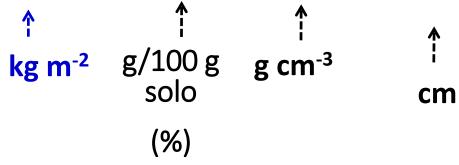
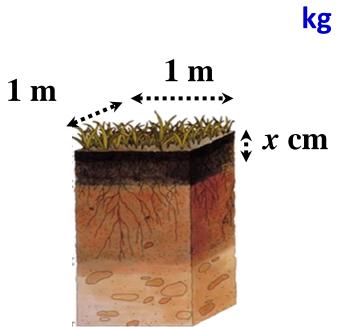
Exercícios Matéria orgânica do solo

Aplicações do teor de carbono ou matéria orgânica

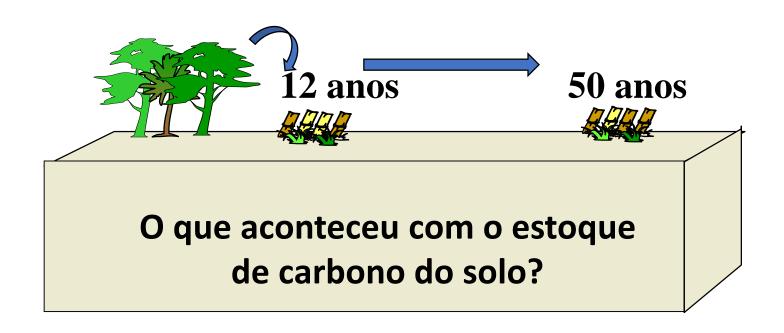
Correlação positiva com CTC: alto teor de M.O. → alta CTC


- Avaliar o impacto do uso da terra ou da prática de manejo numa determinada área.
- * Teor de C/M.O. é o principal indicador de qualidade do solo e sustentabilidade do sistema.


Cálculo do estoque de carbono

Estoques por camada de solo

kg m⁻² ou t ha⁻¹ de C


E = (conteúdo C x d x espessura)/10

Estudo de caso:

Mudança de uso da terra: De vegetação nativa para cana-de-açúcar

Experimento realizado em Piracicaba (C.C.Cerri)

Ex.: Solo sob floresta (0 - 20 cm)

Camada	Densidade	Teor de C g/100 ou
(cm)	(g cm ⁻³)	(%)
0-6	1,22	4,78
6-12	1,38	2,32
12-20	1,35	1,64

Cálculo do estoque de carbono no camada 0-20 cm

E = [teor de C (g/100g) x densidade (g cm⁻³) x espessura (cm)]/10

* <u>1º</u>. <u>Passo</u>: calcular o estoque por camada:

$$E_{0-6} = 4,78 \text{ g}/100 \text{ g} \text{ x } 1,22 \text{ g cm}^{-3} \text{ x } 6 \text{ cm} = 34,99 \text{ g}/100 \text{ cm}^2$$

$$E_{0-6} = \frac{34,99g}{100 \text{ cm}^2} \times \frac{10.000 \text{ cm}^2}{1 \text{ m}^2} = 3.499 \text{ g m}^{-2} = 3,50 \text{ kg m}^{-2}$$

$$E_{6-12} = (2,32 \text{ g}/100 \text{g x } 1,38 \text{ g cm}^{-3} \text{ x } 6 \text{ cm}) / 10 = 1,92 \text{ kg m}^{-2}$$

$$E_{12-20} = 1,64 \text{ g}/100 \text{ g} \text{ x } 1,35 \text{ g cm}^{-3} \text{ x } 8 \text{ cm}) / 10 = 1,77 \text{ kg m}^{-2}$$

$$E_{0-20} = 7,19 \text{ kg m}^{-2}$$

Exercício: Calcular os estoques de carbono numa sucessão floresta / cana-de-açúcar e interpretar os resultados

Floresta			
Camada	Densidade	C	E (1 -2)
(cm)	$(g cm^{-3})$	(g/100)	E (kg m ⁻²)
0-6	1,22	4,78	3,50
6-12	1,38	2,32	1,92
12-20	1,35	1,64	1,77
		Total =	7,19

Cana de a	çúcar 12 an	os	
0-10	1,24	1,65	
10-20	1,54	1,55	

Cana de aq	çúcar 50 an	os	
0-10	1,26	1,46	
10-20	1,28	1,57	

Resultados por camada:

Floresta				
Camada	Densidade	C	Estoque	
(cm)	$(g cm^{-3})$	(g/100)	$(kg m^{-2}C)$	
0-6	1,22	4,78	3,50	
6-12	1,38	2,32	1,92	
12-20	1,35	1,64	1,77	
		Total =	7,19 (cama	da 0-20 cm)
Cana de a	çúcar 12 and	OS		
0-10	1,24	1,65	2,0	
10-20	1,54	1,55	2,4	
		Total =	4,4 (camad	a 0-20 cm)
Cana de a	çúcar 50 and	OS		
0-10	1,26	1,46	1,8	
10-20	1,28	1,57	2,0	

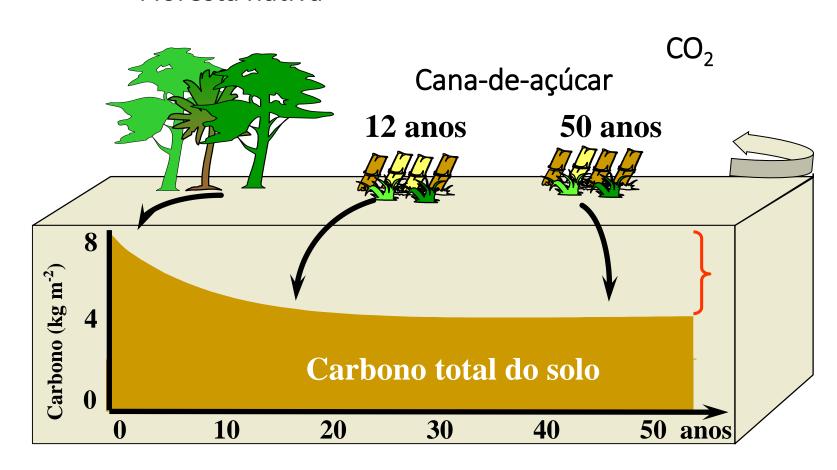
Total = 3.8 (camada 0-20 cm)

Resultados na camada de 0-20 cm:

Floresta nativa

$$E_{0-20} = \dots = 7.2 \text{ kg m}^{-2}$$

Cana-de-açúcar (12 anos)


$$E_{0-20} = \dots = 4,4 \text{ kg m}^{-2}$$

Cana-de-açúcar (50 anos)

$$E_{0-20} = \dots = 3.8 \text{ kg m}^{-2}$$

Visualização gráfica da variação no estoque de carbono na sucessão floresta / cana-de-açúcar

Floresta nativa

Conclusões:

- Na vegetação nativa havia entrada contínua de material orgânico facilmente decomponível – alta diversidade de substrato orgânico condiciona alta diversidade microbiana.
- Conversão do uso da terra para cana queimada: queda acentuada no estoque nos primeiros 12 anos – pouca palha remanescente na superfície do solo, sem reposição contínua que havia na mata.
- Organismos passam a consumir MO que havia sido acumulada na floresta por muito tempo.
- <u>De 12 a 50 anos de cana queimada</u>: estoques caem de forma bem menos abrupta população caiu em número e diversidade; e material remanescente é mais estável (recalcitrante).

Exercício: Calcular os estoques de carbono em solo sob preparo convencional e plantio direto. Interpretar os resultados

Solo sob Preparo Convencional (PC)			
Camada (cm)	Densidade (g cm ⁻³)	Teor C (g/100)	
0-10	1,20	1,73	
10-20	1,26	1,28	

Solo sob Plantio Direto (PD)

Camada (cm)	Densidade (g cm ⁻³)	Teor C (g/100)
0-10	1,28	2,27
10-20	1,34	1,91

Respostas: Estoque PC = 3,68 kg m⁻² Estoque PD = 5,46 kg m⁻²

Estimativa da porcentagem de decomposição de palha

 A porcentagem de decomposição da palha pode ser estimada com uso da expressão:

Est. = $[(C-CO_2 do solo com palha) - (C-CO_2 do solo sem palha)] * 100 / quantidade de C adicionado via palha$

Experimento:

Em um frasco com 100 g de solo adicionaram-se 400 mg de palha de milho contendo 50% de C.

Após incubação com umidade e temperatura adequadas por 10 dias, verificou-se que 80 mg de C foram evoluídas como CO₂ do solo que recebeu a palha, enquanto emanaram-se apenas 20 mg C-CO₂ no mesmo solo e sob as mesmas condições, porém sem palha.

Calcule a estimativa da porcentagem de decomposição da palha de milho após os 10 dias de incubação.

Resposta: [(80-20) * 100 / 200] = 30%

Exercício:

Em um frasco com 100 g de solo adicionaram-se 500 mg de palha de arroz contendo 50% de C.

Após incubação, verificou-se que 60 mg de C foram evoluídas como CO₂ do solo que recebeu a palha, enquanto emanaram-se 25 mg C-CO₂ no mesmo solo e sob as mesmas condições, porém sem palha.

Calcule a estimativa da porcentagem de decomposição da palha de milho após a incubação.

Resposta: [(60-25) * 100 / 250] = 14%

Estimativa do tempo para elevar o teor de MO no solo

Estime a quantidade de resíduos e o tempo para elevar em 1 % o teor de MO em 10 cm, considerando a densidade solo igual 1,0 g cm⁻³. Considere que o resíduo possui em média 45% de C e adição anual de 5 t ha⁻¹ ano⁻¹ de resíduos.

Obs.: - a conversão do teor de MO em C (C = MO / 1,724)

- transformação do C-resíduo em C-matéria orgânica é da ordem de 30 %.

Resposta

Volume de solo em 1 ha = $100 \text{ m x } 100 \text{ m x } 0,1 \text{ m} = 1000 \text{ m}^3$

Densidade = 1 g cm⁻³ = 1 kg L^{-1} = 1 t m⁻³

Massa de solo = 1 t m^{-3} ou 1000 t ha^{-1}

 $1000 \text{ t ha}^{-1} \text{ de solo} * 1\% \text{ de MOS (aumento)} = 1000 * 0,01 = 10 \text{ t ha}^{-1} \text{ de MOS}$

 $10 \text{ t ha}^{-1} \text{ de MOS} / 1,724 = 5,8 \text{ t C ha}^{-1}$

 $5.8 \text{ t C ha}^{-1} / 30\%$ (considerando 70 % de perda na forma de CO_2) = $5.8 / 0.3 = 19.33 \text{ t C ha}^{-1}$

19,33 t C ha⁻¹ / 0,45 (considerando 45 % de C no resíduo) = 42,96 t MS ha⁻¹

 Δ T para aumento de 1% da MOS (adição de 5 t ha⁻¹ ano) = 42,96 / 5 = $8,59 \approx 9$ anos

Exercício

Estime a quantidade de resíduos e o tempo para elevar em 0,5 % o teor de MO em10 cm, considerando a densidade solo igual 1,2 g cm⁻³. Considere que o resíduo possui 50% de C e adição anual de 7 t ha⁻¹ ano⁻¹ de resíduo.

Obs.: - a conversão do teor de MO em C (C = MO / 1,724)

- transformação do C-resíduo em C-matéria orgânica é da ordem de 30 %.

Resposta = 3,3 anos