// Obtido de http://www.llnl.gov/computing/tutorials/pthreads/samples/condvar1.c /****************************************************************************** * FILE: condvar1.c * DESCRIPTION: * Example code for using Pthreads condition variables. The main thread * creates three threads. Two of those threads increment a "count" variable, * while the third thread watches the value of "count". When "count" * reaches a predefined limit, the waiting thread is signaled by one of the * incrementing threads. * SOURCE: Adapted from example code in "Pthreads Programming", B. Nichols * et al. O'Reilly and Associates. * LAST REVISED: 04/05/05 Blaise Barney ******************************************************************************/ #include #include #include #define NUM_THREADS 3 #define TCOUNT 10 #define COUNT_LIMIT 12 int count = 0; int thread_ids[3] = {0,1,2}; pthread_mutex_t count_mutex; pthread_cond_t count_threshold_cv; void *inc_count(void *idp) { int j,i; double result=0.0; int *my_id = idp; for (i=0; i < TCOUNT; i++) { pthread_mutex_lock(&count_mutex); count++; /* Check the value of count and signal waiting thread when condition is reached. Note that this occurs while mutex is locked. */ if (count == COUNT_LIMIT) { pthread_cond_signal(&count_threshold_cv); printf("inc_count(): thread %d, count = %d Threshold reached.\n", *my_id, count); } printf("inc_count(): thread %d, count = %d, unlocking mutex\n", *my_id, count); pthread_mutex_unlock(&count_mutex); /* Do some work so threads can alternate on mutex lock */ for (j=0; j < 1000; j++) result = result + (double)random(); } pthread_exit(NULL); } void *watch_count(void *idp) { int *my_id = idp; printf("Starting watch_count(): thread %d\n", *my_id); /* Lock mutex and wait for signal. Note that the pthread_cond_wait routine will automatically and atomically unlock mutex while it waits. Also, note that if COUNT_LIMIT is reached before this routine is run by the waiting thread, the loop will be skipped to prevent pthread_cond_wait from never returning. */ pthread_mutex_lock(&count_mutex); while (count < COUNT_LIMIT) { pthread_cond_wait(&count_threshold_cv, &count_mutex); printf("watch_count(): thread %d Condition signal received.\n", *my_id); } pthread_mutex_unlock(&count_mutex); pthread_exit(NULL); } int main(int argc, char *argv[]) { int i, rc; pthread_t threads[3]; pthread_attr_t attr; /* Initialize mutex and condition variable objects */ pthread_mutex_init(&count_mutex, NULL); pthread_cond_init (&count_threshold_cv, NULL); /* For portability, explicitly create threads in a joinable state */ pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); pthread_create(&threads[0], &attr, inc_count, (void *)&thread_ids[0]); pthread_create(&threads[1], &attr, inc_count, (void *)&thread_ids[1]); pthread_create(&threads[2], &attr, watch_count, (void *)&thread_ids[2]); /* Wait for all threads to complete */ for (i = 0; i < NUM_THREADS; i++) { pthread_join(threads[i], NULL); } printf ("Main(): Waited on %d threads. Done.\n", NUM_THREADS); /* Clean up and exit */ pthread_attr_destroy(&attr); pthread_mutex_destroy(&count_mutex); pthread_cond_destroy(&count_threshold_cv); pthread_exit (NULL); }