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Abstract

We compare linear and nonlinear Galerkin methods in their e�ciency to reduce in®nite dimensional systems, de-

scribed by partial di�erential equations, to low dimensional systems of ordinary di�erential equations, both concerning

the e�ort in their application and the accuracy of the resulting reduced system.

Important questions like the choice of the form of the ansatz functions (modes), the choice of the number m of modes

and, ®nally, the construction of the reduced system are addressed. For the latter point, both the linear or standard

Galerkin method making use of the Karhunen Loeve (proper orthogonal decomposition) ansatz functions and the

nonlinear Galerkin method, using approximate inertial manifold theory, are used. In addition, also the post-processing

Galerkin method is compared with the other approaches. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the ®eld of engineering, the description of a dynamical system is usually given by a di�erential
equation

_v � G�v; k�; �1�
where, in the general case, v is an element of a Hilbert space E, and G(v, k) is a smooth nonlinear operator.
As an example, we treat in Section 4 a ¯uid conveying tube. In that, the control parameter k corresponds to
the ¯ow rate.

Eq. (1) de®nes a time continuous dynamical system given by the mapping

v�t� � ut�v0� � u�t;v0; t0�; �2�
where v�t� is the current state of the system, and u�t;v0; t0� is the solution of the di�erential equation (1) for
the given initial data v0 at t0. The`ariable v can be a point in an in®nite or ®nite dimensional phase space
(Troger and Steindl, 1991). The mapping (2) de®nes a ¯ow (the time evolution) in phase space.
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A ®nite dimensional phase space of high dimension or an in®nite dimensional phase space, as it is
obtained for the ¯uid conveying tube, will create great di�culties in analyzing the dynamics both quali-
tatively and quantitatively. Hence, one always will try to reduce the systemÕs dimension ± if this can be done
at all ± and to achieve a good approximation of the original dynamics. This goal can be reached for certain
dissipative systems, basically by neglecting inessential degrees of freedom of the system. That this should be
possible is indicated both by experiments and engineering experience. It is well known that the asymptotic
behavior of high dimensional or even in®nite dimensional dissipative dynamical systems can often be de-
scribed by the deterministic (possibly chaotic) ¯ow on a low dimensional attractor A. In addition, there
exists also a number of mathematical model equations for which this property has been proven to hold
rigorously (Rodriguez and Sirovich, 1990; Bloch and Titi, 1990; Jones et al., 1995).

Now, let us explain the dimension reduction of a dynamic system from our understanding. We restrict to
one of the central problems in stability theory, namely the investigation of loss of stability of an equilibrium
ve of Eq. (1) under quasi-static variation of a distinguished system parameter k (Troger and Steindl, 1991).
First, we rewrite Eq. (1) in the form

_u � L�k�u� g�u; k�; �3�
where L � Gv�ve� is the linearization of the operator G at the equilibrium position ve; g is a smooth
nonlinear operator and u � vÿ ve is the deviation from ve. Both the operators L and g are still dependent
on the spatial variable x. In addition, we assume that g�0; k� � 0 and gu�0; k� � 0. Basically, the loss of
stability is described in terms of the temporal evolution of the amplitudes of certain (active) modes, the
determination of which is the key point in dimension reduction. These modes, roughly speaking, are those
that are either mildly unstable or only slightly damped in linear theory. For their determination, in general,
an eigenvalue problem following from the linearized part of Eq. (3) must be solved. If the number of these
critical modes is ®nite, a set of ordinary di�erential equations can be constructed, which governs the
evolution of their amplitudes. These equations are called amplitude equations of the critical modes or bi-
furcation equations, and they basically describe the behavior of the original system, since the other (possibly
in®nitely many) modes are more or less strongly damped and, hence, do not explicitly appear in the de-
scription (Coullet and Spiegel, 1983). This scenario can also be given a geometric interpretation in phase
space. The evolution of the ¯ow basically can be split into two parts. One, which is rapidly decaying to-
wards an attracting manifold and this is, as center manifold theory shows, due to the negative real parts of
the corresponding eigenvalues of the linearization of this part of the ¯ow. The second part of the ¯ow,
which for the long term behavior of the system is the essential one, evolves slowly on the attracting
manifold, since, in general, it is dominated by nonlinear terms, because the corresponding eigenvalues of its
linearization are located close to the imaginary axis. This picture comes out clearly from the center man-
ifold theory as depicted in Fig. 1 in the frames (a)±(c) for the loss of stability at a zero eigenvalue described
by the simple system

_q � qp; _p � ÿp � aq2 �4�
and in frame (d) for the loss of stability at a purely imaginary eigenvalue for a Hopf bifurcation in a three-
dimensional phase space (see also Section 2). Basically, we can conclude that the two-dimensional system
(4) may be reduced to a one-dimensional one which evolves on the center manifold. However, though
intuitively quite plausible, it would be a mistake to assume that the fast motion, which corresponds to the
higher modes in the representation of the system, can be completely ignored in the derivation of the reduced
system. Due to nonlinear coupling, the elimination of the fast motion (higher modes) is a delicate matter. If
the fast motion is completely ignored in the calculation of the reduced system, the so-called standard (linear
or ¯at) Galerkin method, mostly used in engineering, is obtained. However, we will show that better
strategies exist. In some sense, the representation of the higher modes by means of the lower modes is the
essential step in applying more sophisticated dimension reduction methods.
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Hence, in general, we want to derive from Eq. (3), a ®nite dimensional system of the form

dq

dt
� f �q; k�; q 2 Rm: �5�

The solution of Eq. (5) should allow to approximate the ®eld u�x; t�, for example, in the form (12) in some
proper norm. The qi�t� are the amplitudes of the active modes, and Eq. (5) are the amplitude equations
describing their time evolution. The main di�culties in providing the link between Eqs. (3) and (5) are

1. identifying the spatial structure of the active modes,
2. determining the number of active modes,
3. selecting a method to construct the reduced system (5).

It is di�cult if not impossible to give answers to these questions in general. However, if we restrict to the
scenario of loss of stability of an equilibrium, then quite precise answers can be given (Aceves et al., 1986).
We assume that for a range of parameter values of k, Eq. (3) has an asymptotically stable equilibrium
position ue � 0. Now, we vary k quasi-statically and assume that for k � kc, a loss of stability of ue occurs.
If this scenario applies, then in two cases a proper dimension reduction may be performed (e� 1):

1. If jkÿ kcj � O�e�, the center manifold theory may be applied.
2. If jkÿ kcj � O�1�, Galerkin methods may be useful.

Fig. 1. Center manifolds and ¯ows: (a) for the linear part of system (4), (b) and (c) for the nonlinear system (4) for a < 0 and a > 0,

respectively and (d) for a three-dimensional system after a Hopf bifurcation.
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Case 1 is well studied in books on bifurcation theory (Carr, 1981; Guckenheimer and Holmes, 1983;
Troger and Steindl, 1991) and, for example, in the papers Holmes (1981), Coullet and Spiegel (1983), well
accessible for engineers. Provided an additional condition, which is stated below, holds, a precise identi-
®cation of the form and the number of the active modes exists. If Case 2 applies, we want to compare
several alternatives to the standard Galerkin method, usually used by engineers. Here, the literature is more
challenging mathematically, but well written papers are by Bloch and Titi (1990), Brown et al. (1990),
Brunovsky (1993), Jones et al. (1995) and Garcia-Archilla et al. (1998).

Though we will concentrate on Galerkin methods, we start with a short review of center manifold theory
because it most clearly displays what dimension reduction is all about.

2. Center manifold theory

For jkÿ kcj � O�e� and some additional requirements (Troger and Steindl, 1991), where the most im-
portant is that at the critical parameter value k � kc, the eigenvalue with largest real part, crossing the
imaginary axis, has ®nite multiplicity �nc� center manifold theory is applicable. Then, the ®eld variable
u�x; t� is decomposed in the form

u�x; t� � uc�x; t� � us�x; t� �
Xnc

i�1

qi�t�vi�x� �U�qi�t�;x�; �6�

where the vi�x� are the active spatial modes, obtained from the solution of the eigenvalue problem related to
the linear system

_u � L�kc�u: �7�
The qi�t� are their time-dependent amplitudes and us�x; t� could be given by an in®nite sum. The key

point is that the in¯uence of the in®nite number of higher modes contained in us�x; t� can be expressed in
terms of the lower order modes by the function U�qi�t�; x�.

We indicate now, how Eq. (5) is obtained from Eq. (3). We assume that the spectrum of L�k� is discrete
and that for k � kc, a ®nite number �nc� of eigenvalues crosses the imaginary axis at the same time. All other
eigenvalues have a negative real part. Now, we rewrite Eq. (3) in the form

_uc � PLuc � Pg�uc � us�; �8a�

_us � QLus � Qg�uc � us�; �8b�
by decomposing E � Ec � Es, where Ec is ®nite �nc� dimensional and Es is closed (we recall that a space E is
closed if any Cauchy sequence um for m!1 possesses a limit u in E). This decomposition is achieved by
de®ning the projection P (see Troger and Steindl (1991)) onto Ec along Es, giving uc � Pu 2 Ec and
us � Qu 2 Es where Q � I ÿ P . If us � h�uc� is a smooth invariant manifold (a manifold M is invariant, if
for every initial value u0 2 M the trajectory ut�u0� remains in M for all t P 0), we call h a center manifold if
h�0� � h0�0� � 0. Note, that if in Eqs. (8a) and (8b) Pg � Qg � 0, all solutions tend exponentially fast to
solutions of _uc � PLuc (see Fig. 1, frame (a)). That is, the linear nc dimensional equation on the (¯at) center
manifold determines the asymptotic behavior of the entire in®nite dimensional linear system, up to ex-
ponentially decaying terms. The center manifold theorem enables us to extend this argument to the non-
linear case when Pg and Qg are not equal to zero.

Center manifold theorem (Carr, 1981). (1) There exists a center manifold us � h�uc� for system (8), if jucj is
su�ciently small. The behavior of system (8) on the center manifold is governed by the equation
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_uc � PLuc � Pg�uc � h�uc��: �9�
(2) The zero solution of Eqs. (8) has exactly the same stability properties as the zero solution of Eq. (9).
(3) If H : Rnc ! Rns is a smooth map with H�0� � H 0�0� � 0 and is de®ned by the equation (3.25) in Troger
and Steindl (1991)

P�H� :� H 0�uc��PLuc � Pg�uc �H�uc��� ÿ QLH�uc� ÿ Qg�uc �H�uc��; �10�
then if

P�H� � O�jucjr�; r > 1 as jucj ! 0;

we have jh�uc� ÿH�uc�j � O�jucjr� as jucj ! 0:

We note that by inserting us � h�uc� into Eqs. (8), we can eliminate the (in®nitely many) inessential
variables us to obtain Eq. (9) which is a system of nc nonlinear ordinary di�erential equations for the nc

amplitudes qi�t� of the active modes vi�x�. Moreover, Eq. (9) describes the whole nearby (local) dynamics of
the original in®nite dimensional system (3) together with Eq. (6). We further remark that the us in Eq. (6)
are at least of second order in uc, that is

us � O�jjucjj2� � O�jqij2�: �11�
Relation (11) has important consequences concerning the practical calculations (Troger and Steindl, 1991).
Part 3 of the theorem allows to calculate a su�ciently accurate approximation by retaining relevant terms
in a Taylor series expansion.

3. Galerkin approximation

Often in technical problems the case of a small parameter variation �jkÿ kcj � O�e��, as it is required for
center manifold theory, is not valid because deviations �jkÿ kcj � O�1�� about kc occur or many eigenvalues
are located close to but not exactly on the imaginary axis. In the latter case, variation of the parameter k
beyond the critical value kc will have the e�ect that additional modes become unstable and, hence, the
originally low dimensional system will not be valid anymore. For such problems, Galerkin methods may be
used.

In general, applying Galerkin methods (Meirovitch, 1967), the ®eld variable u�x; t� is expressed in the
form

u�x; t� �
Xm

j�1

qj�t�wj�x� �12�

by a set of m comparison vectors (functions) wj�x�, called the Galerkin basis, which must satisfy all the
geometric and natural boundary conditions.

In engineering notation, applying the standard Galerkin method means that Eq. (3) is projected on the
space of ansatz functions wj in the form

d

dt

� 
ÿ Lÿ g

� Xm

j�1

qj�t�wj�x�
 !

;wj�x�
!
� 0 �13�

which results in the amplitude equations

_qj � f m
j �q1; . . . ; qm�; j � 1; . . . ;m: �14�
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The inner product in Eq. (13) is nothing else than the projection P used in Eq. (8). Besides the choice of
wj�x�, a major open question in the application of the standard Galerkin approximation is the proper
choice of m. Whereas the dimension nc of the center manifold is determined by the number of eigenvalues of
the linear operator L which, at the ®rst time, cross the vertical axis at the critical parameter value kc, and
hence, is precisely known, there does not exist such a precise and sharp criterion which would allow to ®x m
in the Galerkin approximation. One always will try to select m as small as possible in order to make further
treatment of the system (14) of nonlinear ordinary di�erential equations for the qj�t� as simple as possible.
However, the number m must be chosen large enough to catch the qualitative behavior of the problem.
That is, beyond a certain value of m an increase of the number m should not have any in¯uence on the
qualitative behavior of the phenomenon. For a discussion of this point in relation to the Lorenz equations,
derived from the B�enard convection problem, see Aceves et al. (1986), where it is shown that the increase of
m beyond m � 3 results in qualitative changes in the dynamics of the truncated system (see also Saltzman
(1962)).

Applying the Galerkin methods, engineers usually use the standard Galerkin approximations for the
reduction of the dimension of the problem. However, besides the standard Galerkin method, nonlinear
Galerkin methods (see also Section 3.2.1) are also available. The di�erence between standard and nonlinear
Galerkin can be best understood from our short presentation of center manifold theory considering Eqs. (6)
and (8). Standard Galerkin means that one neglects us in Eq. (6), and consequently, only Eq. (8a) is ob-
tained, with us � 0 inserted into the nonlinear function Pg. Hence, the fast dynamics expressed by the
function U�qi�t�; x� in Eq. (6) and taken care of in center manifold theory is completely ignored in the
reduction process of the system. We note that for system (4) this would yield a completely useless result.
Nonlinear Galerkin means that the in¯uence of the higher modes us is not neglected as in the standard
Galerkin reduction. To take care of the in¯uence of us in Eq. (8a), several possibilities exist. Two possi-
bilities are explained below.

To handle the three di�culties raised in the Introduction, one can choose between several possibilities:

1. For the standard Galerkin reduction, instead of the usual choice of ansatz functions (Meirovitch,
1967) as comparison functions, the Karhunen Loeve method could be used to obtain a set of optimal ansatz
functions. Here, optimal means that for the same m, the Karhunen Loeve ansatz functions supply a better
approximation than any other choice of ansatz functions (Holmes et al., 1996). Moreover, the Karhunen
Loeve method allows to formulate an energy estimate, which supplies important information concerning
the number m of active modes to be retained in the approximate system, to achieve a certain accuracy.

2. The standard Galerkin method can be extended to the so-called nonlinear Galerkin methods which in
the mathematical literature are better known as the concept of inertial manifolds. Here, we include two
possibilities for the practical calculations:

(a) approximate inertial manifold theory,
(b) post-processed Galerkin method.

3.1. Karhunen Loeve method

Here, we only make some general remarks concerning the Karhunen Loeve method (Lumley, 1970),
because a detailed presentation in engineering style is given in Steindl et al. (1999).

The Karhunen Loeve method, which in the mathematical literature (Sirovich, 1987; Holmes et al., 1996)
is called proper orthogonal decomposition method, has been quite successfully applied for the study of
turbulence and coherent structures in ¯uid ¯ow problems. Basically, it requires the availability of an en-
semble of data functions ui, which may be generated from experiments or numerical simulations. From this
data, one wants to ®nd a deterministic function f which in some statistical sense has the structure typical of
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the members ui of the ensemble. Let us assume that u is a vector in a function space. Then f should be as
nearly parallel as possible to u in a statistical sense. We assume that the projection of u on f given by �u; f � is
de®ned. The task is to maximize �u; f �. Obviously, one can increase the value of �u; f � simply by increasing
the magnitude of f without changing its form. Hence, one must normalize by the length of the vector f. This
results in the quantity

�u; f �
�f ; f �1=2

�15�

which has to be maximized on a Hilbert space of functions f, where �f ; f � exists. Since we have a whole
ensemble of functions ui, we have to maximize in some average sense. If the mean value of the ui is zero one
would obtain Ef�u; f �g � 0, where Ef�g denotes the ensemble average (Steindl et al., 1999). Hence, instead
of Eq. (15), the quadratic expression

Ef�u; f �; �u; f �g
�f ; f � P 0; �16�

is maximized. It is shown in Holmes et al. (1996) (Section 3.1) that Eq. (16) is equivalent to the constrained
minimum problem: extremalize Ef�u; f �2g with �f ; f � � 1.

This is a standard problem in the calculus of variations and results in an eigenvalue problem of the form

�R�x; x0�;/�x0�� �
Z

D
R�x; x0�;/�x0�dx0 � k/�x�: �17�

The generalized function R�x; x0� � Efu�x�u�x0�g is the covariance or the autocorrelation of u�x� and u�x0�
where u�x� is a regular function absolutely integrable on the ®nite region D. The solution of Eq. (17)
supplies the set of optimal eigenmodes /j. Another interpretation of optimality is that the mean square
error between the approximate and the exact solution is a minimum for the KL-basis at any truncation
point (Steindl et al., 1999). The corresponding eigenvalues kj can be interpreted as a measure of the energy
content carried by the corresponding mode. If they are normalized as probabilities, their sum gives the
percentage of energy represented by the approximation.

Finally, we note that, if R�x; x0� � R�xÿ x0�, then the /j�x� are given by /j�x� � eijx, that is, by trigo-
nometric functions. Moreover, for the optimal eigenfunctions or eigenvectors, a geometric interpretation is
possible, because they approximate the data in such a way that they are parallel to the axis of the inertia
ellipsoid of the cloud of data points. In this respect, mathematically, besides the statistical aspect, a problem
is given, completely analogous to the calculation of the principal moments of inertia of a body in R3

(Parkus, 1966, Section 2.5). Applications of the Karhunen Loeve method are given in Steindl et al. (1999).

3.2. Nonlinear Galerkin method: inertial manifold

Often a strong improvement of the quality of the approximation is achieved if instead of the traditional
standard Galerkin method, use of nonlinear Galerkin methods is made and here as mathematical concept
inertial manifolds are used (Brunovsky, 1993; Guckenheimer, 1989; Marion and Temam, 1989). An inertial
manifold is a ®nite dimensional, exponentially attracting manifold. The qualitative idea is that if a system
possesses a complicated attractor A, then it can often be better approximated by a nonlinear manifold as
given by the inertial manifold than by the linear space used in the standard Galerkin method. Again, re-
stricting the in®nite dimensional system to such a manifold yields a ®nite dimensional system of ordinary
di�erential equations, which approximates the long-term dynamics of the original system. The proof that
such inertial manifolds exist has been given for a variety of partial di�erential equations (Brunovsky, 1993).
An intuitively easily understood condition for the existence of such inertial manifolds (Guckenheimer,
1989) is the requirement that the separation of trajectories within the manifold must be less extreme than in
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the direction transversal to the manifold. This condition results in requirements on spectral gaps for the
linearized operator L in Eq. (3). In other words, the attracting invariant manifold must have more extreme
Ljapunov exponents in its normal directions than in its tangential directions. If the partial di�erential
equations being studied have large gaps in their spectrum, then these can be used to look for invariant
manifolds that are located close to the linear space spanned by the modes corresponding to the eigenvalues
which are located to the right of a gap in the complex plane. For realistic examples, the main problem, in
looking for such a gap condition, is that the estimates on the dimension m of the inertial manifold obtained
in the literature (Bloch and Titi, 1990; Brunovsky, 1993; Jones et al., 1995) are very large and practically
useless, since, in general, only very low dimensional systems can be fully analyzed concerning their qual-
itative behavior.

3.2.1. Approximate inertial manifold
Here, we follow engineering requirements and give a brief description on how, by treating a problem, an

approximation of an inertial manifold can be calculated. We proceed similarly as in the center manifold
reduction and follow Foias et al. (1988). We start with system (3). We order the real parts of the eigenvalues
of the linear operator L by l1 P l2 P � � � Further, as before, we denote the projections onto the span of the
®rst m eigenfunctions of L by P and on the orthogonal complement by Q � I ÿ P . Then, Eqs. (8a) and (8b)
is obtained exactly (with nc � m). The traditional standard Galerkin approximation of Eq. (3) would
proceed in the following way. From the eigenfunctions of L, one selects the m modes and completely ig-
nores Eq. (8b) and sets us � 0 in Eq. (8a). This results in

_uml � PLuml � Pg�uml�; �18�
where the index l stands for linear. This would mean that the in¯uence of the fast dynamics on the slow
(essential) dynamics is completely neglected. However, sometimes a much better approximation is achieved
if we make the assumption that Eq. (3) has an inertial manifold of dimension m which can be realized as the
graph of a function h : PE ! QE or in other words, us � h�umn�. The projection of the inertial form onto
PE is then given by

_umn � PLumn � Pg�umn � h�umn��; �19�
where the index n stands for nonlinear. Now the approximation of u is given by

uapp � umn � h�umn�; �20�
completely analogous to Eq. (6). The interpretation of Eq. (20) is that the high frequency modes are ex-
pressed as a function of the low frequency modes.

Eq. (19) looks identical to Eq. (9) but in the practical calculations the following approach has to be
taken. First, one makes a standard Galerkin approximation (18) with n modes. Then, one calculates an m-
dimensional approximation / of the inertial manifold h with m < nv, which is assumed to exist. Such an
approximation of the inertial manifold can be calculated by an iterative scheme proposed in Brown et al.
(1990). We designate the m critical variables by q � Rm and the noncritical variables by p � Rnÿm and
rewrite the nth order system (18) in the following form:

dq

dt
� Aq� Pg�q� p�; �21a�

dp

dt
� Bp� Qg�q� p�: �21b�

Here, A � PL and B � QL where P : Rn ! Rm denotes the projection to the m modes and Q � I ÿ P is the
projection onto the orthogonal complement spanned by the eigenfunctions corresponding to the eigen-
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values lm�1; . . . ; ln. For the selection of the critical modes corresponding to the matrix A we look at the
spectrum of the linear operator of the n-dimensional system. One usually picks those with the largest real
parts that are located in a close neighborhood of the imaginary axis of the complex plane with the addi-
tional condition (hopefully satis®ed) that they are well separated by a gap from all other eigenvalues,
corresponding to the matrix B, which are located further to the left in the complex plane. However, we will
show in Section 4 that this approach sometimes may yield bad results. We now replace Eqs. (21a) and (21b)
by

dq

dt
� Aq� Pg�q� /a�q��; �22�

where /a is an approximation of the inertial manifold. In calculating the approximation, we note that close
to the manifold dp/dt in Eq. (21b) is approximately zero. Hence, by setting dp=dt � 0, we obtain the
nonlinear equation

0 � Bp� Qg�q� p� �23�
for p, which may be solved by iterating the map

T � p� � ÿBÿ1Qg�q� p�: �24�
The approximate inertial manifold / is given as its ®xed point. The iteration may be started with /0 � 0,

which is the linear approximation used in the traditional standard Galerkin approach. Then, the ®rst two
iterates yield

/1 � ÿBÿ1Qg�q�; /2 � ÿBÿ1Qg�q� /1�q��; . . . �25�
However, we note that due to the neglect of _p in Eq. (24), it does not make sense to calculate higher

approximations. This can be shown by comparisons with center manifold theory, performed for simple
examples in Steindl et al. (1997). These comparisons show that already at low orders, qualitative dis-
crepancies can occur.

The e�ciency of the nonlinear Galerkin approach is demonstrated in Foias et al. (1988) for a reaction
di�usion equation which is treated in two di�erent ways: ®rst, by the standard Galerkin approximation with
m � n � 3 and, second, by a nonlinear Galerkin approximation starting with n � 6 and the assumption that
a three-dimensional inertial manifold m � 3 exists. The results are compared with those obtained by a
numerical bifurcation analysis performed for the discretized system with m � 16. It is shown that the
Galerkin-inertial manifold approximation with n � 6 and reducing to m � 3 gives both qualitatively and
quantitatively much better results than the standard Galerkin approximation with m � 3.

3.2.2. Post-processed Galerkin method
The main disadvantage in the application of the nonlinear Galerkin method in comparison with the

standard Galerkin method is that more complicated calculations have to be performed. Naturally, the
question arises whether this extra cost is worth for the enhancement of accuracy achieved. In particular, not
only /a must be computed at every step in the integration of Eq. (22) but also the integration of Eq. (22) is
more costly, than the integration of Eq. (22) where /a is set identical to zero. Hence, as an alternative, the
post-processed Galerkin method has been proposed quite recently, for example, in Garcia-Archilla et al.
(1998). It is shown in Laing et al. (1999) to be a method which incorporates the higher accuracy of the
nonlinear Galerkin method at lower computational costs. In its application, ®rst, the standard Galerkin
method is used and only at time (t) when some output is required, the variables are lifted up to the ap-
proximation of the inertial manifold. That is, starting from Eq. (22) setting /a � /1 � 0, the solution
qm � qml is calculated from
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dqml

dt
� Aqml � Pg�qml�: �26�

This certainly can be done with less e�ort than calculating qm � qma from Eq. (22) given by

dqma

dt
� Aqma � Pg�qma � /1�qma��: �27�

However, qml calculated from Eq. (26) will in general be less accurate than qma calculated from Eq. (27).
In order to increase the accuracy of qml, it is now post-processed or in other words, lifted up to the ap-
proximate inertial manifold given by /1 from Eq. (25) at time t. This results in the solution upp in the form

upp�t� � qml�t� � /1�qml�t��: �28�
Whereas uaim, the solution of the more complicated system (27) is given by

uaim�t� � qma�t� � /1�qma�t��: �29�
In Garcia-Archilla et al. (1998), for speci®c equations, error estimates are given concerning the accuracy

of the various approximations. It is shown that the post-processed solution upp is often as accurate as the
approximate inertial manifold uaim solution.

However, computationally a great reduction in e�ort is achieved, since lifting of the solution of Eq. (26)
onto the approximate inertial manifold needs to be done only when output is required, rather then at every
time step as in the integration of Eq. (27).

4. Comparison of various methods for the large amplitude oscillations of a ¯uid conveying tube

To compare the various methods for an engineering problem, we study the self-excited large amplitude
oscillations of the ¯uid conveying tube depicted in Fig. 2. The tube is clamped at its upper end, free at its
lower end and is restricted to perform planar oscillations. The description of the mechanical model and the
derivation of the equations of motion is given in Steindl and Troger (1996). For the planar motion of the
tube, the displacement u1 in the direction of x1 is introduced (Fig. 2). In order to ®nd the critical ¯ow rate .c,
the linearized eigenvalue problem

Fig. 2. Continuous and discrete model of a ¯uid conveying tube: . � U is the nondimensional ¯ow rate.
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�u1 � ae _u1 � uiv
1 � a1 _uiv

1 � 2
���
b

p
. _u001 � .2u001 ÿ c��1ÿ s�u01�0 � 0 �30�

with the boundary conditions

u1�0� � u01�0� � 0;

u001�1� � a1 _u001 � u0001 �1� � a1 _u0001 � 0;

which corresponds to system (7), must be solved. For the data given in Sugiyama et al. (1985) at . �
.c � 8:027, a loss of stability of the downhanging tube by a supercritical Hopf bifurcation occurs (Steindl
and Troger, 1992).

Following Steindl (1997), we compare three di�erent ways to select ansatz functions for the Galerkin
reduction:

1. Eigenvectors of the linearized problem at .s � 10:0 > .c � 8:027. The eigenvectors are sorted according
to the value of the real part of the corresponding eigenvalue. The location of the eigenvalues is depicted
in Fig. 3. At ÿ1=a1 � ÿ50, where a1 is the material damping coe�cient, an accumulation of the eigen-
values is clearly visible.

2. Oscillation modes of a clamped tube (beam). The mode shapes of the unloaded undamped tube (without
¯uid) are sorted according to their node number.

3. Karhunen Loeve basis. The data necessary for the KL-analysis is obtained by simulating the motion of
the tube for .s � 10:0.

The simulations have been performed by a ®nite di�erence discretization with N � 32 elements for data
taken from Sugiyama et al. (1985). This results in a n � 64 dimensional system. Some tube shapes resulting
from these simulations are shown in Fig. 4. Though the value of .s is not much larger than .c, a large
amplitude motion is setting in.

Fig. 5 displays simulation results depicting the projection of the limit cycle on the (u16; _u16) plane.
Results calculated with the n � 64 dimensional system designated by (�) are compared with those obtained

Fig. 3. Distribution of the eigenvalues in the complex plane for . � 0 and . � .s and the modes shapes corresponding to the eigen-

values numbered 35 and 36.
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from the simulation with three six-dimensional and one four-dimensional systems. These are the standard
Galerkin (``GAL''), with six modes, the nonlinear Galerkin (``NLG'') where starting from the 64 modes, by
means of the approximate inertial manifold, the 58 passive modes have been expressed by the six active
modes, the post-processed Galerkin (``PPG'') where the results of standard Galerkin are lifted to the ap-
proximation of the inertial manifold and the standard Galerkin with four KL ansatz functions (``GKL'')
Obviously, the ranking is GKL, NLG, PPG and GAL. For the three latter methods (NLG, PPG and GAL)
as ansatz functions, the eigenmodes of the linearized problem have been used.

Fig. 4. Simulation of the ¯uid conveying tube for .s � 10. A ®nite di�erence discretization with N � 32 elements is used, resulting in a

system with dimension n � 64.

Fig. 5. Projection of the simulation results on the �u16; _u16� plane for full system n � 64 (``Full''), standard Galerkin (``GAL''),

nonlinear Galerkin (``NLG''), Galerkin with KL modes (ÔÔGKL'') and post-processed Galerkin (``PPG''). The results for Full and GKL

are not distinguishable.
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In order to see which modes (eigenvectors) make relevant contributions to the motion of the tube, we
consider the limit cycle designated by (�) in Fig. 5. It is obtained from simulating the full 64-dimensional
system. The accuracy of the various Galerkin approximations is clearly visible. The inner most limit cycle is
the ``exact'' solution. Basically, an identical result is obtained from the standard Galerkin using Karhunen
Loeve ansatz functions (GKL) with m � 4. The next in accuracy is nonlinear Galerkin (NLG) with m � 6.
Then follow post-processed Galerkin (PPG) and standard Galerkin (GAL). In order to gain more insight,
we ask now for the average contribution �ak of the kth mode (eigenvector) in the limit cycle which is given by

�a2
k �

1

J

XJ

i�1

a2
k�ti�:

Here, J � 200 is used. For the three di�erent choices of modes, the results are shown in Fig. 6 for the
eigenvector basis, in Fig. 7 for the beam eigenvectors, and in Fig. 8 for the Karhunen Loeve eigenvectors. In
all these ®gures, �ak is drawn versus the corresponding mode.

Obviously, there are strong qualitative di�erences. Whereas for the beam eigenvectors (Fig. 7) and for
the Karhunen Loeve eigenvectors (Fig. 8), the contribution of the higher modes decays monotonically, this
is not the case for the eigenvectors obtained from the solution of the linearized ¯uid conveying tube
problem (Fig. 6). From Fig. 6, it is clearly visible that there are eigenvectors (e.g. 35 and 36) located further
left in the complex plane, where they are marked in Fig. 3, which contribute more than some located closer
to the imaginary axis. In order to give an explanation of this, at the ®rst moment m surprising fact v, we
consider the way how the eigenvalues are located in the complex plane (Fig. 3). To be able to calculate the
distribution of the eigenvalues analytically we restrict to the tube without ¯uid, but for the ¯uid carrying
tube a similar situation holds qualitatively. From Eq. (30) follows

�u1 � uiv
1 � a1 _uiv

1 � 0; �31�
where the in¯uence of gravity is also neglected. The boundary conditions are the same as for Eq. (30).
Setting u1�s; t� � exp�kt�x�s� and l4 � ÿk2=�1� a1k�, we obtain the eigenvalue problem for the clamped±
free beam. The graph shown in Fig. 9 explains the structure of the eigenvalues. Basically, there exists three
di�erent sets of eigenvalues. First, the set of complex eigenvalues �l1; l2� approximately located on a circle

Fig. 6. Averaged contribution of each of the ®rst 64 eigenvectors (modes) to the limit cycle oscillation.
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of radius ÿ1=a1 centered at the point close to ÿ1=a1: This point is an accumulation point to which the
second set converges. Finally, the third set is the family of eigenvalues converging rapidly to ÿ1. These
latter two sets contain real eigenvalues. Now, it is easy to understand that the numbering of the eigenvalues
according to the amount of the real part is not a natural one, since those located close to the approximate
circle and located left to the accumulation point have lower node numbers, than those converging to the
accumulation point. This is shown in Fig. 3 where the shapes of the modes number 35 and 36 are depicted.
They have two and three nodes, respectively, whereas, for example, the modes number 30 and 31 have seven
and eight nodes, respectively. Hence, this con®rms the statement made before that in such cases the choice

Fig. 7. Averaged contribution of the ®rst 64 beam modes to the limit cycle oscillation.

Fig. 8. Averaged contribution of the KL modes to the limit cycle oscillation. The results for . � 12 are calculated from the simulation

data obtained with . � 10.
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of the ansatz modes taking into account the amount of the real part of the corresponding eigenvalues may
result in inaccurate results.

The zig-zag curve in Fig. 7 results from the fact that the upper points correspond to velocity modes and
the lower points to position modes.

From Fig. 8 and Table 1, an important feature of the KL-approximation can be recognized. As already
mentioned, the normalized eigenvalues of the KL-approximation given in Table 1, represent the fraction of
the energy of the various modes. Obviously, for these eigenfunctions, a very good approximation is already
achieved for a small number of modes (two) for the standard Galerkin approximation. Nevertheless, it was
necessary to include four modes, as depicted in Fig. 10, in the approximation because with only two modes
(one degree of freedom) no ¯utter instability, but a divergent instability was obtained, which is a mean-
ingless result. The KL-calculation is performed from 1000 data points taken from the simulation at
equidistant intervals of Dt. However, we also note from Fig. 8 that the claim made in the literature that with
a reduced system formed with KL ansatz functions obtained at one parameter value .1 simulations also can
be performed for a range of parameter values . 6� .1 has to be considered with caution even if the same
bifurcation pattern is found. In case the bifurcation pattern changes, no good results are to be expected. In
such a case, simulation of the original system in a range of parameter values would be necessary, where

Fig. 9. Eigenvalues li of the beam equation (31). For l � l1 and l � l2, the corresponding eigenvalues k are complex valued.

Table 1

Normalized eigenvalues of the KL reduction representing the energy contribution of the respective mode

n � 4 n � 8 n � 16 n � 32 n � 64

0.7661 0.8049 0.8128 0.8138 0.8147

0.2073 0.1936 0.1867 0.1857 0.1848

0.0265 0.0012 4.64E)4 3.97E)4 3.80E)4

2.2E)5 1.86E)4 5.93E)5 4.49E)5 4.15E)5

1.66E)7 8.76E)8 4.98E)8 4.30E)8

1.84E)9 2.26E)8 1.17E)8 9.96E)9

� � � � � � � � � � � �
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di�erent types of motions are present to generate more general data, from which the KL-modes could be
calculated. One possibility could also be to simulate the system in the chaotic regime.

5. Conclusion

Among the di�erent sets of ansatz functions, the KL modes are by far the best choice for a standard
Galerkin approximation, because the contribution of the higher modes decays most rapidly.

For an arbitrary choice of ansatz functions, the nonlinear Galerkin method certainly is superior to the
standard Galerkin method. This is especially important if the dimension of the reduced system is chosen to
be very small, which always will be the goal of a reduction process, because only for a low dimensional
system a reasonable qualitative analysis can be performed. That the results of the KL approximation for
the tube oscillations are so good could be a consequence that the limit cycle, from which the data is
sampled, can be very well approximated by a low dimensional linear space. Although only two modes make
an essential contribution to the energy content, it was still necessary to include four ansatz modes, because
with two modes no reasonable approximation for the original dynamics was obtained. With the post-
processed Galerkin method only a slight increase in accuracy was achieved for this example.

Concerning the computational e�orts the calculation of the KL modes requires, ®rst, the generation of
simulation data and the solution of an eigenvalue problem. Then, however, only a standard Galerkin re-
duction with a very low number of modes is necessary. For the nonlinear Galerkin method the ansatz
functions are usually given. In the case that the eigenfunctions of the linearized problem are used they are
obtained from the calculation of the stability problem. However, for the nonlinear Galerkin reduction the
calculation of the reduced system is at least twice as expensive as for the standard Galerkin method. On the
other hand, post-processing may be performed following a standard Galerkin reduction at very low ad-
ditional computational costs.

Finally, we remark that using the eigenmodes of the linearized problem as ansatz functions can lead to
problems as described in Section 5. The reason is that the introduction of internal damping due to the
Kelvin±Voigt law of linear visco-elasticity, an accumulation point in the spectrum occurs. This has the
consequence that the eigenvalues with smaller node number have a larger real part than eigenvalues with a
larger node number.

Fig. 10. Shapes of the ®rst two KL modes.
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