

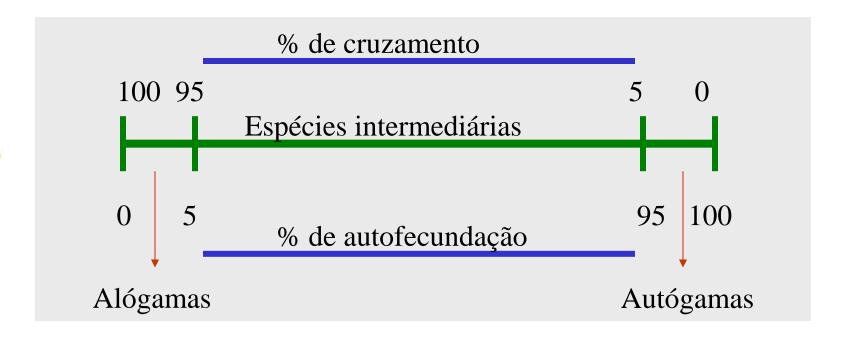
Sistemas Reprodutivos das plantas cultivadas e suas relações com o melhoramento

Introdução

- Na natureza as espécies vegetais podem se reproduzir assexudamente ou sexuadamente.
- Pode-se ter as seguintes classificação:
 - Assexuada;
 - Sexuadas:
 - Autógamas
 - Alógamas

ESALQ/USP - LGN-313 MELHORAMENTO GENÉTICO Prof. José Baldin Pinheiro

Reprodução vegetativa


Autógama

Aula 4

Definições:

- ► Plantas alógamas: apresentam acima de 95% de fecundação cruzada.
- ► Plantas autógamas: apresentam até 5% de fecundação cruzada.

Por possuírem diferentes estruturas genéticas, existem diferentes métodos para se desenvolver cultivares que levam em consideração o sistema de reprodução da espécie (espécie de reprodução vegetativa, autógama ou alógama).

Importância de conhecer o sistema reprodutivo:

Melhoramento e manejo varietal;

Autógamas:

- possibilidade de usar semente própria;
- Alógamas:
 - exploração da heterose ou vigor híbrido.

Estrutura Genética

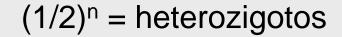
Espécies autógamas

São espécies em que predominam a autofecundação natural.

Implicações

Como as espécies praticam a autofecundação natural, a freqüência de locos heterozigotos (Aa) deve ser muito baixa (próxima de zero), uma vez que em cada geração de autofecundação os heterozigotos são reduzidos a metade.

Aula 4


Exemplo: cruzamento de duas variedades

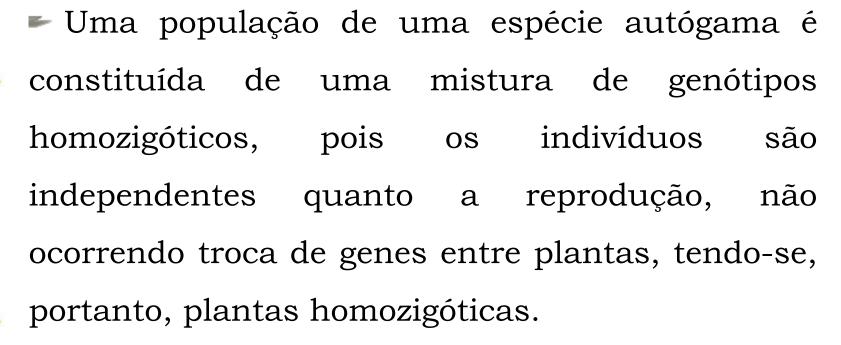
V_1 (AA) \times V_2 (aa)				
F_1		Aa		
F_2	(1/4) AA	(1/2) Aa	(1/4) aa	
F_3	(3/8) AA	(1/4) Aa	(3/8) aa	
F_4	(7/16) AA	(1/8) Aa	(7/16) aa	
• • •	• • •	•••	• • •	
F_n	$[1-(1/2)^n]/2$	$(1/2)^{n}$	$[1-(1/2)^n]/2$	
• • •	• • •	• • •	•••	
F_{∞}	1/2	0	1/2	

Assim têm-se:

$$1-(1/2)^n = homozigotos$$

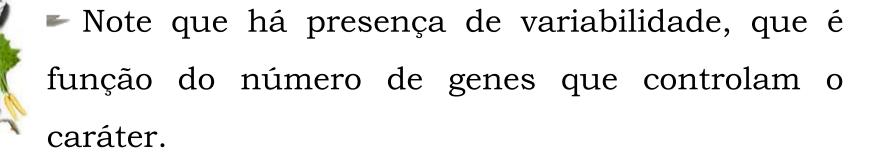
Portanto, temos:

Coeficiente de endogamia: $F = 1 - (1/2)^n$



Sendo assim:

Na sexta geração de ⊗: F = 98,4375% de homozigotos


Importância para o melhoramento

► Neste caso a variabilidade genética é devido a presença de diferentes genótipos homozigóticos.

ESALQ/USP - LGN-313 MELHORAMENTO GENÉTICO Prof. José Baldin Pinheiro

Os programas de melhoramento das espécies autógamas são delineados para que no final do processo a homozigose seja restaurada, produzindo apenas plantas homozigotas (linhas, linhas puras, linhagens, linhagens endógamas).

Exemplos de espécies autógamas

Cereais	Frutiferas	Leguminosas
Cevada	Abricó	Grão-de-bico
Trigo	Nectarina	Feijão
Aveia	Pêssego	Amendoim
Arroz	Citros	Ervilha
Sorgo		Soja

Espécies alógamas

- São espécies em que predominam o cruzamento natural, ocorrendo troca de genes entre os indivíduos de uma mesma população.
- \blacksquare Sendo p e q as freqüências dos alelos A e a, e com cruzamentos ao acaso, tem-se:

$$f(A) = p$$

$$f(a) = q$$

	p (A)	q (a)
p (A)	p^2 (AA)	pq (Aa)
q (a)	pq (Aa)	q^2 (aa)

ESALQ/USP - LGN-313 MELHORAMENTO GENÉTICO Prof. José Baldin Pinheiro

Genótipos	Freqüência
AA	p^2
Aa	pq
aa	q^2

Devido ao cruzamento, têm-se p^2 plantas com genótipo AA, 2pq plantas com genótipo Aa e q^2 plantas com genótipo aa.

Tem-se, então, variabilidade genética devido à presença de genótipos homozigóticos e heterozigóticos.

- **Depressão por endogamia** (diminuição do valor fenotípico médio de uma população devido aos acasalamentos consangüíneos).
- Carga genética (qualquer redução da adaptabilidade média de uma população devido à existência de genótipos com adaptabilidade menor que aquela do genótipo mais adaptado).

Exemplos de espécies alógamas

Cereais	Frutíferas	Leguminosas
Milho	Maçã	Alfafa
Azevém	Abacate	Trevo
	Uva	
	Manga	
	Mamão	

Mecanismos de controle da polinização

Cleistogamia: mecanismo que permite a autofecundação antes da abertura da flor.

Feijão

Protoginia: O estigma fica receptivo antes do amadurescimento do grão-de-pólen.

Abacate

Protandria: pólen é liberado antes do estigma estar receptivo.

Milho

Fonte: Andrade (2012)

Monoicia: sexo separados na mesma planta.

Curcurbitaceae

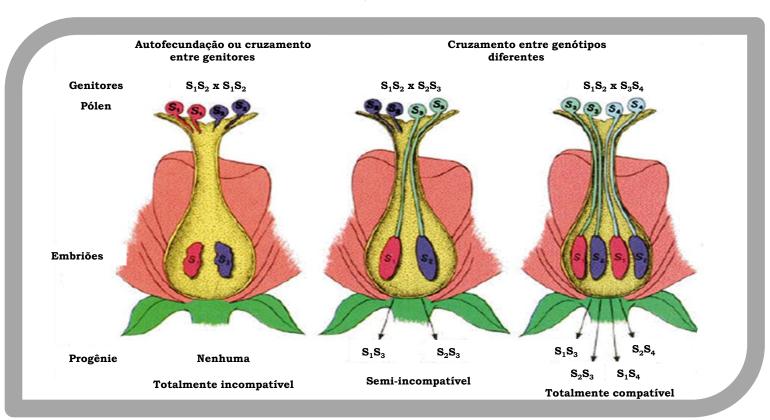

Aula 4

Dioicia: sexos separados em plantas femininas e masculinas.

Mamão

Aula 4

Dioicia: sexos separados em plantas femininas e masculinas.



Flôr marculina

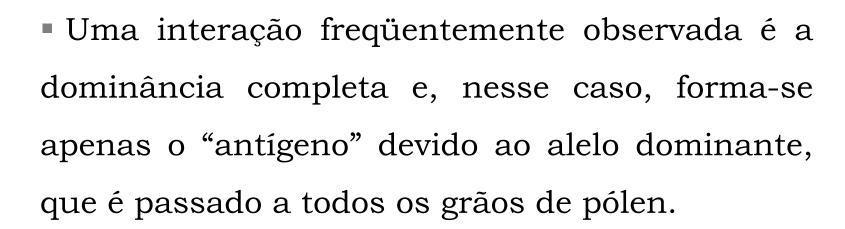
Lúpulo (Fonte Renan Furlan)

Autoincompatibilidade: loco com série alélica S_1 , S_2 , S_3 , ...

Autoincompatibilidade

• O fenótipo do pólen, para a reação de incompatibilidade é determinado pelo alelo S que ele possui. Na flor feminina, cada alelo S é responsável por uma glicoproteína específica, ocorrendo portanto uma interação alélica do tipo codominância.

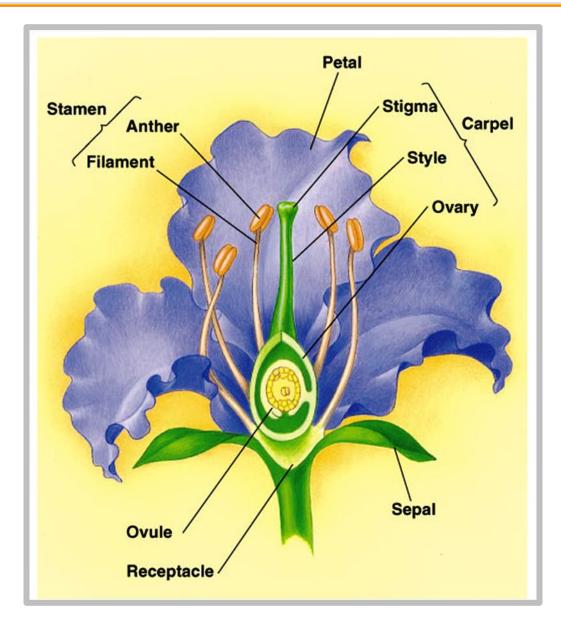
Autoincompatibilidade


■Esporofitica

- O fenótipo do pólen, para a reação de incompatibilidade é determinado pelo genótipo da célula mãe do grão de pólen, em vez de seu próprio alelo S.
- Há produção de um "antígeno" na célula mãe do grão de pólen, para em seguida terminar a meiose e formar os grãos de pólen, os quais já recebem o "antígeno".

Autoincompatibilidade

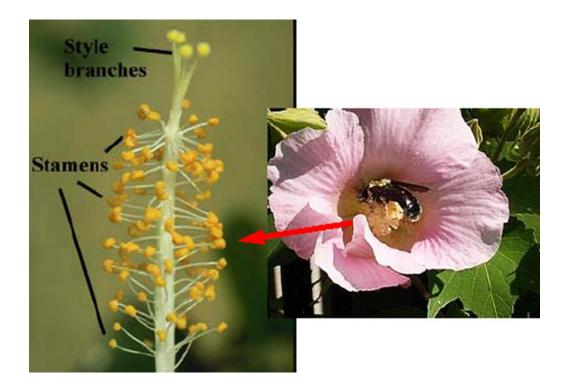
Esporofitica



A) Exame da estrutura floral:

- Flores hermafroditas: alógamas ou autógamas.
- Flores dióicas: alógamas.
- Flores monóicas: alógamas.

ESALQ/USP - LGN-313 MELHORAMENTO GENÉTICO Prof. José Baldin Pinheiro



B) Exame da polinização:

Ex.: Algodão e espécies da mesma familia

Tipos de polinização:

- autofecundação: autógamas
- polinização pelo vento, insetos, pássaros: alógamas

Exemplo de polinização em soja

Tipos de polinização:

Polinização realizada por insetos

Flor de Maracujazeiro

Tipos de polinização

Exemplo de polinização pelo vento

Aula 4

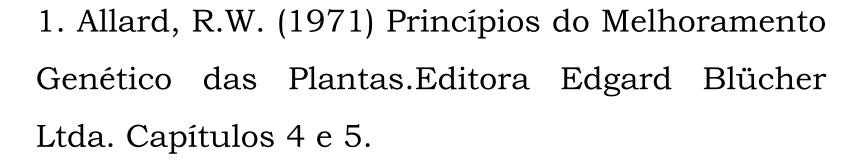
- ▶ Produção de sementes ⇒ autógama?

C) Hibridação artificial:

Autógama

Aula 4

C) Autofecundação artificial:



Alógama

Bibliografia

2. Borém, A. (Ed.) (1999) Hibridação artificial de plantas. Editora UFV. Pg. 269-294 e 401-426.

Aula 04

