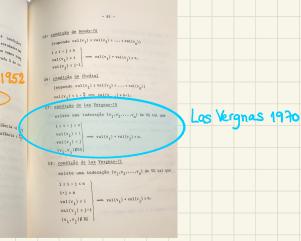
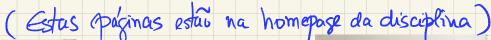
Cap. 4

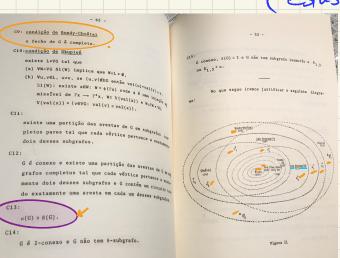
GRATOS HAMILTONIANOS


Material extra - duos outras condiges soficientes

 $val(v_i) \le i$ \Longrightarrow $val(v_i) + val(v_i) \ge n$.

 $val(v_i) \leq j$




\$\mathcal{F}_2\$ & a família de grafos descrita na pagina 79.

\$\mathcal{G}_2\$ e a ramaria de grafos descrita na pagina 79.

\$\mathcal{G}_1\$ & a família de grafos descrita na pagina 78.

F: - (G:G∈F1, |VG| & impar).

 ~									
pelo meno pelo meno pelo meno cue satis	Nostr C14 S um S um Na tal	Condiç grafo C grafo C bela ab C _i e I	que sa qu	i e C _j tisfaz tisfaz exibimos tisfaze	são d C _i e C _j e grafos em C _j da linh	itas Anão sa não sa ou fa onde 9	independ tisfaz tisfaz mília ≤i≤14, com a d	dentes se C _j e C _j e C _i . de graf 9 <j<14 coluna ~</j<14 	ha ha ha cos
[~C9	~C10	~C11	~C12	~C13	~C14		
F	C9	/	\mathcal{F}_2	F2	72	\mathcal{F}_2	\mathcal{F}_2		
-	C10	9,	/	F1*	9,	91	\mathcal{I}_1	1	
		-	-		-	-	-		

	00	ristaz	6: 0	muo ou		C _j e hã		н ₁ :	
arafo	que sa	tistaz	cj e	nao sa	CIDIUL	i.			
bela a	baixo e	xibimos tisfaze	grafos em C _j	ou fa	milia ≤i≤14,	de grafos 9≤j≤14 e		Н2:	
						coluna ~C _j			
m graf	o ou ui	na fami	ília de	e grafe	os que	satisfa-	н ₃ :		
		~C11	~C12	~C13	~C14	1	- 80		
~C9	~C10	F,	F,	F2	F2		- 80		
91	1 2	#*	91	91	\mathcal{I}_1			H ₄ :	
H ₁	H ₁	-	H ₁	Н ₁	H ₁		- 80		
Н2	Н2	Н2	/	Н2	Н2				X
Н3	Н3	Н3	Н3		H ₃		- 100		
Н ₄	H ₄	Н4	H ₄	Н ₄	6				- 0 -

TEOREMA DE LAS VERGNAS, 1970 Seja G um grafo de ordem n,3. Se existe uma indexação {v, v, v, ..., vn} tal que 1sisjen $g(v_i) \leq i$ $\Rightarrow g(v_i) + g(v_j) \ge n,$ g(z) ≤ j {vi, vz} ≠ A(G) entes G e' hamiltoniano. Dirac Ore Las vergnas vergnas

(1) $e(2) \Rightarrow v_j$ adjac a v_k p $i < k \le n$, $k \neq j$ Portanto, $g(v_j) \ge n-i-1$ B (1) \Rightarrow v_i adjac. a v_k $\neq 1$ j < k < n. Partanto, $g(v_i) \ge n-j$

Usando (A), (B) e (C):

$$g(v_i) \le g(v_i) \le n-1 - g(v_j) \le n-1 - (n-i-1) = i$$

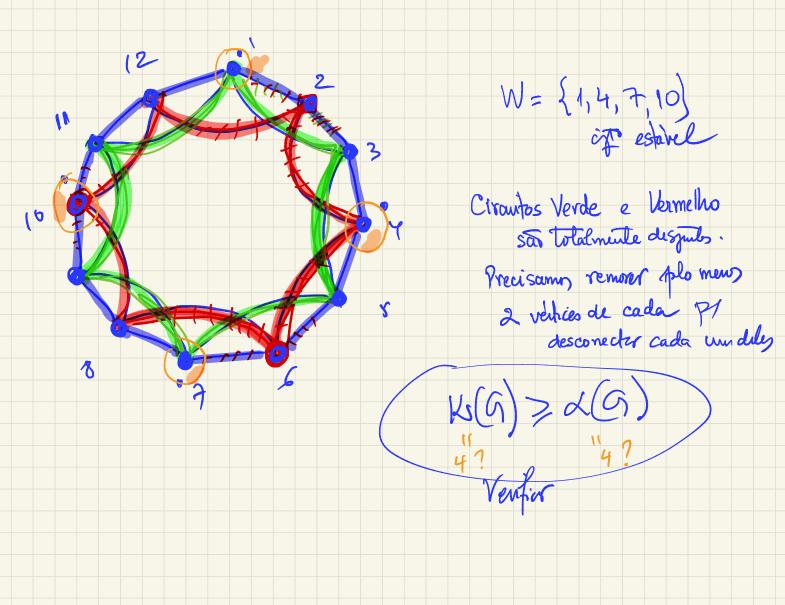
H (B)

$$g_{G}(v_{3}) \leq g_{H}(v_{3}) \leq m-1-g_{H}(v_{3}) \leq m-1-(m-j)=j-1 \leq j$$

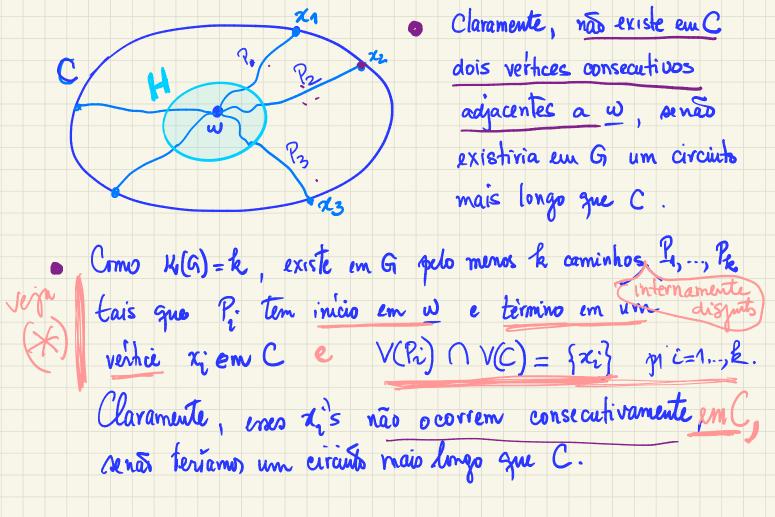
Qu sija,
$$\begin{cases} g(v_i) \leq i \\ g(v_j) \leq j \end{cases}$$

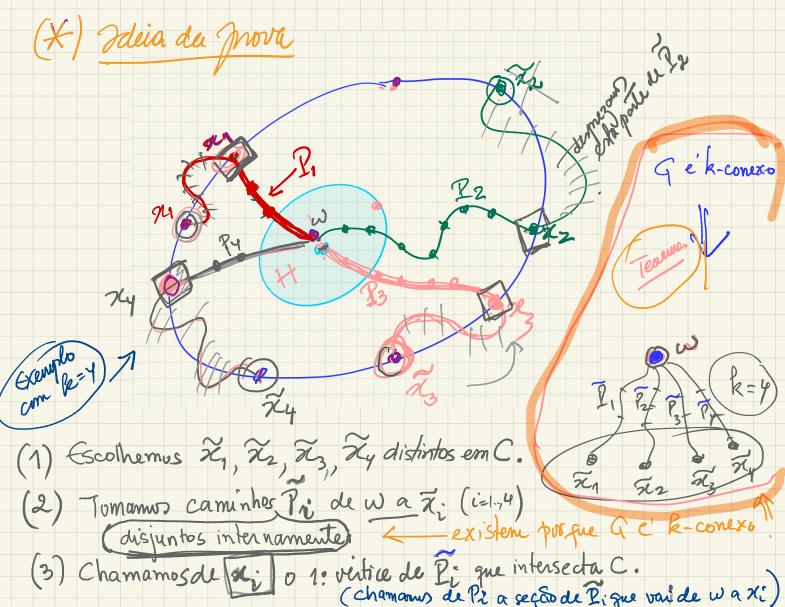
Claramente,
$$\{v_i, v_j\} \notin A(G)$$
. [pois $\{v_i, v_j\} \notin A(H)$]

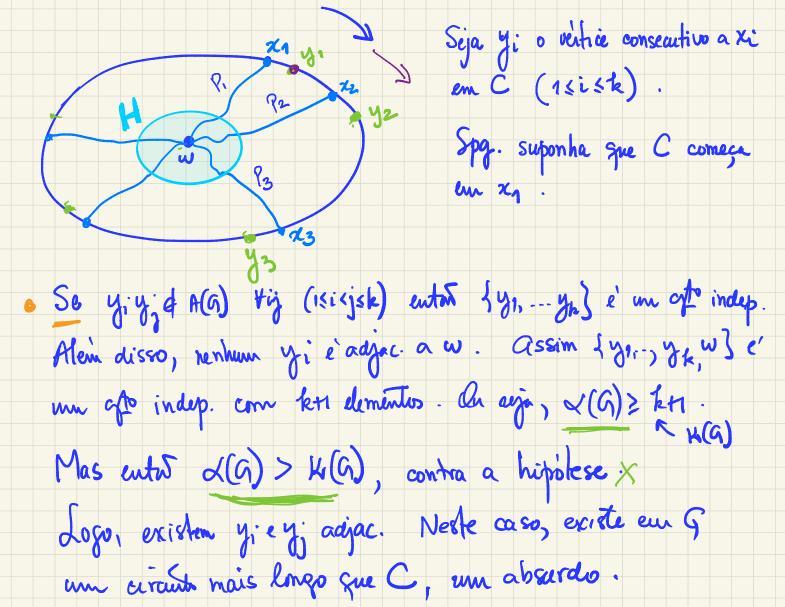
Pela hipótese subre G , tenor sue

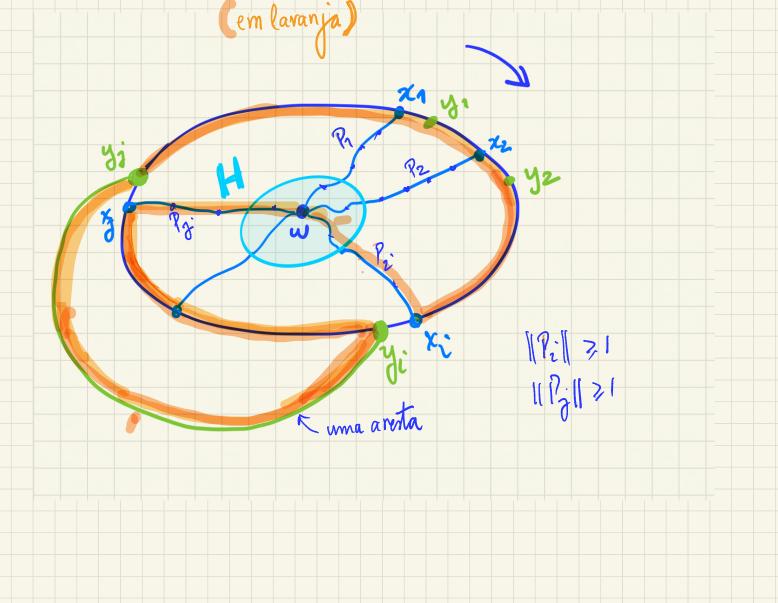

 $g(v_i) + g(v_j) \ge n$

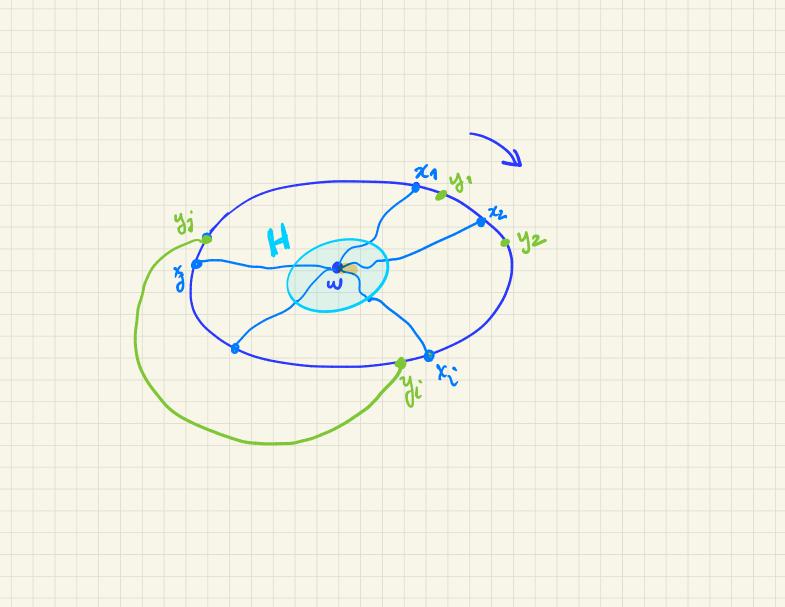
Logo, $g(v_i) + g(v_j) \ge n$ (pois $H \ge G$).


Mas, isto compadiz (A). Logu, $\exists G$) e'complete.


Pelo Teo. de Bondy & Chvatal, conclumos que G e' hamiltoniano.


Condição Suficiente baseade em dois parâmetros do grafo (novos para nos) K(G) = min $|W|: G-W \in desconexo ou$ |V(G-W)|=1conectividade de G (conexidade) K(G)=2 K(9)=1 Def: G e' k-conexo se K(G) >k. tureva) existem & caminhos
de u a v 2 a 2 internale disjunitos 5 e' estable ou j ndependente vertices 2 a 2 vivo adjacentes # establidade (ou # independêncie) de G K(G)=3 a - {a,b,c} e' desconaço




Teorema de Chvátal-Grdos (1972) Se G e' um grafo de ordem 173 e 16(9) > \(CG), entao G e' hamittoniano Prova. Não existe nenhum grafo G de ordem n?3 tal que $K(G) = 1 \ge \alpha(G)$. Suponhamos então que $K(G) = k \ge 2$. Neste caso, G conten um circuto. Suponhamos que G não sija hamietoniano. Sija C um circuito mais longo em G. Entes existe en G un vértice w/ VC). Sija H o componente de G-C que conten w.

