalent simple pendulum. It

is struck sharply, with impulse X , at a point a distance b below the

hinge. Use the angular momentum equation to find the initial value of

the angular velocity. Find also the initial momentum. Determine the

point at which the rod may be struck without producing any impulsive

reaction at the hinge. Show that, if the rod is struck elsewhere, the
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direction of the impulsive reaction depends on whether the point of

impact is above or below this point.

6. *(a) A simple pendulum supported by a light rigid rod of length l is

released from rest with the rod horizontal. Find the reaction at the

pivot as a function of the angle of inclination.

(b) For the cube of Problem 1, find the horizontal and vertical compo-

nents of the reaction on the axis as a function of its angular position.

Compare your answer with the corresponding expressions for the equiv-

alent simple pendulum.

7. *Find the principal moments of inertia of a flat rectangular plate of

mass 30 g and dimensions 80mm×60mm. Given that the plate is ro-

tating about a diagonal with angular velocity 15 rad s−1, find the com-

ponents of the angular momentum parallel to the edges. Given that

the axis is of total length 120mm, and is held vertical by bearings at

its ends, find the horizontal component of the force on each bearing.

8. Find the principal moments of inertia of a uniform solid cube of mass

m and edge length 2a (a) with respect to the mid-point of an edge, and

(b) with respect to a vertex.

9. Find the moment of inertia about an axis through its centre of a uniform

hollow sphere of mass M and outer and inner radii a and b. (Hint :

Think of it as a sphere of density ρ and radius a, with a sphere of

density ρ and radius b removed.)

10. A spaceship of mass 3 t has the form of a hollow sphere, with inner

radius 2.5m and outer radius 3m. Its orientation in space is controlled

by a uniform circular flywheel of mass 10 kg and radius 0.1m. Given

that the flywheel is set spinning at 2000 r.p.m., find how long it takes

the spaceship to rotate through 1◦. Find also the energy dissipated in

this manoeuvre.

11. A long, thin hollow cylinder of radius a is balanced on a horizontal

knife edge, with its axis parallel to it. It is given a small displacement.

Calculate the angular displacement at the moment when the cylinder

ceases to touch the knife edge. (Hint : This is the moment when the

radial component of the reaction falls to zero.)

12. *Calculate the principal moments of inertia of a uniform, solid cone of

vertical height h, and base radius a about its vertex. For what value of

the ratio h/a is every axis through the vertex a principal axis? For this

case, find the position of the centre of mass and the principal moments

of inertia about it.
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13. A top consists of a uniform, solid cone of height 50mm and base radius

20mm. It is spinning with its vertex fixed at 7200 r.p.m. Find the

precessional period of the axis about the vertical.

14. A gyroscope consisting of a uniform solid sphere of radius 0.1m is spin-

ning at 3000 r.p.m. about a horizontal axis. Due to faulty construction,

the fixed point is not precisely at the centre, but 20µm away from it

along the axis. Find the time taken for the axis to move through 1◦.
15. A gyroscope consisting of a uniform circular disc of mass 100 g and

radius 40mm is pivoted so that its centre of mass is fixed, and is spin-

ning about its axis at 2400 r.p.m. A 5 g mass is attached to the axis

at a distance of 100mm from the centre. Find the angular velocity of

precession of the axis.

16. *A uniformly charged sphere is spinning freely with angular velocity ω

in a uniform magnetic field B. Taking the z axis in the direction of ω,

and B in the xz-plane, write down the moment about the centre of the

magnetic force on a particle at r. Evaluate the total moment of the

magnetic force on the sphere, and show that it is equal to (q/2M)J∧B,

where q and M are the total charge and mass, respectively. Hence

show that the axis will precess around the direction of the magnetic

field with precessional angular velocity equal to the Larmor frequency

of §5.5. What difference would it make if the charge distribution were

spherically symmetric, but non-uniform?

17. *A wheel of radius a, with its mass concentrated on the rim, is rolling

with velocity v round a circle of radius R (	 a), maintaining a constant

inclination α to the vertical. Show that v = aω = RΩ, where ω is

the angular velocity of the wheel about its axis, and Ω (� ω) is the

precessional angular velocity of the axis. Use the momentum equation

to find the horizontal and vertical components of the force at the point

of contact. Then show from the angular momentum equation about

the centre of mass that R = 2v2/g tanα. Evaluate R for v = 5m s−1

and α = 30◦.
18. A solid rectangular box, of dimensions 100mm×60mm×20mm, is spin-

ning freely with angular velocity 240 r.p.m. Determine the frequency

of small oscillations of the axis, if the axis of rotation is (a) the longest,

and (b) the shortest, axis.

19. *A rigid body of spheroidal shape, spinning rapidly about its axis of

symmetry, is placed on a smooth flat table. Show by considering the

moment of the force at the point of contact that its axis will precess

in one direction if it is oblate (c < a = b, e.g. a discus) and in the
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opposite direction if it is prolate (c > a = b, e.g. a rugby ball). Show

also that if there is a small frictional force, the axis will become more

nearly vertical, so that if the body is oblate its centre of mass will fall,

but if it is prolate it will rise.

20. *The average moment exerted by the Sun on the Earth is, except for

sign, identical with the expression found in Chapter 6, Problem 26,

provided we interpret m as the mass of the Sun, and r as the distance

to the Sun. Show that Q = −2(I3−I1) and hence that the precessional

angular velocity produced by this moment is

Ω = −3

2

I3 − I1
I3

�2

ω
cosαn,

where � is the Earth’s orbital angular velocity, and α = 23.45◦ is

the tilt between the Earth’s axis and the normal to the orbital plane

(the ecliptic). Show also that (I3 − I1)/I3 ≈ ε, the oblateness of the

Earth, and hence evaluate Ω. Why is this effect less sensitive to the

distribution of density within the Earth than the complementary one

discussed in §6.5?

21. *The axis of a gyroscope is free to rotate within a smooth horizontal

circle in colatitude λ. Due to the Coriolis force, there is a couple on the

gyroscope. To find the effect of this couple, use the equation for the

rate of change of angular momentum in a frame rotating with the Earth

(e.g., that of Fig. 5.7), J̇+Ω∧J = G, where G is the couple restraining

the axis from leaving the horizontal plane, and Ω is the Earth’s angular

velocity. (Neglect terms of order Ω2, in particular the contribution of

Ω to J .) From the component along the axis, show that the angular

velocity ω about the axis is constant; from the vertical component show

that the angle ϕ between the axis and east obeys the equation

I1ϕ̈− I3ωΩ sinλ cosϕ = 0.

Show that the stable position is with the axis pointing north. Determine

the period of small oscillations about this direction if the gyroscope is a

flat circular disc spinning at 6000 r.p.m. in latitude 30◦ N. Explain why

this system is sensitive to the horizontal component of Ω, and describe

the effect qualitatively from the point of view of an inertial observer.


