PMR-3203 – INTRODUÇÃO A MANUFATURA MECÂNICA

Aula 3 e 4:

Principais Propriedades Mecânicas e suas Determinações


Prof. Delson Torikai

Sala: MS-12

E. mail: delsontorikai@usp.br

Materiais de Engenharia

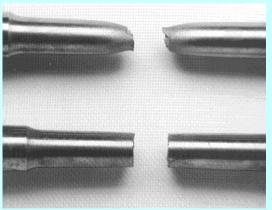
- Materiais naturais, como a Madeira, Cortiça, Couro,
 Fibras (animais, vegetais e minerais) e as Rochas;
- . Metais e suas ligas;
- Cerâmicos (produtos cerâmicos sólidos e porosos, vidro, cimento e concreto);
- Polímeros, como Plásticos e Borrachas, Espumas Poliméricas, Fibras Sintéticas e Fibras Artificiais;
- . Compósitos.

a Metal

Cerâmica Plástico

Propriedades dos Materiais

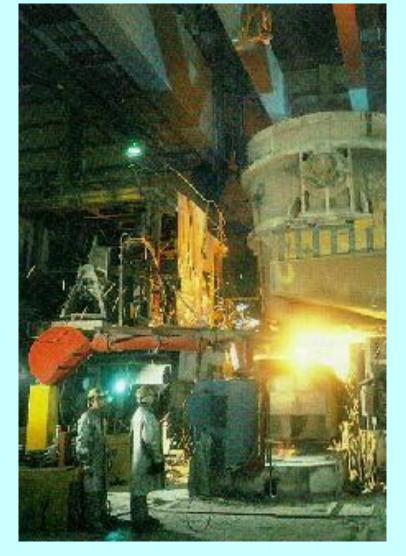
Existem várias propriedades que devem ser levadas em consideração no uso de materiais e/ou alternativas de processos de fabricação:


- · Econômicas
- · Mecânicas
- Superficiais
- Fabricação

- · Físicas e Químicas
- · Micro estruturais
- Estéticas

Propriedades Mecânicas

- · Resistências
- · Dureza
- · Ruptura
- Fadiga



- · Escoamento (início da deformação plástica)
- Fluência (processo lento de deformação, depende da temperatura e tempo)
- · Desgaste, etc.

Propriedades de Fabricação

- Usinabilidade
- · Soldabilidade
- Colagem
- Fundição
- Conformação
- · Acabamento
- Reciclabilidade

FUSÃO

Forno a oxigênio utilizado na fundição de metais

PROPRIEDADES MECÂNICAS

Existem várias propriedades que devem ser levadas em consideração relativas ao material e/ou alternativas de processos de fabricação em virtude de sua aplicação:

Do Ponto de Vista Mecânico, os principais são:

- MÓDULO DE ELASTICIDADE
- RESISTÊNCIA À TRAÇÃO
- LIMITE DE ESCOAMENTO
- DUCTILIDADE
- TENACIDADE À FRATURA

Como podemos determinar essas propriedades?

Através dos Ensaios Mecânicos dos Materiais:

Principais ensaios mecânicos:

- i) ensaio de tração;
- ii) ensaios de dureza;
- iii) ensaio de impacto;
- iv) ensaios de fluência;
- v) ensaios de fadiga;
- vi) ensaio de flexão;
- vii) ensaio de compressão;
- viii) ensaio de rasgamento.

i) Ensaio de Tração

- O ensaio de tração uniaxial é um dos mais populares ensaios mecânicos. É simples e traz informações importantes a respeito da resistência e ductilidade do material ensaiado.
- O corpo de prova (cp) de dimensões padronizadas é submetido a um estado uniaxial de tensões que impõe deformações inicialmente elásticas e, posteriormente, plásticas.

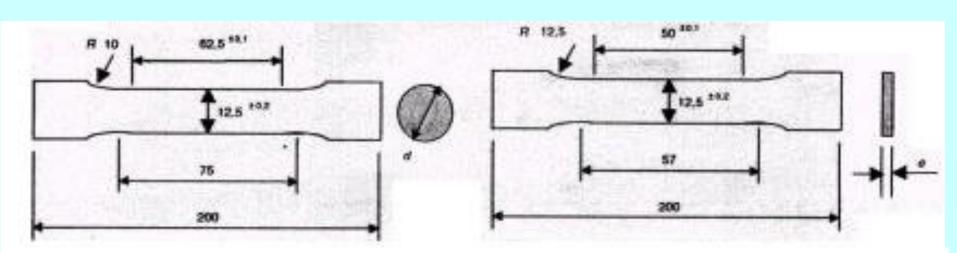


Fig. 1.1 (a) corpos de prova de seção circular e de seção retangular

A figura 1.1(b) apresenta a configuração de uma máquina de tração uniaxial e a figura 1.1(c) mostra o aspecto típico da curva tensão nominal x deformação nominal que se obtém em um metal dúctil.

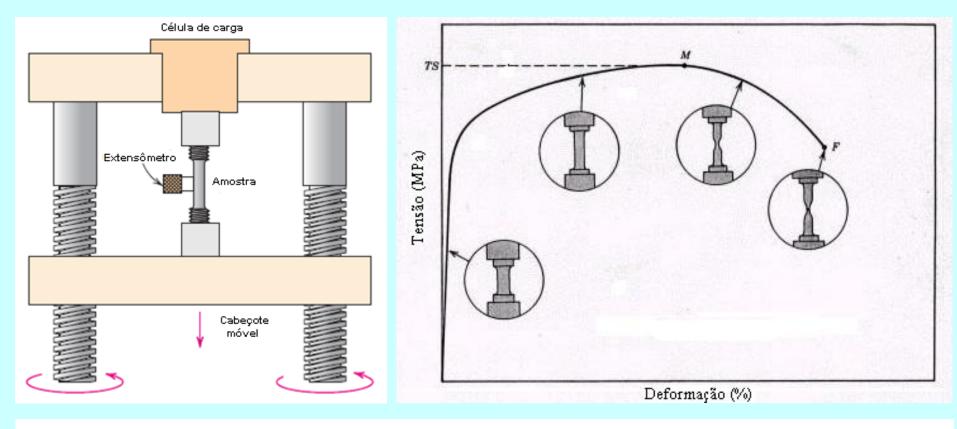
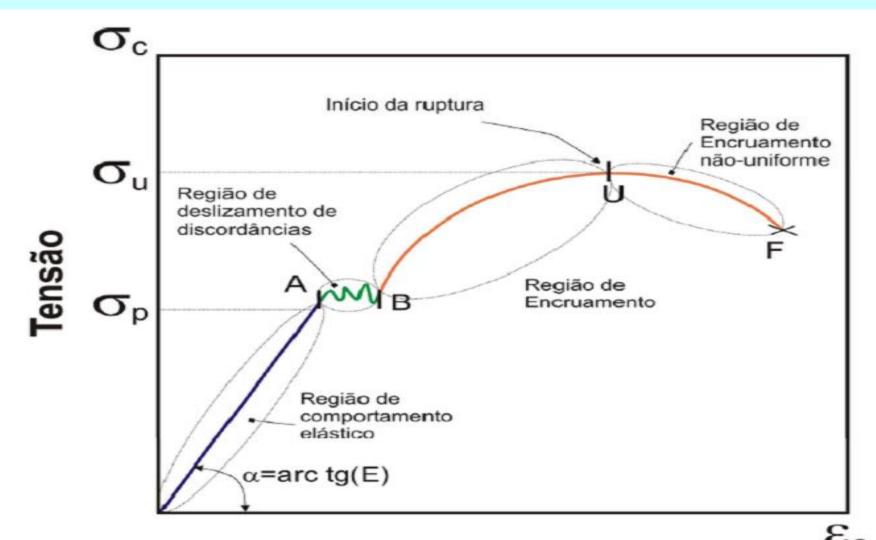
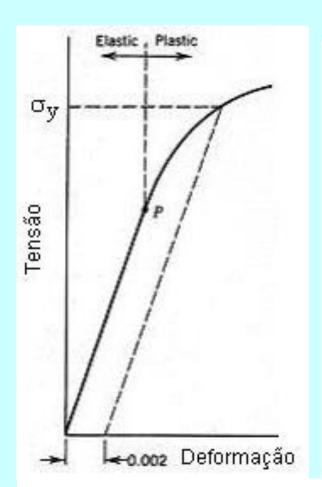



Figura 1.1: (b) máquina de ensaio; (c) aspecto típico de uma curva tensão nominal de um metal dúctil.

Fases do ensaio de tração:



Deformação

Gráfico coleta da Wikipedia

curva tensão nominal x deformação nominal

Material frágil

Material ductil

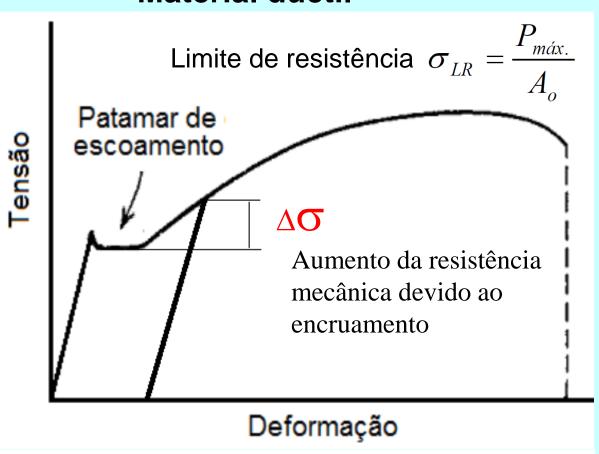


Figura 1.2: (a) Obtenção da tensão de escoamento a 0.2%. (b) Curva de tração típica de aço ao carbono recozido, apresentando patamar de escoamento.

Parâmetros de Ductilidade:

Além das propriedades ligadas à resistência mecânica, o ensaio de tração também é utilizado para obtenção de propriedades ligadas à ductilidade dos materiais.

A ductilidade é definida como a capacidade do material se deformar plasticamente sem apresentar trincas.

O ensaio de tração fornece os seguintes parâmetros de ductilidade do material:

Alongamento total:

$$\%Al. = \frac{l_f - l_o}{l_o} x 100\%$$

Redução de área ou estricção:

$$\%R.A. = \frac{A_o - A_f}{A_o} x 100\%$$

Quais propriedades obtemos do ensaio de tração?

1) Módulo de Elasticidade (E)

Esta é uma propriedade específica de cada metal e corresponde à rigidez deste. Quanto maior o módulo menor será a deformação elástica. Esta propriedade pode ser obtida através da fórmula do módulo de elasticidade, que é $E = \sigma / \epsilon$ (Lei de Hooke), onde σ é a tensão dada por Força/Área e " ϵ " é a deformação dada por ΔL / L0. Graficamente podemos achar E pela tangente da reta que representa a deformação elástica do corpo.

2) Limite de Escoamento (σe)

O escoamento corresponde a transição entre a deformação elástica e a plástica. O limite de escoamento superior é a tensão máxima durante o período de escoamento. Essa tensão é seguida por uma queda repentina da carga que representa o início da deformação plástica. Após isso a curva se estabiliza e o valor desta tensão equivale ao limite de escoamento inferior. Tais resultados não dependem apenas do material, mas também de outros fatores como a geometria e as condições do corpo de prova. O limite de escoamento pode ser obtido pela intersecção da curva tensão x deformação com uma reta paralela a parte que representa a deformação elástica do gráfico deslocada de 0,2%.

3) Limite de Resistência Mecânica (σu)

Corresponde a tensão máxima obtida durante o ensaio de tração tendo pouca importância na resistência dos metais dúcteis.

4) Limite de Ruptura (σr)

O limite de ruptura corresponde à tensão na qual o material se rompe.

5) Módulo de Tenacidade (UT)

Tenacidade de um metal é a sua habilidade de absorver energia na região plástica. Já o módulo de tenacidade é a quantidade de energia absorvida por unidade de volume até a fratura. Esse valor corresponde à área total abaixo da curva de Tensão x Deformação.

• 6) Módulo de Resiliência (UR)

Resiliência de um metal é a sua capacidade de absorver energia e depois descarregá-la quando deformado elasticamente. Já o módulo de resiliência é a energia de deformação por unidade de volume necessária para tensionar o metal até o final da região elástica. Esse valor corresponde a área total abaixo do gráfico até o final da região elástica.

7) Alongamento Total (A)

Corresponde ao aumento percentual de comprimento na região útil do corpo de prova observado até a ruptura do corpo de prova. Pode ser determinado pela expressão:

$$A = (Lf - L0) / L0 \times 100$$

8) Estricção (φ)

É uma medida do estrangulamento da seção. Também pode caracterizar a ductilidade do material, pois quanto maior for a estricção mais dúctil será o metal. É obtida pela fórmula:

$$\phi = (S0 - Sf) / S0 \times 100$$

FRATURA DÚCTIL & FRATURA FRÁGIL

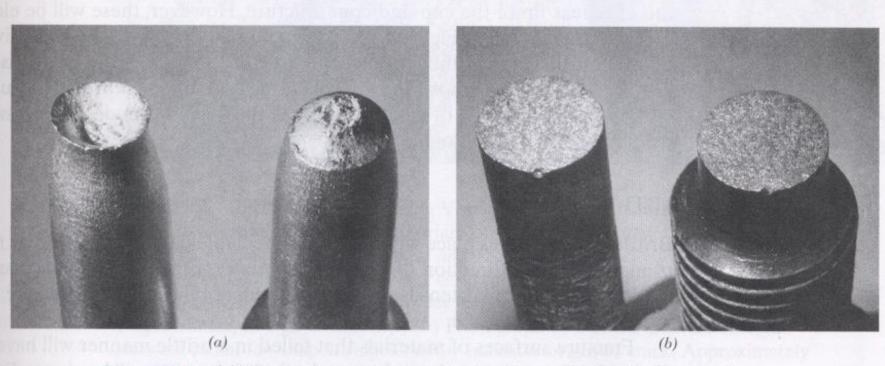


FIGURE 8.3 (a) Cup-and-cone fracture in aluminum. (b) Brittle fracture in a mild steel.

FRATURA FRÁGIL & FRATURA DÚCTIL

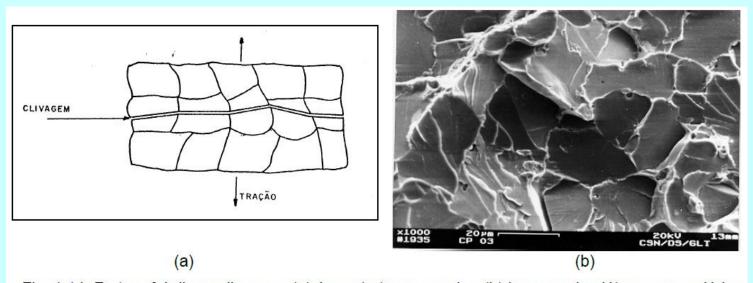


Fig. 1.14: Fratura frágil por clivagem: (a) Aspecto transgranular; (b) imagem de elétrons secundários, com facetas planas. A trinca se propaga seccionando o material segundo os planos de clivagem.

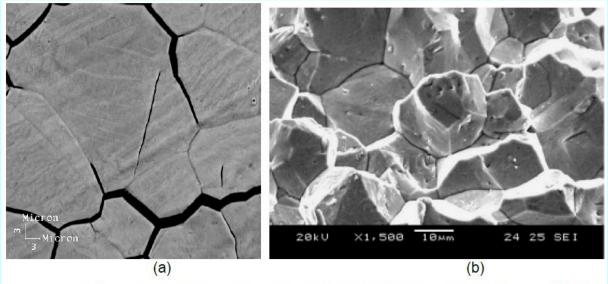
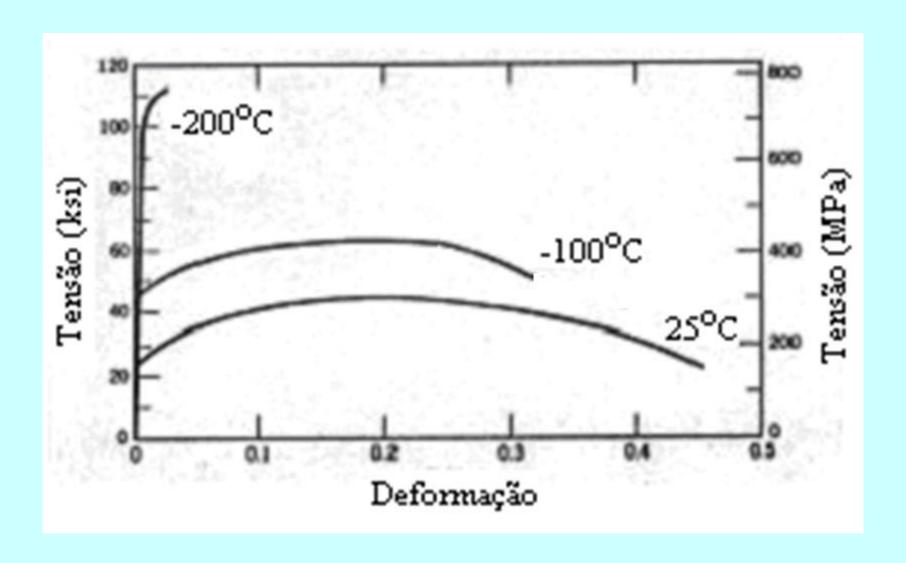
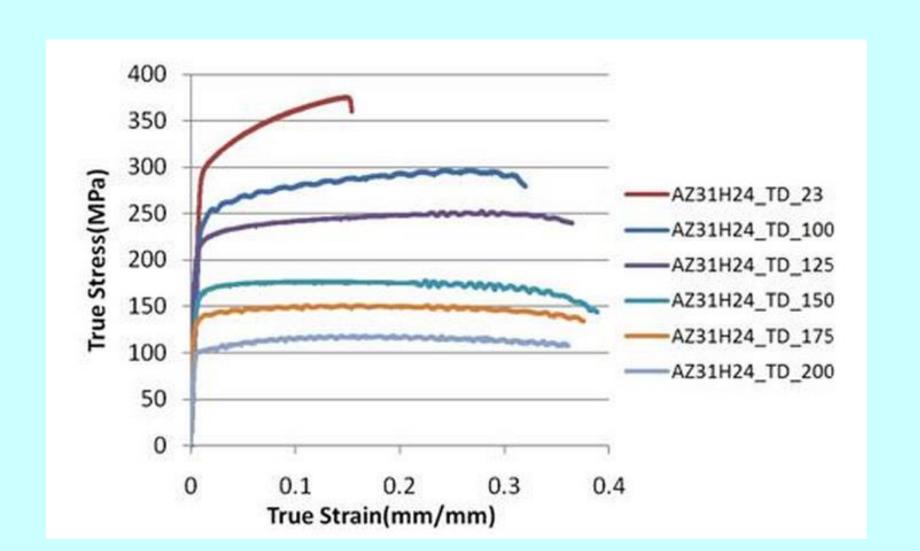


Figura 1.15: Trincas intergranulares: (a) em liga Ni-Pd; (b) em aço inoxidável AISI 431.


Fatores metalúrgicos que influem na tenacidade dos aços:

Tamanho de Grão: Quanto menor o tamanho dos grãos do material policristalino menor a temperatura de transição dúctil-frágil e maior a tenacidade a uma dada temperatura. Isso porque os contornos de grão (contornos de alto ângulo) são obstáculos à propagação de trincas. Quanto passa de um grão para o outro a trinca tem que mudar de direção para continuar se propagando em um plano de clivagem. Essa mudança de direção consome energia.


Presença de Fases Frágeis: A precipitação de fases frágeis no tratamento térmico, durante o processo de fabricação ou mesmo em serviço pode fragilizar o material. Alguns exemplos são: cementita nos aços de alto carbono, fase β' nos latões, fases σ e α' nos aços inoxidáveis.

Composição Química: A presença de impurezas (ligas) pode aumentar ou abaixar a tenacidade. No aço, por exemplo, pouco enxofre e fósforo aumentam a dureza do aço, mas em grande quantidade causa fragilização. Já o níquel confere boa tenacidade ao aço, podendo ser usado em aços para fins criogênicos (uso em temperaturas inferiores a − 45 ºC).


Figura 1.3: Efeito da temperatura na curva de tração do ferro

Efeito da temperatura na curva Tensão / Deformação para uma liga de magnésio

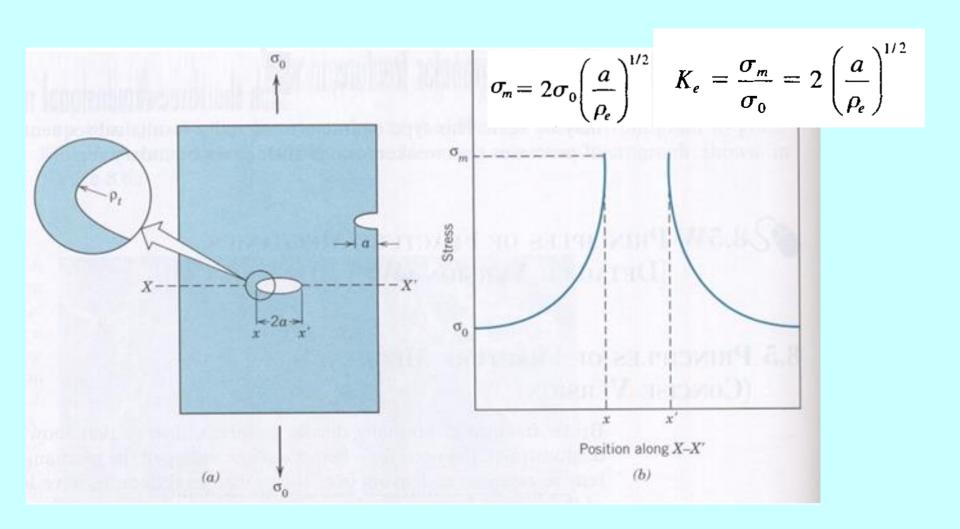
Orientação preferencial dos grãos policristalinos como na laminação: é um fator que influêcia no comportamento da tenacidade, principalmente se o material tiver inclusões ou grãos alongados na direção de laminação.

Influência da orientação de retirada do corpo de prova Charpy, em relação à direção de laminação, na tenacidade do material [3].

Mecânica da Fratura

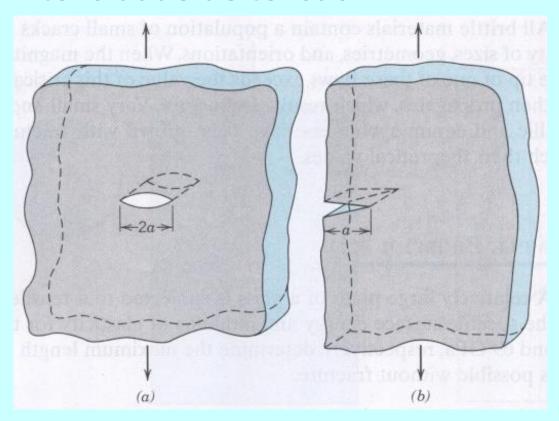
- O critério de projeto exige o conhecimento de três assuntos básicos:
- ✓ Propriedades da mecânica da fratura dos materiais
- ✓ Capacidade de detecção de defeitos dos ensaios não destrutivos
- ✓ Métodos de projeto baseados em mecânica da fratura

Efeito de concentradores de tensão e acabamento superficial:


A fadiga (e a grande maioria das falhas) é um processo que se inicia geralmente na superfície de um componente mecânico submetido a esforços. Dessa forma, os concentradores de tensão, como os cantos vivos e mudanças bruscas de seção são locais convidativos à nucleação e crescimento de trincas de fadiga.

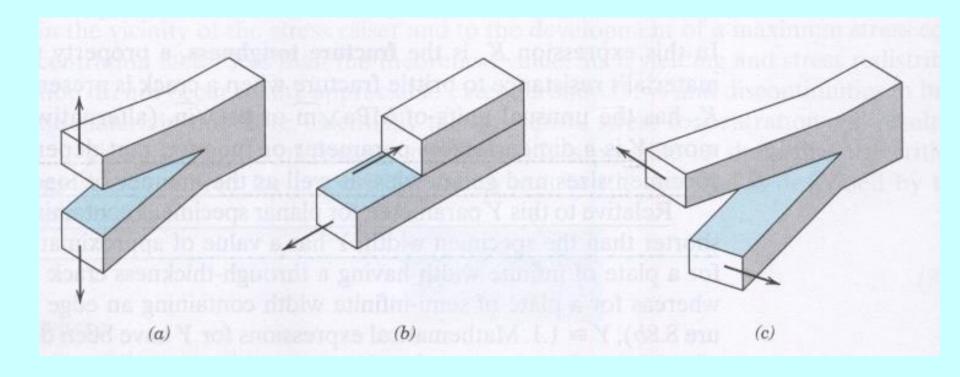
O acabamento superficial (ex. rugosidade) da peça também influi no comportamento em fadiga. Acabamento superficial mal feito, como marcas de lixamento, esmeril, punção, etc. podem diminuir a vida em fadiga.

Pequenos pontos de corrosão têm o mesmo efeito, pois podem servir como concentradores de tensão e pontos de nucleação das trincas.


Concentradores de tensão:

 Razão entre a tensão máxima na ponta da falha e a tensão nominal

FATOR DE INTENSIFICAÇÃO DE TENSÃO


 Quando a tensão máxima atinge o limite de resistência do material (iminência de propagação da trinca frágil) podemos relacionar um fator K com a tensão crítica e o tamanho e formato da trinca denominado de fator de intensidade de tensão.

$$K_{Ic} = Y\sigma \sqrt{\pi a}$$

MODOS DE ABERTURA DE UMA TRINCA:

- a) Modo I de abertura ou tração
- b) Modo II de deslizamento ou cisalhamento
- c) Modo III de rasgamento

ii) Ensaios de Dureza

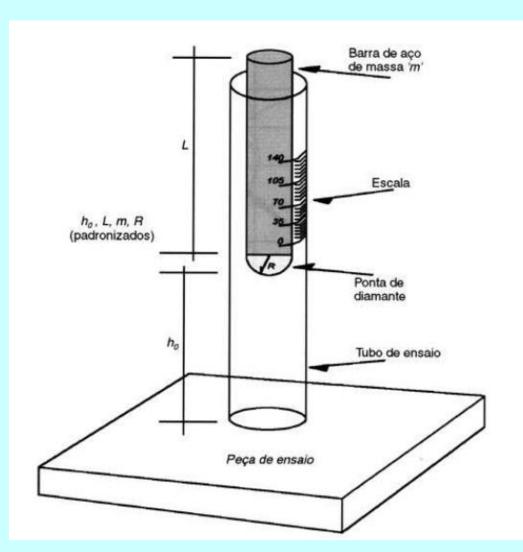
Dureza é qualidade ou estado de duro, rijeza.

Duro é definido como difícil de penetrar ou de riscar, consistente, sólido.

Essas definições não caracterizam o que é dureza para todas as situações, pois ela assume um significado diferente conforme o contexto em que é empregada:

- Na área da metalurgia, considera-se dureza como a resistência à deformação plástica permanente. Isso porque uma grande parte da metalurgia consiste em deformar plasticamente os metais.
- Na área da mecânica, é a resistência à penetração de um material duro no outro, pois esta é uma característica que pode ser facilmente medida.
- Para um projetista, é uma base de medida, que serve para conhecer a resistência mecânica e o efeito do tratamento térmico ou mecânico em um metal. Além disso, permite avaliar a resistência do material ao desgaste.
- Para um técnico em usinagem, é a resistência ao corte do metal, pois a maior ou menor dificuldade de usinar um metal é caracterizada como maior ou menor dureza.
- Para um mineralogista é a resistência ao risco que um material pode produzir em outro.

- A dureza é uma propriedade relativa. Só tem sentido falar em dureza quando se comparam materiais, isto é, só existe um material duro se houver outro mole.
- Apesar das diversas definições, um material com grande resistência à deformação plástica permanente também terá alta resistência ao desgaste, alta resistência ao corte e será difícil de ser riscado, ou seja, será duro em qualquer uma dessas situações.
- Os ensaios de dureza são normalmente realizados em temperatura ambiente e são classificados de acordo com a forma como estes são realizados. Os principais ensaios de dureza são: a) por risco; b) por choque ou rebote e c) por penetração.


a) Dureza por risco. Esse tipo de ensaio de dureza é pouco utilizado em materiais metálicos, mas muito útil em mineralogia. Dentre os ensaios de dureza por riscos existentes, o de dureza Mohs é o mais conhecido. O ensaio de dureza Mohs foi introduzido em 1822 e é baseado na capacidade que um material tem de riscar o outro.

 A escala de dureza Mohs: apresenta dez minériospadrões, ordenados numa escala crescente do grau 1 ao 10, de acordo com sua capacidade de riscar ou ser riscado.

Escala Mohs	Extensão da Escala Mohs	
Mineral de Referência	Dureza nº	Mineral de Referência
Talco	1	Talco
Gipsita	2	Gipsita
Calcita	3	Calcita
Fluorita	4	Fluorita
Apatita	5	Apatita
Feldspato (Ortósio)	6	Ortósio
Quartzo	7	Sílica pura vidrosa
	8	Quartzo
Topázio	9	Topázio
Safira ou Corindo	10	Granada
Diamante	11	Zirconita fundida
	12	Alumina fundida
	13	Carboneto de Silício
	14	Carboneto de Boro
	15	Diamante
	Talco Gipsita Calcita Fluorita Apatita Feldspato (Ortósio) Quartzo Topázio Safira ou Corindo	Mineral de Referência Talco Gipsita Calcita SIPLUORITA Apatita Feldspato (Ortósio) Quartzo Safira ou Corindo Diamante Dureza nº Dureza nº 1 1 Dureza nº 1 Apatita 5 Feldspita 5 Feldspato (Ortósio) 6 Quartzo 7 8 Topázio 9 Safira ou Corindo 10 Diamante 11 12 13 14

- b) Dureza por choque ou rebote: Nesse tipo de ensaio uma impressão de dureza é marcada pela queda livre de um êmbolo com um penetrador (com uma ponta padronizada) na superfície plana do corpo de prova. O valor da dureza é proporcional à energia consumida para deformar o corpo de prova e é representado pela altura alcançada pelo êmbolo no rebote. Quanto mais dúctil o material, menor a altura alcançada pelo êmbolo.
- O método mais importante da dureza por choque ou rebote é a dureza Shore, onde se utiliza uma barra de aço de massa igual 250 g, com uma ponta arredondada de diamante, a qual é colocada dentro de um tubo de vidro, com uma escala graduada entre 0 e 140. A barra é liberada de uma altura padrão de 256 mm.

Método de dureza Shore

Figura 1. Esboço do equipamento para medir dureza Shore. (Garcia, A. Ensaios dos Materiais)

c) Dureza por penetração:

Dureza Brinell (1900, J. A. Brinell)

- O ensaio de dureza Brinell consiste em comprimir lentamente uma esfera de aço temperado, de diâmetro
 D, sobre uma superfície plana, polida e limpa de um metal, por meio de uma carga F, durante um tempo t, produzindo uma calota esférica de diâmetro d.
- A dureza Brinell é representada pelas letras HBW, do inglês Hardness Brinell. Ex. 227 HBW

Dureza Brinell

A dureza Brinell (HBW para esfera de tungstênio - ou HBS para esfera de aço) é a relação entre a carga aplicada (F) e a área da calota esférica impressa no material ensaiado (Ac).

• Em linguagem matemática:

$$HB = \frac{F}{A_c}$$
Esfera de aço

Corpo de prova

$$HB = \frac{2 F}{\pi D \left(D - \sqrt{D^2 - d^2}\right)}$$

EXEMPLO:

- Uma amostra foi submetida a um ensaio de dureza Brinell no qual se usou uma esfera de 2,5 mm de diâmetro e aplicou-se uma carga de 187,5 kgf.
- A medida do diâmetro de impressão foi de 1 mm. Qual a dureza do material ensaiado?

Uma vez que todos os valores necessários para calcular a dureza HBW são conhecidos, podemos partir diretamente para a aplicação da fórmula:

HB =
$$\frac{2F}{\pi D (D - \sqrt{D^2 - d^2})}$$
 ⇒ HB = $\frac{2 \times 187.5}{\pi \times 2.5 (2.5 - \sqrt{2.5^2 - 1^2})}$ ⇒ **A dureza Brinell é especificada como:**

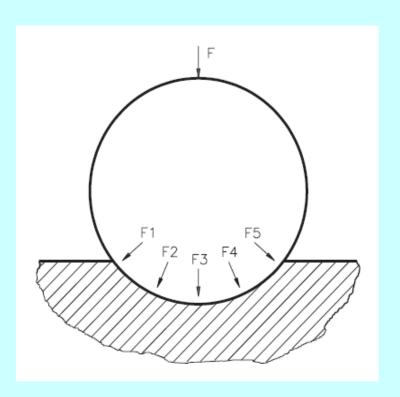
HB = $\frac{375}{3.14 \times 2.5 (2.5 - \sqrt{6.25 - 1})}$ ⇒ HB = $\frac{375}{7.85 (2.5 - 2.29)}$ ⇒ **227 HBW 2.5/187.5**

$$HB = \frac{375}{7.85 \times 0.21}$$
 ⇒ HB = $\frac{375}{1.6485}$ ⇒ HB = 227

A dureza Brinell é

227 HBW 2.5/187.5

φ esfera/carga


Obs. : apesar da dureza Brinell ser calculada como força/área, **não** se especifica a unidade (ex. kgf/mm²)

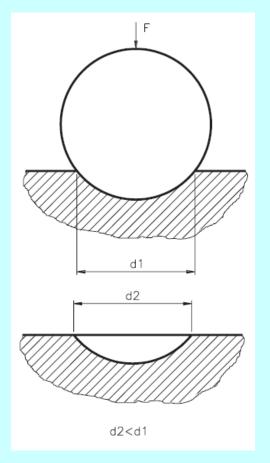
A localização de uma impressão de dureza Brinell deve:

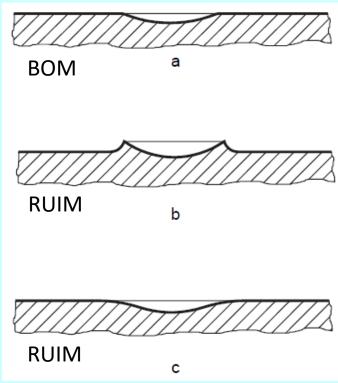
- manter uma distância mínima de 2,5d da superfície da amostra;
- a espessura da amostra deve ser de, no mínimo, **10d** e a distância entre as impressões deve ser de, no mínimo, **5d**.
- Para se fazer o ensaio de dureza Brinell deve-se

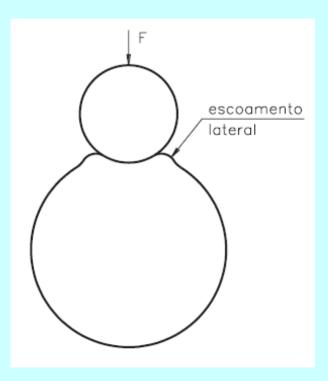
escolher cargas **Q** e esferas de diâmetros **D** tais que se verifiquem a seguinte relação:

$$\frac{Q}{D^2} = cte$$

Exemplo de tabela que fornece os valores de dureza Brinell normal, em função de um diâmetro de impressão d.


DUREZA BRINELL EM FUNÇÃO DO DIÂMETRO DA IMPRESSÃO						
(diâmetro da esfera do penetrador: 10 mm)						
d (mm)	HB (F = 3000 kgf)	d (mm)	HB (F = 3000 kgf)			
2,75	(495)	4,05	223			
2,80	(477)	4,10	217			
2,85	(461)	4,15	212			
2,90	444	4,20	207			
2,95	429	4,25	201			
3,00	415	4,30	197			
3,05	401	4,35	192			
3,10	388	4,40	187			
3,15	375	4,45	183			
3,20	363	4,50	179			
3,25	352	4,55	174			
3,30	341	4,60	170			
3,35	331	4,65	167			
3,40	321	4,70	163			
3,45	311	4,75	159			
3,50	302	4,80	156			
3,55	293	4,85	152			
3,60	285	4,90	149			
3,65	277	4,95	146			
3,70	269	5,00	143			
3,75	262	5,10	137			
3,80	255	5,20	131			
3,85	248	5,30	126			
3,90	241	5,40	121			
3,95	235	5,50	116			
4,00	229	5,60	111			


 A norma brasileira para a realização do ensaio de dureza Brinell é a ABNT NBR NM ISO 6506-1/2 e a norma internacional mais utilizada é a ASTM E10-12.

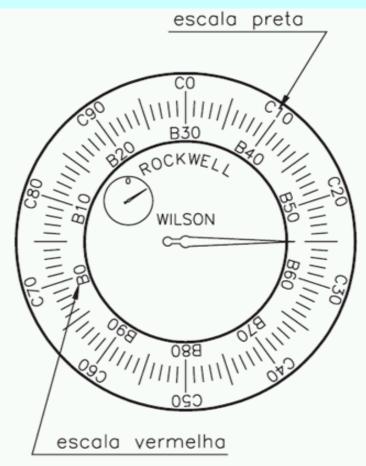

- Vantagens e limitações do ensaio Brinell:
- O ensaio Brinell é usado especialmente para avaliação de dureza de metais não ferrosos, ferro fundido, aços, produtos siderúrgicos em geral e de peças não temperadas.
- É o único ensaio utilizado e aceito para ensaios em metais que não tenham estrutura interna uniforme.

CUIDADOS NO ENSAIO:

(Serve também para ensaio Rockwell)

 Relações empíricas entre durezas e entre dureza e resistência mecânica: Existem disponíveis na literatura tabelas de conversão entre durezas como a norma ASTM E-140.

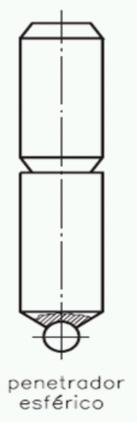
Ex.
$$\sigma_{LR}(MPa) = 3,45 \times HBW$$

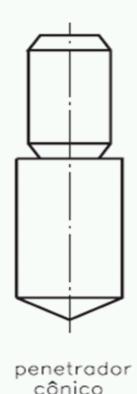

 Utilizando-se da relação matemática entre a profundidade (p) e o diâmetro da calota (D), a Dureza Brinell também pode ser calculada por:

$$HB = \frac{F}{\pi Dp}$$

Como F e D são constantes durante um ensaio, basta medir p para determinar a dureza.

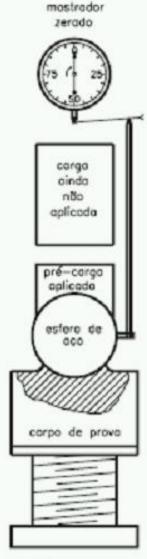
DUREZA ROCKWELL

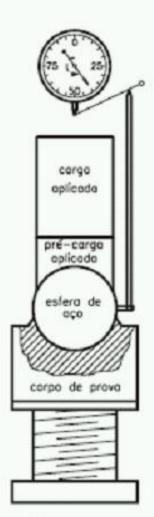



a carga do ensaio propriamente dita.

A leitura do grau de dureza é feita
diretamente num mostrador acoplado à
máquina de ensaio, de acordo com uma
escala predeterminada, adequada à

Em que consiste o ensaio Rockwell


Neste método, a carga do ensaio é aplicada em etapas, ou seja, primeiro se aplica uma pré-carga, para garantir um contato firme entre o penetrador e o material ensaiado, e depois aplica-se



1º passo: aproximar a superfície do corpo de prova do penetrador.

2º passo: submeter o corpo de prova a uma précarga (carga menor).

3º passo: aplicar a carga maior até o ponteiro parar.

4º passo: retirar a carga maior e fazer a leitura do valor indicado no mostrador, na escala apropriada.

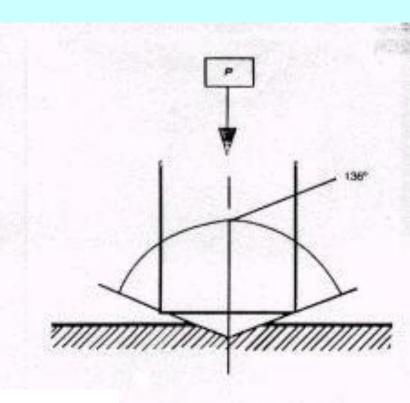
Tabela 1.1: Escalas de dureza Rockwell. Pré-carga = 10 kgf

Símbolo da escala	Carga (kgf)	Penetrador	Aplicação
A	60		
С	150	Cone de diamante	Aço cementado ou temperado
D	100	120° de conicidade	
В	100		
F	60	Esfera de aço de	Aço ferro, bronze,
G	150	diâmetro 1,588 mm	
E	100		latão, até 240 HBN
Н	60	Esfera de aço de	
K	150	diâmetro 3,175 mm	
L	60		
M	100	Esfera de aço de	Material plástico
Р	150	diâmetro 6,350 mm	
R	60		
S	100	Esfera de aço de	
V	150	diâmetro 12,70 mm	

Tabela 1.2: Escalas de dureza Rockwell superficial. Pré-carga = 3,0 kgf

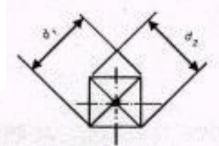
Escala	Carga	Penetrador	Aplicação
15N	15		Aços com tratamento
30N	30	Cone de diamante com	Tratamento superficial de
45N	45	120° de conicidade	cementação, nitretação, etc.
15T	15		
30T	30	Esfera de aço de	Aços, ferro e outros metais
45T	45	— diâmetro 1,588 mm	até 240 HBN

A norma brasileira para a realização do ensaio é a ABNT NBR NM ISO 6508-1/2 e ABNT NBR NM ISO 7407 para dureza superficial. e a norma internacional mais utilizada é a ASTM E18-14


Representação da dureza Rockwell

- O número de dureza Rockwell deve ser seguido pelo símbolo HR e com um sufixo que indique a escala utilizada. Veja, por exemplo, a interpretação do resultado 64HRC:
- · 64 é o valor de dureza obtido no ensaio;
- · HR indica que se trata de ensaio de dureza Rockwell;
- · a última letra, no exemplo **C**, indica qual a escala empregada.
- Pare e resolva!
- Como você interpreta o seguinte resultado: 50HR15N?
- Resposta:

Dureza Vickers: A dureza Vickers também é dada pela relação entre a carga e área de impressão de um penetrador na forma de uma pirâmide de diamante, de base quadrada com ângulo entre as faces opostas igual a 136°.


Esse penetrador produz uma impressão piramidal de base quadrada. O operador mede na objetiva acoplada à maquina as diagonais d1 e d2 da base da pirâmide impressa.

A dureza Vickers apresenta vantagens como uma escala contínua abrangendo desde materiais macios (~5HV) até materiais bastante duros (>1000HV)

$$HV = \frac{c \arg a}{\text{área da impressão}} = \frac{P}{d^2 / 2 \cdot (\text{sen } 136^\circ / 2)} = \frac{1,854P}{d^2}$$

d é a média aritmética de d_1 e d_2

O ensaio de Dureza Vickers é regido pela norma ABNT NBR NM ISO 6507-1/2/3/4

Microdureza Vickers

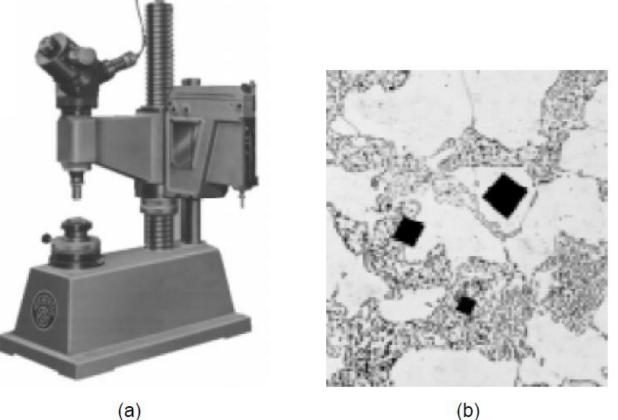
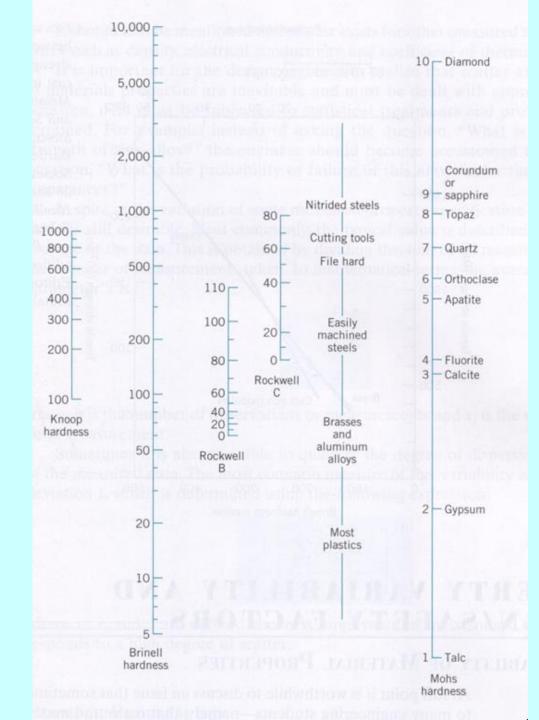
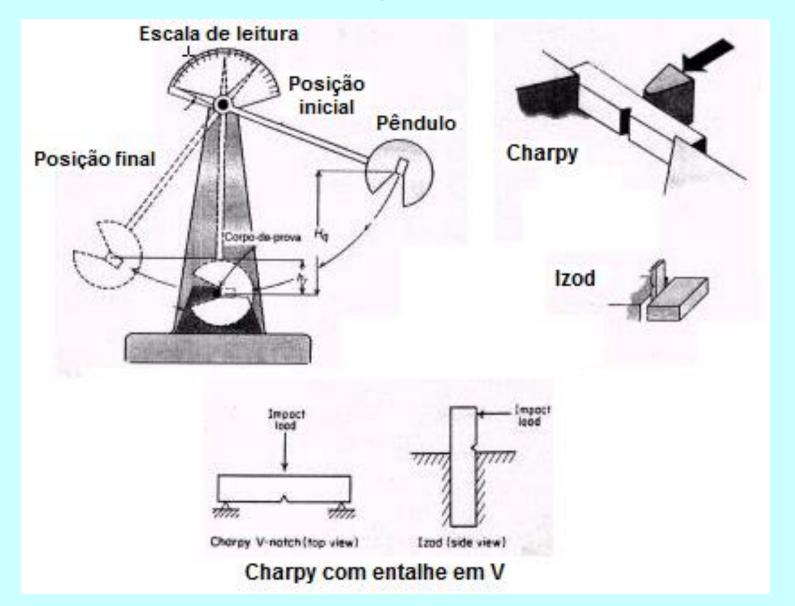
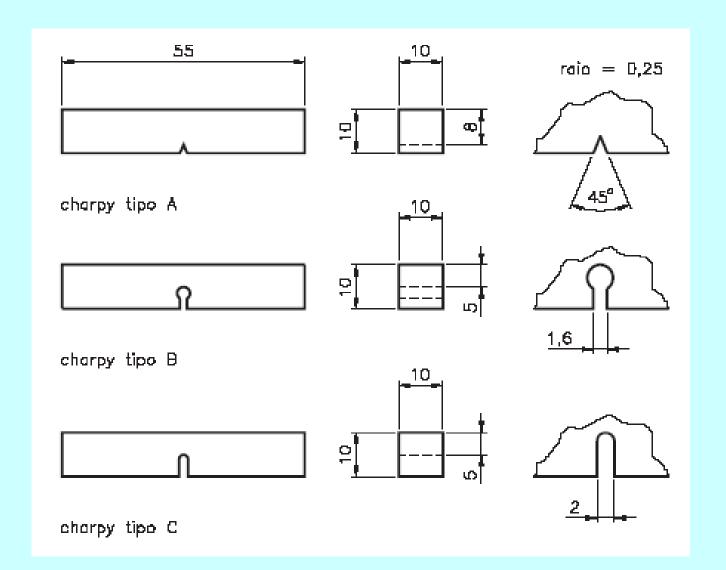



Figura 1.7: (a) Microdurímetro; (b) Medição de durezas em um aço ferrítico-perlítico.

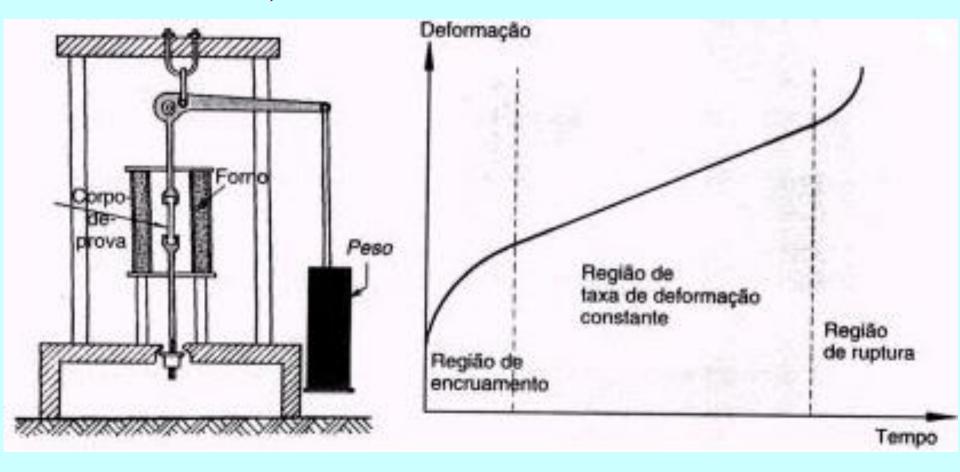

Relações empíricas entre durezas existem disponíveis na literatura através de tabelas de conversão (norma ASTM E-140), ou na forma de escalas proporcionais.


iii) Ensaios de impacto

- Os ensaios de impacto medem a tenacidade ao impacto dos materiais, sendo esta propriedade definida por ora como sendo a energia absorvida para a fratura.
- Dois tipos padronizados de ensaio de impacto são mais amplamente utilizados: Charpy e Izod.
- Nos dois casos, o corpo de prova tem o formato de uma barra de seção transversal quadrada, na qual é usinado um entalhe.

Figura 1.8: (a) Ensaios de impacto Charpy e Izod.

O entalhe deve ser confeccionado rigorosamente dentro da norma de ensaio (ASTM E23-12, por exemplo)


Resistência à fluência:

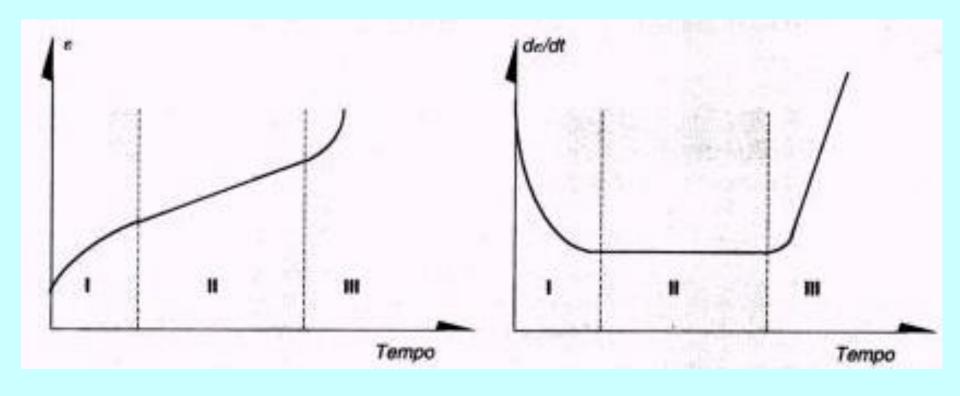
A fluência é um tipo de falha que ocorre em altas temperaturas. Consiste numa deformação plástica contínua do material sob carga estática (ou não), e é dependente do tempo. Pode gerar defeitos internos que levam à ruptura do material ou deformação plástica (variação dimensional) que inutilize o componente.

As temperaturas em que os mecanismos de fluência se tornam operantes são geralmente superiores a 0,4T₊, onde T₊ é a temperatura de fusão do material, expressa em Kelvin.

O ensaio de fluência geralmente é realizado em uma temperatura elevada (>0,4T₊) sob tensão ou carga constante

IV) Ensaio de Fluência

Determina-se com o ensaio de fluência: i) taxa de deformação no estágio II; ii) a vida em fluência (t_t), ou seja, o tempo total para a ruptura. Os materiais mais resistentes à fluência possuem maior vida em fluência.

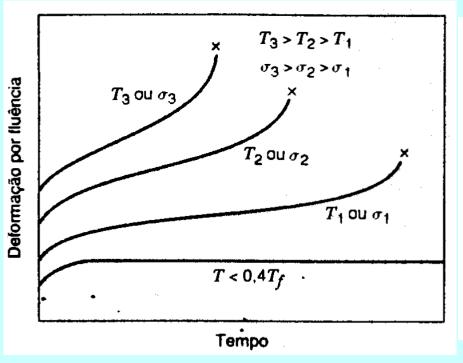

A curva de fluência apresenta 3 estágios distintos:

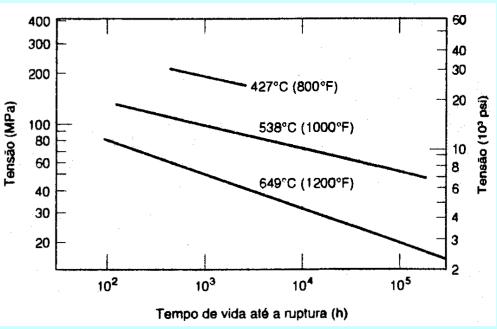
- No estágio I a taxa de deformação do material diminui com o tempo – predomina o fenômeno de encruamento sobre os de amolecimento.
- No estágio II a taxa de deformação é constante com o tempo – existe um equilíbrio entre encruamento e amolecimento - consiste num importante parâmetro retirado do ensaio, pois quanto maior essa taxa, menos resistente à fluência é o material.
- No estágio III, o processo de fluência já está bastante avançado, os mecanismos de amolecimento predominam e o material acumula danos que o levarão à ruptura.

Tipos de curvas obtidas por este ensaio:

Deformação total

Taxa de deformação

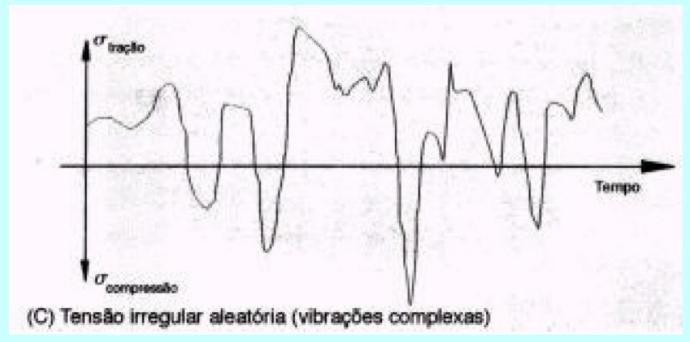

Influência da tensão e da temperatura no comportamento em fluência:


🜓 tensão e/ou temperatura 🔿 🜓 deformação 🔿 🌡 tempo de vida

$$\overset{\bullet}{\varepsilon}_{II} = A \cdot \sigma^{n} \cdot \exp\left(-\frac{Q}{RT}\right) \quad t_{t} = A'' \cdot \sigma^{-m} \cdot \exp\left(+\frac{Q}{RT}\right)$$

$$t_{t} = A'' \cdot \sigma^{-m} \cdot \exp\left(+\frac{Q}{RT}\right)$$

A e Q são ctes. do material. Q é a energia de ativação da fluência

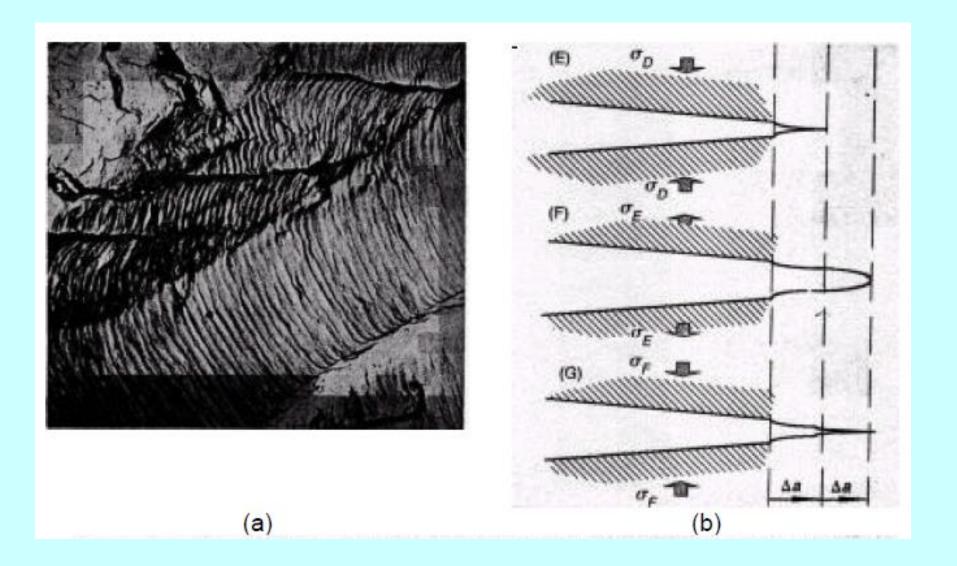
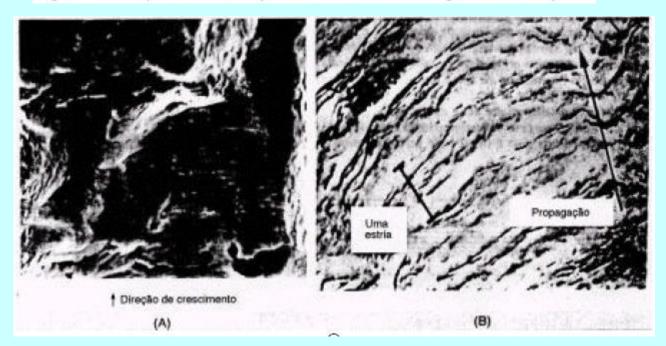


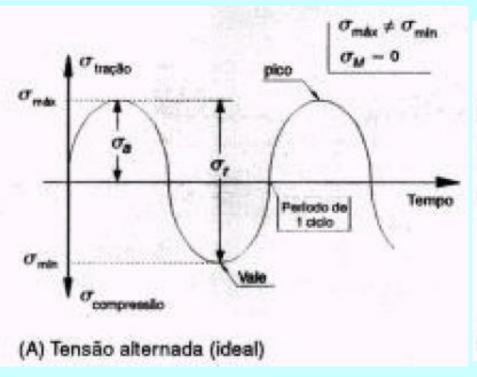
V) Ensaio de Fadiga:

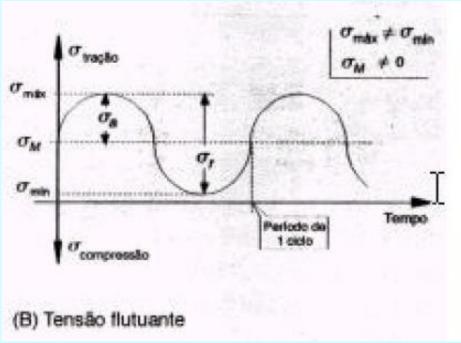
Mede a RESISTÊNCIA À FADIGA

A fadiga é um tipo de falha mecânica que ocorre devido a esforços (tensões e deformações) flutuantes. Estes esforços geralmente são aleatórios como na figura abaixo.

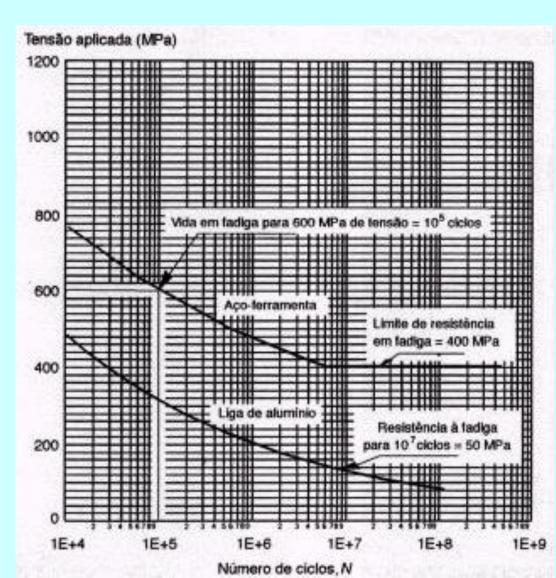
• PROPAGAÇÃO DA FRATURA POR FADIGA

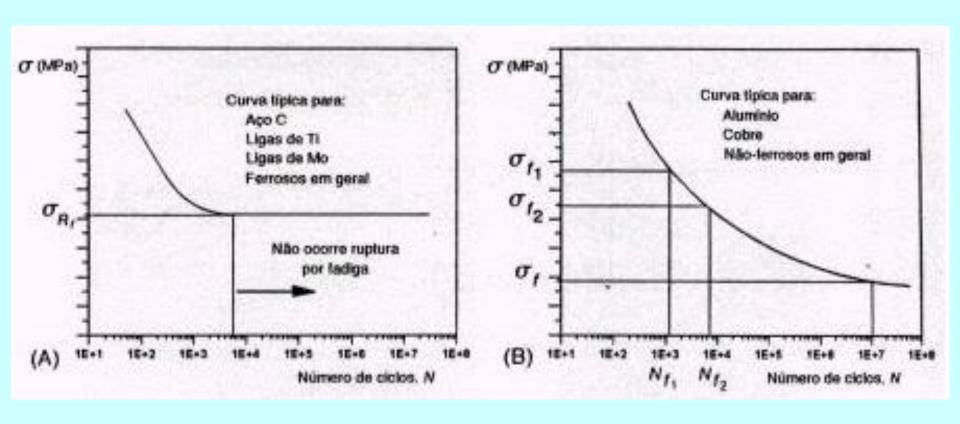






Figura 1.23: Aspecto macroscópico de uma trinca de fadiga: marcas de praia.

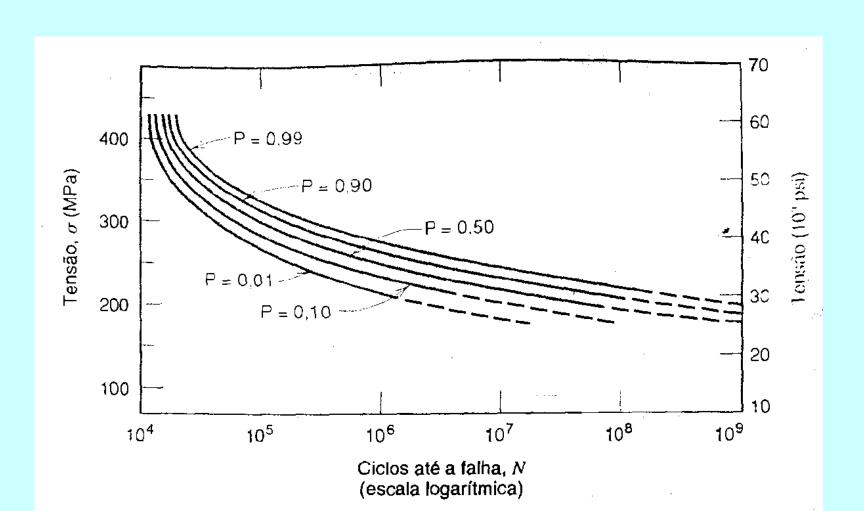
ENSAIO DE FADIGA:


Nos ensaios de fadiga são comumente empregados ciclos de tensão ou deformação "bem comportados" como os das figuras (A) e (B).


Ao se ensaiar vários corpos de prova em fadiga, seja por tração-compressão, ou flexão alternada,

nota-se que, quanto maior a tensão aplicada (geralmente σa) menos ciclos de fadiga serão necessários para a ruptura. Constrói-se, dessa forma, uma curva S-N (Stress & Number of Cycles to failure)

Limite de fadiga (limite de endurecimento): Tensão (σ_{RI}) abaixo da qual o material não rompe por fadiga.


Materiais que não apresentam esse limite bem definido, adota-se $N=10^7$ ciclos para determinar σ_{RI}

Influência da tensão média:

maior $\sigma_{\text{médio}} \rightarrow$ menor vida em fadiga

Probabilidade de fadiga

