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Vibrations of planar curved beams, rings, and arches

P. Chidamparam and A.W. Leissa

Department of Engineering Mechanics, The Ohio State University, Columbus OH 43210

This work attempts to organize and summarize the extensive published literature on the

vibrations of curved bars, beams, rings and arches of arbitrary shape which lie in a plane.

In-plane, out-of-plane and coupled vibrations are considered. Various theories that have

been developed to model curved beam vibration problems are examined. An overview is

presented of the types of problems which are addressed in the literature. Particular

attention is given to the effects of initial static loading, nonlinear vibrations and the

application of finite element techniques. The significantly different frequencies arising

from curved beam theories which either allow or prevent extension of the centerline

during vibratory motion are shown. An extensive bibliography of 407 relevant

references is included.
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INTRODUCTION

The study of free vibrations of curved bars (or beams) and

rings (closed curved bars) assumes great importance in a

wide variety of technical applications like spring design,

turbomachinery blades, automotive tire dynamics, aircraft

structures, design of bridges for dynamic loads and

circumferential stiffeners for shells. Real life engineering

applications may also be found in interdisciplinary areas

such as bioengineering and vibration control. While the

dynamics of straight beams is well established, the same

cannot be said about curved beams. The initial curvature

has been a source of difficulty in developing governing

relations between stress resultants and deformations. Thus,

many theories have evolved in attempts at refining already

existing ones. A similar scenario is seen in the theory of

shells. Whereas this hierarchy is well documented in the

case of shells [1], the situation is quite different with

curved beams.

Interest in this area can be traced back to the nineteenth

century. During the past few years there has been a steady

Transmitted by Associate Editor Patricio AA Laura.

ASME Reprint No AMR132 $18
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growth of publications and at least two survey articles

devoted solely to the dynamics of arches and curved bars

[2,3] and a book [4] have appeared. The report by Royster

[5] and certain review articles on beam vibrations [6-8] also

contain some useful information.

The theory of curved bars is an extremely complicated

one in the context of the three dimensional theory of

nonlinear elasticity. As in the technical theories of straight

beams, simplifying assumptions are made in describing the

deformation so as to reduce the problem to a one

dimensional form. The Euler-Bernoulli hypothesis of

plane cross sections remaining plane after deformation is a

case in point. It is known that the shear stress distribution

across the cross Section is nonuniform. Theories that do

not account for a nonuniform variation of the through

thickness shear stress use a shear correction factor

depending on the cross section in order to compensate for

the errors introduced. One drawback of all the theories

involving torsion lies in the twisting moment-twist

relation which is based on the torsional stiffness obtained

from a study of the static torsion problem of a straight

cylindrical rod of identical cross section as the bar under

consideration. In spite of all these limitations, it has been

found that reasonably accurate results can be obtained from

the theories developed in the aforementioned fashion.

The most general problem in free vibration of plane

curved beams involves in-plane, out-of-plane, coupled

motions consisting of extension, flexure, shear and twist.

However, if the plane containing the centerline of the

undeformed beam axis is a principal plane of the cross

section at every point along the bar and also a plane of

material symmetry, the in-plane and out-of-plane motions

uncouple. In the case of a beam made of laminated

composite material, for example, this uncoupling may or

may not occur depending on the orientation of the

Engineers
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FIG 2. Nondimensional frequency versus arc segment half

angle for clamped circular arches (h/R=0.1).

mode, and o. 490° (the semicircular arch) for the second

mode. As expected, the frequencies from the extensional

theory are less than the inextensional ones, for the

constraint of no axial deformation is relaxed. However, for

o, = 25°, Fig 2 shows the fundamental (lowest frequency)

value of \ for the inextensional theory to be

approximately twice that of the more accurate, extensional

theory. For shallower arches, and for higher modes, the

disparity becomes even greater. For o – 90°, frequencies

of the two theories approach each other, becoming equal at

O = 180° (the full circle).

Figure 3 shows similar results for arches having both

ends pinned (v = w = Mx = 0 at 6 = +o). The

frequencies are all considerably less than those of the

previous clamped arches. Again, the antisymmetric mode

frequencies from the two theories agree closely, but the

symmetric mode frequencies may differ greatly. The

differences are seen to be greater for the pin supported ends

than for the clamped ends.

For thinner arches, agreement between the two theories

is closer, as may be seen for the data shown in Fig 4 for

pinned arches having h/R=0.01. Nevertheless, as the

arches become shallower, the symmetric mode frequencies

disagree considerably.

It is well known that the effects of shear deformation and

rotary inertia are to decrease the natural frequencies and that

these effects are very important with a short and stubby

bar. Federhofer [67] considered the influence of centerline

stretching, she" "nation and rotary inertia on the

natural freq' ing vibrations of circular rings.

Philipson [. e inextensibility assumption for

the flexur hin rings by extending Love's

[13] ana he effect of rotary inertia and

centerlin ound the extensibility effects to

be negli | derived the equations of motion

for a circular bar considering shear deformation, rotary

inertia and stretching of the neutral axis. Austin and

Veletsos [70] and others [71-75] examined the influence of

shear deformation and rotary inertia on the free vibration

characteristics of arches. Based on the numerical results in

[70], it was concluded that the free vibration modes can be

classified as mainly inextensional with flexural-shearing

coupling, mainly extensional with rotary inertia and shear

deformation having insignificant participation, and a

- 8o
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FIG 3. Nondimensional frequency versus arc segment half

angle for pinned circular arches (h/R=0.1).
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angle for pinned circular arches (h/R=0.01).
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clamped circular ring segments based on classical theory.

Takahashi [207] obtained frequency equations for a circular

arc with clamped and free ends considering rotary inertia,

but not shear deformation. Kirkhope [208] and Rao (209]

included shear deformation to develop equations of motion

for thick circular rings. Irie et al [210] computed the

natural frequencies of circular arcs vibrating out of the

plane of curvature, for all combinations of classical

boundary conditions, including shear deformation effects.

Endo and Taniguchi (211] analyzed the in-plane flexural and

out-of-plane twist bending vibrations of rings with cross

sections having a single axis of symmetry. All these

investigations neglected cross sectional warping and the

variation of curvature through the thickness (p" = p +z).

Bickford and Maganty [212] developed equations of motion

for symmetric cross section thick rings, accounting for

curvature variation through the thickness and supported

their frequency predictions with the experimental data of

Kuhl [80].

Curved plates and plate-like theories for curved beams

have also come under scrutiny [213-215]. Shell theories

have been used to model ring vibrations (216,217]. Chang

and Volterra [218,219] employed differential operator

theory to assess the upper and lower bounds for the first

four natural frequencies of elastic clamped and simply

supported arcs. They considered centerlines in the form of

circles, cycloids, catenaries and parabolas. Takahashi and

Suzuki [220] studied the vibrations of elliptic arc bars.

Suzuki and coworkers [221,222] obtained governing

equations for the out-of-plane vibrations of plane curved

bars of arbitrary centerline profile, based on both the

classical and the shear deformation theory. Frequencies and

mode shapes were given for clamped bars with centerlines

in the form of ellipses, sines, catenaries, hyperbolas,

parabolas and cycloids. Silva and Urgueira (223] developed

tip dynamic stiffness matrices for a free-free curved beam,

incorporating shear deformation and rotary inertia in their

analysis. Model validation based on experimental results

was also discussed. Curved beams with nonuniform cross

section (224-226] have been studied. Reddy [227] used a

lumped mass approach for out-of-plane vibrations. Free

and forced vibration problems have been attempted using

the transfer matrix approach [228-232]. Suzuki et al [233]

investigated the out-of-plane, steady-state response of

curved bars. Impulse response due to dynamic loads on

bars and rings have been studied [234-236]. Joseph and

Wilson (237] investigated the dynamic response of curved

beams with moving loads. Elastically supported curved

beams (238-240] and continuous curved beams (241-245]

have also received some attention. More information is

available in [246-253].

COUPLED VIBRATIONS

The coupled motion between in-plane and out-of-plane

displacements gives rise to a twelfth order set of equations

of motion and six boundary conditions at each end of the

beam. Thus, in general, the free vibration problem yields a

twelfth order frequency determinant, whose solution

corresponds to two bending modes, a twisting mode, an

extensional mode and two shearing modes if the

displacements were to uncouple. However, in general, the

motion is completely coupled. A derivation of the

governing equations for the coupled motions of a thin

curved bar are outlined in this section. The coordinate axes

along with the displacement and stress resultant

components are as indicated in Figs 1 and 6, except that x

and Z are now principal axes of inertia of the cross section.

In general, the z-axis will not lie in the initial plane of

curvature. Let the angle between the inward principal

normal to the centerline and the z-axis be X = X(s).

Rotation angles about the x, s and z coordinates are y, 4)

and -g, respectively, as used in the previous two sections

dealing with uncoupled motions. The displacement

components u, v and w describe the motion of a point on

the centerline (locus of centroids). Displacement and

rotation components u, v, w, v, (), and g are functions of

s. It is assumed that the displacements are small, and that

plane cross sections remain plane during deformation.

Thus cross sectional warping due to torsional motions is

ignored.

The equations for the coupled motions of a curved and

pretwisted bar were obtained by Washizu [254]. In the

following, these results are presented for the case of no

pretwist. The displacement components of any point in

the bar denoted by U, V and W satisfying these

requirements are given by:

U(s,t) = u(s,t) + zó(s,t), (18a)

V(s,t)= v(s,t)-xg(s,t)-zay(s,t), (18b)

W(s,t) = w(s,t)-x(p(s,t). (18c)

Based on this, it can be shown that the strain components

for small motions are given by:

ey = 0, 8, =0, £y, =0,

£, = (2-#..')p p

+ x -6' – Y’u +[ X^y #)-{v-#-*}”

(19a-19C)

+ {&# ) (19e)

p p

1 , , COSY *

** = 2 W" + p v-Yu – V

-£) (196)

The only nonzero stress components in the case of a

linearly elastic material with no Poisson effect are o, o,

and o, . The stress resultants are seen in Figs.1 and 6, and

are given in terms of the stresses as:

Qx = jo, A. Qz = Jozsda, (20a,20b)

A A

N = jo.dA. Mx = -J zo'sdA, (20c:20d)

A A
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Mz = JxodA. Mt = JGo. -xo.) dA.(20e20f)

A. A.

In order to account for the variation of the shear strain

across the cross section, a constant shear correction factor

K is introduced in the shear stress resultants. Evaluating

the integrals given by (20a)-(20c) and incorporating the

shear correction factor leads to:

Qx --GA(r. -# -:) (21a)

Qz --GAG-2.É.-v) (21b)

N-EAG-#.#) (21c)

The twisting moment-twist relationship, with C

denoting the torsional stiffness of the section, and the

bending moment-curvature change relations are:

M-c'v} (21d)

p p

Mx =EIx|v-x-# | (21e)

Mz =EI,|--xy.' (21f)

The equations of motion can be shown to be:

Q, +x'Q.-#s = mAü, (22a)

N’ +#9. –#Q, = mAV, (22b)

Q, -x'Q, ++N=mAw, (22c)

–M, +x'M, -#M, +Q. = m13. (22d)

M, + x'M, -#". + Qz = mixty, (22e)

M, .#M,-#". = m/Q. (22f)

Substituting Eqs (21) into (22) yields a twelfth order

system of differential equations in terms of the

displacement components u, v, w and the rotation

components W, 4 and g. It can be shown that Eqs (22a)

(22f) uncouple when x=180° and the equations of motion

for in-plane and out-of-plane vibrations presented

previously may be recovered.

Endo [255], Hawkings

Hammoud and Archer

cross section rings

motions coupled.

generalized shear

6], Kirkhope et al [257] and

analyzed unsymmetrical

'lane and out-of-plane

259,260] developed a

y valid for thick and thin

rings of circular centerline; with the classical thin ring

theory and the shear deformation theory as special cases.

Williams [261], in a well written paper, deduced the

equations of motion for small motions of a circular ring of

thin open cross section including the effects of warping

deformations. Natural frequencies and mode shapes of both

complete and incomplete rings were presented.

VIBRATIONS UNDER INITIAL STRESSES

Figure 7 shows a curved beam or arch subjected to

components of normal (q) and tangential (p) static loading

distributed along its length. In general, the magnitudes of

the loads vary along the length; i.e., q=q(s) and p=p(s).

These loads cause a static axial force No = No.(s), which

affects the free vibration frequencies and mode shapes.

Generally, if No is tensile, the frequencies are increased. If

it is compressive, they are decreased. At a limiting

(critical) value of No the fundamental frequency is reduced

to zero. This corresponds to bifurcation buckling. Thus,

it is possible to predict the fundamental buckling load

based on a linearized free vibration analysis about a

prestressed equilibrium state, and this procedure forms a

convenient means of experimentally determining the

buckling load by extrapolating the load-frequency curve.

Although a literature search has uncovered well over 100

published references dealing with the buckling of rings and

arches [66], little research has taken place on the vibrations

of loaded rings and arches. The theory is more intricate

than that for unloaded configurations, for one must derive

equations of motion based upon small displacements (to

obtain a linear eigenvalue problem) away from an initial,

loaded equilibrium state.

For an arch that is free to execute both in-plane and out

of-plane motions, the free vibration frequency and critical

load associated with the out-of-plane motions may be

considerably lower than those for in-plane motions [262],

depending upon the aspect ratio of the cross section and the

boundary conditions. Wasserman (263] examined the effect

of hydrostatic loads, dead loads and centrally directed

pressure loads on the frequencies of in-plane and out-of

plane vibrations of circular rings. Centerline extensibility

was not considered. Exact and approximate expressions for

the frequencies and critical loads of arches, considering end

support flexibility have been obtained [264]. The effect of

an elastic foundation on the free vibration frequency of a

shallow arch subjected to a thrust load was analyzed by

Plaut and Johnson [265]. Perkins [266] used a model for

the in-plane behavior that accounts for geometric

FIG 7. Curved beam under initial stresses.



 







478
Chidamparam and Leissa: Vibrations of planar curved beams, rings, and archesAppl Mech Rev vol 46, no 9, September 1993

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Mathematisch-naturwissenschaftliche Klasse, Sitzungsberichte

144 Abteilung IIa, p 561-575

Rehfield, L W, Sparrow, C A and Evani, S R M (1975)

Influence of boundary restraint and curvature on the

#" of circular ring segments, Israel J Tech 13(1-2), p

-1

Lang, T E and Reed, R E (Oct 1, 1962) A method for

determining modal characteristics of nonuniform thin circular

rings, Jet Propulsion Lab, Pasadena, California, TR No. 32

252

Stead, K.A (1968) A study of the natural vibrations of a set of N

elastically connected concentric circular rings, Ph.D. Thesis,

South Carolina Univ., Columbia, 92 p

Chidamparam, P (1993) Free vibration and buckling of curved

beams subjected to distributed loads, Ph.D. Dissertation, The

Ohio State University

Federhofer, K (1935). Uber den einfluss der Achsendehnung,

der Rotationstrāgheit und der Schubkraft auf die Frequenzen

der Biegungsschwingungen eines Kreisringes (The influence

of median line extension, rotary inertia and shear force on

the frequencies of bending vibrations of circular rings),

Akademie der Wissenschaften in Wien, Mathematisch

naturwissenschaftliche Klasse, Sitzungsberichte 144 Abteilung

IIa, p 307-315

": L L (1956) On the role of extension in the flexural

vibrations of rings, J Appl Mech 23(3), p 364-366

Morley, L S D (1961) Elastic waves in a naturally curved rod,

Quart J. Mech Appl Math, 14 Part 2, p 155-172

Austin, WJ, and Veletsos, A S (1973) Free vibration of arches

flexible in shear, J Eng Mech99(EM4), p 735-753

Irie, T, Yamada, G and Tanaka, K (1983) Natural frequencies

of in-plane vibration of arcs, J Appl Mech 50(2), p.449-452
Pereira, C A L (1968) Free vibration of circular arches, MSc

Thesis, Rice Univ, Houston, Texas

Filipich, C P (1988) Inplane vibrations of arches and rings taking

into account shear and rotatory inertia effects, Ph.D. Thesis,

Universidad Nacional de Cordoba, Argentina

Gau, W H (1988) Effects of shear deformation and rotary

inertia on the dynamics of curved beams, MSc Thesis, Dept

of Mech Eng, Univ Illinois at Chicago, Chicago, Illinois

Wung, S-J (1967) Vibration of hinged circular arches, MSc

Thesis, Rice Univ

Novozhilov, V V (1953) Foundations of the Nonlinear Theory of

Elasticity, Graylock Press, Rochester, New York

Buckens, F (1950) Influence of the relative radial thickness of a

ring on its natural frequencies, J Acoust Soc Am 22(4), p 437

443

Seidel, BS and Erdelyi, E A (1964) On the vibration of a thick

ring in its own plane, J Eng Indust 86 B(3), p 240-244

Kirkhope, J (1976) Simple frequency expression for the in

# vibration of thick circular rings, J Acoust Soc Am

9(1), p 86-89

Kuhl, W (1942) Messungen zu den Theorien der

Eigenschwingungen von Kreisringen beliebiger Wandstarke,

Akustiche Zeitschrift 7, p 125-152

Lincoln, J W and Volterra, E (1967) Experimental and

theoretical determination of frequencies of elastic toroids,

Exp Mech 7, p 211-217

Kirkhope, J (1977) Inplane vibration of a thick circular ring, J

Sound Vib 50(2), p 219-227

Rao, SS and Sundararajan, V (1969) Inplane flexural vibrations

of circular rings, J Appl Mech E36(3), p 620-625

Gardner, T G and Bert, C W (1985) Vibration of shear

deformable rings: theory and experiment, J Sound Vib

103(4), p 549-565

Suzuki, S-I (1984) Inplane vibrations of circular rings, J Sound

Vib 97(1), p 101-105

Den Hartog, J P (1928) The lowest natural frequency of

circular arcs, Phil Mag 5, p.400-408

Hasselgruber, H (1956) Zur Berechnung der Eigenfrequenzen

eines in seiner Ebene freischwingenden, nicht geschlossenen

Kreisringes konstanten Querschnittes, Forschung auf dem

#des Ingenieurwesens, Düsseldorf, Band 22, Heft 5, p

158-1

Nelson, F C (1962) Inplane vibration of a simply supported

circular ring segment, Int J Mech Sci 4, p 517-527

Nelson, F C (1961) Vibration of circular ring segments, Ph.D.

Thesis, Harvard Univ

Volterra, E and Morell, J D (1960) A note on the lowest natural

frequency of elastic arcs, J Appl Mech 27(4), p 744-746

Volterra, E and J D (1961) Lowest natural frequencies

of elastic 'coust Soc Am 33(12), p 1787-1790.

Also see /2) Comments on "Lowest natural

frequel d arcs" J Acoust Soc Am 51(5), p

1483

Wang, natural frequency of clamped

para Proc ASCE 98(ST1), p£

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Wang, T M (1975) Effect of variable curvature on fundamental

frequency of clamped parabolic arcs, J Sound Vib 41, p 247

251

Romanelli, E and Laura, PAA (1972) Fundamental frequencies

of non-circular elastic hinged arcs, J Sound Vib 24(1), p 17

22

Ikebe, T, (Sept 1935) Paper No. 589, p 244-262 and (July 1938)

Paper No. 796, p 680-712, Inst Phys Chem Research, Tokyo

Wang, T M and Moore, J A (1973) Lowest natural extensional

frequency of clam elliptic arcs, J Sound Vib 30(1), p 1-7

Takahashi, S (1963) Vibration of a circular arc bar in its plane:

Part I, Both ends built-in, Bull JSME 6(24), p 666-673

Takahashi, S, Suzuki, K, Fukazawa, K and Nakamachi, K

(1977) In-plane vibrations of elliptic arc bar and sinus curve

bar, Bull JSME 200148), p 1236-1243

Suzuki, K, Takahashi, S and Ishiyama, H (1978) In-plane

vibrations of curved bars, Bull JSME21(154), p 618-62

Suzuki, K and Takahashi, S (1979). In-plane vibrations of

curved bars considering shear deformation and rotatory

inertia, Bull JSME 22(171), p 1284-1292

Lee, B K and Wilson, JF (#) Free vibrations of arches with

variable curvature, J Sound Vib 136(1), p 75-89

Ouellette, P E (1982) In-plane vibration of an extensible and

flexible chain of particles: Application to a thin and curved

rod, J Sound Vib 83(3), p 379-399

Pestel, E C and Leckie, F A (1963) Matrix Methods in

Elastomechanics, McGraw-Hill Book Co., New York

Raithel, A and Franciosi, C (1984) Dynamic analysis of arches

using Lagrangian approach, J Struct Div, Proc ASCE 110(4),

847-858

M£ TJ (1971) Dynamics of circular periodic structures,

JAircraft 8, p 143-149

Singh, K and£ B L (1979) Free vibration of circular

rings on radial supports, J Sound Vib 65(2), p 297-301

Sahay, KB and Sundararajan, V (1972) Vibration of a stiffened

ring considered as a cyclic structure, J Sound Vib 22, p 467

473

Filipich, C P and Rosales, MB (1990). In-plane vibration of

symmetrically supported circumferential rings, J Sound Vib

136(2), p 305-314

Detinko, #' (1989) Free vibration of a thick ring on multiple

supports, In J Eng Sci27(11), P 1429-1438
Mallik, A K and Mead, D J (1977) Free vibration of thin

circular rings on periodic radial supports, J Sound Vib 54(1),

p13-27

Suzuki, K, Asakura, A and Takahashi, S (1979) Vibrations of a

connecting system of curved bars (inplane), Bull JSME

22(172), p 1439-1447

Chen, S-S (1973) Inplane vibration of continuous curved beams,

Nucl Eng Des 25(3), p 413-431

Issa, M S (1983) Effects of rotary inertia and shear deformation

on extensional vibrations of continuous circular curved

beams, Ph.D. Thesis Univ New Hampshire, 110 p

Issa, MS, Wang, T M and Hsiao, BT (1987) Extensional

vibrations of continuous circular curved beams with rotary

inertia and shear deformation I: Free vibration, J Sound Vib

114(2), p 297-308

Wang, T M and Issa, M S (1987) Extensional vibrations of

continuous circular curved beams with rotary inertia and

shear deformation II: Forced vibration, J Sound Vib 114(2), p

309-323

Wang, T M and Guilbert, M P (1981) Effects of rotary inertia

and shear on natural frequencies of continuous circular

curved beams, Int J Solids Struct 17(3), p 281-289

Issa, MS, Nasr, M E and Naiem, MA (1990) Free vibrations of

curved Timoshenko beams on Pasternak foundations, Int J

Solids Struct 26(11), p 1243-1252

Wang, T M and Lee, J M (1974) Forced vibrations of

continuous circular arch frames, J Sound Vib 32(2), p 159

173

Wang, T M and Church, D C (1967). Analysis of continuous

arch frames, J Struct Div, Proc ASCE 93, p.419-433

Wang, T M and Lee, J M (1972) Natural frequencies of multi

span circular curved frames, Int J Solids Struct 8, p 791-805

Issa, M S (1988) Natural frequencies of continuous curved

beams on Winkler-type foundation, J Sound Vib 127(2), p.

29.1-301

Sakiyama, T (1986) Free vibration of three-hinged arches, J

Sound Vib 111(2), p 343-348

Ball, RE (1967) Dynamic analysis of rings by finite differences,

J Eng Mech 93(EM1), p 1-10

Eppink, R T and Veletsos, A S (July 1959) Analysis of circular

arches, AFSWC-TR-59-9 Vol II, Kirtland Air Force Base,

New Mexico

Eppink, R T and Veletsos, A S (1960) Dynamic analysis of

circular elastic arches, Proc Second Conference on

Electronic Digital Computation, ASCE, p.477-502



Appl Mech Rev vol 46, no 9, September 1993 479Chidamparam and Leissa: Vibrations of planar curved beams, rings, and arches

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

Eppink, R T and Veletsos A S (Dec 1960) Response of arches

under dynamic loads, AFSWC-TR-60-53 Vol II, Kirtland Air

Force Base, New Mexico

Reissner, E (1954) Note on the problem of vibrations of slightly

curved bars, J Appl Mech 21(2), p 195-196

Rossettos, J N (1972) Natural frequencies of clamped and

hinged bars having small curvature, J Acoust Soc Am 52(1), p

444-445

Rossettos, J N and Squires, D C (1973) Modes and frequencies

of transversely isotropic slightly curved Timoshenko beams, J

Appl Mech 39, p1029-1034

Nanasi, T and Pust, L (1982) The influence of support

compliances on the vibration of slightly curved beams,

Strojnicky Casopis 33(1), p 49-70

Weidhammer, F# Lateral oscillations of slightly curved

# under axial pulsating load, ZAngew Math Mech 36, p

235-238

Oseled ko, A I (1965) Vibrations of very shallow circular

arches, Lockheed Missiles and Space Co., Sunnyvale, Calif.,

Transl. into English from Issled po Teorii Sooruzh (USSR),

no.13, p 127-134

Nagaya, K (1983) Vibrations of a thick-walled pipe or a ring of

arbitrary shape in its plane, J Appl Mech£ 757-764

Suzuki, K and Takahashi, S (1982) Inplane vibrations of curved

bars with varying cross-section, Bull JSME 25(205), p 1100

1107

Filipich, CP, Laura, PAA, Rosales, M and Valerga, BH (1987)

Numerical experiments on inplane vibrations of rings of

nonuniform cross-section, J Sound Vib 118, p 166-169

Lecoanet, H and Piranda, J (1983) Inplane vibrations of circular

rings with a radially variable thickness, J. Vib Acoust Stress

Reliab Des 105(1), p 137-143

Rutledge, J R and Royster, L H (July 1971) An approximate

mathematical model for the free vibrations of a smooth arc of

arbitrary shape and varying cross-section, Report, North

Carolina State Univ, 24 p

Rutledge, J R and Royster, L H (1971) Mathematical model for

the free vibration of an arc with varying radius of curvature,

Proc 81st Meeting Acoust Soc Am, 17p

Royster, L H (1966) Effect of linear taper on the lowest natural

#" frequency of elastic arcs, J Appl Mech 33(1), p

11-21

Suzuki, K, Kosawada, T and Takahashi, S (1986) Inplane

vibrations of inhomogeneous curved bars having varying

cross-section (in Japanese), Trans JSME 52(482), p 2593

2599

Laura, PAA, Filipich, CP, Rossi, R E and Reyes, J A (1988)

Vibrations of rings of variable cross section, Appl Acoust

25(4), p 225-234

Gutierrez, R H, Laura, PA A, Rossi, R E, Bertero, R and

Villaggi, A (1989) Inplane vibrations of non-circular arcs of

nonuniform cross-section, J Sound Vib 129(2), p 181-200

Laura, PA A, Bambill, E, Filipich, C P and Rossi, RE (1988) A

note on free flexural vibrations of a non-uniform elliptical

ring in its plane, J Sound Vib 126(2), p 249-254

Rosales, M # Filipich, C P and Laura, PA A (1989) A note on

free flexural vibrations of a non-uniform ring with fixed

supports, J Sound Vib 129(1), p. 45-49

Cortinez, V H, Laura, PA A, Filipich, C P and Carnicer, R

(1986) Numerical experiments on vibrating cantilever arches

of varying cross-section, J Sound Vib 110(2), p 356-358

Verniere De Irasser, P L and Laura, PA A (# A note on

the analysis of the first symmetric mode of vibration of

circular arches of non-uniform cross section, J Sound Vib

116, p 580-584

Laura, PA A and Irassar, P L V d (1983) A note on inplane

vibrations of arch-type structures of non-uniform cross

section: The case of linearly varying thickness, J Sound Vib

124(1), p 1-12

Laura, PA A, Irassar, P L V d, Carnicer, R and Bertero, R

(1988) A note on vibrations of a circumferential arch with

thickness varying in a discontinuous fashion, J Sound Vib

120(1), p 95-105

Rossi, RE, Laura, PA A and Irassar, P L V d (1989) Inplane

vibrations of cantilevered non-circular arc of non-uniform

cross-section with a tip mass, J Sound Vib 129(2), p 201-213

Laura, PA A, Filipich, C P and Cortinez, V H (1987) Inplane

vibrations of an elastically cantilevered circular arc with a tip

mass, J Sound Vib 115(3), p 437-446

"#. CP, Carnicer, R., Cortinez, V H and Laura, PA A

1987) Inplane vibrations of a circumferential arch

elastically restrained against rotation at one end and with an

intermediate support, Appl Acoust 22(4), p 261-270

Filipich, CP, Laura, PA A and Cortinez, V H (1987) Inplane

vibrations of an arch of variable cross section elastically

restrained against rotation at one end and carrying a

concentrated mass at the other, Appl Acoust 21(3), p 241-246

Laura, PA A, Filipich, C P and Cortinez V H (1986) Inplane

vibrations of a circumferential arch elastically restrained

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

against rotation at one end and carrying a concentrated mass

at the other, Inst Appl Mech, Base Naval Puerto Belgrano,

Argentina, Publ No. 86-32

Cortinez, V H, Laura, PA A, Filipich, C P and Carnicer, R

(1987) Inplane vibrations of a clamped column-arch system

carrying a concentrated mass at the free end, J Sound Vib

112(2), p 379-383

Ercoli, L, Laura, PA A, Filipich, C P and Cortinez, V H (1986)

Analytical and experimental investigation on vibrating arches

clam at one end and carrying a concentrated mass at the

other, J Sound Vib 111(2), p 349-351

Hoa, S V (1978) Vibration frequency of a curved beam with tip

mass, J Sound Vib 61(3), p 427-436

Allaei, D, Soedel, W, and Yang, T Y (1986) Natural

frequencies and modes of rings that deviate from perfect

axisymmetry, J Sound Vib£ 9-27

Hong, JS (1989) Free vibration analysis of circular rings with

slight irregularities, Proc Seventh Int Modal Anal Conf, Vol I,

124-130

Palmer, E W (Aug 1967) The influence of a mass on the free

flexural vibrations of a circular ring, Rept.-2536, AD

661226, Naval Ship Engineering Center, Washington D.C.

Underwater Explosions Research Div., 51p

Gartner, J R and Bhat, S T (1975) Influence of geometric

imperfections on vibrational frequencies of thin rings, J. Eng

Indust 97(4), p 1199-1203

Fox, C H J (1990) A simple theory for the analysis and

correction of frequency splitting in slightly imperfect rings, J

Sound Vib 142(2), p 227-243

Irie, T, Yamada, G and Takahashi, I (1980) Inplane vibration of

a free-clamped slender arc of varying cross-section, Bull

JSME# 567-573

Murthy, VR and§: NC (1975) Dynamic characteristics of

stiffened rings by transfer matrix approach, J Sound Vib

39(2), p 237-245

Irie, T and Yamada, G and Fujikawa, Y (1982) Natural

frequencies of circular arcs with varying cross section, Exp

Mech 22(11), p 407-411

Irie, T and Yamada, G and Takahashi, I (1979) Inplane

vibration of Timoshenko arcs of variable cross-section, Ing

Arch 48(5), p 337-346

Lang, TE# Reed, R E (1962) TR 32-252, Jet Propulsion

Laboratory, California

Irie, T, Yamada, G and Takahashi, I (1980) The steady state

inplane response of a curved Timoshenko beam with internal

damping, Ing Arch 49(1), p 41-49

Sheinman, I (1979) Forced vibration of a curved beam with

viscous damping, Comput Struct 10(3), p 499-503

Mittal, R K (1976) Flexure of a thin elastic ring due to a

dynamic concentrated load, Int J Eng Sci 14, p 247-257

Suzuki, K, Tamura, S and Takahashi, S (#5 Steady-state

response of curved bars (inplane) (in Japanese), Trans

JSME, 1981-2, p 223

Suzuki, K, Miyashita, Y, Kosawada, T and Takahashi, S (1985)

Inplane impulse response of a curved bar with varying cross

section, Bull JSME£ p 1181-1187

Isenberg, J, Levine, H S and Pang, S H (1977) Numerical

simulation of forced vibration tests on a buried arch, Report

No. 7712-NNa-4281F, Weidlinger Assoc, Menlo Park,

California

Lu, Y P (1976) An analytical formulation of the forced

responses of damped rings, J Sound Vib 48(1), p 27-33

Suzuki, S (1966) Dynamic elastic response of a ring to transient

pressure loading, J Appl Mech 33, p.261

Gecha, V Ya and Poznyak, E L (1983) Free and forced

vibrations of a circular ring of high curvature, Sov Appl

Mech 18(7), p 641-644

Federhofer, K (1957) Vibration of a circular arch pivoted in

both ends and loaded with a periodically varying force (in

£ Ost Akad Wiss Math-Nat Kl. S. B. Abt. II 1666/10,

125-137

c: D R and Parker, W H (1965) Extensional vibrations and

dynamic loading of thick elastic rings, Developments in

Mechanics 3, part# 255–262

Merkle, D H and Merkle, L D (Sept 1986) High frequency

analysis of circular arches, Final£ Applied Research

Associates Inc.,Albuquerque, N. Mex., Contract F29601-85

C-0029, 101 p

Federhofer, K (1957) Forced vibration of a circular ring (in

German), SB Math-Nat Kl Bay Akad Wiss 166(5), p 1-14

Ahmed, K M (1972) Dynamic analysis of sandwich beams, J

Sound Vib 21, p 263-276

DiTaranto, R (#) Free and forced response of a laminated

ring, J Acoust Soc Am 53(3), p 748-757

Reddy, E S and Mallik, A K (1982) Vibration of a two layered

ring on periodic radial supports, J Sound Vib 84, p417-430

Reddy, E S and Mallik, A K (1984) Vibration of a three layered

ring on periodic radial supports, AIAA 43-551









Appl Mech Rev vol 46, no 9, September 1993 Chidamparam and Leissa: Vibrations of planar curved beams, rings, and arches 483

[375]

[376]

[377]

[378]

[379]

[380]

[381]

[382]

[383]

[384]

[385]

[386]

[387]

[388]

[389]

[390]

[391]

[392]

[393]

Fam, A R M (1973) Static and free vibration analysis of curved

box bridges, Ph.D. Thesis, McGill Univ, Montreal, Canada

Komatsu, S and Nakai, H (1970) Fundamental study on forced

vibrations of curved girder bridges, JSCE 2 part 1

Rutenberg, A (1979) Vibration properties of curved thin-walled

beams, J Struct Div, Proc# 105(ST7), p 1445-1455

Tabba, M M and Turkstra, C.J. (1977) Free vibrations of curved

box girders, J Sound Vib 54(4), p 501-5.14

Yoo, C H and Fehrenbach, J P (#) Natural frequencies of

curved girders, J Eng Mech 107(EM2), p 339-354

Chaudhuri, S K (1975) Dynamic response of horizontally

curved I-girder bridges due to a moving vehicle, Ph.D.

Thesis, Univ Pennsylvania, Philadelphia

Chaudhuri, S K and Shore, S (1977) Thin-walled curved beam

finite element, J Eng Mech 103(EM5), p 921-937

Christiano, P P and Culver, C G (1969) Horizontally curved

bridges subjected to moving load, J Struct Div, Proc ASCE

95(ST8), p 1615-1643

Christiano, PP (1967) The dynamic response of horizontally

curved bridges subject to moving loads, Ph.D. Thesis,

Carnegie-Mellon University

Komatsu, S and Nakai, H (May 1964) Study on free vibration of

curved girder bridges, Nineteenth Annual Conf JSCE, p 35-60

Maddox, # R (1969) Free oscillations of thin-walled open

section circular rings, Ph.D. Thesis, Georgia Institute of

Technology, Atlanta, Georgia, 166 p

Oestel, DJ (1968) Dynamic response of multi-span curved

bridges, MSc Thesis, Carnegie-Mellon Univ

Rabizadeh, R O and Shore, S (1975) Dynamic analysis of

curved box-girder bridges, J Struct Div, Proc ASCE 101, p.

1899-1912

Yonezawa, H (1962) Moments and free vibrations in curved

girder bridges, J Eng Mech 88(EM1), p 1-21

Gendy, A S and Saleeb, A F (1992) Finite element analysis of

the spatial response of curved beams with arbitrary thin

walled sections, Comput Struct 44(3), p 639

Smirnov, A B and Trockij, VA (1978) Determination of the

curved axis of a thin elastic beam having optimal in-plane

eigenfrequencies (in Russian), Leningrad polit in-t 9(C), Dep

No. 3, p46–79

Olhoff, and Plaut, R H (1983) Bimodal optimization of

vibrating shallow arches, Int J Solids Struct 19(6), p 553-570

Plaut, R H and Olhoff, N (1983) timal forms of shallow

arches with respect to vibration and stability, J Struct Mech

11(1), p 81-100

Kil'chinskaya, GA (1986) Vibrations in the plane of curvature

of curved elastic rods during heating, Sov Appl Mech 22(3), p

251-256

[394]

[395]

[396]

[397]

[398]

[399]

[400]

[401]

[402]

[403]

[404]

[405]

[406]

[407]

Fettahlioglu, O.A and Steele, T K (1988) Thermal deformations

and stresses in circularly curved thin beams and rings, J

Thermal Stresses 11(3), p 233-255

Singal, R K, Williams, K and Wang, H (1991) Effect of radial

thickness on the in-plane free vibrations of circular annular

discs, J. Vib Acoust 113(4), p.455-460

Gladwell, G M L and Tahbildar, UC (1972) Finite element

analysis of the axisymmetric vibrations of cylinders, J Sound

Vib 22, p 143-157

Gladwell, G M L and Vijay, DK (1975) Natural frequencies of

free finite length circular cylinders, J Sound Vib 42, p 387

397

Hutchinson, J R and El-Azhari, S.A (1986) Vibrations of free

hollow circular cylinders, J Appl Mech 53, p 641–646

Girgis, R S and Verma, S P (1981) Method for accurate

determination of resonant frequencies and vibration behavior

of stators of electrical machines, IEE Proc B Electr Power

Appl 128, p 1-11

Singal, R and Williams, K (1988) A theoretical and

experimental study of vibrations of thick circular cylindrical

shells and rings, J Vib Acoust Stress Reliab Des 110, p 533

537

So, J (1993) Three-dimensional vibration analysis of elastic

bodies of revolution, Ph.D. Dissertation, The Ohio State

University, Columbus Ohio,312p

Gladwell, G M L and Vijay, DK (1975) Errors in shell finite

element models for the vibration of circular cylinders, J

Sound Vib 43, p 511-528

Hutchinson, J R and El-Azhari, S.A (1986) On the vibration of

thick annular plates, Proc Euromech Colloq 219 on Refined

Dynamical Theories of Beams, Plates and Shells and their

Applications, p 102-111

Verma, S P and Girgis, RS (1981) Experimental verification of

resonant frequencies and vibration behavior of stators of

electrical machines, Part I: Models, experimental procedure

and apparatus, IEE Proc B Electr Power Appl 128, p 12-21

Verma, S P and Girgis, RS (1981) Experimental verification of

resonant frequencies and vibration behavior of stators of

electrical machines, Part II: Experimental investigations and

results, IEE Proc B Electr Power Appl 128, p 22-32

Verma, S P, Singal, R K and Williams, K (1987) Vibration

behavior of stators of electrical machines, Part I: Theoretical

study, J Sound Vib 115, p 1-12

Verma, S P, Singal, R K and Williams, K (1987) Vibration

behavior of stators of electrical machines, Part II:

Experimental study, J Sound Vib 115, p 13–23

After earning two degrees in Mechanical Engineering, Arthur W Leissa received his PhD degree in

Engineering Mechanics in 1958 from Ohio State University, and remained there as Assistant

Professor. He became Professor of Engineering Mechanics at Ohio State in 1964, and currently holds

that position. The academic year 1972-73 was spent as Visiting Professor at the Federal Institute of

Technology in Zurich, Switzerland, teaching graduate courses and doing research. Subsequently,

1985-86 was given to a Visiting Professorship at the Air Force Academy in Colorado Springs. He is

the author oftwo books, Vibration of Plates and Vibration of Shells, which summarize the literature in

these fields, as well as approximately 180 other publications dealing primarily with elasticity, plates,

shells, vibrations and buckling of continuous systems, composite materials, and approximate methods

ofsolving boundary value problems. A former Associate Editor for Applied Mechanics Reviews, he

Mechanical Engineers.

*

recently was appointed Editor-in-Chief. He is on the editorial advisory boards of Composite

P. Chidamparam received his B. Tech, in Mechanical Engineering from the Indian Institute of

Technology Madras, India, in 1987 and his M.S. in Mechanical Engineering from the Ohio State

University, in 1989. He was awarded the Alcan Scholarship in 1989 to pursue doctoral studies

at the Ohio State University, where he is currently a doctoral candidate in Engineering

Mechanics. He has been an active participant in the development and instruction of

undergraduate courses in Mechanical Engineering and Engineering Mechanics at Ohio State.

His research interests are in the general areas of structural vibrations, machinery dynamics and

acoustics. He is a member of the Phi Kappa Phi Honor Society and the American Society of

Structures, the Journal of Sound and Vibration, and the International Journal of Mechanical Sciences.

He is a Fellow ofASME and of the American Academy ofMechanics, and is a past President of the American Academy of

Mechanics. The Pan American Congress of Applied Mechanics (PACAM) was conceived by him, and he was the general chairman of

the first one, in 1989. His technical expertise includes employment by Sperry Gyroscope, Boeing Airplane, North American A*ion,

Battelle Memorial Institute, and Kaman Nuclear as an engineer or consultant. In his spare time, he climbs mounta:



 



 

 

 



 



 



 





 

 





 

 

 



 





 

 







J868 Appl Mech Rev vol 46, no 9, September 1993Journal Literature 154C)

Nanjing, Jiangsu 210014, Peoples Rep of China).

Comput Struct 47(1) 83-90 (3 Apr 1993).

A general solution to vibrations of beams on

variable Winkler elastic foundation is presented.

The exact solution of the dynamic response of the

beam is obtained by considering the reaction

force of the foundation on the beam as the exter

nal force acting on the beam, which is an integral

equation including the displacement of the beam.

The four unknown constants in the solution are

decided by the boundary conditions of the beam.

The integrals in the solution are approximately

and numerically calculated by means of the trape

zoidal rules. The analysis and programming are

very simple. It is possible to find the natural fre

quencies and mode shapes of vibrations by using

a small number of the discrete nodes in the trape

zoidal quadrature and it is concluded that the use

of the method yields better convergence at lower

computation costs.

9A52. Hammer foundation analysis by the

wave equation. -YK Chow and DM Yong (Dept

of Civil Eng, Natl Univ of Singapore, 10 Kent

Ridge Crescent, Singapore 0.511). Comput Struct

47(1) 107-110 (3 Apr 1993).

The vibration amplitudes of hammer founda

tions must be kept within acceptable limits during

operation. A 1D wave equation model based on

the FEM is proposed for the analysis of these

foundations. The results of the wave equation

model are shown to compare favorably with some

reported solutions and with experimental meas

urements. The versatility of the model allows the

various components of the hammer-foundation

system to be readily simulated.

154P. COMPLEXSYSTEMS

9A53. Dynamics of fluidelastic vibrations of

tube bundles in heat exchangers. - S Kaplunov

and N Makhutov (Blagonravov Mech Eng Inst,

Russian Acad of Sci, Russia). Heat Transfer Res

24(5) 641-662 (1992).

The principal relationships governing the flow

induced vibrations of heat exchanges tube bun

dles, the knowledge of which is needed in the de

sign stage in order to prevent destructive vibra

tions with runaway amplitudes, are derived by the

general dynamic analysis of the fluidelastic be

havior of the bundle, as well as its mechanical.

The method employs probabilistic estimates of

the possibility of actual attainment of the neces

sary frequency detuning to prevent resonance and

generalized data on damping of the characteristic

tube vibrations.

154Y. COMPUTATIONAL

TECHNICUES

9A54. Adaptive time integration of nonlinear

structural dynamic problems. - BP Jacob and

NFF Ebecken (Civil Eng Dept, COPPE-Fed Univ

Rio de Janeiro, PO Box 68506, 21945 Rio de

Janeiro RJ, Brasil). Eur J Mech A 12(2) 277-298

(1993).

This work presents the development of an

adaptive computational strategy for the efficient

nonlinear dynamic analysis of large-scale struc

tural systems, particularly oriented towards the

analysis of compliant structures for deepwater oil

exploration and production. This strategy is de

vised having in mind the following requirements:

(a) Superior computational efficiency when com

pared with conventional nonlinear dynamic

analysis tools; (b) User-friendliness, reflected in

savings in the time spent by the engineer for the

preparation and submise the computer jobs

necessary to obtain '' "ponse; and (c)

Improved charact and robust

ness, reflected by sults and the

ability to complete an analysis without abnormal

terminations. Applications on the nonlinear dy

namic analysis of deepwater compliant structures

are presented, to evaluate the aforementioned

characteristics of the computational system.

9A55. Perturbation analysis of vibration

modes with close frequencies. - Su-Huan Chen,

Ahong-Sheng Liu, Chun-Sheng Shao, You-Qun

Zhao (Dept of Mech, Jilin Univ of Tech,

Changchun 130022, Peoples Rep of China).

Commun Numer Methods Eng 9(5) 427-438

(May 1993).

This paper focuses on how parameter changes

in a vibration system expressed by a discrete

eigenvalue problem affect vibration modes in the

special case of closely spaced eigenvalues, ie

"eigenvalue clusters". For this class of problems,

a perturbation analysis is developed that can be

used to compute changes in eigenvalues and

eigenvectors in response to small parameter

changes. The analysis is applied to a 6-dof spring

mass system containing a single pair of closely

spaced eigenvalues.

156. Vibrations

(structures)

9A56. Prediction of gear dynamics using fast

Fourier transform of static transmission error.

- Hsiang Hsi Lin (Dept of Mech Eng, Memphis

State Univ, Memphis TN), DP Townsend, FP

Oswald (Mech Syst Tech Branch, NASA Lewis

Res Center, Cleveland OH). Mech Struct

Machines 21(2) 237-260 (1993).

An analytical computer simulation procedure

for dynamic modeling of low-contact-ratio spur

gear systems is presented. The procedure com

putes the gear static transmission error and uses a

Fast Fourier Transform to generate its frequency

spectrum at various tooth profile modifications.

The dynamic loading response of an unmodified

(perfect involute) gear pair is compared with that

of gears with profile modifications. Correlations

are found between several profile modifications

and the resulting dynamic loads. Optimum profile

modifications can be determined from the design

curves, to yield a minimum dynamic effect for a

gear system. This provides an essential tool for

improved gear design.

9A57. Statistical analysis of the dynamic cut

ting coefficients and machine tool stability. -

MA El Baradie (Sch of Mech and Manuf Eng,

Dublin City Univ, Dublin 9, Ireland). J Eng Indust

115(2) 205-215 (May 1993).

Machine tool chatter is a statistical phenome

non since it is dependent on the interaction of two

statistical quantities, these being the dynamic

characteristics of the machine tool structure and

the transfer function of the cutting process. In this

paper, a generalized statistical theory of machine

tool chatter has been developed. This takes into

consideration the scatter of the dynamic data of

the machine structure and/or that of the cutting

process. The dynamics of the cutting process

have been represented by a mathematical model

which derives the cutting coefficients from steady

state cutting data, based on a nondimensional

analysis of the cutting process. The dynamics of

the machine tool structure and the cutting process,

being the input data to the theory, were deter

mined experimentally. The predicted stability

charts were plotted to take into consideration the

scatter in the machine structure dynamics and/or

the cutting process.

9A58. Unified transfer function (UTF) ap

proach for the modeling and stability analysis

of long slender bars in 3D turning operations. -

IN Tansel (Dept of Mech Eng, Florida Int Univ,

Miami FL 33199). J Eng Indust 115(2) 193-204

(May 1993).

A new approach is introduced to model 3D

turning operations that are used for the stability

analysis of long slender bars. This approach util

izes the unique relationship between externally

created feed direction tool displacements (input)

and the resultant thrust direction workpiece vibra

tions (output) to estimate stability limits in 3D

turning operations from the data of a single dy

namic cutting test. In this paper, this unique rela

tionship is referred to as the "Unified Transfer

Function" and its expressions are derived from

conventional cutting and structural dynamics

transfer functions. The proposed approach con

siders in-process structural and cutting dynamics

and can be automatically implemented without

any input from the operator for the traverse turn

ing of a long slender bar.

9A59. Semi-active damping with an electro

magnetic force generator. - D Ryba (Fac of

Mech Eng and Marine Tech, Univ of Tech, Delft,

Netherlands). Vehicle Syst Dyn 21(2) 79-95

(1993).

The main shortcoming of vehicle suspension

systems is the amplification of input vibrations at

the resonant frequency. A non-amplifying sus

pension system with a semi-active damping is be

ing developed. The use of an electronically con

trolled rotational damper has been studied theo

retically. A new spring seat is being designed for

the improvement of the working conditions for

drivers of road and terrain vehicles.

9A60. Six-dof active vibration isolation using

a Stewart platform mechanism. -Z Geng and

LS Haynes (Intelligent Autom, 1370 Piccard Dr,

Rockville MD 20850). J Robotic Syst 10(5) 725

744 (Jul 1993).

Intelligent Automation has performed a study

of a six-dof active vibration isolation system

based on a Stewart platform mechanism to be

used for precision control of a wide range of

space-based structures as well as earth-based sys

tems. This article presents part of the study re

sults, which includes a new Terfenol-D actuator

design and analysis, a design of a Stewart plat

form as a vibration isolation device and robust

adaptive filter algorithms for active vibration con

trol. Prototype hardware of a six-dof active vibra

tion isolation system has been implemented and

tested. About 30 dB of vibration attenuation is

achieved in real-time experiments.

See also the following:

9A33. Analysis of a civil aircraft main gear

shimmey failure

9A.85. Liquid-structure-foundation interaction of

slender water towers

I

158. Wave motions in

solids

158A.. GENERAL THEORY

See the following:

9A969. Comparison of mass-loading and elastic

plate models of an ice field

158B. RODS AND BEAMS,

ELASTIC

9A61. Discrete modelling of wave propaga

tion in bars with piecewise-linear characteris

tics. - Z Szczesniak (Military Tech Acad,

Warszawa, Poland). Eng Trans 40(4) 483-500

(1992).

Copies of articles available. Use order form at end.
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A method is proposed to model 1D wave

propagation problems in a discrete manner as ap

plied to the material with piecewise-linear stress

strain relationship in loading and rigid-elastic be

havior in unloading. The method consists in a

simple combination of basic models, ie, an elastic

model and a plastic model with rigid unloading to

obtain a combined model. It turns out to be accu

rate and effective. Numerical algorithm is de

scribed. Errors are discussed and an example of

unloading stress wave is given.

9A62. Torsional mode coupling and filtering

in a composite waveguide with multiperiodic

interface corrugations. - OR Asfar (Dept of Elec

Eng, Univ of Sci and Tech, Irbid, Jordan) and

MA Hawwa (Dept ofEng Sci and Mech, WPI). J

Acoust Soc Am 93(5) 2468-2473 (May 1993).

This study is concerned with the interaction of

six torsional modes in a composite axisymmetric

waveguide whose interfaces are sinusoidally cor

rugated in the axial direction. The modes are in

teracting when two resonant conditions on the

codirectional modes and a Bragg condition occur

simultaneously. In light of the weakness of the in

terface corrugations, the perturbation method of

multiple scales is used to derive the mode cou

pling equations. A novel numerical scheme for

two-point boundary-value problems is used to

solve the coupled amplitude equations. The

power reflection coefficient of a filter section is

then calculated for the cases of uniform, tapered,

and chirped corrugations. An optimal filter is real

ized by combining both taper and chirp thus pro

ducing a nearly ideal characteristics.

9A63. Traveling waves on a wire. - DS Jones

(Dept of Math and Comput Sci, The University,

Dundee DD14HN, UK). Arab J Sci Eng 17(4B)

541-563 (Oct 1992).

The problem of the initiation and reflection of

traveling waves on a long thin wire of finite

length when it is simulated by a plane wave is in

vestigated. By modeling the wire as a narrow tube

it is shown that all the traveling waves, except the

one supported by a longitudinal symmetrical cur

rent, decay exponentially at a rapid rate. The form

of the longitudinal current is determined as well

as its launching coefficient. The reflection coeffi

cient when such a traveling wave encounters an

end is also found. Expressions for the field scat

tering by the wire and the back scattering are de

rived in addition.

See also the following:

9A76. Cylindrical wave

Korteweg–de Vries equation

solutions to the

158C. PLATES AND SHELLS,

ELASTIC

See the following:

9A969. Comparison of mass-loading and elastic

plate models of an ice field

158D. INFINITE AND SEMI

INFINITE MEDIA, ELASTIC

9A64. Point force excitation of an elastic in

finite circular cylinder with an embedded

spherical cavity. - S Olsson (Div of Mech,

Chalmers Univ of Tech, S-41296 Goteborg,

Sweden). J Acoust Soc Am 93(5) 2479-2488

(May 1993).

In this paper the scattering of elastic waves in

an infinite circular cylinder is considered. The el

astic medium of the cylinder is assumed to be

homogeneous, isotropic, and linear except for a

finite inhomogeneity which, for simplicity, is

chosen as a spherical cavity. By applying the null

field approach (or T matrix method), the scattered

field is obtained as a complicated expression con

taining the transition matrix of the cavity, the re

flection matrix of the cylinder, and the transfor

mation function between the spherical and cylin

drical vector wave functions. Numerical results,

both in the frequency and time domain, are pre

sented.

cal method is applied to some basic problems

with known exact solutions and the comparison

of results is made.

1581. VISCOELASTIC WAVES

158F. SURFACE WAVES

9A65. Surface stress waves in a transversely

isotropic nonhomogeneous elastic semispace

Part I. Equations of motion and equations of a

Rayleigh-type surface wave. - T Roznowski

(Dept of Civil Eng and Operations Res,

Princeton). Arch Mech 44(4) 417-435 (1992).

Plane state of strain of a transversely isotropic

medium, nonhomogeneous in the plane of isot

ropy is considered; equations of motion expressed

in terms of stresses are used to formulate the

problem of propagation of Rayleigh-type surface

stress waves. It is proved that in the case of a

harmonic wave, the problem may be reduced to a

solution of a fourth-order, ordinarily differential

equation, with variable coefficients, for the "stress

function" B(z), ie, the normal stress ozz amplitude

distribution in the semispace along the vertical di

rection; the remaining amplitudes are expressed

in terms of B(z). The form makes it possible to

formulate and discuss several particular cases of

the media under consideration. Equations are

proved to be identical with those derived by J

Ignaczak. The methods of solution of the equa

tions of motion are presented. Conclusions are

drawn.

9A66. Surface stress waves in a transversely

isotropic nonhomogeneous elastic semispace

Part II. Surface stress wave in a "weakly ani

sotropic" semi-space with "small nonhomoge

neity". - T Roznowski (Inst of Fund Tech Res,

Polish Acad of Sci, Warszawa, Poland). Arch

Mech 44(4) 437-451 (1992).

A Rayleigh-type surface stress propagation is

considered in a "weakly anisotropic" semispace

of "small nonhomogeneity"; two elastic shear

moduli are assumed to be monotone functions of

depth, the ratio of Young's moduli is limited to

the first two terms of a power series expansion.

Waves of such type are described by the solution

of an ordinary, fourth order differential equation

with variable coefficients satisfying the corre

sponding boundary conditions. In this particular

case of variability of the elastic moduli, the prob

lem has a closed-form solution expressed in terms

of Bessel functions. Analysis of the dispersion

equation proves the Rayleigh wave speed CR to

depend on the wave-length and on the anisotropy

and nonhomogeneity parameters. Using the as

ymptotic expansions of Bessel functions, the dis

persion equation is written in an approximate

form enabling a numerical analysis of the influ

ence of the anisotropy and nonhomogeneity pa

rameters upon the surface wave speed.

9A68. Theory and computation of the steady

state harmonic response of viscoelastic rubber

parts. - AB Zdunek (Dept of Struct, Aeronaut

Res Inst of Sweden, Box 11021, S-161 11

Bromma, Sweden). Comput Methods Appl Mech

Eng 105(1) 63-92 (May 1993).

A robust FEM for the determination of the

static response due to small harmonic excitations

superposed on a prestrained equilibrium state pre

sented for rubber engineering applications. The

method presented here is based on a Key-type

variational formulation, for a nearly incompress

ible rubber-elasticity problem. The problems

originating from the difficulty in approximating

the accumulated pressure, common to several

popular nonlinear single field strain projection

methods, are removed. Use of a local elementwise

pressure approximation allows elimination of

pressure increments at the element level.

Incrementally, the method is therefore reduced to

a single field but distinct from pure displacement

based formulations. Applications are provided as

a verification of the computer implementation and

as a support of the approach.

158.J. ULTRASONIC

PROPAGATION

See the following:

9A107. Inverse problem of the scattering of ultra

sound by a boundary inhomogeneity in an iso

tropic solid

158K. ANISOTROPIC MEDIA

158H. PLASTIC, VISCOPLASTIC

WAVES

9A67. Riemann solver and a second-order

Godunov method for elastic-plastic wave

propagation in solids. - X Lin and J Ballmann

(Lehr und Forschungsgebiet Mechanik, RWTH

Aachen, Templergraben 64, 5100 Aachen,

Germany). Int J Impact Eng 13(3) 463-478 (Aug

1993).

By use of three basic paths of elastic-plastic

loading, a Riemann solver is established for the

1D combined longitudinal and torsional stress

wave problem of the thin-walled elastic-plastic

tube. Based on this, a second-order Godunov

method is developed for the numerical computa

tion of elastic-plastic waves. Finally, the numeri

9A69. Self-consistent analysis of waves in a

polycrystalline medium. - FJ Sabina (Inst

Investigaciones Matematicas Appl Sistemas, Univ

Nacional Autonoma, Apdo PO Box 20-726

Admon No 20, Delegacion Alvaro Obregon

0.1000 Mexico DF, Mexico) and JR Willis (Sch of

Math Sci, Univ of Bath, Claverton, Down BA2

7AY, UK). Eur J Mech A 12(2) 265-275 (1993).

A simple method, of self-consistent type, which

was developed recently for a matrix-inclusion

composite, is placed in a form suitable for appli

cation to composites in which no clearly-defined

matrix phase exists, as in a polycrystal.

Information on grain size and shape is incorpo

rated through the solution of relevant single scat

tering problems; approximate account of multiple

scattering is taken through "self-consistent"

choice of a background, "effective", medium.

Finding the properties to assign to the effective

medium is facilitated by the adoption of simple

approximate solutions of the single scattering

problems; when the scatterers can be modelled as

spheres, this approximation becomes exact in the

static limit.

158G. REFLECTION,

REFRACTION, DIFFRACTION,

AND SCATTERING

See the following:

9A105. Acoustic and elastic wave scattering from

elliptic cylindrical shells

9A413. High frequency scattering of plane hori

zontal shear waves by a Griffith crack propa

gating along the bimaterial interface

Copies of articles available. Use order form at end.
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Washington Univ, Washington DC 20052) and

KE Jones (David Taylor Res Center, Bethesda

MD 20084). J Acoust Soc Am 93(5) 2788-2797

(May 1993).

The far field (FF) of a radiating or scattering

object immersed in an acoustic fluid can be repre

sented in the frequency domain as a finite dimen

sion linear combination of basis functions, which

are determined by the shape and the size of the

object in acoustic wavelengths. The coefficients

of the linear combination are obtained as the out

puts of a bank of spatial filters whose inputs are

either the boundary normal velocity - or the ra

diation problem - or the boundary pressure and

the normal velocity – for the scattering problem -

measured by a dense set of sensors. The filter

outputs provide the information sufficient to re

construct the radiated or scattered far field, ampli

tude and phase. The structure of the filters is iden

tified from the singular valve decomposition of

the appropriate radiation or scattering operator,

mapping the boundary normal velocity, or the

combination of normal velocity and pressure, into

the FF. Also, from the filter outputs, the effi

ciently radiating component of the boundary field

can be extracted. For example the boundary total

normal velocity may have a localized high peak,

which however may be completely or almost

completely absent in the radiating component.

Selected results of an extensive simulation are

presented illustrating the accuracy of the recon

struction of the FF from the spatial filtering of the

boundary field.

III. AUTOMATIC

CONTROL

200. Systems theory

and design

9A124. Sensitivity analysis of multiple eigen

values. - AP Seyranian (Inst of Problems in

Mech, Acad of Sci, Moscow, Russia). Mech Struct

Machines 21(2)261-284 (1993).

This paper is devoted to sensitivity analysis of

eigenvalues of nonsymmetric operators that de

pend on parameters. Special attention is given to

the case of multiple eigenvalues. Due to the non

differentiability (in the common sense) of multi

ple roots, directional derivatives of eigenvalues

and eigenvectors in parametric space are ob

tained. Sensitivity analysis is based on the pertur

bation method of eigenvalues and eigenvectors.

The generalized eigenvalue problem and vibra

tional systems are also investigated. The results

obtained are important for qualitative and quanti

tative study of mechanical systems subjected to

static and dynamic instability phenomena.

9A125. Space structures and the crossing

number of their graphs. - A Kaveh (Inst

Allgemeine Mech, Tech Univ, Vienna, Austria).

Mech Struct Machines 21(2) 151-166 (1993).

In this paper, theorems are proved that relate

the degree of statical indeterminancy of space

structures to their planar topological properties.

An algorithm is developed for suboptimal layout

of an arbitrary space structure in a plane, and a

lower bound is established to the crossing number

of its graph model.

-

202. Control systems

9A126. Numeri

mal performan

1 of H” opti

g (Appl and

Comput Math, Princeton) and JM Orszag (Dept of

Economics, Univ of Michigan, Ann Arbor MI

48109).J.Sci Comput 7(4) 289-311 (Dec 1992).

We present new algorithms for computing the

H” optimal performance for a class of single-in

put and single-output infinite-dimensional sys

tems. The algorithms here only require use of one

or two fast Fourier transforms and Cholesky de

compositions; hence the algorithms are particu

larly simple and easy to implement. Numerical

examples show that the algorithms are stable and

efficient and converge rapidly. The method has

wide applications including to the H" optimal

control of distributed parameter systems. We il

lustrate the technique with applications to some

delay problems and a partial differential equation

model. The algorithms we present are also an at

tractive approach to the solution of high-order fi

nite-dimensional models for which use of state

space methods would present computational dif

ficulties.

See also the following:

9A978. Optimization of the structure and move

ment of the legs of animals

|

204. Systems and

control applications

9A127. New tool for solving industrial con

tinuous optimization problems. - R Ouellet and

RT Bui (Dept Sci Appl; Univ Quebec, Chicoutimi,

PQ, Canada). Appl Math Model 17(6) 298-310

(Jun 1993).

A numerical method is proposed to tackle the

continuous optimal control problems involving

industrial thermal processes. The latter are

characterized by their complex mathematical

models. Formulated through various calculus us

ing the Pontryagin maximum principle, the result

ing two-point boundary value problem is discre

tized with a Euler central differentiation scheme.

Solution is obtained by the Newton-Raphson

method, and Richardson extrapolation is used to

increase accuracy and refine the grid automati

cally as needed. The Jacobian matrix is evaluated

numerically. This new method promises to open

new possibilities for applications in an important

class of engineering problems.

9A128. Engineering functional analysis. Part

I. - MR von Spakovsky. (Dept Mec, Lab

Energetique Indust, Ecole Polytech Fed,

Lausanne, Switzerland) and RB Evans (Woodruff

Sch of Mech Eng, Georgia Tech). J Energy

Resources Tech 115(2) 86-92 (Jun 1993).

In this paper, a new formalism called

Engineering Functional Analysis is presented.

This formalism results in higher degrees of decen

tralization for engineering systems optimization

than is otherwise possible. By decentralization, it

is meant that the improvement or optimization of

individual components by themselves (ie, compo

nents which are isolated economically from the

rest of the overall system), serves to improve or

optimize the system as a whole (with some degree

of error, which defines the degree of decentraliza

tion).

9A129. Engineering functional analysis. Part

II. - RB Evans (Woodruff Sch of Mech Eng,

Georgia Tech) and MR von Spakovsky (Dept

Mec, Lab Energetique Indust, Ecole Polytech

Fed, Lausanne, Switzerland). J Energy Resources

Tech 115(2) 93-99 (Jun 1993).

In this paper, a new formalism called

Engineering Functional Analysis is presented.

This formalism results in higher degrees of decen

tralization for engineering system optimization

than is otherwise possible. By decentralization, it

is meant that the improvement or optimization of

individual components by themselves (ie, compo

nents which are isolated economically from the

rest of the overall system) serves to improve or

optimize the system as a whole (with some degree

of error, which defines the degree of decentraliza

tion). Higher degrees of decentralization are im

portant in that they provide a more stable eco

nomic environment for individual components,

thus permitting more rapid synthesis and greater

system improvement than could otherwise be ob

tained.

206. Robotics

206B. END EFFECTORS

9A130. Computing two-finger force-closure

grasps of curved 2D objects. - J Ponce, D Stam

(Beckman Inst, Dept of Comput Sci, Univ of

Illinois, Urbana IL 61801), B Faverjon (ALEPH

Tech, Batiment Heliopolis, 38400 Saint Martin

d'Heres, France). Int J Robotics Res 12(3) 263

273 (Jun 1993).

This article presents an algorithm for comput

ing force-closure grasps of piecewise-smooth,

curved, 2D objects. We consider the case of a

gripper equipped with two hard fingers and as

sume point contact with friction. Object bounda

ries are represented by collections of polynomial

parametric curves, and force-closure grasps are

characterized by systems of polynomial con

straints in the parameters of these curves. The al

gorithm has been implemented on a distributed

architecture, and experiments using a PUMA ro

bot equipped with pneumatic two-finger gripper

and a vision system are presented.

9A131. Family of Stewart platforms with op

timal dexterity. - KH Pittens and RP

Podhorodeski (Adaptive Robotic Telesyst Lab

(ARTLAB), Dept of Mech Eng, Univ of Victoria,

Victoria, BC, V8W 3PG, Canada). J Robotic Syst

10(4) 463-479 (Jun 1993).

Stewart platform configurations (architectures

and poses) optimizing local dexterity are investi

gated. The condition number of the Jacobian ma

trix is used to quantify the dexterity of the ma

nipulator. For a platform-centered Jacobian refer

ence location and a given characteristic length for

scaling purposes, a two-parameter family of op

timal configurations is shown to exist. Two suit

able architectural parameters defining the family

are identified and properties of the optimal con

figurations are discussed. The optimization results

are shown to be easily extended for other

Jacobian reference locations and for other singu

lar value-based local dexterity measures.

206E. KINEMATICS, DYNAMICS

9A132. Dynamic analysis and control of a

Stewart platform manipulator. - G Lebret, K

Liu, FL Lewis (Autom and Robotics Res Inst,

Univ of Texas, 7300Jack Newell Blvd, S Ft Worth

TX 76118). J Robotic Syst 10(5) 629-655 (Jul

1993).

In this article, we study the dynamic equations

of the Stewart platform manipulator. Our deriva

tion is closed to that of Nguyen and Pooran be

cause the dynamics are not explicitly given but

are in a step-by-step algorithm. However, we give

some insight into the structure and properties of

these equations. We obtain compact expressions

of some coefficients. These expressions should be

interesting from a control point of view. A stiff

ness control scheme is designed for milling appli

cation. Some path-planning notions are discussed

that take into account singularity positions and

the required task. The objective is to make the

milling station into a semiautonomous robotic

Copies of articles available. Use order form at end.
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tool needing some operator interaction but having

some intelligence of its own. It should interface

naturally with part delivery and other higher level

tasks.

9A133. Efficient method for inverse dynam

ics of manipulators based on the virtual work

principle. - Chang-De Zhang and Shin-Min Song

(Dept of Mech Eng, Univ of Illinois, PO Box

43.48, Chicago IL 60680). J Robotic Syst 10(5)

605-627 (Jul 1993).

The computational efficiency of inverse dy

namics of a manipulator is important to the real

time control of the system. For serial manipula

tors, the recursive Newton-Euler method has been

proven to be the most efficient. However, for

more general manipulators, such as serial

manipulators with closed kinematic loops or par

allel manipulators, it must be modified accord

ingly and the resultant computational efficiency is

degraded. This article presents a computationally

efficient scheme based on the virtual work princi

ple for inverse dynamics of general manipulators.

The present method uses a forward recursive

scheme to compute velocities and accelerations,

the Newton-Euler equation to calculate inertia

forces-torque, and the virtual work principal to

formulate the dynamic equations of motion. This

method is equally effective for serial and parallel

manipulators. For serial manipulators, its compu

tational efficiency is comparable to the recursive

Newton-Euler method. For parallel manipulators

or serial manipulators with closed kinematic

loops, it is more efficient than the existing meth

ods. As an example, the computations of inverse

dynamics (including inverse kinematics) of a

general Stewart platform require only 842 multi

plications, 511 additions, and 12 square roots.

9A134. Exact methods for determining the

kinematics of a Stewart platform using addi

tional displacement sensors. - KC Cheok, JL

Overholt, RR Beck (Syst Simulation and Tech

Div, US Army Tank-Automotive Command,

Warren MI 48397-5000). J Robotic Syst 10(5)

689-707 (Jul 1993).

This article describes two new direct and exact

methods for computing the translational and rota

tional displacements of an Stewart platform (SP)

by employing extra translational displacement

sensors (TDSs), in addition to the existing TDSs

for the six links of the SP. The key for the ap

proach lies in knowing where to employ the TDSs

for determining positional vectors of strategic

platform locations. By taking advantage of a tet

rahedral geometry, closed form solutions for the

forward kinematic transformation can then be de

rived and directly evaluated. The new methods

produce accurate solutions with only minimal

computation necessary. The advantages and dis

advantages of the proposed methods are dis

cussed and compared to an existing method. The

exact methods are being investigated for an on

line implementation of a nonlinear adaptive con

trol system and redundancy scheme for a 25-ton

Stewart platform based Crew Station-Turret

Motion Base Simulator at the US Army Tank

Automotive Command.

9A135. Geometric analysis of antagonistic

stiffness in redundantly actuated parallel

mechanisms. - Byung-Ju Yi (Dept ofMech Eng,

Korea IT and Educ, 37-1 San, Gajeon Ri,

Byungcheon Myun Cheonan Kun Chungnam,

Korea) and RA Freeman (Dept of Mech Eng,

Univ of Texas, Austin TX 78712). J Robotic Syst

10(5) 581-603 (Jul 1993).

Parallel closed-chain mechanical architectures

allow for redundant actuation in the force domain.

Antagonistic actuation, afforded by this input

force redundancy, in conjunction with nonlinear

linkage geometry creates an effective stiffness di

rectly analogous to that of a wound metal spring.

A general stiffness model for such systems is de

rived and it is shown that the constitutive relation

ship between actuation effort and active stiffness

is the second-order kinematic constraint set relat

ing the actuation sites. The extent of stiffness

modulation possible is then evaluated and neces

sary conditions for full stiffness modulation are

obtained. Configuration-dependent, second-order,

geometric singularities affecting stiffness genera

tion are illustrated in terms of a 3-dof parallel

spherical mechanism example and discussed in

relation to their more commonly investigated-first

order counterparts that affect force and velocity

transmission. Finally, a load distribution method

ology for simultaneous motion and stiffness gen

eration is introduced, and it is shown that with

hyperredundant actuation the internal load state

of the mechanism can be controlled independent

of its motion and effective stiffness.

9A136. Inverse kinematics and inverse dy

namics for control of a biped walking machine.

- Ching-Long Shih (Dept of Elec Eng, Natl

Taiwan IT, Taipei, Taiwan, ROC), WA Gruver

(Sch of Eng Sci, Simon Fraser Univ, Burnaby,

BC, V5A 1S6, Canada), Tsu-Tian Lee (Dept of

Elec Eng, Natl Taiwan IT, Taipei, Taiwan, ROC).

J Robotic Syst 10(4) 530-555 (Jun 1993).

Analytical techniques are presented for the mo

tion planning and control of a 12 dof biped walk

ing machine. From the Newton-Euler equations,

joint torques are obtained in terms of joint trajec

tories, and the inverse dynamics are developed

for both the single-support and double-support

cases. Physical admissibility of the biped trajec

tory is characterized in terms of the equivalent

force-moment and zero-moment point. A simula

tion example illustrates the application of the

techniques to plan the forward-walking trajectory

of the biped robot. The implementation of a

prototype mechanism and controller is also de

scribed.

9A137. Kinematic decoupling in mechanisms

and application to a passive hand controller de

sign. - V Hayward, C Nemri, Xianze Chen, B

Duplat (Res Center for Intelligent Machines,

McGill Univ, 3480 University St, Montreal, PQ

H3A 2A7, Canada). J Robotic Syst 10(5) 767-790

(Jul 1993).

Observations regarding the kinematics of

mechanisms are applied to the synthesis of a pas

sive hand controller. It is argued that stiffness

(and damping) properties are central to the effec

tiveness of such devices and in particular that the

simplicity of these properties is crucial. What

simple means is analyzed and it is shown that

only certain types of manipulators can appropri

ately be used. In effect, decoupling is shown to be

architecture and configuration dependent. The

properties of parallel mechanisms are reviewed

and found appropriate for restricted-workspace

hand controllers. A particular kinematic design is

then derived and a practical implementation de

scribed.

9A138. Kinematic design of serial link ma

nipulators from task specifications. - CJJ

Paredis and PK Khosla (Dept of Elec and Comput

Eng, Robotics Inst, Carngie Mellon Univ,

Pittsburgh PA 15213-3890). Int J Robotics Res

12(3)274-287 (Jun 1993).

The Reconfigurable Modular Manipulator

System (RMMS) consists of modular links and

joints that can be assembled into many manipula

tor configurations. This capability allows the

RMMS to be rapidly reconfigured to custom tailor

it to specific tasks. An important issue related to

the RMMS is the determination of the optimal

manipulator configuration for a specific task. This

article addresses the problem of mapping kine

matic task specifications into a kinematic manipu

lator configuration. For the design of 2-dof planar

manipulators, an analytical solution is derived.

The numerical procedure determines the Denavit

Hartenberg parameters of a nonredundant ma

nipulator with joint limits that can reach a set of

specified positions-orientations in an environment

that may include parallelepiped-shaped obstacles.

9A139. Kinematics and control of a fully

parallel force-reflecting hand controller for

manipulator teleoperation. - MD Bryfogle (Sci

Appl Intl, McLean VA 22102), CC Nguyen, SS

Antrazi, PC Chiou (Robotics and Control Lab,

Dept Elec Eng, Catholic Univ of Am, Washington

DC 20064). J Robotic Syst 10(5) 745-766 (Jul

1993).

Force feedback can enhance the efficiency of a

teleoperation system by providing the operator

with a sense of feel forces and torques arising

from the interaction of the slave manipulator with

the remote environment. This article addresses the

kinematic analysis and control of a Parallel Force

Reflecting Hand Controller (PFORHC) whose de

sign and implementation are based on a fully par

allel mechanism. Kinematic analysis on the

PFORHC is performed and results in a closed

form solution for the inverse kinematics. The

forward kinematics is solved by Newton

Raphson's method. A fixed-gain PD control

scheme is developed for force feedback control.

Experiments are conducted to study the perform

ance of the force-reflecting capability of the

PFORHC. Experimental results show that the

force control scheme utilizing a handgrip force

sensor provides smaller steady-state errors as

compared to the case utilizing no handgrip force

sensor.

9A140. Kinematics of an infinitely flexible

robot arm. - PJ Choi, JA Rice, JC Cesarone

(Dept of Mech Eng, Univ of Mech Eng, Chicago

IL 60680). J Robotic Syst 10(4) 407-425 (Jun

1993).

This article describes a research effort to de

velop a command and control algorithm for a

proposed flexible arm. This robot arm, unlike

previous arms, is assumed to be extremely flex

ible, possessing a large number of dof and func

tioning as a "tentacle". Algorithms for command

ing smooth motion of this arm in the presence of

obstacles are developed, including both forward

and inverse kinematics. This approach is based on

the use of Catmull-Rom splines and local radius

of curvature commands to discrete actuators

along the arm's length. Several example trajecto

ries are presented and explained.

9A141. Periodic motions of a hopping robot

with vertical and forward motion. - RT

M'Closkey and JW Burdick (Dept of Mech Eng,

California IT, Pasadena CA 91125). Int J

Robotics Res 12(3) 197-218 (Jun 1993).

This article analyzes the global dynamic behav

ior of simplified hopping robot models that are

analogous to Raibert's experimental machines.

We first review a 1D vertical hopping model that

captures both the vertical hopping dynamics and

nonlinear control algorithm. Second, we present a

more complicated 2D model that includes both

forward and vertical hopping dynamics and a foot

placement algorithm. These systems are analyzed

using a Poincare return map. The approximate re

turn map is shown to closely predict the behavior

of the exact map for small forward running ve

locities. In addition, the approximate return map

can be used to quantitatively explore the coupling

of vertical and lateral dynamics and to determine

the effect of the foot placement algorithm on dy

namical behavior.

9A142. Synthesis and analysis of a new class

of six-dof parallel minimanipulators. - Lung

Wen Tsai (Mech Eng Dept and Syst Res Center,

Univ of Maryland, College Park MD 20742) and

F Tahmasebi (Robotics Branch, NASA, Goddard

Space Flight Center, Greenbelt MD 20771). J

Robotic Syst 10(5) 561-580 (Jul 1993).

A new class of 6-dof parallel minimanipulators

is introduced. The minimanipulators are designed

to provide high resolution and high stiffness for

fine position and force control in a hybrid serial

parallel manipulator system. 2-dof planar linkages

and inextensible limbs are used to improve posi

tional resolution and stiffness of the minimanipu
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are solved with two variants of the Godunov

method: one based on linear, the other on piece

wise parabolic interpolation (PPM). The proposed

methods agree well with the analytical solution

(where available), and perform significantly bet

ter than the other compared methods for all exam

ined cases.

9A582. Kinematics of the moving hydraulic

jump. - JP Martin Vide, J Dolz, J Del Estal (Dept

of Hydraul Eng, Civil Eng Sch, Tech Univ of

Catalunya, Barcelona, Spain). J Hydraul Res

31(2) 171-186 (1993).

The moving hydraulic jump, considered as an

example of rapidly varied unsteady flow, is theo

retically revised. Experimental work is conducted

to study the kinematic characteristics of the jump

propagation. The position, velocity and conjugate

depths of the jump during its propagation either

upstream or downstream are investigated and

some semi-empirical equations are derived. From

this work, some differences are observed between

the moving hydraulic jump propagation upstream

and downstream. A phenomenon called extinc

tion of the moving hydraulic jump is reported in

the latter case. This phenomenon is explained on

the grounds of previous theoretical analysis.

9T583. Mathematical model of unsteady

transport and its experimental verification in a

compound open channel flows. - S Djordjevic

(Inst of Hydraul Eng, Fac of Civil Eng, Univ of

Belgrade, Belgrade, Yugoslavia). J Hydraul Res

31(2) 229-248 (1993).

9A584. Use of a neural net for the study of a

flood wave propagation in an open channel. -

D Dartus, JM Courivaud, L Dedecker (Inst Mec

des Fluides de Toulouse, Ave du Professeur

Camille Soula, France). J Hydraul Res 31(2):161

170 (1993).

A neural net was used to study the propagation

of a flood wave in an open channel. The aim was

to show that this kind of tool is accurate enough

to be used in real time management of sewers sys

tems. Ability of such a neural network to answer

correctly was highlightened with an extensive

learning base and with a reduced one.

352E. UNSTEADY FLOW

See the following:

9T583. Mathematical model of unsteady transport

and its experimental verification in a compound

open channel flows

352G. OBSTRUCTIONS

See the following:

9T579. Comparison of numerical model experi

ments of free surface flow over topography

with flume and field observations

352H. ORIFICES, NOZZLES,

VALVES, AND GATES

See the following:

9T585. Hyraulic ram analysis

352K. STILLING BASINS AND

OTHER ENERGY DISSIPATORS

9T585. Hyraulic ram analysis. - C Verspuy

and AS Tijsseling (Dept of Civil Eng, Univ of

Tech, Delft, Netherlands). J Hydraul Res 31(2)

267-278 (1993).

352L. CAVITATION

9A586. Perturbation solution to 3D nonlinear

supercavitating flow problems. - Quyuan Ye,

Yousheng He, Shiquan Zhu (Shanghai Jiao Tong

Univ, Shanghai 200030, China). Acta Mech

Sinica 9(1) 13-21 (1993).

A 3D nonlinear problem of supercavitating

flow past an axisymmetric body at a small angle

of attack is investigated by means of the perturba

tion method and the Fourier-cosine-expansion

method. The first three order perturbation equa

tions are derived in detail and solved numerically

using the boundary integral equation method and

iterative techniques. Computational results of the

hydrodynamic characteristics and cavity shapes

of each order are presented for nonaxisymmetric

flow past cones with various apex-angles at dif

ferent cavitation numbers. The numerical results

are found to be in good agreement with experi

mental data.

352N. WATERWAYS

See the following:

9A581. Dambreak flood waves computed by

modified Godunov method

9A584. Use of a neural net for the study of a

flood wave propagation in an open channel

352P. COASTS, BEACHES,

HARBORS

See the following:

9T580. Dam-break solutions for a partial breach

352R. ICE TRANSPORT

9A587. Static anaysis of floating ice block

stability. - BA Coutermarsh and WR McGilvary

(USA Cold Regions Res and Eng Lab, Hanover

NH 03755). J Hydraul Res 31(2) 147-160 (1993).

A laboratory study was performed to measure

the pressures caused by fluid acceleration beneath

a floating parallel-piped block. Dynamic fluid

pressure was measured at discrete points beneath

the block for various fluid velocities, block angles

of attack and block thickness-to-depth ratios.

Some of these pressures tended to stabilize the

block while others tended to underturn it. The

measured pressures were used to calculate block

underturning moments and a hydrostatic analysis

was used to calculate a block righting moment.

From this, a densimetric Froude underturning cri

teria is presented.

14260). Int J Numer Methods Eng 36(11) 1789

1804 (15 Jun 1993).

An explicit time-domain transmitting boundary

for the analysis of dam-reservoir interactions is

presented. This transmitting boundary is a semi

analytical solution of the governing wave equa

tion of the far field of the reservoir. By using this

transmitting boundary, the radiation condition

and water compressibility can readily be incorpo

rated in the time-domain analysis of dam-reser

voir systems. Numerical results have excellent

agreement with the available analytical solution.

Results also show that the proposed explicit

transmitting boundary is more efficient computa

tionally than the implicit transmitting boundary

presented by Tsai and Lee.

-

354. Incompressible

flow

354A. GENERAL THEORY

9A590. Laminar flow in an annulus between

two concentric rotating porous spheres. - SD

Gulwadi, AF Elkouh, T-C Jan (Dept ofMech and

Indust Eng, Marquette Univ, Milwaukee WI

53233). Acta Mech97(3-4) 215-228 (1993).

An analysis is presented for the steady laminar

flow of an incompressible Newtonian fluid in an

annulus between two concentric porous spheres

with injection-suction at their boundaries. The in

ner sphere rotates with constant angular velocity

about its own fixed axis, while the outer sphere is

stationary. A solution of the Navier-Stokes equa

tions is obtained by employing a regular perturba

tion technique. The solution obtained is in the

form of a power series expansion in terms of the

rotational Reynolds number Re, and an injection

suction Reynolds number Rew, and is valid for

small values of these parameters. Results for the

velocity distributions, streamlines, and viscous

torques for various values of the flow parameters

Re, Rew and radius ratios M. are presented.

Viscous torques at the inner and outer spheres are

compared with those obtained from the numerical

solution of the Navier-Stokes equations, in order

to find the range of Re and Rew for which this so

lution is accurate.

354B, IRROTATIONAL Flow

See the following:

9T593. Nonlinear transient free-surface flow and

dip formation due to a point sink

352Y. COMPUTATIONAL

TECHNIOUES

354C. ROTATIONAL

(NONVISCOUS) FLOW,

VORTICES

9A588. Efficient numerical method for sub

critical and supercritical open channel flows. -

P Glaister (Dept of Math, Univ of Reading, PO

Box 220, Whiteknights, Reading RG6 2AX, UK).

Appl Numer Math 11(6) 497-508 (Apr 1993).

An efficient numerical method is developed for

the 1D open channel flow equations. The scheme

incorporates upwind differencing applied to a

numerical characteristic decomposition, and pro

duces satisfactory results to a problem of flow in

a river whose geometry can induce a region of

supercritical flow.

9A589. Explicit time-domain transmitting

boundary for dam-reservoir interaction analy

sis. - R Yang, CS Tsai, GC Lee (Dept of Civil

Eng, Sch of Eng and ApplSci, SUNY, Buffalo NY

9A591. Vortex drift I. Dynamic interpreta

tion. - N Rott and B Cantwell (Dept ofAeronaut

and Astronaut, Stanford). Phys Fluids A 5(5)

1443-1450 (Jun 1993).

Vortical flow, restricted to a finite domain (in

3D) in an unbounded incompressible viscous

fluid that is at rest at infinity, is investigated by

the consideration of the dynamics in the potential

flow region that surrounds the vortical domain.

The evolution equations are considered for a flow

that is given at an initial time t. The potential

change in the far field is connected to the pres

sure, which in turn is expressed as the solution of

a Poisson equation with sources distributed over

the whole flow field. The leading term of the

pressure at infinity is a quadrupole, which is

caused by a drifting dipole field with a constant
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Taiwan, ROC). J Sci Comput 7(4) 339-357 (Dec

1992).

The local implicit scheme of Reddy et al is ex

tended to the minmod and third-order upwind

TVD schemes. Numerical tests show that the pro

posed scheme is stable. In addition, it is found

that if the flow field has a dominant direction, set

ting the iteration sweep to align with this direction

can significantly improve the converging speed.

9A612. Chebyshev collocation method and

multi-domain decomposition for Navier-Stokes

equations in complex curved geometries. - CR

Schneidesch and MO Deville (Unite Mec Appl.

Univ Catholique, Louvain-La-Neuve, Belgium). J

Comput Phys 106(2) 234-257 (Jun 1993).

A general multidomain decomposition is pro

posed for the numerical solution of the 2D in

compressible stationary Navier-Stokes equations.

The solution technique consists in a Chebyshev

orthogonal collocation method preconditioned by

a standard Galerkin FE technique. The precondi

tioned system is then solved through a

Richardson procedure. The domain of interest is

decomposed into quadrilaterals, curved when

needed. A Gordon transfinite interpolation per

forms the curvilinear grid generation of the ob

tained simply-connected planar subdomains. The

study of model Stokes problems demonstrates

that the current method still behaves spectrally in

distorted geometries. For curvilinear distortion, a

loss of several orders of magnitude is observed in

the solution accuracy even when the distortion is

very limited.

9A613. Multigrid technique for the com

pressible Euler and Navier-Stokes equations. -

AE Kanarachos and IP Vournas (Dept of Mech

Eng, Natl Tech Univ, PO Box 64078, 15710

Athens, Greece). Eng Comput 10(2) 123-137

(Apr 1993).

An optimized multigrid method (NSFLEX-MG)

for the NSFLEX-code (Navier-Stokes solver us

ing characteristic flux extrapolation) of MBB

(Messerschmitt Bolkow Blohm GmbH) is de

scribed. The method is based on a correction

scheme and implicit relaxation procedures and is

applied to 2D test cases. The principal feature of

the flow solver is a Godunov-type averaging pro

cedure based on the eigenvalues analysis of the

Euler equations by means of the inviscid fluxes

are evaluated at the finite volume faces. Viscous

fluxes are centrally differenced at each cell face.

9A614. Semi-implicit spectral method for the

anelastic equations. - SR Fulton (Dept of Math

and Comput Sci, Clarkson Univ, Potsdam NY

13699-5815). J Comput Phys 106(2) 299-305

(Jun 1993).

This paper describes the efficient and accurate

solution of the 2D anelastic equations by a

Fourier-Chebyshev spectral method. A fourth-or

der Runge-Kutta method is used for the time inte

gration, with the diffusion terms treated implicitly

and all other terms (including the pressure gradi

ent) treated explicitly. The model is free from

aliasing and converges quickly once the solution

is resolved. Numerical results are given for non

linear flow generated by an atmospheric density

Current.

9A615. Solution of the compressible Navier

Stokes equations using improved flux vector

splitting methods. - D Drikakis (Dept of Fluid

Mech, Univ of Erlangen-Nurnberg, Cauerstr 4 D

8520, Germany) and S Tsangaris (Dept of Mech

Eng, Natl Tech Univ, Athens, Greece). Appl Math

Model 17(6).282-297 (Jun 1993).

In this paper the accuracy of two flux vector

splitting methods using upwind schemes up to the

fourth order for the solution of the unsteady com

pressible Navier-Stokes equations is improved.

Two of the most well-known methods for the so

lution of the inviscid gas dynamic equations, the

flux vector splitting method by Steger an

Warming and the flux vector splitting method

van Leer are presented for the first time in combi

nation with a five-point upwind scheme.

Inaccuracies of flux vector splitting methods,

which have been presented in the recent literature,

can be eliminated using the present schemes in

conjunction with proposed corrections for the

flux splittings. The present techniques can be

used in compressible viscous flows, predicting

with accuracy viscous phenomena such as separa

tion and shock boundary layer interaction.

9A616. Three BEM schemes for the calculat

ing of subsonic compressible plane cascade

flow. - AX Liao (2nd Dept of Mech Eng, SW

Jiaotong Univ, Chengdu, Sichuan 610031,

Peoples Rep of China) and CX Lin (Dept of

Thermal Eng, Chongqing Univ, Chongqing,

Sichuan 6300.44, Peoples Rep of China). Eng

Anal Boundary Elements 11(1) 25-32 (1993).

This paper reports research work on the calcu

lation of slightly perturbed 2D subsonic com

pressible potential flow through a cascade by di

rect BEMs. The work has been performed in three

schemes: 1) orthotropic medium method; 2)

equivalent cascade method; 3) compressibility

correction method. Using the above three

schemes, six slightly perturbed cases of 2D sub

sonic compressible potential flow through a cas

cade composed of K-7 compressor-blades has

been calculated. The results obtained according to

these three schemes are compared with each

other, and with the results of experiments per

formed by the authors. Satisfactory coincidence

has been obtained.

9A617. Use of a rotated Riemann solver for

the 2D Euler equations. - DW Levy, KG Powell,

Bram van Leer (Dept of Aerospace Eng, Univ of

Michigan, Ann Arbor MI 48109). J Comput Phys

106(2) 201-214 (Jun 1993).

A scheme for the 2D Euler equations that uses

flow parameters to determine the direction for

upwind-differencing is described. The approach

respects the multidimensional nature of the equa

tions and reduces the grid-dependence of conven

tional schemes. Several angles are tested as the

dominant upwinding direction, including the local

flow and velocity-magnitude-gradient angles.

Roe's approximate Riemann solver is used to cal

culate fluxes in the upwind direction, as well as

for the flux components normal to the upwinding

directions. Solutions of the Euler equations are

calculated for a variety of test cases. Substantial

improvement in the resolution of shock and shear

waves is realized.

358. Rarefied flow

9T618. Kinetic theory analysis of steady

evaporating flows from a spherical condensed

phase into a vacuum. - Yoshio Sone and Hiroshi

Sugimoto (Dept of Aeronaut Eng, Kyoto Univ,

Kyoto 606-01, Japan). Phys Fluids A 5(5) 1491

1511 (Jun 1993).

9A619. Monte Carlo code describing the neu

tral gas transport in pipe configurations with

attentuating media. - A Nicolai (Inst

Plasmaphys Forschungszentrum Julich GmbH,

Assoziation, EURATOM-KFA, Postfach 1913, D

5170 Julich, Germany). J Comput Phys 106(2)

377-390 (Jun 1993).

A 3D Monte Carlo description of the neutral

gas transport in pipe configurations with almost

arbitrary torsion and curvature is presented. To

avoid quadratic or even transcendental expression

describing the pipe surfaces confining and guid

ing the neutral gas, a decomposition into plane

geometrical elements is chosen. Furthermore, a

ce of the pseudo collision, "pseudo

of the standard tracklength es

ced. The pseudo collision esti

mator or - mainly for comparison - the pseudo

tracklength estimator are used in the plasma do

main. This estimator combination allows us to

treat the throat plasma similarly to a homogene

ous absorbing medium (speeding up the geomet

rical and atomic physics related calculations) and

to use the standard tracklength estimator if the

tracklength is to be calculated during particle trac

ing anyway. To reduce the variances, important

sampling is applied leading to an exponential 1D

importance function.

See also the following:

9A.83. Shock wave reflection close to the leading

edge of a wedge

360. Multiphase flows

9A620. Experimental investigations on two

phase flow past a sphere using digital particle

image-velocimetry. - M Schmidt and F Loffler

(Inst Mech Vefahrenstech und Mech, Univ

Karlsruhe (TH), D-7500 Karlsruhe, Germany).

Exp Fluids 14(5)296-304 (Apr 1993).

Digital Particle-Image-Velocimetry was applied

to investigate particle trajectories in a gas flow

past a sphere. The particle displacement was de

termined by autocorrelation analysis of image

sections. To enhance the signal-noise ratio a syn

thetic image with idealized particle pictures was

generated from the real image. The autocorrela

tion function was calculated using the Fast

Hartley Transformation. The desired secondary

maximum of this function was detected by an al

gorithm with subpixel resolution. A data valida

tion step testing the plausibility of the velocity

vectors completes the image analysis. Particle tra

jectories are traced with help of the particles' ve

locity vectors. The particle deposition on a sphere

can be deduced from the course of these trajecto

rics.

9A621. Particle force and heat transfer in a

dusty gas sustaining an acoustic wave. - S

Temkin (Dept of Mech and Aerospace Eng,

Rutgers Univ, Piscataway NJ 08855-0909). Phys

Fluids A5(5) 1296-1304 (Jun 1993).

This work considers the effects of finite mass

concentrations on the force and the heat transfer

rate for a small particle in a dusty gas. The par

ticular flow studied is a plane, monochromatic

sound wave, where the particle velocity and tem

perature slips are very small. Assuming that the

fluid's temperature and velocity near a test parti

cle are changed by amounts of which depend on

the mass loading and on the respective slips, it is

shown that the heat transfer rate to a sphere in the

suspension changes from the pure condition limit

Qk0), applicable to an isolated sphere to 3-(k01 +

Cm (), where Cm is the mass loading, is

the specific heat of the particle material, and cre is

the constant pressure specific heat of the gas.

Another but less significant effect is to change the

corresponding viscous force from the Stokes val

ues, Fv0, to Fvoym/Yf, where Ym and Yf are the spe

cific heat ratios for the suspension and for the

dust-free gas, respectively.

9A622. Numerical solutions for the deforma

tion of a bubble rising in dilute polymeric flu

ids. - DS Noh, IS Kang (Dept of Chem Eng,

Pohang Inst of Sci and Tech, PO Box 125,

Pohang 790-600, Korea), L. Gary Leal (Dept of

Chem and Nucl Eng, UC, Santa Barbara CA

93106). Phys Fluids A 5(5) 1315-1332 (Jun

1993).

The steady-state deformation of a bubble rising

in polymeric liquid has been investigated using a

general numerical technique for the solution of

free-boundary problems in non-Newtonian fluid

mechanics. The technique is based on a finite-dif

ference solution of the governing equations on an

available. Use order form at end.
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Thermal buoyancy and surface tension driven

convection is numerically investigated in a sys

tem with two immiscible fluids. The geometry in

vestigated has an open cavity configuration with

the lighter fluid situated on top of the heavier

fluid, forming a stable layered system. The upper

fluid meniscus and the interface are assumed to

be flat and undeformable in the calculations. The

governing equations and boundary-interface co

nditions are solved by a control volume-based fi

nite difference scheme for two pairs of immisci

ble fluids; the water-hexadecane system and a so

called generic system. The steady-state calcula

tions predict dramatically different flows when in

terfacial tension effects are included or excluded

from the system model. These differences are par

ticularly appreciable in surface tension-dominated

flows, that are typical of microgravity situations.

Complex flow patterns, with induced secondary

flows, are noticed in both the fluids.

9A712. Transient cooling of petroleum by

natural convection in cylindrical storage tanks

I. Development and testing of a numerical

simulator. - MA Cotter (Automotive Parts

Manufs' Assoc, 195 W Mall, Suite 516, Toronto

M9C 5K1, ON, Canada) and ME Charles (Dept of

Chem Eng and Appl Chem, Univ of Toronto,

Toronto M5S 1A4, ON, Canada). Int J Heat Mass

Transfer 36(8) 2165-2174 (May 1993).

The transient natural convection of a warm

crude oil contained in a large vertical cylindrical

storage tank loaded in a cold environment is in

vestigated. The governing mass, momentum and

energy conservation equations, utilizing the

Boussinesq approximation for density, are solved

numerically in stream function-vorticity form by

employing a control volume finite difference

method. A temperature-dependent apparent vis

cosity is employed to model the change in non

Newtonian fluid rheology that occurs with cool

ing. Good agreement is found between experi

mental and simulated temperature vs time cooling

profiles for discrete locations in the tank.

9A713. Transient cooling of petroleum by

natural convection in cylindrical storage tanks

II. Effect of heat transfer coefficient, aspect ratio

and temperature-dependent viscosity. - MA

Cotter (Automotive Parts Manufs' Assoc, 195 W

Mall, Suite 516, Toronto M9C 5K1, ON, Canada)

and ME Charles (Dept of Chem Eng and Appl

Chem, Univ of Toronto, Toronto M5S 1A4, ON,

Canada). Int J Heat Mass Transfer 36(8) 2175

2182 (May 1993).

The transient natural convection of a warm

crude oil contained in a large vertical cylindrical

storage tank located in a cold environment is in

vestigated numerically. The effect of the external

heat transfer coefficient is examined by using

four different values. Increasing this parameter is

found to increase the rate of heat loss as expected,

but only a minor effect on the resulting fluid flow

is found. The effect of the tank aspect ratio

(height to radius) on the natural convection proc

ess is investigated by using four different aspect

ratios ranging from 0.25 to 2.0, and is found to af

fect the flow patterns that develop. The effect of

the fluid viscosity is examined for a tank aspect

ratio of 0.5 by using five different apparent vis

cosity-temperature relationships.

See also the following:

9A729. Unsteady laminar natural-convection heat

transfer in an enclosure with fins

402F. THERMALLY UNSTABLE

CONFIGURATIONS

9A714. Buoyant-thermocapillar

in medium-Prandtl-number flu

to a horizontal temperature

Parmentier, VC Regnier, GI

Liege Univ, B5 Sart-Tilm

Belgium). Int J Heat Mass Transfer 36(9) 2417

2427 (Jun 1993).

Coupled buoyant and thermocapillary instabili

ties in a fluid layer of infinite horizontal extent

bounded below a rigid plane and above by a free

flat surface and submitted to a temperature gradi

ent are investigated. A general 3D mathematical

formulation is used to determine the linearized

perturbated equations of the steady state induced

by the temperature gradient. Numerical results are

obtained in the case of a horizontal temperature

gradient, lower and upper surfaces are adiabati

cally isolated and the range of the Prandtl number

is selected as [10-2, 10]. The presence of travel

ling rolls is exhibited.

9A715. Convective instability in saturated

porous enclosures with a vertical insulating

baffle. - Falin Chen and CY Wang (Inst ofAppl

Mech, Natl Taiwan Univ, Taipei 10764, Taiwan,

ROC). Int J Heat Mass Transfer 36(7) 1897-1904

(May 1993).

The convective instability in 2D enclosures

containing a fluid-saturated porous medium with

an insulating baffle extending vertically from the

bottom boundary is investigated. The baffle influ

ences the stability through its height and its hori

zontal problem. It is found, in general, that a taller

baffle does not necessarily result in a more stable

state, the optimum height of the baffle changes as

its position varies; a baffle located at the middle

or at a position with X = V(k(k + 1)), k = 1,2,...,

where A accounts for the normalized distance

from the baffle to the left wall, corresponds to a

relatively more stable state; while a baffle coin

cides with a dividing streamline has no influence

on the stability.

9A716. Finite-amplitude instability of mixed

convection in a heated vertical pipe. - BB

Rogers and LS Yao (Dept of Mech and Aerospace

Eng, Arizona State Univ, Tempe AZ 85287). Int J

Heat Mass Transfer 36(9) 2305-2315 (Jun 1993).

The instability of flow in a heated vertical pipe

is studied using weakly nonliner instability theory

for both stably and unstably stratified cases. It is

found that the dominant instability for stably

stratified flow is a thermal-buoyant instability,

while that of the unstably stratified case is a

Rayleigh-Taylor instability. The results of the

weakly nonlinear theory predicts supercritical ins

tability for the stably stratified case, in agreement

with experimental observations. In this case, it is

found that a wide band of wave numbers are line

arly unstable soon after the onset of the initial ins

tability. The results of the weakly nonlinear calcu

lations for unstably stratified flow indicate that

the flow is potentially subcritically unstable,

again in agreement with experimental observa

tions. Analysis of energy transfer in the funda

mental wave demonstrates that the thermal-buoy

ant instability is supercritical because increases in

the viscous dissipation rate and the rate of transfer

of energy from the fundamental wave back into

the mean flow overcome the destabilizing effect

of an increase in the rate of buoyant production.

9A717. Stability of convective motion caused

by inhomogeneous internal heat sources. - AA

Kolyshkin (Dept of Appl Math, Riga Tech Univ,

Riga 226010, Latvia) and R Vaillancourt (Dept of

Math, Univ of Ottawa, Ottawa, ON, KIN 6N5,

Canada). Arab J Sci Eng 17(4B) 655-662 (Oct

1992).

The stability of a convective fluid motion

caused by inhomogeneous heat sources in a tall

vertical annulus is investigated in this paper.

Critical Grashof numbers are computed for dif

ferent values of the ratio R of the internal to the

external radii of the annulus, and Prandtl numbers

for axisymmetric and asymmetric perturbations.

Stability increases as the inhomogeneity of the

heat sources increases. For strongly inhomogene

jus heat sources, there is a transition from the

xisymmetric to the asymmetric mode as the

randtl number grows.

9A718. Stability of plane Poiseuille flow with

temperature dependent viscosity. - P Schafer

and H Herwig (Inst Thermo- und Fluiddyn, Ruhr

Univ, 4630 Bochum, Germany). Int J Heat Mass

Transfer 36(9)2441-2448 (Jun 1993).

Classical linear stability theory is extended to

include the effect of temperature dependent vis

cosity. This effect is studied asymptotically by us

ing a Taylor series expansion of viscosity with re

spect to temperature. In its general form the as

ymptotic solution holds for all Newtonian fluids

for which the temperature dependence of viscos

ity is the dominating variable property effect. A

shooting technique with Gram-Schmidt or

thonormalization for the zero-order equation

(classical Orr-Sommerfeld problem) and a multi

ple shooting method for all other equations are

applied to solve the stiff differential equations.

See also the following:

9A908. Boundary and inertia effects on vortex

instability of a horizontal mixed convection

flow in a porous medium

402G. COMBINED NATURAL AND

FORCED CONVECTION

9A719. Experimental studies of forced, com

bined and natural convection of water in verti

cal nine-rod bundles with a square lattice. - MS

El-Genk, Bingjing Su, Zhanxiong Guo (Inst for

Space Nucl Power Stud, Dept of Chem and Nucl

Eng, Univ of New Mexico, Albuquerque NM

87131). Int J Heat Mass Transfer 36(9) 2359

2374 (Jun 1993).

Experiments of upflow- and downflow-forced

turbulent and laminar convection natural convec

tion and buoyancy-assisted combined convection

of water are performed in uniformly heated,

square arrayed, nine-rod bundles having P/D ra

tios of 1.25, 1.38 and 1.5. In the experiments, Re

varies from 250 to 3 x 10", Pr from 3 to 9, Ra

from 5 x 10° to 3 x 10" for natural convection

and from 10" to 7 x 10" for combined convection,

and Ri from 0.03 to 300. The heat transfer data

are correlated in the respective convective re

gimes, where the heated equivalent diameter is

used as the characteristic length in all dimension

less quantities and water properties are evaluated

at the mean bulk temperature. A comparison with

triangularly arrayed rob bundles shows that for

the same flow area per rod, the rod arrangements

negligibly affects Nu in both forced and natural

convection regimes.

9A720. Laminar mixed convection flow in a

vertical tube. - A Moutsoglou and YD Kwon

(Dept of Mech Eng, S Dakota State Univ,

Brookings SD 57007). J Thermophys Heat

Transfer 7(2) 361-368 (Apr-Jun 1993).

A computational study is conducted to quantify

the buoyancy effects on laminar forced flow of air

in a heated-cooled vertical tube. Buoyancy assist

ing and buoyancy opposing flow cases are con

sidered for heating-cooling rates that provide

either uniform wall temperature or uniform heat

flux conditions. The nature of the observed ef

fects of various heating-cooling rates and con

figurations on the velocity and temperature de

velopment, as well as on flow reversal, is ex

plained. Critical buoyancy parameters that signal

the onset of flow reversal, as well as axial loca

tions where flow reversal first occurs, are deter

mined in the study.

9A721. Laminar mixed convection over hori

zontal flat plates with power-law variation in

surface temperature. - WR Risbeck, TS Chen,

BF Armaly (Dept of Mech and Aerospace Eng

and Eng Mech, Univ of Missouri, Rolla MO). Int J

Heat Mass Transfer 36(7) 1859-1866 (May

1993).

An analysis is performed to study the heat

transfer characteristics of laminar mixed convec

pies of articles available. Use order form at end.
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of the influence of heat transfer on multiple-sta

bility margins by means of our own numerical

code. It is obvious that the multiple-stability mar

gins of forced-flow cooled conductors are due to

the interaction between enhancement of heat

transfer by heating-induced flow and increase of

temperatures of conductors and ambient helium.

9A732. Lateral velocity fluctuations and dis

sipation time scale ratios for prediction of

mean and fluctuating temperature fields. - PJ

Gehrke and K Bremhorst (Dept of Mech Eng,

Univ of Queensland, QLD 4072, Australia). Int J

Heat Mass Transfer 36(7) 1943-1952 (May

1993).

Further testing of a previously developed diffu

sivity-based model for predicting mean and fluc

tuating temperatures in water and liquid sodium

flows downstream of a multi-bore jet block in

which one jet is heated is performed but using air

as the working fluid. The apparatus used enabled

geometric similitude with the previous studies. It

was found that the lateral turbulence intensity was

a more effective velocity scale to use and a length

scale based on lateral velocity fluctuations was

more apt. The Prandtl number effect on tempera

ture dissipation rates found previously in water

and sodium is extended by the results using air,

leading to a simple algebraic relation between the

Prandtl number and dissipation time scale ratio.

The non-isotropic nature of the flow is identified

and is seen to influence the results.

9A733. Mathematical model of glass flow and

heat transfer in a platinum downspout. - R

Ducharme, P Kapadia (Dept of Phys, Univ of

Essex, Colchester CO4 3SQ, UK), F Scarfe

(Electroglass Ltd, 4 Brunel Rd Benfleet, Essex

SS74PS, UK), J Dowden (Dept of Math, Univ of

Essex, Colchester CO43SQ, UK). Int.J Heat Mass

Transfer 36(7) 1789-1797 (May 1993).

The possibility of using a heat exchanger sys

tem to control the flow of glass through a plati

num downspout is investigated. Downspouts are

used in place of refractory throats since they

avoid some of the problems associated with

throats. It is assumed that the flow is predomi

nantly axial and an integral expression for the

flow field is obtained. The temperature distribu

tion in the glass is calculated using the finite dif

ference method. The formulation of the heat

transfer problem includes a detailed analysis of

the anisotropic radiation field in the glass.

9A734. Modelling of the homogeneous turbu

lence dynamics of stably stratified media. - BA

Kolovandin, VU Bondarchuk (AV Luikov Heat

and Mass Transfer Inst, 220072 Minsk, Belarus),

C Meola, G de Felice (Fac Eng, Univ Napoli,

Napoli, Italy). Int J Heat Mass Transfer 36(7)

1953-1968 (May 1993).

Numerical simulation of the dynamics of ho

mogeneous turbulence of a stable stratified fluid

in the presence of a vertical constant-density gra

dient was carried out. The second-order model

which is universal with respect to turbulent

Reynolds and Peclet numbers and molecular

Prandtl number is applied to the numerical simu

lation of the dynamics of the velocity and density

field parameters up to the final stage of decay. At

small evolution times Nt, the results of simulation

are compared with the familiar experimental data.

9A735. Solidification of an aqueous salt solu

tion in the presence of thermosolutal convec

tion. - S Chellaiah, RA. Waters, MA Zampino

(Dept of Mech Eng, Florida Int Univ, Miami FL

33.199). Warme Stoffubertragung 28(4) 205-216

(Mar 1993).

The freezing of water-salt (sodium chloride) so

lution on a vertical wall of a rectangular cavity

has been studied experimentally. The influence of

thermally and solutally driven "vection

on the freezing process ha The

spatial and temporal vari. *re

in the solid, mush and -n.

recorded. The thermosolutal convective flow

strongly influence the rate of freezing. Due to the

continuous rejection of salt, a solutally stratified

stable region developed at the bottom of the test

cell. The thickness of this region increased with

the progress of freezing and it was separated from

the remaining bulk liquid, when convective flow

was present, by a thin interface.

9A736. Thermocapillary breakdown of fall

ing liquid films at high Reynolds numbers. -

MS Bohn (Natl Renewable Energy Lab, 1617

Cole Blvd, Golden CO 80401) and SH Davis

(Dept of Eng Sci and Appl Math, NWU). Int J

Heat Mass Transfer 36(7) 1875-1881 (May

1993).

This paper presents a new correlation in which

the heat flux required to break a falling liquid film

can be determined from the film Reynolds num

ber. The correlation is based on the balance of lo

cal forces in the substrate region for high

Reynolds number films. Validation of the correla

tion required experimental data for breakdown of

wavy liquid films at a significantly higher

Reynolds number and heat flux than have been

presented in the past. These data are also pre

sented in this paper. The results show that the cor

relation collapses the experimental data for three

liquids with widely varying physical properties at

film Reynolds numbers up to about 10*.

402S. POROUS MEDIA

9A737. Free and forced convection boundary

layer flow through a porous medium with large

suction. - MD Abdus Sattar (Dept of Math,

Dhaka Univ, Dhaka 1000, Bangladesh). Int J

Energy Res 17(1) 1-7 (Jan 1993).

An analytical study is made of the free and

forced convection boundary layer flow past a po

rous medium bounded by a semi-infinite vertical

porous plate. Locally similar solutions are then

obtained by a perturbation method for large suc

tion. Solutions for the velocity and temperature

distributions are shown graphically for various

suction velocities and values of the driving pa

rameter Gr/R^2, where G, is the Grashof number

and Re is the Reynolds number. The correspond

ing values of the skin friction coefficient and the

Nusselt number are finally shown in tabular form.

9A738. Free convection effects on the oscilla

tory flow of a couple stress fluid through a po

rous medium. - PS Hiremath and Pm Patil (Dept

of Math, Karnatak Univ, Dharwad 580 003,

India). Acta Mech 98(1-4) 143-158 (1993).

Effects of free convection currents on the oscil

latory flow of a polar fluid through a porous me

dium, which is bounded by a vertical plane sur

face of constant temperature, have been studied.

The surface absorbs the fluid with a constant suc

tion and the free stream velocity oscillates about a

constant mean value. Analytical expressions for

the velocity of the angular velocity fields have

been obtained, using the regular perturbation

technique. The effects of cooling and heating of a

polar fluid compared to a Newtonian fluid have

also been discussed. The velocity of a polar fluid

is found to decrease as compared to the

Newtonian fluid.

9A739. Mixed convection along a noniso

thermal vertical flat plate embedded in a po

rous medium: The entire regime. - JC Hsieh,

TS Chen, BF Armaly (Dept of Mech and

Aerospace Eng and Eng Mech, Univ of Missouri,

Rolla MO 65401). Int J Heat Mass Transfer 36(7)

1819-1825 (May 1993).

The problem of mixed convection about a ver

tical flat plate embedded in a porous medium is

analyzed. Nonsimilarity solutions are obtained for

the cases of variable wall temperature (VWT) in

the form Twów) = T. 4 ax" and variable surface

heatflux (VHF) in the form qu(x) = bxm. The en

tire mixed convection regime is covered by two

different nonsimilarity parameters X = # +

(Ra../Pe.)!/?]" and Xx = [1+ (Raxx/Pe*/2.)*]-1,

respectively, for VWT and VHF cases, from pure

forced convection (X = 1 or Xx = 1) to pure free

convection (X = 0 or Xx = 0). It is found that as X

or Xx decreases from 1 to 0, the thermal bound

ary layer thickness increases first then decreases,

but the local Nusselt number in the form

Nu.(Pe1/2, .. 4 Ra!/2.)" or Nu,(Pe1/2, +

Rax{1/3}.)” decreases first and then increases.

9A740. Momentum and heat transfer over a

continuous moving surface in a non-Darcian

fluid. - A Nakayama (Dept of Energy and Mech

Eng, Shizuoka Univ, 3-5-1 Johoku, Hamamatsu

432, Japan) and I Pop (Fac of Math, Univ of Cluj,

R-3400 Cluj Cp 253, Romania). Warme

Stoffubertragung 28(4) 177-184 (Mar 1993).

The momentum and heat transfer characteris

tics associated with the boundary layer on a con

tinuous moving flat surface in a non-Darcian fluid

have been investigated exploiting a local similar

ity solution procedure. The full boundary layer

equations, which describe the effects of convec

tive inertia, solid boundary, and porous inertia in

addition to the Darcy flow resistance, were solved

using novel transformed variables, deduced from

a scale analysis on the momentum and energy

conservation equations. Details are provided for

the effects of convective inertia and porous inertia

on the velocity and temperature profiles. The re

sulting friction and heat transfer characteristics

are found to be substantially different from those

of forces convection over a stationary flat plate.

See also the following:

9A715. Convective instability in saturated porous

enclosures with a vertical insulating baffle

402Y.COMPUTATIONAL

TECHNIOUES

9A741. Arbitrary Lagrangian-Eulerian FE

model for heat transfer analysis of solidifica

tion processes. - S Ghosh (Dept of Eng Mech,

Ohio State Univ, Columbus OH 43210) and S

Moorthy (Dept of Mech Eng, Univ of Alabama,

Tuscaloosa AL 35.481). Numer Heat Transfer B

23(3) 327-350 (Apr-May 1993).

A heat transfer analysis for solidification prob

lems has been conducted to evaluate the tempera

ture field and the location of the phase-change in

terface. An arbitrary Lagrangian-Eulerian kine

matic description has been utilized in the FE for

mulation to impart flexibility to the motion of the

nodes. By detaching the nodal points from the

underlying material, nodes can be monitored to

follow the evolving front, while maintaining

shapes of the elements. Special numerical tech

niques to smoothen the deforming front and to

avoid continuous remeshing have been intro

duced. Numerical examples have been solved to

establish the validity of the present model and its

strength.

9T742. Current trends in heat transfer com

putations. - AF Emery, RJ Cochran (Univ of

Washington, Seattle WA 98.195), DW Pepper

(Appl Res Projects, Moorpark CA 93021). J

Thermophys Heat Transfer 7(2) 193-212 (Apr

Jun 1993).

9A743. Newton-based BEM for nonlinear

convective diffusion problems. - BQ Li (ALCOA

Tech Center, 100 Tech DR, ALCOA Center PA

15069). Numer Heat Transfer B 23(3) 369-385

(Apr-May 1993).

A Newton-based BEM for the solution of non

linear convective diffusion problems is presented.

The problems are formulated through the use of

the exponential transformation. The numerical

procedures for the BE implementation of the for

mulation are discussed, and the treatment of non

Copies of articles available. Use order form at end.
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9A769. Heat transfer characteristics of a

cranked, evaporative thermosyphon. - GSH

Lock and Jialin Fu (Dept of Mech Eng, Univ of

Alberta, Edmonton T6G 2G8, AB Canada). Int J

Heat Mass Transfer 36(7) 1827-1832 (May

1993).

The paper presents an exploratory study of an

offset, evaporative thermosyphon. Laboratory ex

periments using a small bore rig were conducted

for a cranked configuration with the evaporator

and condenser aligned vertically. Heat transfer

data revealed similarities with the equivalent lin

ear system but also showed up some differences.

The heat transfer rates were found to be much

higher than those obtained under single-phase

conditions. On the other hand, critical heat fluxes

were much lower than in the equivalent linear

system.

9A770. Maximum heat-transferring capacity

of two-phase thermosiphons with separate va

por and condensate streams. - IL. Pioro (Eng

Thermophys Inst, Ukrainian Acad of Sci, Kiev,

Ukraine). Heat Transfer Res 24(4) 535-542 (Apr

1992).

Experimental results on the effects of the ge

ometry of the evaporator, the slope of the ther

mosiphon and the circulation velocity on the

maximum heat flux in boiling of water in two

phase straight-through thermosiphons, and also

photographs of the boiling of water in a rectangu

lar channel are presented.

9A771. Molecular dynamics study of solid

melting and vaporization by laser irradiation.

- Susumu Kotake and Masatugu Kuroki (Dept of

Mech Eng, Univ of Tokyo, Hongo, Tokyo 113,

Japan). Int J Heat Mass Transfer 36(8) 2061

2067 (May 1993).

The molecular processes of the phase change of

melting and vaporization of solid materials by la

ser beam irradiation were studied numerically by

using the molecular dynamics method. By

absorbing the laser light energy, the solid atoms

or molecules are excited in the interatomic or in

termolecular potential energy to change their in

teracting forces. The resulting Hamiltonian equa

tions of atomic or molecular motions are solved

with the molecular dynamics method to under

stand the molecular behavior of the phase chang

ing process. The excitation strength, that is, the

laser energy of irradiation has the most predomi

nant effect on the phase change of vaporization

and melting.

See also the following:

9T618. Kinetic theory analysis of steady evapo

rating flows from a spherical condensed phase

into a vacuum

404P. SURFACE TENSION

EFFECTS

See the following:

9A704. Localized solutions of an equation gov

erning Benard-Marangoni convection

404R. SOLID-FLUID FLOWS

9A772. Modelling of the effect of turbulent

two-phase flow friction decrease under the in

fluence of dispersed phase elements. - LV

Zakharov, AA Ovchinnikov, NA Nikolayev

(Mech Fac, Kazan Inst of Chem Eng, Kazan

420015, Russia). Int J Heat Mass Transfer 36(7)

1981-1991 (May 1993).

Consideration is given to the problem concern

ing the interaction of a continuous turbulent flow

with a dispersed impurity uniformly distributed in

it with the account of the involvement of particles

into energy-intensive fluctuations of the continu

ous medium. Correlations are obtained relating

the drag reduction in the turbulent two-phase flow

to the size of particles and dispersed phase con

centration. The limitations are established which

should be imposed on the concentration size of

particles to attain the regime of reduced drag in a

two-phase turbulent flow.

9A773. Numerical method for direct contact

melting in transient process. - Hiki Hong and

Akio Saito (Dept of Mech Eng, Tokyo IT, O

okayama 2-12-1 Meguro-ku, Tokyo 152, Japan).

Int J Heat Mass Transfer 36(8) 2093-2103 (May

1993).

Most of the research on direct contact melting

has been carried out on the assumption of steady

state or quasi-steady state. Such a methodology,

however, is difficult to apply to problems in

which the boundary conditions such as the tem

perature of heating plate or the external force ex

erted on the solid PCM change abruptly with

time. In this study, we show an efficient algorithm

to solve the transient behavior of direct contact

melting, considering the solid movement by ex

ternal forces exerted on a solid body as well as

that by melting. The result shows good agreement

with that by the previous steady state approach,

and it is assured that the behavior during the tran

sient process to steady state is very reasonable in

a viewpoint of a physical phenomenon.

9A774. Unsteady heat transfer to pulsatile

flow of a dusty viscous incompressible fluid in a

channel. - N Datta, DC Dalal (Dept of Math,

Indian IT, Kharagpur 721 302, India), SK Mishra

(Balimela Col of Sci and Tech, Balimela 764 051

Orissa, India). Int J Heat Mass Transfer 36(7)

1783-1788 (May 1993).

The problem of unsteady heat transfer to pulsa

tile flow of a dusty fluid in a parallel plate chan

nel has been studied. It is observed that the un

steady part of the fluid velocity as well as of the

particle phase velocity has a phase lag which in

creases with increase of 4, ie, the volume fraction

of the particles. The steady part of the heat trans

fer at the hotter plate decreases with increase of 4

whereas it increases with increase of 4 at the

colder plate. The amplitude of the unsteady part

of the heat transfer at both the plates decreases

with increase of 4.

406. Conduction

406A. GENERAL THEORY

9A776. Engineering assessment to the relaxa

tion time in thermal wave propagation. - Da

Yu Tzou (Dept of Mech Eng, Univ of New

Mexico, AlbuquerqueNM 87131). Int J Heat Mass

Transfer 36(7) 1845-1841 (May 1993).

The physical significance of the relaxation time

in the wave theory of heat conduction is further

studied in this work. Thermodynamically, it is

confirmed that the relaxation time results from the

rate-equation within the mainframe of the second

law in the nonequilibrium, irreversible thermo

dynamics. Mechanically, on the other hand, the

relaxation time results from the phase-lag be

tween the heat flux vector and the temperature

gradient in a high-rate response. In transition

from a diffusion behavior to the wave propaga

tion, lastly, the relaxation time is found to be the

physical instant at which the intrinsic length

scales merge with each other.

9A777. Modified Fourier law. Comparison of

two approaches. - VA Cimmelli (Dipartimento

Matematica, Univ Degli Studi Della, Basilcata,

Potenza, Italy), W Kosinski (Inst of Fund Tech

Res, Polish Acad of Sci, Warszawa, Poland), K

Saxton (Dept of Math Sci, Loyola Univ, New

Orleans LA). Arch Mech 44(4)409-415 (1992).

The objective of this note is to compare two

different models leading to modified Fourier

laws. The first model uses the concept of semi

empirical temperature, the second one is built in

the framework of extended thermodynamics. For

both approaches three experimental curves,

namely the specific heat, heat conduction coeffi

cient and second sound speed, all given in terms

of the absolute temperature, determine the mod

els. Conditions under which both models lead to

similar results are formulated.

406B. STEADY PROBLEMS

404Y. COMPUTATIONAL

TECHNICAUES

See the following:

9T742. Current trends in heat transfer computa

tions

404Z. EXPERIMENTAL

TECHNIQUES

9A775. Ultrasonic imaging and velocimetry

in two-phase pipe flow. - SLMorris and AD Hill

(Dept of Pet Eng, Univ of Texas, Austin TX

78712). J Energy Resources Tech 115(2) 108-116

(Jun 1993).

This paper presents the first results of an ex

perimental and theoretical investigation of the

feasibility of using ultrasonic measurements in

multiphase pipe flow. Extant downhole flow rate

measurement technology used in the petroleum

industry is not adequate in some multiphase flow

regimes, particularly when the well is deviated

from vertical. Ultrasonic offers Doppler velocity

and imaging capabilities, both of which could be

of great value in production logging. Some air

water measurements, both imaging and velocime

try, are presented, along with a discussion of

pulsed Doppler theory.

9A778. Steady-state heat transfer from hori

zontally insulated slabs. - M Krarti (Joint Center

for Energy Man, CEAE Dept, Univ of Colorado,

Boulder CO 80309-0428). Int J Heat Mass

Transfer 36(8) 2135-2145 (May 1993).

A general solution for the steady-state heat

conduction problem under a slab-on-grade floor

with horizontal insulation is presented. The soil

temperature field, the heat flux along the slab, and

the total slab heat loss are obtained and analyzed

using the Interzone Temperature Profile tech

nique. The derived solution addresses all the

common configurations for horizontal insulation

of slab-on-grade floors. The effect of the outer in

ner edge insulation on heat flux variation along

the slab floor surface and on total slab heat loss is

discussed and analyzed.

9A779. Steady-state heat transfer from slab

on-grade floors with vertical insulation. - M

Krarti (Joint Center for Energy Man, CEAE Dept,

Univ ofColorado, Boulder CO 80309-0428). Int J

Heat Mass Transfer 36(8) 2147-2155 (May

1993).

The steady-state temperature field distribution

beneath a vertically insulated slab is derived us

ing the Interzone Temperature Profile Estimation

technique. A water table is considered at a finite

depth below the soil surface. The heat flux vari

ation along the slab is discussed as well as the ef

fect of vertical insulation length and value on the

total heat losses from the slab-on-grade floor. It is

shown that when the depth and or the thermal re

sistance of the vertical insulation increases, slab

heat loss decreases following the law of diminish
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Daudin (Inst Natl Rech Agronomique, Sta Rech

sur la Viande, Theix 63122, St-Genes

Champanelle, France). Int J Heat Mass Transfer

36(7) 1807-1818 (May 1993).

This paper presents a method based on psy

chrometry for measuring simultaneously heat and

mass transfer coefficients in the case of forced

convection exchanges between air and a body

surface. This method is specially well adapted to

bodies of complex shapes. The theoretical aspects

are described. Errors linked to data treatments and

to measurements are discussed.

416. Combustion

416B. FUNDAMENTALS

9A.870. Recent developments in the theory of

combustion of gases: A survey. - VN

Kryzhanovskiy (Polytech Inst, Kiev, Ukraine).

Heat Transfer Res 24(4) 549-571 (Apr 1992).

A survey and analysis of the principal trends in

the theory of premixed gas combustion are pre

sented. The conformance of theories to experi

mental data is assessed critically, specifically in

terms of the predicted structure of the laminar

flame front and bulk combustion rate under dif

ferent conditions. A kinetic theory that seems

analytically sound, predicts the experimental

findings well, and is adaptable to engineering de

sign calculations is developed.

416E. TURBULENT FLAME

PROPAGATION, FLAMMABILITY

9A.871. Three-component LDV system for

measurements of higher statistical moments in

turbulent diffusion flames. - EP Hassel

(Fachgebiet Energie und Kraftwekstech, Tech

Hochshule, Darmstadt, Germany). Forschung

Ingenieur 59(4) 61-65 (Apr 1993).

A three-component LDV system was built with

the following features: three colors, forward scat

tering, direction determination, avalanche photo

diodes, transient recorder, fast Fourier transform.

With this equipment measurements in a free air

jet and a turbulent methane nitrogen diffusion

flame were made. The following quantities were

determined on the axis and on some levels: ve

locities ui, spreading rate "(9.5×ucyd, centerline ve

locity decay u0/ue, Reynolds-stress tensor u'u'i

and all third order moments u'u'juk. These quan:

tities were normalized and compared with litera

ture data and with Reynolds stress model calcula

tions. One of the main objectives of these meas

urements was the supply of the exit velocity pro

files because the predictions below the similarity

region depend crucially on the boundary condi

tions. In this paper details of the equipment and of

the data processing are explained and new results

are shown.

416F. FLAME STABILITY AND

STABILIZATION

9A.872. Stabilization mechanism of the lifted

jet diffusion flame in the hysteresis region. -

Cheng-Kuang Lin (Aeronaut Res Lab, Chun Shan

Inst of Sci and Tech, Taichung, Taiwan, ROC),

Ming-han Jeng, Yei-Chin Chao (Inst of Aeronaut

and Astronaut, Natl Cheng Kung Univ, Tainan,

Taiwan, ROC). Exp Fluids 14(5) 353-365 (Apr

1993).

: experimental efforts focused on near

field coherent vortex dynamics, and their impact

on stabilization of a lifted jet diffusion flame in

the hysteresis region are reported. Simultaneous

jet flow and flame visualizations are conducted

first to obtain a global feature of flow-flame inter

action. The statistical liftoff heights are calculated

by a DIP (digital image processing) method. The

gas concentration and velocity distributions in

duced by the vortex evolution as well as the cor

responding flame from motion are deduced from

phase-averaged measurements of planar Mie

scattering gas concentration images, LDV and

ion-signals, respectively. The planar gas concen

tration technique employed here extends our pre

vious work (Chao et al 1990, 1991a) to include

phase-averaging. Results of the experiments show

that the most probable flame base locations in the

hysteresis region are at the coherent vortex roll

up and pairing locations. The deeply entrained air

lump caused by large-scale vortices during roll

up and pairing is the main obstruction to flame

propagation back to the nozzle exit and causes the

hysteresis phenomenon.

416.J. UNSTEADY COMBUSTION

AND COMBUSTION ACOUSTICS

9A.873, Issues associated with long-duration

high-enthalpy scramjet combustor testing. -

MW Thompson and MA Friedman (Propulsion

Group, Aeronaut Dept, Johns Hopkins Univ Appl

Phys Lab, LaurelMD 20723). J Propulsion Power

9(3)479-485 (May-Jun 1993).

Long-duration direct connect combustor tests

are an essential element in the development of an

effective supersonic combustion ramjet

(scramjet). While test techniques and analysis

methodology have been established for simulated

flight Mach numbers at Mach 8 and below, phe

nomena associated with higher flight simulations

require additional attention. In this article, techni

cal issues associated with long-duration high

enthalpy direct-connect scramjet combustor tests

are discussed. Since ground tests form the basis

by which flight hardware is designed, it is impor

tant to quantify the differences between flight and

ground test conditions. Analyses are presented

herein which characterize the differences between

ground test and flight combustor inlet properties.

In particular, the effects of dynamic pressure and

chemical nonequilibrium kinetics are investi

gated. Analytical results will also be presented

which characterize aspects of the performance of

a generic combustor operating at Mach 8, 11, and

12 flight simulations. One, two and three stream

mixing models are used to assess combustor per

formance and the predictions derived from the

various models are contrasted.

416K. SUPERSONIC

COMBUSTION

9A.874. Experimental supersonic hydrogen

combustion employing staged injection behind

a rearward facing step. - JD Abbitt III, C Segal

(Dept Aerospace Eng Mech and Eng Sci, Univ of

Florida, 231 Aerospace Build, Gainesville FL

32611), JC McDaniel, RH Krauss, RB Whitehurst

(Dept of Mech and Aerospace Eng, Univ of

Virginia, Charlottesville VA 22903). J Propulsion

Power 9(3)472-478 (May-Jun 1993).

An experimental investigation of a Mach 2

combustor has been conducted in order to charac

terize flow properties in a supersonic reacting

flowfield. Hydrogen was injected transversely as

staged, underexpanded jets behind a rearward

facing step into a ducted Mach 2 air freestream.

The effects of the chemical reaction on the super

sonic flowfield was investigated using shadow

graphs, broadband flame emission photography,

and planar laser induced fluorescence of OH. The

shadowgraphs indicated that the wave pattern in

the combustor along with flowfield unsteadiness

was strongly affected by the heat release. The

broadband flame emission photographs revealed

large regions of no combustion in the vicinity of

the fuel injectors where fuel-air mixing was insuf

ficient to support combustion. These regions de

creased in size as the freestream stagnation tem

perature was decreased for fixed hydrogen mass

flow rate, consistent with an increase in the effec

tive Q-ratio with combustion. The size of the

zones containing OH in the planar fluorescence

images also increased as the main flow stagnation

temperature was decreased. Reaction zones were

found in the planar fluorescence images away

from regions containing injectant in a nonreacting

study of the same geometry, indicating that the

pressure rise associated with the reaction forced a

large redistribution of the fuel.

9A.875. High-temperature supersonic com

bustion testing with optical diagnostics. - TE

Parker, MG Allen, WG Reinecke, HH Legner, RR

Foutter, WT Rawlins (Phys Sci, 20 New England

Business Center, Andover MA 01810). J

Propulsion Power 9(3)486-492 (May-Jun 1993).

The development of supersonic combustion

ramjet (SCRAMJET) engines requires testing us

ing new, nonintrusive, instrumentation methods

in high-speed high-enthalpy flow facilities. The

stagnation temperatures for very high flight

speeds (in excess of 3000 K) make the production

of these flows impossible using conventional

methods such as resistance heaters or vitiated

flows. Similarly, measurements of properties in

these flows is difficult since the measurement

must be nonintrusive in nature. This article de

scribes a test series using a shock tunnel to pro

duce Mach 3.0 flows with stagnation tempera

tures in excess of 3000 K and an optical diagnos

tic set specifically tailored for measurements in

supersonic high temperature systems. The test fa

cility includes a hydrogen injection capability

which makes combustion tests possible for these

flows. This article describes the shock tunnel and

its capabilities, provides an overview of the opti

cal diagnostics used in the testing, and discusses

the results of both combusting and noncombust

ing tests.

416O. COMBUSTORS AND

AFTERBURNERS

9A.876. Numerical simulation of turbine "hot

spot" alleviation using film cooling. - DJ

Dorney and RL Davis (United Tech Res Center,

Comput and Des Group, E. Hartford CT 06108). J

Propulsion Power 9(3) 329-336 (May-Jun 1993).

Experimental data have shown that combustor

hot streaks can lead to pressure side "hot spots"

on first-stage turbine rotor blades. In previous

numerical studies, it has been shown that un

steady Navier-Stokes procedures can be used to

predict the rotor pressure surface temperature in

crease associated with these combustor hot

streaks. In the current investigation, similar 2D

and 3D unsteady Navier-Stokes simulations have

been performed to demonstrate the use of nu

merical tools in the optimization of film cooling

configurations. In this study, the addition of pru

dently placed film cooling holes along the rotor

pressure surface is shown to significantly dimin

ish the adverse effects of the hot streak. Using a

2D Navier-Stokes procedure, a parametric study

was performed to determine the impact of the lo

cation of the film cooling holes, fluid injection

velocity, and fluid injection angle on the time

averaged rotor surface temperature. The experi

ence gained from these 2D simulations was then

applied to a series of 3D simulations in which the

effects of the film cooling hole distribution on the

rotor pressure surface temperature were studied.

The results of these simulations indicate that

computational procedures can be used to design

feasible film cooling schemes which eliminate the

adverse effects of combustor hot streaks.
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new, complex problems present structural analysts with

new, unprecedented thermal-buckling challenges.

This article describes research on thermal buckling of

plates and shells. Elastic thermal buckling is emphasized

although recent experience on NASP problems has

shown the importance of inelastic buckling. However,

the literature available on elastic buckling is much more

extensive than for inelastic buckling, and an assessment

of these studies was given priority for this review.

Thermal buckling of metallic as well as composite plates

and shells is considered. Thermal buckling studies of

composites are much more recent than for metallics, and

recent progress with composites is described.

Temperature levels and their distributions have a

major role in thermal buckling. The article begins with a

brief description of temperature distributions in thin

walled structures. Then past literature on thermal

buckling of plates and shells is described. In each

instance, past research is assessed, and research needs

are discussed. The article concludes with brief

summarizing remarks.

2. TEMPERATURES IN THIN-WALLED

STRUCTURES

The determination of temperatures in a thin-walled

structure begins with conservation of energy. In the most

general form with thermomechanical coupling, Allen

(1991), the conservation of energy equation includes

terms that represent the conversion of mechanical to

thermal energy. In practical aerospace structural heat

transfer, thermomechanical coupling is usually

neglected. Then the conservation of energy equation

involves temperature as the only dependent variable. It

may be solved for the temperature distribution

independently from the structural problem.

2.1 Structural Heat Transfer

Heat transfer in thin-walled structures is conduction

dominated, and the classical heat conduction equation is

used:

0 9T &T

-###"#-8 (1)

where T(x1, x2, x, t) is temperature, k, are the com

ponents of the material's thermal conductivity tensor, p

is the density, c is the specific heat, and Q is the internal

heat generation rate per unit volume. The components of

the thermal conductivity tensor and the specific heat are

temperature dependent. The heat conduction equation is

solved subject to an initial condition and boundary

conditions on the structure's surface. The initial

condition specifies the temperature distribution at time

zero. The boundary conditions may consist of s”

surface temperature, specified heat flow, conv

exchange, and radiation heat exchange. T

Written àS = .

T = T.(x1,x2, x2,t) onS1

qi ni = -q, on S,

qin, = h(T – T.) onS,

qin, = oëT"-aq, onS. (2)

where qi denotes components of heat flux, ni denotes

components of a unit outward normal vector, and S (i =

1,4) denotes portions of the surface. The specified

surface temperature is T., and the specified heat flux

(positive into the surface) is q, In the convective

boundary condition on S, the convection coefficient is

h, and the convective exchange temperature is T. In the

radiation boundary condition on S, o is the Stefan

Boltzmann constant, e is the surface emissivity, o is the

surface absorptivity, and q is the incident radiation flux.

For structural heat transfer with surfaces at significantly

different elevated temperatures, radiation exchanges can

occur. The determination of radiation exchanges be

tween surfaces is complicated because radiation emitted

by a typical surface depends on its surface temperature

which is unknown, and the geometrical relationship

between surfaces affects the exchanges.

Thus the basic aerospace structural heat transfer

problem is nonlinear because of temperature-dependent

properties and radiation heat transfer. For practical

structures, temperature is determined computationally,

most often by finite difference methods (Schuh, 1965)

but also by finite element methods (Huebner and

Thornton, 1982).

2.2 Temperature Distributions

Complex thin-walled aerospace structures under service

conditions rarely experience uniform temperatures.

Often, the external heating is non-uniform. For example,

leading edges of wings in high speed flight experience

high local heating at stagnation points. Moreover, as the

external flow traverses the airfoil, aerodynamic heating

changes with surface curvature and increases

significantly at a transition from laminar to turbulent

flow. As mentioned in the Introduction, shock

interactions cause intense local heating.

Even if the external heating is nearly uniform, spatial

variations in skin temperatures occur due to internal

reinforcements such as ribs, stiffeners and frames. At

points or lines of attachment of local skin

reinforcements, temperatures are lower than nearby skin

temperatures because the reinforcement offers a greater

material volume to absorb energy and a conduction path

for heat transfer to the structure interior. Very early

recognition of temperature variations in thin-walled

structures was made for supersonic aircraft, Hoff (1951).

Boley and Wiener (1960) describe research in the 1950s

on temperature distributions and give additional

references.

In orbiting space structures, temperatures are unsteady

because of the variation of incident heat fluxes with
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A 6061-T6

|

Time (seconds)

FIG 2 Thermal response of suddenly heated, thin aluminum

alloy plate, q, - 0.1 BTU/in’s (16 W/cm’) and h = 0.125 in

(0.318 cm).

transient temperatures for graphite-epoxy and aluminum

plates. Graphite-epoxy and aluminum have the smallest

and largest values of thermal conductivity, respectively,

and produce extreme values for the temperature gradient.

Graphite-epoxy has a very large thickness temperature

gradient, and aluminum has a very small temperature

gradient. Table I shows, in fact, that the graphite-epoxy

composite is exceptional; its thermal conductivity is so

low that an extraordinarily large thickness temperature

gradient is predicted. Since the practical temperature

range of this material is limited to less than 250°F

(120°C), it is doubtful that such a large AT could ever

occur in practice. The other metallics and metallic-based

composites show relatively small thickness temperature

gradients with titanium showing the largest and

aluminum the smallest gradients, respectively. The

thickness temperature gradients shown may be regarded

Graphite-Epoxy

450 250

400 b = 5.0 in (13 cm)

BTU W

350 q, =0.1 in" -: (s #) -200

300

6. -150 O

... 250 -

# #
e s

200

F 150 \ H

1.4 s

1004'-: - 50

0.6 s

50 0.2s

0 I I T 0

0.00 0.02 0.04 0.06 0.08 0.10

y/b

FIG 4 Temperature distribution for local" 'e

epoxy plate, q. = 0.1 BTU/in2-s (16. W/cm 1).

Coolant

Coolant

FIG 3 Centrally-heated, edge-cooled plate studied by

Heldenfels and Roberts (1952).

as upper bounds since often thermal conductivity

increases with increasing temperature, and the insulated

boundary condition on the bottom surface will not be

realized as energy losses will inevitably occur due to

surface convection or radiation heat transfer. In addition,

any heat conduction in the x-y plane due to plate

supports or non-uniform heating will lessen the thickness

temperature gradient. For thin-walled metallic structures,

customary practice has been to neglect thickness

temperature gradients.

Insight into the effect of thermal properties on the

spatial variation of the thin plate temperature, T(x,y), is

provided by solution of the linear, unsteady in

itial/boundary value problem of a plate locally heated,

Fig 3. The edges of the plate at y = +b are maintained at

constant temperature of zero by specified coolant flows.

The bottom and top surfaces of the plate are perfectly

insulated except along the centerline of the upper plate

surface. For time t > 0, the plate experiences uniform

heating q, on a narrow strip along the x axis.

Hastelloy-X

800

600

\ -300

500

<\\

<\\\".

\

| |

A. -100
100

SS
0 I T I I 0

0.0 0.2 0.4 0.6 0.8 1.0

y/b

FIG 5 Temperature distribution for locally heated Hastelloy

X plate, q, = 0.1 BTU/in"-s (16. W/cm”), b =50 in (13 cm).
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Temperature is assumed uniform through the plate thick

ness. The solution to the symmetric, one-dimensional

conduction problem is given by Carslaw and Jaeger

(1980) as,

TG,t)="#1-###".
2k n°k #(2n+1)

w(2n+1)(b–y)

2b (5)

where q = q.w/2h with w as the width of the heated

strip, and as before, k is the thermal diffusivity. For large

time, plate temperatures approach steady-state with the

peak temperature at the centerline and a linear decrease

to the specified zero values on the plate edges. As with

the previous solution, Eq 5 predicts plate transient

temperature distributions that depend inversely on the

material's thermal conductivity.

Using the thermal properties shown in Table I,

transient thermal responses were computed for graphite

epoxy, Hastelloy X, and aluminum, (Figs 4-6). These

results indicate the responses of low, medium and high

thermal conductivity material plates to local heating.

The results show for low thermal conductivity graphite

epoxy (Fig. 4) that temperatures rise rapidly with very

steep temperature gradients and a highly-localized

heated region. On the other hand, for aluminum with

high thermal conductivity (Fig 6) temperatures rise more

slowly with lower gradients as thermal energy is

conducted into the cooler boundaries. The response of

the Hastelloy X, a high temperature nickel-based alloy,

falls somewhere in between these two extremes, but the

material demonstrates high local temperatures, steep

gradients and a relatively small heated region. Thin

walled structures of this alloy subjected to localized

heating are likely to experience inelastic buckling

behavior due to the high local temperatures.

These examples demonstrate two types of thermal

gradient responses characteristic of thin-walled struc

tures. For low thermal conductivity materials such as

graphite-epoxy, high thickness temperature gradients

will occur. However, for metals and metal matrix

composites, thickness temperature gradients are negligi

ble, and spatial temperature gradients are most likely to

occur in applications.

exp(-x'(2n +1)"kt/4b]sin

3. THERMAL BUCKLING OF PLATES

This section reviews past research on thermal buckling

of rectangular plates. The review is divided into three

parts: (1) the plane stress problem, (2) the buckling

problem, and (3) the postbuckling problem. Within each

part papers are described in chronological order. A

survey of thermally induced flexure, buckling and

vibration of plates, Tauchert (1991), provided some of

the references in this review. A recent review article by

Noor and Burton (1992) describes computational models

for high temperature multilayered composite plates and

shells and lists 448 references.

3.1 The Plane Stress Problem

The classical plane stress problem consists of a thin,

perfectly flat, isotropic rectangular plate heated so that

the temperature is a function only of the spatial

coordinates and time, ie T(x, y, t). Since the temperature

does not vary through the plate thickness the thermal

moment is zero, and the plate remains flat as the

temperature changes. A state of plane stress is assumed,

and the non-zero stresses o, o, T., are functions only of

the spatial coordinates and time. Assuming elastic quasi

static behavior with constant properties, the elasticity

problem may be formulated in terms of the two non-zero

equilibrium equations, the strain-displacement relations

and Hooke's law.

Some of the earliest thermal-stress analyses relevant

to thermal buckling were concerned with solving the

plane stress problem for a steady temperature

distribution T(x, y). A popular approach was to introduce

an Airy stress function F(x, y) such that

_3°F

* -5

_3°F

o, =#

* --PF

* 3xöy (6)

Equilibrium is then satisfied, and by using the

membrane strain compatibility equation F is a solution

of the non-homogeneous biharmonic equation

V*F = -EaV*T

(7)

Aluminum
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FIG 6 Temperature distribution for locally heated alumi

num plate, q = 1 BTU/in"-s (16. W/cm2), b = 50 in (13 cm).
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where E is the modulus of elasticity, and o is the co

efficient of thermal expansion. The stress function F, of

course, must satisfy appropriate boundary conditions on

the plate edges.

Heldenfels and Roberts (1952) investigated the plane

stress problem theoretically and experimentally. The

theoretical studies produced an approximate

complementary energy solution for the Airy stress

function. In the experimental studies, simple "tentlike"

steady-state temperature distributions were introduced by

heating a rectangular plate along a centerline with a

heating wire and maintaining constant temperature along

parallel edges by water flow through coolant tubes (Fig

3). Top and bottom surfaces of the plate were insulated

to produce uniform, one-dimensional, linear temperature

variations between the heated centerline and cooled

parallel edges. In the experimental study, in-plane plate

displacements were permitted to occur freely, but out-of

plane displacements were prevented by restraints that

forced the plate to remain flat. Thermocouples and strain

gages were used to measure temperatures and strains,

respectively. Experimental results were found to be in

satisfactory agreement with the approximate theoretical

results. The results showed important characteristics of

the stress distribution. The tentlike temperature

distribution (Fig 7) causes the central portion of the plate

to be in compression. For example, the stress o.(o,y) is

compressive for -b/2 < y < b/2 where the transverse

width of the plate is 2b. For an unrestrained plate, these

compressive stresses must be equilibrated by tensile

stresses a, along the outer regions of the plate. The most

important point, however, is that the unrestrained plate

may experience thermal buckling due to compressive

stresses induced by the spatial temperature gradients.

A few years later Przemieniecki (1959) used

characteristic beam vibration modes to derive an ap

proximate solution for the plane stress problem for

arbitrary temperature distributions. Two years later, Rao

and Johns (1961) compared various solutions for the

FIG 7 Tentlike tempera ld axial stresses

in Heldenfels and Roberts

plane stress problem assuming a symmetrical

temperature variation across the width of the plate.

These investigations provided insight into the membrane

thermal stress distributions that establish the possibility

of thermal buckling due to the local compressive

stresses. The plane-stress problem remains important

today. In a study of the viscoplastic response of plates

due to unsteady heating, Thornton and Kolenski (1991)

investigated the plane stress problem using a finite

element approach. Plate elastic and inelastic membrane

stresses were investigated for prescribed transient

temperature distributions. Local yielding significantly

alters membrane stress distributions, and for rapid rises

of temperature, the nickel-based alloy materials display

initially higher yield stresses due to strain rate effects. As

temperatures approach elevated values, yield stress and

stiffness degrade rapidly and pronounced plastic

deformation occurs.

3.2 Buckling

To determine the critical buckling temperature, small

transverse bending displacements of the plate are

assumed. The stresses obtained from the solution of the

uncoupled plane stress problem is used to define the

inplane stress resultants N. N. N., which are obtained

by multiplying the stresses by the plate thickness h. The

displacement w(x,y) of the buckled plate is governed by

the linear differential equation

2 2 2

Dv'w-N.#2N.:N.'
(8)

where D is the flexural rigidity of the plate, D =

Eh'/12(1-v’), and u is Poisson's ratio. One of the basic

thermal buckling solutions to Eq. 8 is for a fully

restrained plate with a uniform temperature rise. For a

rectangular plate with dimensions (2a x 2b) subjected to

uniform compressive membrane forces N. and N,

Timoshenko and Gere (1961) give the critical condition

aS

m*** n°7" m’: n " '

x 2 +N, # = F-4 2

(2a) (2b) (2a) (2b)

where m, n denote the number of half-waves in the x and

y directions, respectively. Due to a uniform temperature

rise AT, N = N = heoat/(1-v) for the fully restrained

plate. Thus the critical buckling temperature is

determined by substituting for N, and N, and solving for

AT
cr

*D(1– v)(m”, n°
-–-+-

AT, 4Eoh ( a b”
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where the minimum value occurs for m = n = 1.

Substituting for D yields,

n”h” 1 1

AT_ =—-|--|--

* 48(1+:(#) (9)

Equation 9 shows that the critical buckling tem

perature is independent of the material's modulus of

elasticity. For thin plates fully-restrained against in-plane

displacements, Eq9 predicts quite small critical buckling

temperatures. For example, an aluminum plate with a =

18 in, b = 12 in and h = 0.25 in buckles at a critical

temperature AT.= 8.4°F.

Shortly after the Heldenfels and Roberts paper on the

plane stress problem was published at NASA Langley, a

closely related paper by Gossard, Seide and Roberts

(1952) described the buckling and post buckling

behavior of the same plate. The paper made two

important contributions. First, the critical buckling

temperature for the unrestrained plate with the tentlike

temperature distribution was determined analytically.

Secondly, the post-buckling nonlinear, out-of-plane

bending displacement w(x,y) was studied analytically

and experimentally.

The critical buckling temperature was obtained for

simple supports by the principle of minimum potential

energy using a series of trigonometric functions for the

transverse displacement. The in-plane displacements are

unrestrained. For a panel with aspect ratio of a/b = 1.57,

the critical buckling temperature was determined to be

ler 12 1– v” a b” (10)

In Eq 10, T., is the critical value of the temperature

differential, the difference T, between the center and

edge temperatures in a tentlike temperature distribution,

Fig 7. The paper also studied the plate's postbuckling

behavior which will be described in the next section.

After the Gossard, Seide and Roberts paper, other

authors investigated bifurcation thermal buckling of

rectangular plates. Hoff (1956) investigated thermal

buckling of supersonic wing panels. Temperature and

thermal stress distributions due to aerodynamic heating

were analyzed for supersonic wing structures. An

analytical approach for determining critical thermal

buckling stresses for wing cover plates was developed.

van der Neut (1957) investigated approximate analysis

methods for determining critical buckling temperature

for panels with assumed distributions of thermal stress.

Klosner and Forray (1958) studied buckling of simply

supported plates under an arbitrary symmetrical

temperature distribution. In-plane displacements of the

plate are assumed to be elastically restrained by

supporting edge members. The critical buckling

temperature was determined by a Rayleigh-Ritz

procedure. Miura (1961) used a similar procedure to

obtain the critical buckling temperature when in-plane

displacements are completely restrained. Critical buck

ling temperatures were computed in these two papers for

a plate of dimensions (2a x 2b) and the parabolic

temperature distribution,

*-*-(-)-(-) on
The results of these two papers showed that the

critical buckling temperature is given by Eq 10 in the

general form

k. 1 h”

T. =### (12)

where T is the critical value of the temperature rise.

The thermal buckling coefficient kT depends on the plate

aspect ratio and in-plane boundary restraints. Equation

12 assumes fully restrained simple supports, and that the

plate buckles in a single half-wave in each direction. The

variation of the critical buckling temperature with the

aspect ratio a/b for the parabolic temperature distribution

is shown in Fig 8.

Thermal buckling of a simply-supported rectangular

panel unrestrained in the plane is considered by Boley

and Weiner (1960). The edges x = 0,2a and y = 0,2b are

assumed to remain straight. A temperature distribution T

To-T, cos ty/b is assumed. An analytical solution is

0.6

T. --Hill:
ics - TV7 ob:

0.5

0.4

kT

0.3- T0/T1 = 0

0.2

0.5

"S-D:2

S=
5

0.0 t t t t

1 2 3 4 5

a/b

FIG 8 Buckling coefficient for simply-supported, fully

restrained plate with parabolic temperature distribution,

Klosner and Forray (1952).
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developed by first determining the stress function F that

satisfies Eq 7. Then the transverse displacement w(x,y) is

expanded in an infinite series where a typical term has

the form A. sin (mtx/2a) sin(nny/2b). Satisfaction of Eq

8 leads to an infinite determinant for computing the

critical values of the buckling temperature T, (Note, as

with the unrestrained plate of Gossard and Seide, that

buckling does not depend on T.). The critical

temperature has the form

le 24 1– v° a b” (13)

where k1 is a function of m and the aspect ratio alb, m is

the number of half-waves in the x direction. A curve is

given showing the variation of k, with aspect ratio. The

minimum value of k, is 3,848. For an aspect ratio a/b =

1.4, the plate buckles in one half-wave, m = 1; for 1.4 ×

a/b 4 2.5, m = 2; for 2.5 & alb & 3.5, m = 3; etc. The

Boley and Weiner text also includes the effect of an

axial applied stress ox, and an interaction curve is given.

Thermal buckling of parallelogram (skewed)

rectangular plates were investigated in the 1970s. For

applications to aircraft wings Matsumoto (1973)

analyzed parallelogram, shallow curved panels using

Galerkin's method for clamped boundary conditions and

an arbitrary temperature distribution. Using a measured

temperature distribution, buckling temperatures were

computed for parallelogram and rectangular panels. The

critical buckling temperature for a parallelogram panel

was higher than the corresponding rectangular panel.

Shallow panel curvature increased buckling

temperatures. Prabhu and Durvasula (1974a, b) analyzed

skewed, flat plates using a Ritz method. Critical

buckling temperatures are given as a function of the

skew angle for restrained plates with simple and clamped

transverse deflection boundary conditions.

More general analyses of thermal buckling of flat

plates were presented in the 1980s. Thermal buckling of

initially stressed thick plates was investigated by Chen et

al. (1982). The paper shows that transverse shear effects

can reduce the plate critical buckling temperature.

Bednarczyk and Richter (1985) consider thermal

buckling of unrestrained plates with self-equilibrated

stresses. They study the influence of the spatial

temperature distribution on critical buckling modes and

seek the temperature distribution that yields the lowest

critical buckling temperature. For square plates, the

lowest eigenvalue occurs when the temperature

distribution is piecewise constant. An example shows a

central square patch of a plate having uniform

temperature surrounded by a "picture frame" of zero

temperature. The implication of the analyses is that

minimum buckling temperatures occur under a condition

of localized thermal sh Bargmann (1985) considers

a rectangular flat "on-uniform temperature

distribution and 'd boundary conditions.

In-plane forces so that the plate edges

remain straight during deformation. Stability conditions

are derived for: (1) a uniaxial stress field, (2) biaxial

combined compression and tension and (3) biaxial

combined compression, tension and shear.

In a study of thermal buckling that occurs in the

growth process for producing sheets of silicon, Ahmed

and Dillon (1987) study thermal buckling of plates with

reinforced edges. A prescribed temperature profile, T(x),

is assumed. The plane stress problem for the membrane

stress is analyzed first, and then the industrial process is

modeled as a cantilever plate. The role of the edge

stiffeners is examined, and the authors conclude that

edge stiffeners can either help or hinder thermal buckling

as compared to a flat plate.

Studies of the effects of the environment on laminated

composites in the 1970s led to the first thermal buckling

analyses of composite plates. Whitney and Ashton

(1971) used an energy formulation in conjunction with a

Ritz method to determine critical buckling temperatures

for restrained angle ply laminates. Flagg and Vinson

(1978) used a similar approach to study the effects of

moisture and temperature on critical buckling loads. It

was shown that these hygrothermal effects reduce critical

buckling loads.

Since the 1980s, much thermal buckling research has

focused on buckling of composite laminated panels. The

book by Whitney (1987) formulates the governing

equations for expansional strain effects in laminated

plates. Thermal buckling of rectangular plates with

symmetric angle-ply laminates are analyzed using the

Ritz method. Thermal buckling behavior has been

studied also with approximate analytical methods by

Tauchert (1987), Tauchert and Huang (1987), Chen and

Chen (1987a), Chandrashekhara (1991a), Huang and

Tauchert (1990), Sun and Hsu (1990) and Chang and

Leu(1991) and computationally by the finite element

method by Thangaratnam et al (1989), Chen and Chen

(1989a,b), Chang and Shiao (1990) and Chang (1990).

The effects of various laminated plate parameters have

been investigated. A recent collection of papers on

thermal effects on structures and materials edited by

Birman and Hui (1990) includes additional references on

thermally induced buckling of composites. Paley and

Aboudi (1991) develop a method for determining critical

buckling temperatures for metal matrix composite plates.

3.3 Postbuckling

The 1952 paper by Gossard, Seide and Roberts describes

the first theoretical and experimental investigations of

thermal postbuckling. When a plate's transverse

displacements became large (eg, of the order of the plate

thickness), stretching of the middle surface may occur.

Because of this stretching, the membrane forces change

as the plate deforms. The membrane stresses (or the

stress function F) and the displacement w(x, y) must be

determined simultaneously. The postbuckling theoretical

problem is described by von Kármán's equations,
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(14)

where the thermal force per unit length is

h/2

NT = Eaj'T(x,y,z)dz (15)

and the thermal moment per unit length is

h/2

Mr = Ea£T(x,y,z) dz (16)

Equations (14) are solved subject to appropriate

boundary conditions, see Boley and Weiner (1960).

Gossard, Seide and Roberts (1952) obtain an ap

proximate analytical solution based on the Galerkin

method. Two cases are considered: (1) an initially

perfectly flat plate, and (2) a plate with an initial

deflection. Experimentally, the plate was tested with

simple supports for bending displacements, and in-plane

displacements were unrestrained. The plate was tested

under steady conditions with the tentlike temperature

distribution (Fig 7) used by Heldenfels and Roberts

(1952). Temperature is assumed constant through the

plate thickness, and the thermal moment is zero. The

maximum temperature rise during the test was about

150°F, and the critical buckling temperature rise, Eq 10,

was slightly less than 200°F. The experimental results

showed that the effect of the initial plate deflection was

appreciable. The maximum initial deflection was about

18% of the plate thickness. The test results show a

strongly nonlinear variation of the plate deflection with

the temperature rise even for deflections less than one

half the plate thickness. The largest plate deflection

measured was less than a plate thickness. With initial

deflections considered, good agreement was obtained

between the experimental and theoretical results.

After the Gossard, Seide and Roberts paper, other

authors in the 1950s and 1960s investigated thermal

postbuckling of plates. Williams (1955,1958) performed

a large deflection analysis to determine deflections and

membrane stresses for an infinite strip (cylindrical

bending) subjected to pressure and temperature

variations. Forray and Newman (1962a,b) study the

postbuckling behavior of flat simply supported

rectangular plates with parabolic temperature variations

in x and y. Wilcox and Clemmer (1964) analyzed the

large deflections of a simply supported rectangular plate

with elastic in-plane deflection restraints. Pressure and

temperature changes were considered.

Subsequently, interest in thermal buckling of isotropic

plates decreased with only a few papers over the next

two decades. Prabhu and Durvasula (1976) investigated

thermal post-buckling characteristics of clamped skew

plates with restrained edges subjected to planar

temperature distributions. Approximate solutions to the

nonlinear partial differential equations are obtained by a

perturbation method. The results showed that the plate

nonlinearity tends to increase with skew angle for both

uniform and nonuniform temperature distributions

considered. HE Williams (1979) reconsidered the

stability conditions for the cylindrical bending problem

originally studied by ML Williams in the 1950s. Jones et

al (1980) investigated thermal postbuckling of flat plates

using Berger's approximation to plate bending theory.

HE Williams (1982) studies buckling and postbuckling

using the "Neale Plate" equations. The unique feature of

this approach is the equations used are a generalization

of von Kármán's equations in rate form. The approach is

used to study thermal buckling of rectangular plates

including plasticity.

The effect of temperature-dependent elastic modulus

and coefficient of thermal expansion on the post

buckling behavior of heated square plates was

investigated by Kamiya and Fukui (1982). Finite dif

ference numerical solutions are obtained for constrained

in-plane displacements and simply-supported and

clamped edges. The temperature-dependent properties

lowered critical buckling temperatures and reduced post

buckling stiffness for increasing temperature and

deflection.

Paul (1982) developed a procedure for the prediction

of the postbuckling behavior of clamped rectangular

plates subjected to arbitrary planar temperature

distributions. Design charts and tables are provided for

several cases. The report concludes that thermally loaded

plates possess considerable postbuckling load carrying

capability which is not fully utilized in design practice.

Several recent papers study the thermal postbuckling

for laminated composite plates. Huang and Tauchert

(1988a, b) analytically study postbuckling behavior of

flat angle-ply laminates for spatially symmetric

parabolic variation of the plate temperature and uniform

temperature. Ply angles are arranged antisymmetrically

about the middle surface. The unsymmetric layup causes

a coupling between the in-plane displacements u,v and

the transverse displacement w. Thus as the temperature

increases, out-of-plane displacements increase even for

small deflections. Above the critical buckling

temperature, transverse displacements increase rapidly as

expected. Chen and Chen (1989b, 1991) study thermal

postbuckling behavior of laminated composite plates by

the finite element method. The influence of composite

laminate characteristics on thermal postbuckling is

studied first, and then the effects of temperature

dependent properties are considered. Temperature

dependent properties lower predictions of critical

buckling temperatures. Librescu and Souza (1991) study

the static postbuckling of simply supported, shear

deformable composite flat panels exposed to a stationary

temperature field and in-plane compressive edge loads.
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Although good agreement between calculations and

experiment data is stated, details of the analysis and tests

are not given.

In the late 1970s, two test programs on buckling of

cylinders with combined mechanical and thermal loads

were conducted at the Technion in Israel. Frum and

Baruch (1976) describe buckling of cylindrical shells

heated along two opposite generators. A series of forty

six tests of aluminum cylinders with a/h = 301 were

conducted. End supports were designed to be fully

restrained. Axial loads were applied by a hydraulic jack.

Two infrared line heaters were installed above and below

the shell. The temperature distribution was measured

with thermocouples, and displacements were measured

with LVDTs. The instant of buckling was detected with

a microphone. The effects of the u displacement

boundary conditions were studied, and the authors

conclude that previous investigators had not treated the

condition with enough care. They conclude that the u

displacement has a dominant influence on the buckling

results. Comparisons of experimental data with

computations are only fair. The experimental data was

used to construct an axial load-temperature interaction

curve. Ari-Gur, Baruch and Singer (1979) describe

buckling of cylindrical shells under combined axial

preload, nonuniform heating and torque. Similar test

cylinders and the test rig employed in the previous study

were used after modifications to allow torsion. A series

of 35 tests were conducted. A temperature-torque inter

action curve was developed from the experimental data.

Studies of thermal buckling of laminated composite

circular cylinders began in the 1980s and continue to the

present time. So far, the studies have been analytical;

experimental studies have not yet been conducted.

Wilcox and Ma (1989) use an energy approach to derive

a set of equilibrium equations based on classical thin

shell theory with Donnell's assumptions. Galerkin's

method with an assumed trigonometric variation for w

for a simply-supported cylinder leads to a matrix

eigenvalue problem. Numerical results are presented for

critical buckling temperatures for various composite pa

rameters such as lamination angle. Thangaratnam et al

(1990) uses the finite element method to conduct

parameter studies of a simply supported cylinder with

uniform temperature.

Birman (1991) studied the thermally induced dynamic

response of reinforced composite cylinders. The study is

based upon Donnell's theory of geometrically nonlinear

shells and includes axial and ring stiffeners. Solutions

are developed for a simply supported cylinder subjected

to a uniform rise in temperature. The paper concludes

that if a shell is subject to an instantaneous rise in

temperature it exhibits stable steady-state oscillations but

if the temperature exceeds a critical buckling level, the

character of the response "es and the deflections can

increase dramatically

4.3 Conical Shells

Work on thermal buckling of conical shells began in the

mid-1960s and was motivated by aerodynamic heating

effects. The analyses typically were based on Donnell

type equations written in terms of a stress function F and

the w displacement. A truncated cone with vertex angle

2O is considered. The non-zero stresses are defined in

terms of the Airy stress function F(s, () where a point on

the middle surface of the shell is defined by the

longitudinal coordinate o and an angular coordinate ()

defined by

(p = 0 sin o.

where 6 is the circumferential angular coordinate. The

non-Zero StreSSes are

19F 1 0°F _3°F

**s as "s' 30" o, *:

(23)

The nonlinear governing equations are
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V2 -2', 12, 12"
os” s as s” 00° (26)

In the above, the temperature is assumed uniform

through the thickness of the shell, and the thermal

moment is zero. For o = 0, Eqs 24 and 25 reduce to the

von Kármán equations for a flat circular plate.

Some of the earliest analytical and experimental work

on conical shells was done by Bendavid and Singer

(1967) who studied buckling of truncated conical shells

heated along a generator. The work is closely related to

Hill's (1959) study of buckling of thin cylindrical shells

heated along a strip. Critical buckling temperatures are

investigated for axial compressive stresses induced by

circumferential temperature distributions. A Rayleigh

Ritz analysis is employed, and numerical results are

compared with an experimental study. In the

experimental study a steel cone with vertex angle o =

12.4", thickness h = 0.0155 in and a small opening radius

of 6 in was heated along a generator with a quartz lamp.
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BASIC METHODS

10R1. Mechanics of Continuous Media.

Mechanika osrodkow ciaglych. (Polish). -

Czeslaw Rymarz (Dept of Theory of

Continuous Media, Polish Academy of Sci

and WAT Military Academy of Tech,

Warsaw, Poland). 1993. 514 pp. ISBN 83

01-11061-9.

Reviewed by R Wojnar (IPPT, Polish

Acad of Sci, Swietokrzyska 21, 00-049

Warszawa, Poland).

Let me begin with some general remarks

which arose in my mind after reading this

excellent book.

It is well known that in describing a

physical phenomenon one can use a num

ber of mathematical models and each of

the models only partially explains the phe

nomenon, eg, in quantum mechanics the

nature of the light can be described either

by an undulatory or a corpuscular model.

Also, in classical continuum mechanics a

wave equation describing sound propaga

tion is patterned after the Newton equation

of motion of a single particle, (see ch 3 of

the reviewed book). These two examples

indicate a degree to which one can describe

a real phenomenon.

A description of matter was proposed a

long time ago by the ancient philosophers

Democritus (circa 460-370 BC) and

Lucretius (circa 98-55)[1] from one point

of view, and by Aristotle (384-322) from

another standpoint. The first two thinkers

believed that matter is composed of atoms

and voids while the third one argued that

nature abhors a vacuum. These philoso

phers stirred up a controversy in the sub

ject that lasted until the beginning of this

century. Nowadays we believe that matter

is made of particles and fields, and the

particles are regarded as some singularities

associated with the fields.

The mechanics of continuous media that

came into being in eighteenth century

[2,3,4] is also based on the concept of a

particle. Using contemporary language,

this theory replaces a structure of particles

(a granular structure) by a homogenized

continuous constitution. One performs a

smearing-out of material properties of mi

crobodies to obtain the continuous distri

butions of mass, momentum, angular mo

mentum, and energy of the continuous

medium (cf Introduction of the reviewed

book).

The book is based on lecture notes for

classes taught at WAT (Technical Physics

Dept) in Warsaw by Professor Rymarz,

well known for his many contributions in

the field of mechanics of continuous me

dia. The book goes well beyond what can

usually be covered in class and provides an

in-depth introduction to several research

topics.

There are 12 chapters, three appendices,

references, and an index. Every chapter

ends with problems and control exercises.

The appendices cover tensor calculus,

foundations of group theory, differential

manifolds, and elements of measure the

ory.

Chapter 1 deals with dynamic processes

in the material bodies. The mechanics of

continuous media is treated as a theory de

scribing a phenomenological model of re

ality. The concept of a material point

(which should not be confused with that of

atoms and molecules) is introduced, and

the Euler and Lagrange descriptions of

motion in terms of homeomorphisms are

presented.

In chapter 2 a description of finite and

infinitesimal deformations is given; also

various types of derivatives of the dis

placement and velocity fields are defined;

and a description of deformation in various

reference frames is included. Moreover,

the fundamental properties of a velocity

field listed in the Helmholtz - Zorawski

and Kelvin theorems are formulated.

Schematic figures showing motion of a

continuous medium in various descriptions

are also included.

Chapter 3 introduces the laws of motion

of a continuous medium, such as the laws

of evolution and conservation laws; a

variational formulation of these laws and

principles is also given. Chapter 4 deals

with the principles of classical thermody

namics, the theory of irreversible phenom

ena, and some modern theories of rational

thermodynamics.

Chapter 5 considers classifications of

constitutive equations and studies their

properties. An apparatus of group theory is

used and thermodynamical limitations are

discussed. A principle on the principal

strains and stresses in an isotropic medium

due to Truesdall, Beaker, and Ericksen is

also included. Chapter 6 deals with di

mensional analysis and similitude theory.

In such a theory, the problem of choice of

a unit system is the most important one.

Chapter 7 covers fundamental and se

lected topics of classical fluid mechanics.

Both ideal and viscous hydrostatics and

hydrodynamics are discussed. Also, inte

grals of motion due to Bernoulli and

Cauchy-Lagrange are given; and a curl

theorem due to Helmholtz and a Bierknes

theorem on the material derivative of

circulation are obtained; the latter theorem

is applied to investigate the whirl phenom

ena in an ocean or in the atmosphere.

In chapter 8 the elements of elasticity

theory, both linear and nonlinear, local and

non-local, are discussed. Emphasis is

placed on wave problems; it is regretted

that a stress formulation of linear elastody

namics is only mentioned, Eq. (8.128) in

the book and [5].

Chapter 9 takes up viscoelastic media; a

comprehensive classification of non-New

tonian fluids and rheological materials is

given. Also, the properties of polymers are

at issue and non-classical effects in visco

elastic non-Newtonian fluids, such as the

Poynting, Merrington, and Weissenberg

effects are discussed.

Chapter 10 considers plastic bodies. Two

groups of theories of an elastoplastic body

are distinguished: flow theories and defor

mation theories. The postulates on stability

and plasticity due to Drucker and Ilyushin,

respectively, as well as hypotheses on the

transformation of an elastic material into a

plastic one are discussed. Also, the Levy -

von Mises types of flow laws are dis

cussed. Moreover, models of elasto-plastic

and elasto-viscous plastic bodies, and as

sociated limit problems are discussed.

Chapter 11 deals with the non-classical

models of a continuous media. Special at

tention is paid to liquid crystals and to de

fects in solid bodies. The Kroener descrip

tion (1960) of a dislocation in which the

dislocation density represents a non

Euclidean character of space is discussed.

In chapter 12 the continuous media in

which a process is produced by non

mechanical loads are dealt with. The ef

fects of diffusion and heat transfer are dis

cussed, and attention is paid to the influ
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computed numerically both for positive and nega

tive unevenness. Consequently, in addition to

symmetric waves with one or two peaks in short

wave envelope, a variety of waves with many

peaks, antisymmetric waves, and asymmetric

waves are found.

See also the following:

10A137. Unified theory of nonlinear wave

propagation in two-layer fluid systems

10A940. Energy flux and group velocity in cur

rents of uniform vorticity

162Y. COMPUTATIONAL

TECHNIQUES

10A145. Lagrangian FE analysis of time-de

pendent viscous free-surface flow using an

automatic remeshing technique: Application to

metal casting flow. - F Muttin, T Coupez, M

Bellet, JL Chenot (Ecole Natl Superieure des

Mines de Paris, Centre de Mise en Forme des Mat

CNRS UA1374,06904 Sophia, Antipolis, France).

Int J Numer Methods Eng 36(12) 2001-2015 (30

Jun 1993).

The Navier-Stokes incompressible model is

used to describe 2D metal casting flow. Such

flows involve moving free boundaries. A new

numerical algorithm has been developed using

the Lagrangian FEM. It allows treatment of flows

with moderate Reynolds number. The main fea

ture is to avoid the calculation of the convective

term, together with an automatic remeshing tech

nique, to cure the mesh distortions. The problem

of the free oscillation of a liquid is treated to ver

ify the formulation. An application of this method

to the computation of an industrial metal casting

flow situation is presented.

10A146. Mathematical and numerical model

ing of shallow water flow. - VI Agoshkov (Inst

of Numer Math, Russian Acad of Sci, Moskow,

Russia), D Ambrosi (Dept of Eng Aerospace,

Polytech of Milano, Milan, Italy), V Pennati

(Central Ricerca Hydraul and Struct, ENEL,

Milan, Italy), A Quarteroni (Dept of Math,

Polytech of Milano, Milan, Italy), F Saleri

(Central Ricerca, Cviluppo e Studi Superior in

Sardegna, Calgliari, Italy). Comput Mech 11(5

6) 280–299 (1993).

This paper deals with shallow water equations.

We discuss the mathematical model, the admissi

ble boundary conditions, some popular numerical

methods in the specialized literature, as well as

we propose new approaches based on fractional

step and finite element methods.

See also the following:

10A136. Theta functions and the dispersion rela

tions of periodic waves

164. Waves in

compressible fluids

10A147. Approximate and numerical solu

tions of a gaseous flow with shocks. - RR

Sharma (Dept of Appl Math, IT, Banaras Hindu

Univ, Varanasi-221 005, India), VD Sharma

(Dept of Math, IIT Bombay 76, India), BD

Pandey (Dept of Math, Ohio State Univ, Marion

Campus, Columbus OH), P Shukla (Dept of Appl

Math, IT, Banaras Hindu Univ, Marion Campus,

Varanasi-221 005, India). Quart J Mech Appl

Math 46(1) 141-152 (Feb 1993).

A technique is provided to obtain a closed-form

approximate solution and a fast-converging nu

merical solution to unsteady non-isentropic gas

flow with two shock boundaries. The approxi

mate treatment is found to be very close to the

numerical solution.

10A148. Infinite system of compatibility con

ditions along a shock ray. - R Ravindran and P

Prasad (Dept of Math, Indian Inst of Sci,

Bangalore 560 012, India). Quart J Mech Appl

Math 46(1) 131-140 (Feb 1993).

To study the position and strength of a shock

discontinuity as it propagates into a medium at

rest, an infinite system of compatibility conditions

can be derived. Each of these involves derivatives

of a single flow variable and is in the form of a

transport equation along shock rays. For 2D

shock propagation, the first two compatibility

conditions are derived in detail.

10A149. Limitations of linear theory for

sonic boom calculations. - CM Darden (Vehicle

Integration Branch, Adv Vehicles Div, NASA

Langley Res Center, Hampton VA 23665). J

Aircraft 30(3)309-314 (May-Jun 1993).

Current sonic boom minimization theories have

been reviewed to emphasize the capabilities and

flexibilities of the methods. Preliminary compari

sons of sonic booms predicted for two Mach 3

concepts illustrate the benefits of shaping. Finally,

for very simple bodies of revolution, sonic boom

predictions were made using two methods: a

modified linear theory method and a nonlinear

method for both far-field N-waves and midfield

signature shapes. Preliminary analysis on these

simple bodies verified that current modified linear

theory prediction methods become inadequate for

predicting midfield signatures for Mach numbers

above three. The importance of impulse in sonic

boom response and the importance of 3D effects

which could not be simulated with the bodies of

revolution will determine the validity of current

modified linear theory methods in predicting mid

field signatures at lower Mach numbers.

10A150. Plane compression front steepening

in nonlinear media forms both a shock and a

reflected wave. - CL Morfey (Inst of Sound and

Vib Res, Univ of Southampton, Southampton SO9

5NH, UK) and VW Sparrow (Graduate Program

in Acoust, 157 Hammond Bldg, Penn State). J

Acoust Soc Am 93(6) 3085-3088 (Jun 1993).

An exact solution is given for the reflected

wave formed in a nonlinear medium when a plane

compression front steepens into a shock. The so

lution predicts both a shock and a reflected wave.

In the small-amplitude limit the reflected wave

strength varies as (SP)”, where 6P is the strength

of the initial wave front.

10A151. Electric discharge excited blast

waves in a flat subsonic nozzle. - P Luchini (Inst

Gasdinamica Fac Ingegneria, Univ Naples, Ple

Tecchio 80, Naples 80.125, Italy). AIAA J 31(6)

1060-1067 (Jun 1993).

The persistence of pressure waves generated by

an electric discharge in the throat of a subsonic

nozzle is studied analytically and numerically

with particular reference to the operation of the

high-power EUREKA excimer laser under con

struction at the national Italian ENEA Frascati

laboratories. The attention is focused on trans

verse waves traveling parallel to the discharge

electrodes. After some analytical estimates, a

quasi-2D numerical simulation is presented for

the propagation of these waves in the anticipated

geometry of the discharge chamber of the

EUREKA laser. The possibility of reflection of

pressure waves on the thermal slug left behind by

the previous discharge is also considered.

10A152. Multidimensional upwind schemes

based on fluctuation-splitting for systems of

conservation laws. - H Deconinck, H Paillere, R

Struijs (CFD Group, von Karman Inst for Fluid

Dyn), PL Roe (Aerospace Dept, Univ of

Michigan). Comput Mech 11(5-6) 323-340

(1993).

A class of truly multidimensional upwind

schemes for the computation of inviscid com

pressible flows is presented here, applicable to

unstructured cell-vertex grids. These methods use

very compact stencils and produce sharp resolu

tion of discontinuities with no overshoots.

See also the following:

10A888. Autowave propagation for general reac

tion diffusion systems

166. Solid fluid

interactions

166A. GENERAL THEORY

See the following:

10A156. Dynamical stability of cylinders placed

in cross-flow

10A187. Optical theorem for a plate-stratified

fluid system

166C. EXTERNAL FLOW

See the following:

10A157. Dynamics of a rotatable cylinder with

splitter plate in uniform flow

166D. INTERNAL FLOW(INCL

SLOSHING)

10A153. New outflow model for cylindrical

shells conveying fluid. - VB Nguyen, MP

Paidoussis, AK Misra (Dept of Mech Eng, McGill

Univ, Montreal, PQ, H3A 2K6, Canada). J. Fluids

Struct 7(4) 417-419 (May 1993).

A new so-called outflow model is presented,

which overcomes some numerical difficulties en

countered with previous models in solving prob

lems of cylindrical shells conveying fluid.

Numerical results are given to illustrate conver

gence of the solution obtained with the new

model.

10A154. Sloshing frequencies. - DV Evans

and CM Linton (Sch of Math, Univ of Bristol,

University Walk, Bristol, BS8 1TW, UK). Quart J

Mech Appl Math 46(1) 71-87 (Feb 1993).

The normal frequencies of oscillation of fluid

inside certain containers are calculated by ex

pressing the velocity potential as a linear combi

nation of harmonic functions each of which satis

fies the free-surface boundary condition. The un

known coefficients are then determined by the

application of the bottom boundary condition.

This is done for three different geometries; a 2D

cylinder with semicircular cross-section, a cylin

der with semicircular cross-section of finite length

and a hemisphere. The method is also used to

solve the interior Dirichlet problem the solutions

of which correspond to the "irregular frequencies'

that occur when solving the exterior forcing prob

lem using a source distribution to represent the

velocity potential. The method provides accurate

results for the lower frequencies by truncation of

simple homogeneous infinite systems of equa

tions.

10A155. Vortex-induced vibrations of a long

flexible circular cylinder. - D Brika and A

Laneville (Dept de genie Mec, Univ de

Sherbrooke, Sherbrooke, PQ, J1K2R1, Canada).

J Fluid Mech 250 481-508 (May 1993).

In an experimental study of the vortex-induced

oscillations of a long flexible circular cylinder,

the observed stationary amplitudes describe an

hysteresis loop partially different from earlier

studies. Each branch of the loop is associated with

a vortex shedding mode and, as a jump from one

branch to the other occurs, the phase difference

between the cylinder displacement and the vortex

shedding undergoes an abrupt change. The criti

cal flow velocities at which the jump occurs con

cur with the flow visualization observations of

Williamson & Roshko (1988) on the vortex shed

ding modes near the fundamental synchronization
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region. Impulsive regimes, obtained at a given

flow velocity with the cylinder initially at rest or

pre-excited, and progressive regimes resulting

from a variation of the flow velocity, are exam

ined. The occurence of bifurcations is detected for

a flow velocity range in the case of the impulsive

regimes. The coordinates of the bifurcations de

fine a boundary between two vortex shedding

modes, a boundary that verifies the critical curve

obtained by Williamson & Roshko (1988). The

experimental set-up of this study simulates half

the wavelength of a vibrating cable, eliminates

the end effects present in oscillating rigid cylinder

set-up and has one of the lowest damping ratios

reported for the study of this phenomenon.

See also the following:

10A103. Dynamic characteristics of liquid motion

in partially filled tanks of a spinning spacecraft

166E. VIBRATION OF

STRUCTURES IN FLUIDS

10A156. Dynamical stability of cylinders

placed in cross-flow. - J Planchard and B

Thomas (Electricite de France, Etudes et Rech, 1,

Ave du General de Gaulle, 92141 Clamart,

France). J. Fluids Struct 7(4) 321-339 (May

1993).

The aim of this paper is to investigate the dy

namical stability of an elastic tube bundle placed

in a cross-flow which is governed by the Navier

Stokes equations. The stability of this coupled

system is derived from the study of a quadratic

eigenvalue problem arising in the linearized equa

tions. The instability occurs when the real part of

one of these eigenvalues becomes positive; the

steady state is then replaced by a time-periodic

state which is stable (Hopf bifurcation phenome

non).

10A157. Dynamics of a rotatable cylinder

with splitter plate in uniform flow. - JC Xu, M

Sen, M Gad-El-Hak (Dept of Aerospace and

Mech Eng, Univ of Notre Dame, Notre Dame IN

46556). J Fluids Struct 7(4)401-416 (May 1993).

This is a numerical study of the dynamics of a

rotatable cylinder-splitter-plate body sumerged in

a uniform flow, with emphasis on fluid-structure

interaction. The 2D, incompressible, unsteady

Navier-Stokes equations expressed in terms of

stream function and vorticity are solved by using

a finite-difference method on a numerically gen

erated, boundary-fitted, moving curvilinear coor

dinate system. The flow field is solved in con

junction with the rotational dynamics of the body.

It is found that for subcritical Reynolds numbers,

the splitter plate aligns itself in the flow direction.

On increasing the Reynolds number, a symmetry

breaking bifurcation appears and the splitter plate

migrates to a stable off-axis position. On further

increasing the Reynolds number, there is a Hopf

bifurcation after which the flow becomes un

steady and the body exhibits finite-amplitude os

cillations. Various subharmonics become evident

in the oscillation spectra at higher Reynolds num

bers.

10T158. Flow-induced vibrations of pris

matic bodies and grids of prisms. - E

Naudascher and Y Wang (Inst fur Hydromech,

Univ Karlsruhe, 7500 Karlsruhe 1, Germany). J

Fluids Struct 7(4)341-373 (May 1993).

10T159. Fluid-induced loading of cantile

vered circular cylinders in a low-turbulence

uniform flow Part 3. Fluctuating loads with as

pect ratios 4 to 25. - TA Fox and CJ Apelt (Dept

of Civil Eng, Univ of Queensland, Brisbane,

Queensland 4072, Australia). J. Fluids Struct 7(4)

375–386 (May 1993).

See also the following:

10A38. Transition of flow-indur

vibrations to chaos

inder

10A185. Low-frequency vibrations and radiation

of a circular plate

10A192. Plane vibrations and radiation of an elas

tic layer lying on a liquid half-space

10A941. Generation of a Stoneley-Scholte-Lamb

atmospheric surface wave by an acoustic

source located in an ocean waveguide

166F. INTERACTIONS OF WAVES

WITH FLEXIBLE STRUCTURES

10A160. Mean drift force and yaw moment

on marine structures in waves and current. - J

Grue and E Palm (Dept of Math, Mech Div, Univ

of Oslo, Norway). J. Fluid Mech 250 121-142

(May 1993).

The effect of the steady second-order velocities

on the drift forces and moments acting on marine

structures in waves and a (small) current is con

sidered. The second-order velocities are found to

arise due to first-order evanescent modes and lin

ear body responses. Their contributions to the

horizontal drift forces and yaw moment, obtained

by pressure integration at the body, and to the

yaw drift moment, obtained by integrating the an

gular momentum flux in the far field, are ex

pressed entirely in terms of the linear first-order

solution. The second-order velocities may con

siderably increase the forward speed part of the

mean yaw moment on realistic marine structures,

with the most important contribution occurring

where the wave spectrum often has its maximal

value. The contribution to the horizontal forces

obtained by pressure integration is, however, al

ways found to be small. The horizontal drift

forces obtained by the linear momentum flux in

the far field are independent of the second-order

velocities, provided that there is no velocity circu

lation in the fluid.

166H. FLEXIBLE TANKS AND

CONTAINERS

See the following:

10A155. Vortex-induced vibrations of a long

flexible circular cylinder

166K. OCEAN STRUCTURES

See the following:

10A160. Mean drift force and yaw moment on

marine structures in waves and current

166N. FLUTTER AND FLUTTER

CONTROL

damping, but is very sensitive to errors in fre

quency.

10A162. Large-amplitude FE flutter analysis

of composite panels in hypersonic flow. - CE

Gray Jr (Fac Eng Div, NASA Langley Res Center,

Hampton VA 23681) and Chuh Mei (Dept of

Mech Eng and Mech, Old Dominion Univ,

Norfolk VA 23.529). AIAA J 31(6) 1090-1099

(Jun 1993).

A FE approach is presented for determining the

nonlinear flutter characteristics of 3D thin lami

nated composite panels using the full third-order

piston, transverse loading, aerodynamic theory.

The unsteady, hypersonic, aerodynamic theory

and the von Karman large-deflection plate theory

are used to formulate the aeroelasticity problem.

Nonlinear flutter analyses are performed to assess

the influence of the higher order aerodynamic

theory on the structure's limit-cycle amplitude and

the dynamic pressure of the flow velocity. A solu

tion procedure is presented to solve the nonlinear

panel flutter FE equations. Nonlinear flutter

analyses are performed for different boundary

support conditions and for various system pa

rameters: aspect ratio a/b, material orthotropic ra

tio, lamination angle 6, and number of layers;

Mach number M, flow mass density to panel mass

density ratio u/M; dynamic pressure \; and

maximum deflection to thickness ratio c/h. The

large-amplitude panel flutter results for the full

third-order piston aerodynamic theory are pre

sented to assess the influence of the nonlinear

aerodynamic theory.

10A163. Supersonic flutter analysis of com

posite plates and shells. - RMV Pidaparti (Dept

of Mech Eng, Purdue) and HTY Yang (Dept of

Aeronaut Astronaut and Eng, Purdue). AIAA J

31(6) 1109-1117 (Jun 1993).

A high-precision doubly curved quadrilateral

thin shell FE is used for studying the supersonic

flutter behavior of laminated composite plates and

shells. The composite material property is in

cluded using classical lamination theory, and the

supersonic aerodynamic effect is included using

linearized piston theory. To reduce the number of

dof of the FE aeroelastic system, the normal

modes approach is adopted. Results are presented

to illustrate the behavior of flutter characteristics

for composite plates and curved panels, and com

posite cylindrical and conical shells. Parametric

studies concerning the effects of boundary condi

tions, fiber orientation, degree of orthotropy, and

flow angle on the flutter characteristics are pre

sented for a series of selected examples. The ac

curacy, efficiency, and applicability of the present

FEM are demonstrated by illustrative examples,

and, whenever possible, the results are compared

to alternative solutions available in the literature.

10A161. Evaluation and extension of the flut

ter-margin method for flight flutter prediction.

- SJ Price (Dept of Mech Eng, McGill Univ,

Montreal, PQ, Canada) and BHK Lee (High

Speed Aerodyn Lab, Inst for Aerospace Res,

Ottawa, ON, Canada). J Aircraft 30(3) 395-402

(May-Jun 1993).

For a binary flutter the so called flutter-margin

method is a good way of extrapolating from sub

critical flight test data to estimate the flutter

speed; the best estimates are obtained with a lin

ear extrapolation. Good estimates of the flutter

speed can be obtained from data at speeds as slow

as 50% of the flutter speed. The flutter-margin is

shown to be relatively insensitive to errors in the

damping measurements, but is very sensitive to

errors in frequency measurements. It does not

give good predictions of the flutter speed when

the instability is dominated by a single dof

mechanism. A new for of flutter-margin has been

developed for a trinary flutter, which also varies

in a sensibly linear manner with dynamic pres

sure; it is also relatively insensitive to errors in

166T. AEROELASTICITY (INCL

AEROTHERMOELASTICITY)

See the following:

10A907. Advanced pogo stability analysis for

liquid rockets

166Y. COMPUTATIONAL

TECHNIOUES

10A164. Arbitrary Lagrangian-Eulerian ve

locity potential formulation for fluid-structure

interaction. - C Nitikitpaiboon and KJ Bathe

(MIT). Comput Struct 47(4-5) 871-891 (3 Jun

1993).

Finite-element formulations for fluid-structure

interaction, assuming an inviscid fluid, can be

classified into two major categories: displace

ment-based formulations and potential-based

formulations. Although displacement-based for

mulations have been used widely, the methods

suffer from the presence of spurious calculation
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10A462. Multiply loaded Timoshenko beam

on a stressed orthotropic half-plane via a thin

elastic layer. - H Bjarnehed (Div of Solid Mech,

Chalmers Univ of Tech, S-412 96 Goteborg,

Sweden). JAppl Mech 60(2) 541-547 (Jun 1993).

The problem of bonded contact between a uni

form finite Timoshenko beam and an orthotropic

half-plane via a thin elastic layer is considered in

this paper. The beam is loaded by distributions of

normal and tangential forces, and a uniaxial stress

load is applied to the half-plane. The Timoshenko

beam theory is extended in such a way that the

tangential load is included when the shear contri

bution to the beam central line deflection is calcu

lated. The layer is formulated as a generalized

Winkler cushion including also shear stresses and

strains. Governing singular integral equations are

stated and numerically solved for the unknown

interface stresses. A comparison with a corre

sponding FE-model is also performed.

10A463, Flexural behavior of fixed-ended

channel section columns. - KJR Rasmussen and

GJ Hancock (Sch of Civil and Mining Eng, Univ

ofSydney, Sydney, Australia). Thin-Walled Struct

17(1) 45-63 (1993).

The paper presents a study of the behavior of

thin-walled channel sections compressed between

fixed ends. The paper emphasises the differences

between the behavior of fixed-ended and pin

ended channel sections, arising mainly from the

fact that the local buckling induces bending of

pin-ended channel sections but not of fixed-ended

channel sections. As a result of the different ef

fects of local buckling, the strength of a fixed

ended channel section column exceeds that of a

pin-ended column of the same effective length.

The increase in strength is quantified for a par

ticular channel section, and is studied through the

transition from pinned to fixed-end support by

analyzing columns which are elastically re

strained against rotations at the ends. The paper

also investigates the imperfection sensitivity and

post-ultimate behavior of fixed-ended channel

section columns. It is shown that fixed-ended col

umns are less sensitive to local imperfections and

that they exhibit greater post-ultimate ductility

than pin-ended columns. The study is confined to

columns whose overall buckling mode is the

flexural mode.

See also the following:

10A485. Prop-imperfection subsea pipeline buck

lin

10A489. Thin-walled cold-formed sections sub

jected to compressive loading

10A549. Stick-slip in the thin film peel test I. The

90° peel test

260. Plates, shells,

membranes, etc

260A. GENERAL THEORY

See the following:

10A623. Crack propagation in cylindrical shells

260C. PLATES (FLEXURE AND

TORSION)

10A464. Elastic wrinkling of a tensioned cir

cular plate using von Karman plate theory. -

GG Adams (Dept of Mech Eng, NE Univ, Boston

MA 02115). J Appl Mech 60(2) 520-525 (Jun

1993).

A circular elastic plate, with a uniform tension

field applied at its outer edge, is acted upon by a

centrally applied transverse force. As the force is

increased, the tension state as determined from

von Karman plate theory, changes. In particular

for sufficiently large values of the transverse

force or displacement, the plate can develop a

compressive circumferential membrane stress.

When this compressive stress becomes suffi

ciently large, wrinkling can result. The corre

sponding value of the transverse displacement is

determined by investigating an eigenvalue prob

lem in which wrinkling is indicated by the vanish

ing of the lowest eigenvalue. The results are the

values of the central transverse deflection which

induces wrinkling for a range of in-plane tensions

and are sensitive to the in-plane boundary support

conditions at the outer edge.

10A465. Stress distribution in an elastic per

fectly plastic plate subjected to corrosive envi

ronmental loads. - A Kadic-Galeb and RC Batra

(Dept of Mech and Aerospace Eng and Eng

Mech, Univ of Missouri, Rolla MO 65.401-0249).

IntJ Eng Sci 31(9) 1301-1307 (Sep 1993).

We analyze deformations of an isotropic elas

tic-perfectly plastic plate subjected to environ

mental effects such as the corrosive forces ex

erted by the surrounding medium. It is found that

for the bounding surfaces of the plate to deform

plastically, the corrosion process must propagate

to a point whose distance from the outer bound

ing surface exceeds one third the half-thickness of

the plate, and for the central unaffected material

to also deform plastically the half-thickness of the

corroded layer must exceed five eighths the half

thickness of the plate.

See also the following:

10A398. Hardening rule between stress resultants

and generalized plastic strains for thin plates of

power-law hardening materials

10A884. Thermal effects in Mindlin-type plates

26OE. SHELLS (BENDING

THEORY)

260D. SHELLS (MEMBRANE

THEORY)

10A466. Instability of a biaxially stressed

thin film on a substrate due to material diffu

sion over its free surface. - LB Freund and F

Jonsdottir (Div of Eng, Brown Univ, Providence

RI 02912). J Mech Phys Solids 41(7) 1245-1264

(Jul 1993).

The configuration of an elastically strained thin

film bonded to a relatively thick elastic substrate

over a plane interface is considered. The free en

ergy of the system is taken to be the surface en

ergy of the free surface, which is initially flat, and

the elastic strain energy. It is assumed that the

film material can change the shape of its free sur

face by means of mass diffusion along the sur

face, and that this mass transport occurs coher

ently. As a result of this diffusion process, the free

energy of the system changes due to a change in

surface shape and due to a change in the elastic

energy. If the change in free energy as the surface

shape departs from planar is positive, then this

change will tend to occur spontaneously and the

flat shape is unstable. The stability of a biaxially

stressed thin film due to material diffusion over

its surface is considered here under both 2- and

3D conditions. The stability condition is derived

in the form of a difference between two positive

definite quantities, one associated with surface

energy and the other associated with strain en

ergy, and the sign of this difference depends on

the relative stiffnesses of the materials, the thick

ness of the film, the surface energy of the film

material, and the initial elastic stress in the film. It

is demonstrated that the configuration with a flat

free surface is unstable under sinusoidal perturba

tions in the shape of the surface for any combina

tion of parameters, provided that the wavelength

of the perturbation is larger than some critical

value. Numerical results are presented for the

critical value as a function of film thickness for

several values of the ratio of elastic stiffnesses of

the mterials.

10A467. Energy-minimizing deformations of

elastic sheets with bending stiffness. - MG

Hilgers and AC Pipkin (Div of Appl Math, Brown

Univ, Providence RI 02912). J Elast 31(2) 125

139 (May 1993).

Necessary conditions for energy-minimizing

deformations are derived for a theory of sheets in

which the strain energy function depends on the

second derivatives of the deformation as well as

its first derivatives. All of these conditions are ex

tensions of well-known necessary conditions in

classical calculus of variations. The interpretation

of some of these conditions as material stability

conditions is explained.

10A468. FE analysis of multilayered shells of

revolution. - MA Rao (Dept of Mech Eng,

Andhra Univ, Visakhapatnam, India), RV

Dukkipati (NRC, Ottawa, Canada), M Tummala

(Dept of Mech Eng, Concordia Univ, 1455 de

Maisonneuve Blvd, W Montreal, PQ, Canada).

Comput Struct 47(2) 253–258 (Apr 1993).

A FE formulation for the static and dynamic

analysis of multilayered shells of revolution is

developed. The basis of this formulation is a su

perparametric curved element having four dof per

node including normal rotation. Element stiffness,

mass and load matrices are derived for axisym

metric analysis of laminated shells. Static analysis

of a multilayered pressure vessel, which has 27

layers in its thickness and a hemispherical cover

at one end, is carried out using the formulation

and the program developed. Results obtained for

the static analysis of the pressure vessel are com

pared with results obtained by the standard code

practices. Natural frequencies of shells of revolu

tion corresponding to axisymmetric modes of vi

bration are presented.

10A469. Thin shells with finite rotations for

mulated in biot stresses: Theory and FE formu

lation. - P Wriggers (Inst Mech, Tech Hochsch

Hochschulstr 1, 6100 Darmstadt, Germany) and

F Gruttmann (Inst Baumech und Numer Mech,

Univ Hannover, Germany). Int J Numer Methods

Eng 36(12) 2049-2071 (30 Jun 1993).

A bending theory for thin shells undergoing fi

nite rotations is presented, and its associated FE

model is described. The kinematic assumption is

based on a shear elastic Reissner-Mindlin theory.

The starting point for the derivation of the strain

measures are the resultant equilibrium equations

and the associated principle of virtual work.

Within this formulation the polar decomposition

of the shell material deformation gradient leads to

symmetric strain measures. The associated work

conjugate stress resultants and stress couples are

integrals of the Biot stress tensor. This tensor is

invariant with respect to rigid body motions and,

therefore, appropriate for the formulation of con

stitutive equations. Finite rotations are introduced

via Eulerian angles.

See also the following:

10A445. Comparison of eight variations of a

higher-order theory for cylindrical shells

260F. ANISOTROPIC

MEMBRANES, PLATES, SHELLS

10A470. Axisymmetric deformation of vary

ing thickness composite cylindrical shell with

various end conditions. - BSK Sundarasivarao

and N Ganesan (Machine Dyn Lab, Dept of Appl

Mech, Indian IT, Madras 600 036, India).

Composite Struct 24(4)345-352 (1993).

A varying thickness composite cylindrical shell

subjected to axisymmetric deformation has been

analyzed by the FE displacement method. The

end conditions considered are clamped-clamped,

clamped-free, simply sur simply sup
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ported. It is shown that, by properly selecting the

thickness variation of the shell wall, both stresses

and deflections can be reduced considerably in

most Cases.

10A471. Differential quadrature for static

and free vibration analyses of anisotropic

plates. - CW Bert (Sch of Aerospace and Mech

Eng, Univ of Oklahoma, 865 Asp Ave Rm 212,

Norman OK 73019), Xinwei Wang (Aircraft Eng

Dept, Nanjing Aeronaut Inst, Nanjing, Peoples

Rep of China), AG Striz (Sch of Aerospace and

Mech Eng, Univ of Oklahoma, 865 Asp Ave Rm

212, Norman OK 73019). Int J Solids Struct

30(13) 1737-1744 (1993).

The differential quadrature method is used to

analyze the deflection, buckling, and free vibra

tion behavior of anisotropic rectangular plates

under various boundary conditions. The roots of

Chebyshev polynomials are used to obtain grid

point locations and a new approach is used to ap

ply boundary conditions. Results compare very

well with existing numerical data, and less com

putational effort is required for the problems con

sidered.

10A472. Refined 2D theory of amisotropic

plates. - ME Fares (Math Dept, Fac of Sci,

Mansoura Univ, Egypt). Mech Res Commun

20(4) 319-327 (Jul-Aug 1993).

The classical theory of plates, in which it is as

sumed that normals to the midsurface before de

formation remain straight and normal to the sur

face after deformation, overestimates natural fre

quencies and underpredicts deflections. These er

rors in deflections, stresses, natural frequencies,

and buckling loads are even higher for plates with

large ratio of thickness to side, particularly at high

frequencies. The plate theories due to Reissner

and Mindlin are improvements of the classical

plate theory in that they include the effect of

transverse shear deformation. Many refined shear

deformation theories, in which the assumed dis

placement field is expanded in powers of the

thickness coordinate, are available in the litera

ture. These higher-order theories are cumbersome

and computationally more demanding, because,

with each additional power of the thickness coor

dinate, an additional dependent unknown is intro

duced into the theory. Further, these theories re

quire an arbitrary correction to the transverse

shear stiffnesses, and the transverse shear stresses

do not satisfy the conditions on the top and bot

tom surfaces of the plate. Reddy suggested a con

sistent higher-order plate theory which not only

accounts for the transverse shear deformation but

also satisfies the zero transverse shear stress con

ditions on the plate surface and does not require

shear correction factors. Because of the simplifi

cations made in Reddy formulation, it is inade

quate for the analysis of anisotropic plates sub

jected to a surface traction field with non-zero

tangential components, and for anisotropic plate

problems which require the inclusion of the ef

fects of transverse normal strain and stress. The

present formulation deals with a generalization of

the shear deformation theory. The theory includes

the effects of transverse normal strain as well as

the effect of transverse shear deformation.

Hamilton's mixed variational principle is used to

derive the equation of motion and constitutive

equations of an anisotropic plate subjected to a

surface traction field with tangential and normal

components. Therefore, these equations are ade

quate for the analysis of anisotropic plate prob

lems with general surface conditions for example

contact problems involving anisotropic plates

with surface constrained. The advantages of ap

plying this theory to the free vibration problems

of anisotropic rectangular plates is examined.

260G. STIFFENED AND

SANDWICH PLATES AND

SHELLS

See also the following:

10A672. Simplified method for ultimate load pre

diction of all-steel sandwich panels

10A473. Bending analysis of bimodular

laminates using a higher-order plate theory

with the FE technique. - Yi-Ping Tseng and

Kung-Pyng Bai (Dept of Civil Eng, Tamkang

Univ, Taiwan 25137, ROC). Comput Struct 47(3)

487-494 (3 May 1993).

The higher-order plate theory is adopted in the

FEM to analyze composite plates laminated of or

thotropic bimodular materials. The transverse

shear deformation can be effectively evaluated

where the correction coefficient is not required.

The maximum deflections and neutral surface lo

cations of several benchmark problems are de

termined. The accuracy of the formulation is then

established by comparing the numerical results

with the analytical solutions.

10A474. FE study of the transverse shear in

honeycomb cores. - M Grediac (Dept Mec et

Mat, Ecole Natl Superieure des Mines, 158, cours

Fauriel, 42023 St-Etienne Cedex 2, France). Int J

Solids Struct 30(13) 1777-1788 (1993).

Knowledge of the transverse mechanical prop

erties of honeycomb cores is essential for the de

sign of sandwich panels. This paper deals with the

calculation fof the transverse shear moduli of a

honeycomb sandwich panel by making a FE

study of a representative unit cell. Stress contours

inside the honeycomb are also provided. Three

cell geometries are studied and the influence of

the thickness on the shear modulus and on the

homogeneity of the shear stress field is investi

gated.

10A475. Structural analysis and design of

sandwich panels with cold-formed steel facings.

- Ken P Chong (1211 Forestwood Dr, McLean VA

22101) and JA Hartsock (619 Sater La, Edmonds

WA 980.20). Thin-Walled Struct 16(1-4) 199-218

(1993).

Superior structural efficiency, ease of erection,

mass-production capabilities and thermal-insula

tion qualities are making sandwich panels with

flat or thin-walled cold-formed steel facings and

rigid foamed insulating core increasingly popular

as enclosures for system buildings. In this paper,

the structural behavior – including flexural

stresses, deflections, vibration and thermal

stresses – is presented, summarizing more than

two decades of research. Methods used are ana

lytical (boundary-value approaches), numerical

(finite-strip, finite-layer, finite-prism approaches)

and experimental (full-scale testing). Key equa

tions are formulated and results by different

methods are compared. Design guidelines are also

suggested.

10A476. Tests on intermediately stiffened

plate elements and beam compression elements.

- KH Hoon (Sch of Mech and Prod Eng, Nanyang

Tech Univ, Nanyang Ave, Singapore 2263), J

Rhodes (Div of Mech of Mat, Univ of Strathclyde,

UK), LK Seah (Sch of Mech and Prod Eng,

Nanyang Tech Univ, Nanyang Ave, Singapore

2263). Thin-Walled Struct 16(1-4) 111-143

(1993).

This paper describes an experimental investiga

tion into the behavior of cold-formed steel inter

mediately stiffened plates which are subject to

pure compression and cold-formed beams with

intermediately stiffened compression elements

which are subject to bending. Each plate or beam

has a central intermediate stiffener. The investiga

tion is concerned with the performance of the in

termediately stiffened elements with different

degrees of rigidity provided by the stiffener. The

ultimate loads are compared with the predictions

of BS 5950 Part 5 Code and the first Draft

Eurocode 3.

2601. THICK PLATES AND

SHELLS

10A477. Correct asymptotic theories for the

axisymmetric deformation of thin and moder

ately thick cylindrical shells. - RD Gregory

(Dept of Math, Univ of Manchester, Manchester

M13 9PL, UK) and FYM Wan (Dept of Appl

Math, Univ of Washington, FS-20, Seattle WA

98.195). Int J Solids Struct 30(14) 1957-1981

(1993).

A refined shell theory is formulated for the

elastostatics of long, moderately thick cylindrical

shells in axisymmetric deformation. This theory

corresponds to a two-term outer asymptotic ex

pansion of the exact solution for small values of

the dimensionless shell thickness parameter. The

complexity of the known exact solution for the

3D elasticity problem has stimulated an interest in

thin and thick shell theories to provide accurate

approximate solutions in the shell interior without

any reference (or matching) to the inner asymp

totic solution. The principal difficulty in develop

ing a shell theory lies in the determination of an

appropriate set of 2D boundary conditions for the

shell solution from the prescribed edge data of the

3D theory. The derivations of boundary condi

tions for the thin shell theory and the refined shell

theory constitute a main contribution of this pa

per. Correct boundary conditions obtained for the

first time include (i) displacement edge conditions

for thin shell theory, and (ii) stress and two types

of mixed edge conditions for the refined shell

theory. Several applications of the refined theory

are given to show that corrections to the thin shell

solution can be important.

26OK. ROTATING DISCS,

BLADES, AND SHELLS

See the following:

10A506. Stability of spinning shear-deformable

laminated composite plates

260Y. COMPUTATIONAL

TECHNIOUES

10A478. Analysis and shape optimization of

variable thickness prismatic folded plates and

curved shells Part 1. Finite strip formulation. -

E Hinton and NVR Rao (Dept of Civil Eng, Univ

Col of Swansea, Singleton Park, Swansea SA2

8PP, UK). Thin-Walled Struct 17(2) 81-111

(1993).

This paper deals with the linear elastic analysis

of prismatic folded plate and shell structures sup

ported on diaphragms at two opposite edges with

the other two edges arbitrarily restrained. The

analysis is carried out using curved, variable

thickness, Mindlin-Reissner finite strips. The

theoretical formulation is presented for a family

of C(O) strips and the accuracy and relative per

formance of the strips are examined for curved

situations. Some variable thickness and elastically

supported plates are considered and the

interesting phenomenon of the occurence of

boundary layers in the twisting moments and

shear forces is highlighted for a common

boundary condition. Other examples analyzed

include box girders and cylindrical shells. In all

cases transverse shear deformation effects are

included and the contributions to the strain energy

from membrane, bending and transverse shear

behavior noted. In a companion paper these

accurate and inexpensive finite strips are used for

structural shape optimization.
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method is superior to the conventional one taking

into account only the local yield criterion. Upon

applying the local or general yield criterion, the

range of the initial clamping force is bounded be

tween the elastic region tightening, the yield point

tightening and the plastic region tightening.

10A725. Dependence of contact durability on

the hardened layer thickness. - ON

Chermenskii (Moscow, Russia). J Machinery

Manuf Reliab 643-45 (1992).

It is shown that the thickness of a hardened sur

face layer of a rolling part operating for a long

time under load, should be no less than bv2.

Experimental data on contact durability of speci

mens with a carburized surface layer of variable

thickness, are presented. For thicknesses less than

bv2 durability is shown to decrease drastically.

V. MECHANICS OF

FLUIDS

350. Rheology

10A726. Applicability of simplified expres

sions for design with electro-rheological fluids.

- D Brooks (Adv Fluid Syst, 10-14 Pensbury

Indust Estate, Pensbury St, London SW8 4TJ,

UK). J Intelligent Mat Syst Struct 4(3) 409-414

(Jul 1993).

There are three key factors that enable electro

rheological (ER) fluids to be related to engineer

ing hardware: off-state, which is characterized by

the suspension viscosity; on-state, which is char

acterized by the excess shear stress; and power

requirement, which is characterized by the cur

rent density. This article discusses the potential

benefits of using ER fluids and outlines some of

the basic design problems. Some simplified ex

pressions are derived that permit parametric de

sign of ER fluid-based systems.

10A727. Axial laminar channel flow of a

Williamson liquid: Convergence of approxi

mate solutions. - M Fortova (Inst of Hydrodyn,

Acad of Sci, Podbabska 13, 166 12 Prague 6,

Czech Republic). Acta Tech CSAV38(2) 153-166

(1993).

To solve the equations of flow for a Bingham

liquid, it is usually necessary to use a numerical

method, even when the model is parametrized or

replaced by a similar model. Proof is given in the

paper for the existence and the uniqueness of the

close solution for the Williamson model and for

the convergence of approximate solutions. The

problem is nonlinear and it is, therefore, conven

ient to solve it by minimization of the functional,

whose characteristics were also studied.

10A728. Electrorheological material under

oscillatory shear. - JH Spurk (Tech Hochshule,

Petersenstr 30, 6200 Darmstadt, Germany) and

Zhen Huang (August Bilstein, Postfach 1151,

5828 Ennepetal, Germany). J Intelligent Mat Syst

Struct 4(3):403-408 (Jul 1993).

Two typical electrorheological materials, which

are anhydrous dispersions of silica particles in

silicone oil with surface active additives are

sheared in oscillatory motion in a gap, formed by

an outer fixed cylinder and an inner, axially mov

able cylinder. The rheometer is operated at tune

able resonance frequencies, such that only the re

action of the material is measured. Long time os

cillatory shear measurements show that the elec

troviscous stress deteriorates under dc electric

field, while electroviscous stress is stable when ac

fields are used. Electroviscous stress is found to

depend on field frequency through the depend

ence of the dielectric constant of the disperse

phase on field frequency. A dim. •ss quan

tity, which relates the electr tress

to the electric field strength all

the experimental data for ali

tudes and shear frequencies for each fluid. The

phenomenological theory of Huang and Spurk

predicts this efficiency with satisfactory accuracy.

10A729. Energy considerations in the flow

enhancement of viscoelastic liquids. - A Siginer

and A Valenzuela-Rendon (Dept of Mech Eng,

Auburn Univ, Auburn AL 36849). J Appl Mech

60(2) 344-351 (Jun 1993).

Flow enhancement effects due to different

waveforms in the tube flow of rheologically com

plex fluids driven by a pulsating pressure gradient

are investigated. It is found that the squarer the

waveform the larger the enhancement. In each

case the enhancement is strongly dependent on

the viscosity function, but the elastic properties

also play an important role. We determine that

considerable energy savings may be obtained in

the transport of viscoelastic liquids if an oscilla

tory gradient is superposed on a mean gradient.

The closer the oscillation to the square wave the

larger the energy savings.

10A730. Die swell in semi-rigid polymer solu

tions. - C Allain, M Cloitre (Lab Fluides,

Automatique et Syst thermiques, Bat 502, Campus

Univ, 9.1405 Orsay, Cedex, France), P Perrot, D

Quemada (Lab de Biorheologie et d'Hydrodyn

physicochimique, Tour 33-34, 2 place Jussieu,

75230, Paris, Cedex 05, France). Eur J Mech B

12(2) 175-186 (1993).

This paper reports on an experimental study of

jets of xanthan solutions. Die swell of this semi

rigid polymer is similar to that which is observed

with flexible polymer solutions or fiber suspen

sions. At low shear rates, we relate the variation

of the swell ratio to the shear thinning properties

of the solutions. At high shear, stable delayed die

swell is observed above a critical shear rate.

Using the jet shape and the dependence on the

shear rate of the distance from the nozzle to the

station where the swelling is maximum, we show

that delayed die swell can be either smooth or

discontinuous depending on the polymer concen

tration.

352. Hydraulics

10A731. Solvability of water distribution

networks with unknown pipe characteristics. -

PF Boulos (Dept of Comput Aided Eng,

Montgomery Watson, 301 N. Lake Ave, Suite 900,

Pasadena CA 91101), T Altman (Dept of Comput

Sci and Eng, Univ of Colorado, Denver CO), JCP

Liou (Dept of Civil Eng, Univ of Idaho, Moscow

ID). Appl Math Model 17(7) 380-387 (Jul 1993).

Necessary and sufficient conditions for the

solvability of water distribution networks with

unknown pipe characteristics are developed. They

are predicted on the interdependence between the

unknown pipe characteristics and the network

hydraulic performance. These characteristics are

determined to exactly satisfy defined values of

nonlinear boundary equality constraints. The con

straint set consists of the stated supply pressure or

energy grade requirements to be maintained at

critical locations throughout the distribution net

work. The determination of such conditions is

important for a comprehensive and effective

modeling and optimization of water networks.

10A732. Vortex particle methods for peri

odic channel flow. - JJ Monaghan and RJ

Humble (Dept of Math, Monash Univ, Clayton,

Vic 3168, Australia). J Comput Phys 107(1) 152

159 (Jul 1993).

The boundary conditions for vortex particles in

2D channel flow with periodic boundary condi

tions require infinitely many image vortices. By

using the Poisson summation formula with

Ewald's trick the effect of image vortices can be

calculated efficiently. When combined with a tree

code and appropriate smoothing, a fast robust al

gorithm can be designed. Applications to

Kirchhoff and Kida vortices are described.

See also the following:

10A135. Simplified model for wave height and

set-up in the surf zone

10A142. Interaction of short-crested

waves and large-scale currents

10A740. Propagation of intrusion fronts of high

density ratios

10A782. Particle-driven gravity currents

random

-

354. Incompressible

flow

354C. ROTATIONAL

(NONVISCOUS) FLOW,

VORTICES

10A733. Hairpin removal in vortex interac

tions II. - AJ Chorin (Dept of Math, UCB). J

Comput Phys 107(1) 1-9 (Jul 1993).

A vortex method in 3D is simplified through

the removal of small folds ("hairpins"). The pro

cedure is justified as a real-space renormalization,

within a framework provided by recent results on

the statistical equilibria of vortex filaments. An

application to a vortex ring is carried out.

Applications to other numerical methods as well

as open questions are discussed.

10A734. Note on leapfrogging vortex rings. -

N Riley and DP Stevens (Sch of Math, Univ of E

Anglia, Norwich NR4 7TJ, UK). Fluid Dyn Res

11(5) 235-244 (May 1993).

In this paper we provide examples, by numeri

cal simulation using the Navier-Stokes equations

for axisymmetric laminar flow, of the

"leapfrogging" motion of two, initially£
vortex rings which share a common axis of sym

metry. We show that the number of clear passes

that each ring makes through the other increases

with Reynolds number, and that as long as the

configuration remains stable the two rings ulti

mately merge to form a single vortex ring.

10A735. Stratified Sadovskii flow in a chan

nel. - S Chernyshenko (Inst of Mech, Moscow

Univ, 117.192 Moscow, Russia). J. Fluid Mech 250

423-431 (May 1993).

Stably stratified and non-stratified flows past a

touching pair of vortices with continuous velocity

are considered. An asymptotic solution for the

very long eddies is determined. Numerical results

cover the whole range of subcritical stratification

and eddy length.

354D. VISCOUS FLOW

10A736. Stokes flow past a sphere with

mixed slip: Stick boundary conditions. - BS

Padmavathi, T Amaranath, SD Nigam (Sch of

Math and Comput-Info Sci, Univ of Hyderabad,

PO Central University, Hyderabad 500 134,

India). Fluid Dyn Res 11(5) 229-234 (May 1993).

We give a general solution of Stokes equations

for an incompressible, viscous flow past a sphere

with mixed slip-stick boundary conditions. The

Faxen's law for drag and torque on the sphere is

also given and illustrated with an example.

See also the following:

10A801. Eddy structure in Stokes flow in a cavity

354F. LOW REYNOLDS NUMBER

(INCL CREEPING FLOW)

10A737. Arbitrary Stokes flow past a porous

sphere. - D Palaniappan (Dept of Math, Indian
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Int of Sci, Bangalore 560 012, India). Mech Res

Commun 20(4)309-317 (Jul-Aug 1993).

The motion of a fluid through porous particles

is of great practical interest and has been exten

sively studied. A comprehensive review on this

subject is given in Jones. The empirical boundary

condition proposed by Beavers and Joseph

proved to be an efficient one in dealing with

Stokes flow problems involving permeable (ie,

porous region where Darcy law holds) plane

boundaries. Theoretical results of Beavers and

Joseph were confirmed experimentally by

Beavers et al, whereas Saffman provided a theo

retical justification of the empirical condition us

ing statistical approach. Jones subsequently gen

eralized the Beavers-Joseph condition for cuved

permeable surfaces. Using the generalized

Beavers-Joseph condition together with continu

ity of normal velocity and pressure across the

permeable surface, Jones solved the problem of

uniform flow past a spherical shell. Nir exploited

the same conditions as Jones and presented solu

tions for an isolated porous sphere either rotating

in quiescent fluid or at rest in a linear shear-flow.

He also gave an expression for effective viscosity

of dilute suspension of porous spherical particles.

However, these analyses of the flow field around

a porous sphere in an unbounded fluid have been

limited to the case when a particular velocity field

is postulated at a large distance from the porous

sphere. In this note, the flow fields interior to a

porous sphere (where Darcy law holds) and exte

rior to it (Stokes flow region) are solved for the

case when the velocity profile at a large distance

is quite arbitrary. This has been made possible us

ing the velocity representation of Stokes equa

tions which is due to Palaniappan et al together

with the boundary conditions of Jones. The ex

pressions for velocity fields (both interior and ex

terior) are given explicitly. The Faxen's laws for a

porous sphere are derived and the limiting cases

of rigid and shear-free (bubble) spheres are then

deduced. Some illustrative examples are given.

10A738. Flow past a spinning sphere in a

slowly rotating fluid at small Reynolds num

bers: A numerical study. - CV Raghava Rao

and TVS Sekhar (Dept of Math, Indian IT,

Madras-600 036, India). Int J Eng Sci 31(9)

1219-1231 (Sep 1993).

The axisymmetric flow due to a uniform stream

at infinity past a slowly rotating sphere in a vis

cous, incompressible, rotating fluid is studied by

numerical method and the results are presented

mostly in the form of graphs of the streamlines

and vorticity lines. The governing equations are

the nonlinear Navier-Stokes equations. They are

written as three coupled, nonlinear, elliptic partial

differential equations for the stream function 'P,

vorticity t. rotational velocity component Q.

Finite difference method is used for solving the

governing equations. Second order derivatives are

approximated by central differences of order h2

or k2 and nonlinear terms are approximated by

upwind differences of order h or k. A region of

reversed flow and vortex formation is found to

occur near the front or rear stagnation point or

both under certain conditions depending upon the

speed of the uniform stream at infinity, the radius

of the sphere and the angular velocity of the

sphere and fluid. The fluid may rotate in the same

or opposite directions of the sphere rotation.

10A739. Oscillatory line singularities of

Stokes' flows. - A Avudainayagam and J Geetha

(Dept of Math, Indian IT, Madras-600 036,

India). Int J Eng Sci 31(9) 1295-1299 (Sep 1993).

The fundamental singular velocity and pressure

fields generated by the presence of an isolated

force and a couple acting at a point in a 2D un

bounded viscous incompressible medium execut

ing oscillatory motions are obtained. These line

singularities, the stokeslet and the rotlet, are used

to construct new solutions for certain oscillatory

plane viscous flow problems in the region exte

rior to a circular cylinder.

3541. THERMAL CONVECTION

FLOW

See the following:

10A859. Laminar mixed convection heat transfer

in 3D horizontal channel with a heated bottom

10A860. Mixed convection from a localized heat

source in a cavity with conducting walls: A

numerical study

354.J. STRATIFIED FLOW AND

FREE SURFACE FLOW

10A740. Propagation of intrusion fronts of

high density ratios. - HP Grobelbauer, TK

Fannelop (Inst of Fluid Dyn, Swiss Fed IT, Zurich,

Switzerland), RE Britter (Dept of Eng, Univ of

Cambridge, Cambridge CB2 1P2, UK). J. Fluid

Mech 250 669-687 (May 1993).

The propagation of gravity fronts of high den

sity ratios has been studied experimentally

(exchange flow) and by computer simulation.

Non-Boussinesq fronts are known to occur in cer

tain safety problems (chemical spills and fires),

and we have investigated seven gas combinations

giving density ratios from near unity to well over

20. The results are presented in terms of a density

parameter px which remains finite both in the

weak (px = 0) and the strong (px = 1) limit. The

front velocities, measured by means of hot wires,

are found to fall on two distinct curves, one for

the slower light-gas fronts and one for the faster

heavy-gas fronts. Two fractional depths, q = 1/2

(lock exchange) and q = 1/6, have been investi

gated in detail and results for the interesting case

q) -- 0 have been obtained by extrapolation. To

aid in the extrapolation and for comparison, all

experimental (and some intermediate) cases have

been simulated by means of a general purpose

CFD-code (PHOENICS). Good agreement is

found for cases without convergence problems,

ie, for heavy-gas fronts of density ratio less than

5. Further information on frontal shape etc. has

been obtained from visualization. The extrapola

tions to infinite depth indicate a limiting speed for

both the heavy- and light-gas fronts close to the

values predicted from shallow-layer theory for the

analogous dam-break problem.

See also the following:

10A144. Steady trapped solutions to forced long

short interaction equation

10A735. Stratified Sadovskii flow in a channel

354K. ROTATING FLOW OR

SURFACES

10A741. Barotropic flow over finite isolated

topography: Steady solutions on the beta-plane

and the initial value problem. - L Thompson

(Sch of Oceanog WB-10, Univ of Washington,

Seattle WA 98195) and GR Flierl (54-1426, MIT).

J Fluid Mech 250 553-586 (May 1993).

Solutions for inviscid rotating flow over a right

circular cylinder of finite height are studied, and

comparisons are made to quasi-geostrophic solu

tions. To study the combined effects of finite to

pography and the variation of the Coriolis pa

rameter with latitude a steady inviscid model is

used. The analytical solution consists of one part

which is similar to the quasi-geostrophic solution

that is driven by the potential vorticity anomaly

over the topography, and another, similar to the

solution of potential flow around a cylinder, that

is driven by the matching conditions on the edge

of the topography. When the characteristic

Rossby wave speed is much larger than the back

ground flow velocity, the transport over the to

pography is enhanced as the streamlines follow

lines of constant background potential vorticity.

For eastward flow, the Rossby wave drag can be

very much larger than that predicted by quasi

geostrophic theory. The combined effects of finite

height topography and time-dependence are stud

ied in the inviscid initial value problem on the f

plane using the method of contour dynamics. The

method is modified to handle finite topography.

When the topography takes up most of the layer

depth, a stable oscillation exists with all of the

fluid which originates over the topography rotat

ing around the topography. When the Rossby

number is order one, a steady trapped vortex solu

tion similar to the one described by Johnson

(1978) may be reached.

10A742. Slow axisymmetric rotation of a

sphere in a transversely-isotropic fluid. - G

Iosilevskii (Fac of Aerospace Eng, Technion

Israel IT, Technion City, Haifa 32000, Israel), AE

Mendoza-Blanco (Dept of Phys, Univ Natl

Autonoma de Mexico, Ciudad Univ, 04510

Mexico DF), H Brenner (Dept of Chem Eng,

MIT). Quart J Mech Appl Math 46(1) 153-161

(Feb 1993).

The creeping flow engendered by the steady

axisymmetric rotation of a sphere in a trans

versely-isotropic Newtonian fluid is investigated

in the limiting case when the material properties

of the fluid are unaffected by the fluid motion. By

introducing an appropriate coordinate transforma

tion, the problem is reduced to that of a spheroid

rotating about its axis of symmetry in an isotropic

fluid. Closed-form results are obtained for both

the velocity field and the couple required to main

tain the rotation.

See also the following:

10A768. Swirling free surface flow in cylindrical

containers

354O. FLOW AROUND BODIES

10A743. Numerical simulation of flows past

periodic arrays of cylinders. - AA Johnson, TE

Tezduyar (Dept of Aerospace Eng and Mech,

Army High Performance Comput Res Center,

Minnesota Supercomput Inst, Univ of Minnesota,

1200 Washington Ave S, Minneapolis MN 55415),

J Liou (Tulsa Res Center, Amoco Prod, Tulsa OK

74102). Comput Mech 11(5-6) 371-383 (1993).

We present a detailed numerical investigation

of three unsteady incompressible flow problems

involving periodic arrays of staggered cylinders.

The first problem is an uniperiodic flow with two

cylinders in each cell of periodicity. The second

problem is a biperiodic flow with two cylinders in

each cell, and the last problem is a uniperiodic

flow with ten cylinders. Both uniperiodic flows

are periodic in the direction perpendicular to the

main flow direction. In all three cases, the

Reynolds number based on the cylinder diameter

is 100, and initially the flow field has local sym

metries with respect to the axes of the cylinders

parallel to the main flow direction. Later on, these

symmetries break, vortex shedding is initiated,

and gradually the scale of the shedding increases

until a temporally periodic flow field is reached.

We furnish extensive data, including the vorticity

and stream function fields at various instants dur

ing the temporal evolution of the flow field, time

histories of the drag and lift coefficients, Strouhal

number, initial and mean drag coefficients, ampli

tude of the drag and lift coefficient oscillations,

and the phase relationships between the drag and

lift oscillations associated with each cylinder. Our

data confirms that, at this Reynolds number, there

are no stable steady-state solutions with local cyl

inders parallel to the main flow direction and tak

ing half of the computational domain needed

normally. In such cases, the "steady-state" flow

fields obtained would be identical to the flow

fields observed at the initial stages of our compu

tations. However, we show that such flow fields

do not represent the temporally periodic flow

fields even in a time-averaged sense, because, in

all three cases, the initial drag coefficients are dif
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nential with respect to the Reynolds number to a

physically more realistic bound of the form cRe”.

-

366. Internal flow (inlets,

nozzles, diffusers,

cascades)

10A799. Calculation of heat exchange and

friction in convergent divergent mozzles with

the aid of transport turbulence equations. - GP

Kalmykov, AV Dmitrenko, LD Gutkin. Russian

Aeronaut 35(3) 15-19 (1992).

We present the results of boundary-layer calcu

lations for the divergent-convergent nozzles with

the use of the original model of turbulence. We

compare the obtained, relations with the experi

mental data on nozzles, and with the relations ob

tained using integral equations.

10A800. Flow development in entrance re

gion of ducts. - TMB Carvalho, RM Cotta

(Programma Eng Mec, EE-COPPE-UFRJ Univ

Fed Rio de Janeiro, Brazil), MD Mikhailov (Inst

for Appl Math and Infor, PO Box 384, Sofia 1000,

Bulgaria). Commun Numer Methods Eng 9(6)

503-509 (Jun 1993).

The integral transform method is used to com

pute numerically the development of the velocity

profile in the hydrodynamic entrance region for

laminar flow inside a parallel plate channel. The

results have user-prescribed accuracy and can be

used to test other numerical methods.

See also the following:

10A151. Electric discharge excited blast waves in

a flat subsonic nozzle

-

368. Free shear layers

(mixing layers, jets,

wakes, cavities, plumes)

368B. LAMINAR

INCOMPRESSIBLE

10A801. Eddy structure in Stokes flow in a

cavity. - PN Shankar (Comput and Theor Fluid

Dyn Div, Natl Aeronaut Lab, Bangalore 560 017,

India). J Fluid Mech 250371-383 (May 1993).

Stokes flow in a 2D cavity of rectangular sec

tion, induced by the motion of one of the walls, is

considered. A direct, efficient calculational pro

cedure, based on an eigenfunction expansion, is

used to study the eddy structure in the cavity. It is

shown that some of the results of earlier studies

are quantitatively in error. More importantly, two

interesting questions, namely the extent of the

symmetry of the corner eddies and their relation

ship to the large-eddy structure are settled. By

carefully examining the rather sudden change in

the main eddy structure for cavities of depth

around 1.629, it is shown that the main eddies are

formed by the merger of the primary corner ed

dies; the secondary corner eddies then become

the primary corner eddies and so on. Thus, in the

evolution of the large-eddy structure the corner

eddies, in some sense, play the role of progeni

tors. This explicit prediction should be experi

mentally verifiable.

368C. LAMINAR COMPRESSIBLE

10A802. Zones of influence in the compress

ible shear layer. - Dimitri Papamoschou (Dr.

Mech and Aerospace Eng, UC, Irvine CA 92717).

Fluid Dyn Res 11(5) 217-228 (May 1993).

The effect of Mach number on communication

between regions of a shear layer is analyzed in

the limit of geometric acoustics. Communication

is quantified in terms of the acoustic intensity

emitted by a point source and received by an ob

server moving with the flow. The generalized

Snell's law is used to trace the sound rays which

are shown to be highly distorted because of the

Mach-number gradient. Sound-intensity calcula

tions reveal that the influence of the source on the

surrounding medium becomes confined to a

smaller and smaller area as the Mach number in

creases. The zones of influence on the Lagrangian

observer are funnel-shaped and become narrower

with increasing Mach number. Communication is

inhibited primarily in the axial direction, both up

stream and downstream, and to a lesser extent in

the transverse direction. Hindrance of communi

cation may be the fundamental reason for en

hanced stability of high Mach numbers.

368D. TURBULENT

INCOMPRESSIBLE

10A803. Control of circular cylinder flow by

end plates. - S Szepessy (Dept SKSS, Alfa Laval

Separation AB, S-147 80 Tumba, Stockholm,

Sweden). Eur J Mech B12(2) 217-244 (1993).

The present work involves an experimental

study of the effect of end plate boundaries on the

flow around a circular cylinder for Reynolds

numbers 4 x 10^-4.8 x 10" and cylinder aspectra

tios 0.25 « L/d < 27.6. The deviation from uni

formly distributed flow along the body span is

measured and discussed. End plate design is

found to have a strong influence on the spanwise

variation of the base pressure. A sufficiently long

trailing edge distance is of vital importance in ob

taining as uniform a pressure distribution along

the span as possible, but the leading edge distance

is also found to influence the flow. Within the

measured Reynolds number range it is possible to

define an optimized end plate design that, as far

as possible, reduces spanwise flow nonuniformi

ties. The end plate performance is markedly better

at Re = 4 x 10" than at 1 x 10". The influence of

the end plate horse shoe vortex layer is found to

be weak. Details of its formation are analyzed and

discussed. Varying the cylinder aspect ratio

showed a strong Reynolds number dependence

and extreme flow patterns were found at an aspect

ratio around 1. Keeping the aspect ratio about 1,

in combination with the use of a short leading

edge distance, was found to inhibit the onset of

vortex shedding, resulting in a steady wake for Re

< 1 x 10'. At Re = 4 x 10", in contrast, a peak in

base suction indicating the strongest vortex shed

ding was observed with L/d=1.

concentration in the form of series expansions of

the dependent variables in terms of the Rayleigh

number. The impact of species diffusion on the

buoyancy induced heat and fluid flow has been

highlighted. Streamlines are drawn to demon

strate the evolution of the flow field at different

times. Even though heat was specified to be one

of the two diffusion mechanisms, the results ap

ply as well to the case where the source generates

simultaneously two different chemical compo

nents.

10A805. Mixing by a turbulent plume in a

confined stratified region. - SSS Cardoso and

AWWoods (Inst of Theor Geophys, Dept ofAppl

Math and Theor Phys, Univ of Cambridge, Silver

St, Cambridge CB39EW, UK). J Fluid Mech 250

277-305 (May 1993).

An experimental and theoretical study of the

mixing produced by a plume rising in a confined

stratified environment is presented. As a result of

the pre-existing stable stratification, the plume

penetrates only part way into the region; at an in

termediate level it intrudes laterally forming a

horizontal layer. As time evolves, this layer of

mixed fluid is observed to increase in thickness.

The bottom front advects downward in a way

analogous to the first front in the filling box of

Baines & Turner (1969), while the lateral spread

ing of the plume occurs at an ever-increasing

level and an ascending top front results. We de

velop a model of this stratified filling box, the

model predicts the rate at which the two fronts

advance into the environment.

368]. JET-SOLID SURFACE

INTERACTION

368E. TURBULENT

COMPRESSIBLE

See the following:

10A819. Momentum and heat transport in the tu

rbulent intermediate wake of a circular cylinder

368F. STRATIFICATION

10A804. Buoyancy induced heat and mass

transfer from a concentrated point source. - R

Ganapathy (Dept of Math, Natl Col.

Tiruchirapalli 620 001, India). Fluid Dyn Res

11(5) 187-196 (May 1993).

This paper reports an analytical study of an un

steady heat and mass transfer flow induced by an

instantaneous concentrated point source in an un

"ded fluid. Assuming the thermal Rayleigh

to be small, analytical solutions are ob

'r the flow field, temperature, and species

10A806. Flapping motion of a planar jet im

pinging on a V-shaped plate. - Cheng-Kuang

Lin (Aeronaut Res Lab, Chung Shan Inst of Sci

and Tech, Taichung Taiwan, ROC), Fei-Bin

Hsiao, Shyh-Shiun Sheu (Inst of Aeronaut and

Astronaut, Natl Cheng Kung Univ, Tainan,

Taiwan, ROC). J Aircraft 30(3) 320-325 (May

Jun 1993).

The behavior of a planar jet impinging on a V

shaped plate is studied experimentally by means

of pressure and velocity measurements and flow

visualization. The plate with a symmetrically

variable opening angle is located downstream at

distance L from the jet exit. Data indicate that, for

the presence of the plate, not only the large-scaled

coherent structures in the shear layers exist in the

jet, but also the whole jet column exhibits a

prominent periodic flapping motion with a pre

ferred frequency fr in the flowfield. Results also

show an unstable regime occurring for the flap

ping motion, in which criteria to determine the

boundary of the regime are governed by the loca

tion and the opening angle of the plate. Moreover,

the nondimensional Strouhal number frL/Ui is

found to maintain a constant value of 0.11, and

this value is nearly insensitive to the opening an

gle of the plate in the operating Reynolds number

range.

10A807. Onset of stochastic pulsations at the

early nonlinear stage of the development of

perturbations in the jet of an incompressible

fluid propagating along a wall. - AA Burov and

OS Ryzhov (Moscow, Russia). JAppl Math Mech

56(6) 921-927 (1992).

The Korteweg–De Vries equation, which de

scribes the nonlinear propagation of perturbations

in a jet of incompressible fluid emanating from a

slit in a planar screen and propagating along a

wall is considered. When account is taken of the

natural vibrations of the wall, the equation be

comes inhomogeneous. If an external action is

specified in the form of a running wave, the par

ticular solution of the inhomogeneous equation

may be sought in an analogous form. As a result,

the simplest problem in the theory of dynamical

systems in the Hamiltonian formulation arises. As
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usual, the existence of a homoclinic structure in

the neighborhood of the separatrices is deduced

from an analysis of a Poincare transformation.

Among the trajectories belonging to the homo

clinic structure in the secant plane, there are some

with properties which are formulated in terms of

determinate chaos. A fundamentally important

conclusion concerning the dual role of solitons at

the nonlinear stage of the wave motion of the

fluid follows: on the one hand, they serve as the

nuclei of large-scale coherent structures and, on

the other hand, they are responsible for the onset

of stochastic pulsations.

368.J. JET-FLOW INTERACTION

10A808. Flip-flop jet mozzle extended to su

personic flows. - G Raman (NASA Lewis Res

Center Group, Sverdrup Tech, Brook Park OH

4.4142), M Hailye (Univ of Michigan, Ann Arbor

MI 48103), EJ Rice (NASA Lewis Res Center,

Cleveland OH 44135). AIAA J 31(6) 1028-1035

(Jun 1993).

An experiment studying a fluidically oscillated

rectangular jet flow was conducted. The Mach

number was varied over a range from low

subsonic to supersonic. Unsteady velocity and

pressure measurements were made using hot

wires, piezoresistive pressure transducers, and pi

tot probes. In addition, smoke flow visualization

using high-speed photography was used to docu

ment the oscillation of the jet. For the subsonic

flip-flop jet, it was found that the apparent time

mean widening of the jet was not accompanied by

an increase in the mass flux. Fluidically oscillated

jets up to a Mach number of about 0.5 have been

reported before, but to our knowledge there is no

information on fluidically oscillated supersonic

jets. It was found that it is possible to extend the

operation of these devices to supersonic flows.

The streamwise velocity perturbation levels pro

duced by this device were much higher than the

perturbation levels that could be produced using

conventional excitation sources such as acoustic

drivers. In view of this ability to produce high

amplitudes, the potential for using a small-scale

fluidically oscillated jet as an unsteady excitation

source for the control of shear flows in full-scale

practical applications seems promising.

10A809. Measurement of the monsteady flow

field in the opening of a resonating cavity ex

cited by grazing flow. - HR Graf (Lab for Vib

and Acoust, Sulzer Brothers, CH-8401

Winterthur, Switzerland) and WW Durgin (Dept

of Mech Eng, Worchester Polytech Univ,

Worcester MA 01609). J. Fluids Struct 7(4) 387

400 (May 1993).

Flow past the opening of a cavity can excite

acoustic resonsance. The periodic velocity field in

the region of the cavity opening has been meas

ured for various flow conditions and the vorticity

distribution has been computed from the meas

ured data using numerical differentiation. The re

sults indicate that the shear layer rolls up into dis

crete vortices, which travel across the cavity

opening. Two resonances were found. The first is

characterized by a single vortex being present and

results in the greatest amplitude. The second is

characterized by the presence of two vortices

which excite a distinct but lesser amplitude reso

nance. As the flow velocity changes, the position

of these vortices shifts relative to the phase of the

acoustic cycle. The timing of the interaction be

tween the moving vortices and the acoustic parti

cle velocity determines, to a large extent, the in

tensity of the excitation, and therefore also the os

cillation amplitude. The measurements also indi

cate that the boundary layer upstream of the lead

ing edge pulsates considerably.

10A310. Numerical simulation of nonswirling

and swirling annular liquid jets. - SG Chuech

(Taiwan Aerospace, Taipei, Taiwan, ROC). AIAA

J31(6) 1022-1027 (Jun 1993).

A numerical simulation method is described for

analyzing the fluid dynamics of nonswirling and

swirling annular liquid jets. In the present theo

retical study, a general mathematics model for

simulating these two types of annular film jets has

been established using a curvilinear coordinate

system conforming to the film boundaries. The

study involves the derivation of governing equa

tions, numerical solutions for annular film flow

structure of both nonswirling and swirling cases,

and model validation with available measure

ments. The solutions of flow structure consist of

jet velocity, film thickness, and jet trajectory. The

present model can predict the "transition" phe

nomenon of jet-shape formation from nonswirling

"bell" to swirling "hollow cone". In verification

studies, first the model is validated against other

measurements and analyses of non-swirling bell

like jets. The second case includes a validation

study on spray angle of swirling conical sprays

and a comparison of fuel spray configuration of a

pressure atomizer. The assessment results are en

couraging and indicate a good capability of the

current model.

See also the following:

10A796. Investigation of a contoured wall injec

tor for hypervelocity mixing augmentation

368L. NONEQUILIBRIUM AND

CHEMICAL EFFECTS

See the following:

10A914. Penetration of jets into fluidized beds

370. Flow stability

10A811. Spatial stability of the Daniels and

Eagles profiles. - ME Muwezwa (Math Dept,

Univ of Botswana, Gaborone, Botswana, Africa).

J Eng Math 27(3) 233-244 (Aug 1993).

Daniels and Eagles obtained velocity profiles

for exponential slender tubes. The spatial stability

of these profiles is examined using a quasi-paral

lel approach. Contrary to expectation the profiles

turn out to be stable.

10A812. Dynamics of liquid jets revisited. -

RMSM Schulkes (Dept of Appl Math and Theor

Phys, Univ of Cambridge, Silver St, Cambridge

CB39EW, UK). J. Fluid Mech 250 635-650 (May

1993).

In this paper we investigate the long-wave

length approximations of the equations governing

the motion of an inviscid liquid jet. Using a for

mal perturbation expansion it will be shown that

the 1D equations presented by Lee (1974) are in

consistent. The inconsistency arises from the fact

that terms which have been retained in the

boundary conditions should have been rejected in

view of the approximations made in the momen

tum equations. With the correct equations a num

ber of anomalies between Lee's model and other

models are eliminated. An explicit periodic solu

tion to the nonlinear evolution equations we have

derived is presented. However, it turns out that

the wavenumbers for which this solution is valid

lie outside the range in which the long-wave

length approximations are applicable. In addition

we present numerical solutions to the nonlinear

equations we have derived. In the unstable regime

we find that, as disturbances grow, the character

istic axial lengthscales of the major features are

typically of the order of the radius of the jet. This

casts some doubt on the validity of the long

wavelength approximations in the study of non

linear liquid jet dynamics.

10T813. Monotonicity and boundedness in

the Boussinesq-equations. - BJ Schmitt and W

von Wahl (Lehrstuhl fur Angewandte Math, Univ

Bayreuth, PO Box 101251, W-8580 Bayreuth,

Germany). Eur J Mech B12(2) 245-270 (1993).

10A814. Numerical investigations from com

pressible to isobaric Rayleigh-Benard convec

tion in 2D. - J Frohlich (Fachbereich Math, Univ

Kaiserslautern, 6750 Kaiserslautern, Germany)

and S Gauthier (Centre d'Etudes de Limeil

Valenton, 94195 Villeneuve-St-Georges, Cedex,

France). Eur J Mech B12(2) 141-159 (1993).

In studies of non-constant density flows several

different sets of continuum equations are used in

the literature, depending on the physical situation

that is being considered. The present paper is

concerned with the so-called Low Mach Number

equations that allow, in contrast of the classical

Boussinesq equations, large variations in the den

sity. In particular the transition between regimes

covered by these equations and those requiring

the complete Navier-Stokes equations is studied.

The discussion of the different regimes shows

some essential features of the modeling of con

vection. Numerical results obtained by spectral

methods for the 2D Rayleigh-Benard problem

quantify the effect of compressibility on the flow

field and furnish some indication on when to use

one or the other set of equations.

10A815. Oscillatory instabilities produced by

heat from a temperature-controlled hot wire

below an interface. - C Roze, G Gouesbet, R

Darrigo (Lab d'Energetique des Syst et Procedes,

URA CNRS no 230, INSA de Rouen, BP 08

76.131, Mont St Aignan Cedex, France). J. Fluid

Mech 250253-276 (May 1993).

New experimental results are reported for the

motion of a liquid surface caused by the heat re

leased from a hot wire below the surface. Starting

from a base state with steady convection and

steady deformation of the free surface caused by

variations in surface tension and heat transport to

the surface, the system loses its stability through a

supercritical Hopf bifurcation occurring on a

curve f(&T.,d) = 0 in which d is the distance be

tween hot wire and surface and 6T, a critical

temperature difference. These experiments are a

model for more complex laser heating experi

ments in which chaotic motions may occur. Some

emphasis is placed on the characterization of

propagating waves produced on the surface after

the occurrence of the bifurcation.

10A816. Convection in a rotating spherical

fluid shell with an inhomogeneous temperature

boundary condition at infinite Prandtl number.

- K Zhang and D Gubbins (Dept of Earth Sci,

Univ of Leeds, Leeds, LS29JT, UK). J. Fluid Mech

250.209-232 (May 1993).

We examine thermal convection in a rotating

spherical shell with a spatially nonuniformly

heated outer surface, concentrating on three dis

tinct heating modes: first, with wavelength and

symmetry corresponding to the most unstable

mode of the uniformly heated problem; secondly,

with the critical wavelength but opposite equato

rial symmetry; and thirdly, with wavelength much

larger than that of the most unstable mode.

Analysis is focused on boundary-locked convec

tion, the associated spatial resonance phenomena,

the stability properties of the resonance solution,

and time-dependent secondary convection. A

number of new forms of instability and convec

tion are found: the most interesting is perhaps the

saddle-node bifurcation, which is the first to be

found for realistic fluid systems governed by par

tial differential equations. An analogous Landau

amplitude equation is also analyzed, providing an

important mathematical framework for under

standing the complicated numerical solutions.

10A817. Measurements of the primary insta

bilities of film flows. - Jun Liu, JD Paul, JP

Gollub (Dept of Phys, Haverford Col, Haverford

PA 19041). J. Fluid Mech 250 69-101 (May

1993).

We present novel measurements of the primary

instabilities of thin liquid films flowing down an

incline. A fluorescence imaging method allows
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for hydrogen flames ranges from 20% to 150% of

the value at zero flame curvature for flame curva

ture ranging from -1.5 to 0.7 mm', while for pro

pane-air flames the variation is within t20% of

the value at zero curvature. Variation in the aver

aged peak OH LIF intensity is nearly linear with

respect to the variation in flame curvature from -

1.2 to 0.8 mm 1. The flame area during interac

tions with Karman vortex streets increases as a

relatively weak function of the vortex velocity,

while the vortex size affects the flame area in

crease in the smaller vortices are found to be less

effective in generating flame area. The effect of

Lewis number on the flame front is to enhance

(suppress) the amplitude of the wrinkles gener

ated by vortices for thermodiffusively unstable

(stable) flames, thus resulting in larger (smaller)

flame area. The flame curvature pdfs for flames

interacting with Karman vortex streets exhibit a

bias toward positive flame curvature due to the

large area of positively-curved flame elements

that develop downstream along the V-flame. A

decrease in vortex size tends to increase the flame

curvature and thus broadens the pdfs, while the

vortex velocity, and Lewis number have rela

tively small effects on the flame curvature pdfs.

The flame orientation distribution is peaked near

the normal direction of flame propagation for

small vortex velocity, while an increase in vortex

velocity results in broadening of the flame orien

tation distribution and a shift toward large flame

angle due to the increased distortions in the flame

front and increases in the effective flame

propagation speed, respectively.

molecules in the counterflow flamefront region

near the vortex leading edge. A quenching limit

curve was measured as a function of vortex size

and strength. In the second part of the study, the

measurements are combined with concepts pro

posed by Poinsot, Veynante, and Candel in order

to infer the thin flame limit, namely, the onset of

distributed reactions, on a classical premixed tur

bulent combustion regime diagram. The meas

ured thin flame limit indicates when laminar

flamelet theories become invalid, since quenching

allows hot products and reactants to coexist.

Results are compared with Klimov-Williams cri

terion. Vortex core diameters were as small as the

flame thickness in some cases. The main conclu

sion is that small vortices are less effective at

quenching a flame than was previously believed;

therefore the inferred regime within which thin

flame theories are valid extends to a turbulence

intensity that is more than an order of magnitude

larger than that which was previously predicted.

Results also indicate that micromixing models,

which assume that the smallest eddies exert the

largest strain on a flame are not realistic.

Measured trends are in agreement with the direct

numerical simulations of Poinsot, et al, but abso

lute values differ.

416I. KINETICS AND

MECHANISMS

416E. TURBULENT FLAME

PROPAGATION, FLAMMABILITY

10A895. Direct simulations of premixed tur

bulent flames with monunity Lewis numbers. -

CJ Rutland (Dept of Mech Eng, Univ of

Wisconsin, 1513 University Ave, Madison WI

53760) and A Trouve (Center for Turbulence Res,

Stanford). Combust Flame 94(1-2) 41-57 (Jul

1993).

A principal effect of turbulence on premixed

flames in the flamelet regime is to wrinkle the

flame fronts. For nonunity Lewis numbers, Le *

1, the local flame structure is altered in curved re

gions. This effect is examined using direct nu

merical simulations of 3D isotropic turbulence

with constant density, single-step Arrhenius

kinetics chemistry. Simulations of Lewis numbers

0.8, 1.0, and 1.2 are compared. At the local level,

curvature effects dominated changes to the flame

structure while strain effects were insignificant. A

strong Lewis-number-dependent correlation was

found between surface curvature and the local

flame speed. The correlation was positive for Le

< 1 and negative for Le = 1. At the global level,

strain-related effects were more significant than

curvature effects. The turbulent flame speed

changed significantly with Lewis number, in

creasing as Le decreased. This was found to be

due to strain effects that have a nonzero mean

over the flame surface, rather than to curvature ef

fects that have a nearly zero mean. The mean

product temperature was also found to vary with

Lewis number, being higher for Le = 1 and lower

for Le & 1.

10A896. Images of the quenching of a flame

by a vortex: To quantify regimes of turbulent

combustion. - WL Roberts, JF Driscoll (Dept of

Aerospace Eng, Univ of Michigan, Ann Arbor MI

48109), MC Drake (General Motors Res Lab,

Warren MI 48090), LP Gross (Syst Res Lab,

Dayton OH 45.440). Combust Flame 94(1-2) 58

69 (Jul 1993).

A laminar toroidal vortex i *ted with a

laminar premixed flame in and to

visualize some of the fur if tur

bulent combustion. Lo f the

flame was observed uced

fluorescence imagin' , OH

10A897. Reduced kinetic mechanism for

premixed CH3/CI/CH4/air flames. - KY Lee

and IK Puri (Dept of Mech Eng, Univ of Illinois,

M/C 251, Chicago IL 60680-4348). Combust

Flame 94(1-2) 191-204 (Jul 1993).

A reduced kinetic consisting of nine-global

steps is derived to describe freely propagating

flames burning mixtures of methyl chloride and

methane in air. The fuel blend contains two fuels

with distinct (methyl chloride and methane) ther

mochemical properties, whose contribution to the

radical pool in the flame is different. Our objec

tive is to (1) obtain predictions of flame speeds,

particularly for rich flames, and (2) describe the

gross chemistry by predicting the concentration

profiles of the (a) fuels, (b) oxidizer, (c) products,

in particular the C2-containing species (since

halogenated flames are generally sooting), and (d)

the significant atomic-radical species in the flame.

Chlorine atoms available from methyl chloride

inhibit the flames, resulting in lower flame

speeds. The mechanism is able to predict flame

speeds for flames burning rich mixtures of equal

molar amounts of methyl chloride and methane in

air, and for stoichiometric flames burning methyl

chloride and air in the range of 30%-67% methyl

chloride in the methane-methyl chloride mixture.

These predictions are in good agreement with

simulations and measurements made in our labo

ratory though large discrepancies exist in the

measured flame speeds when data due to other

investigators is included. The species concentra

tion profiles obtained by using the reduced

mechanism are in agreement with those predicted

by the detailed mechanism from which it is deriv

ed.

lar duct. The spray structure and entire flowfield

are measured by a two-component phase doppler

particle analyzer. The relative motion of droplets

as a function of droplet diameter and the effect of

the flame on the counterflow field are determined.

The influences of the flowfield and the flame

sheet on spray structure are measured. A theoreti

cal analysis of droplet behavior in counterflowing

streams is also performed on the basis of the

spray equation applied away from the stagnation

plane. Comparisons between measured and pre

dicted number density as a function of axial posi

tion are made. These experimental and theoretical

results help in understanding the fundamental

mechanisms of spray combustion.

10A899. Upper explosive limit of dusts:

Experimental evidence for its existence under

certain circumstances. - KJ Mintz (Mining Res

Lab, CANMET Energy Mines and Resources,

Ottawa, ON, K1A 0GI, Canada). Combust Flame

94(1-2) 125-130 (Jul 1993).

An experimental study of the explosibility of

cornstarch using the 20-L vessel shows that, for a

narrow size fraction near its limiting particle size

for explosibility, an upper explosion limit exists.

Upper explosive limits were also observed with

both cornstarch and Pittsburgh Standard coal dust

at low oxygen concentrations. These upper limits

occur at accessible dust concentrations. A simple

mechanism, "the oxygen depletion" phe

nomenological concept, is described. The opti

mum dust concentration, calculated using this

mechanism, gives reasonable agreement with the

experimental values, as well as explaining the

variation of optimum concentration with particle

size and oxygen concentration.

416P. SOLID FUELS

10A900. Continuum limits of interacting par

ticle systems. - JM Greenberg and R Peszek

(Dept of Math and Stat, UMBC, Baltimore MD

21228). Physica D 65(1-2) 172-190 (May 1993).

We study the continuum limits of discrete par

ticle systems with short range repulsive forces.

We establish the existence of a class of short

range interparticle force laws with the property

that the asymptotic trajectories of two sufficiently

energetic particles of equal mass entering and

leaving the region of a binary interaction are the

same as the asymptotic trajectories of particles

which undergo a simple point-mass elastic colli

sion. Using such force laws, we consider the evo

lution of an N particle gas, each particle having

mass 1-N, for initial data which are guaranteed to

generate only binary collisions. We show that

such problems are exactly solvable and we char

acterize the continuum limit (N -- oo) of such so

lutions. These limit flows are independent of the

details of the repulsive forces and are the same as

obtained if one replaces the interparticle force law

by the elastic collision rule which simply inter

changes particle velocities during a collision.

416Q. LIQUID FUELS

416L. HETEROGENEOUS AND

MULTIPHASE COMBUSTION

10A898. Spray structure in counterflowing

streams with and without a flame. - SC Li, PA

Libby, FA Williams (Dept of Appl Mech and Eng

Sci, UCSD). Combust Flame 94(1-2) 161-177 (Jul

1993).

An experimental and theoretical study is per

formed on two-phase counterflowing streams

with and without flames in which methanol

sprays, transported in nitrogen from a lower

circular duct, flow upward to meet a pure oxygen

stream that flows downward from the upper circu

10A901. Analytical and numerical modeling

of flame-balls in hydrogen-air mixtures. - J

Buckmaster (Dept of Aeronaut and Astronaut

Eng, Univ of Illinois, Urbana IL), M Smooke

(Dept ofMech Eng, Yale Univ, New Haven CT), V

Giovangigli (Centre Math Appl and CNRS, Ecole

Polytech, Palaiseau, France). Combust Flame

94(1-2) 113-124 (Jul 1993).

Flame-balls are stationary spherical premixed

flames observed in certain near-limit mixtures. It

is believed that radiative heat losses are an impor

tant stabilizing influence. Numerical solutions of

flame balls are constructed for hydrogen-air mix

tures using an accurate description of the chemi

cal kinetics, diffusive transport, and radiation

losses. A lean limit equivalence ratio of 0.0866 is

predicted and a rich limit of 2.828. For any
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is investigated where the flow within the porous

bed is taken to be governed by the Brinkman's

equation. The growth of boundary layer thickness

within the porous region due to surface traction is

studied for different permeabilities. Equivalence

of Darcy's law with slip-flow hypothesis (B-J

condition) and Brinkman's equation with rigorous

(physically realistic) boundary condition for the

flow in the free-fluid region is established and the

justification for using Darcy's law for flow in the

porous region with small permeability is found

from the boundary layer growth curves.

10A910. Mechanical model of lung paren

chyma as a two-phase porous medium. - P

Kowalczyk (Inst of Fund Tech Res, Polish Acad

of Sci, ul Swietokrzyska 21, 00-049 Warsaw,

Poland). Transport Porous Media 11(3) 281-295

(Jun 1993).

The anatomy and geometry of the lung at the

micro- and macroscopic level have been de

scribed briefly. A notion of lung parenchyma - a

macroscopically continuous medium whose me

chanical properties result from those of micro

structural components - has been adapted.

Simplifying assumptions propounded in the con

stitutive model have been discussed. Two phases

have been distinguished in the medium: the solid

phase - a highly deformable, nonlinearly elastic

skeleton in the form of a thin-walled tissue struc

ture on the micro-scale - and the fluid phase - per

fect gas (air) filtrating through the structure.

General constitutive relations for both phases and

their mechanical interactions have been formu

lated. Further, the fundamental set of differential

equations of the quasi-static coupled problem has

been developed. Large deformations, material

nonlinearities, and dependence of permeability on

skeleton deformation have been included. Matrix

formulation of the problem has been presented

from the point of view of the FEM. An implicit

time integration scheme has been proposed. The

algorithm has been illustrated with results of sim

ple numerical tests.

10A911. Use of conventional cocurrent and

countercurrent effective permeabilities to esti

mate the four generalized permeability coeffi

cients which arise in coupled, two-phase flow. -

RG Bentsen (Dept of Mining, Metall and Pet Eng,

Univ of Alberta, Edmonton, AB, T6G 2G6,

Canada) and AA Manai (Apex Energy Consult,

Calgary, AB, T2P 3P2, Canada). Transport

Porous Media 11(3)243-262 (Jun 1993).

In the case of coupled, two-phase flow of fluids

in porous media, the governing equations show

that there are four independent generalized per

meability coefficients which have to be measured

separately. In order to specify these four coeffi

cients at a specific saturation, it is necessary to

conduct two types of flow experiments. The two

types of flow experiments used in this study are

cocurrent and countercurrent, steady-state perme

ability experiments. It is shown that, by taking

this approach, it is possible to define the four

generalized permeability coefficients in terms of

the conventional cocurrent and countercurrent ef

fective permeabilities for each phase. It is demon

strated that a given generalized phase permeabil

ity falls about midway between the conventional,

cocurrent effective permeability for that phase,

and that for the countercurrent flow of the same

phase. Moreover, it is suggested that the conven

tional effective permeability for a given phase can

be interpreted as arising out of the effects of two

types of viscous drag: that due to the flow of a

given phase over the solid surfaces in the porous

medium and that due to momentum transfer

across the phase 1-phase 2 interfaces in the po

rous medium. The magnitude of the viscous cou

pling is significant, contributing at least 15% to

the total conventional cocurrent effective *

ability for both phases. Finally, it is

the nontraditional generalized

which arise out of viscous couplin

equal one another, even when

is unity and the surface tension

10A912. Viscous coupling in two-phase flow

in porous media and its effect on relative per

meabilities. - R Ehrlich (Chevron Oil Field Res,

PO Box 446, La Habra CA 90633). Transport

Porous Media 11(3) 201-218 (Jun 1993).

An idealized model of a porous rock consisting

of a bundle of capillary tubes whose cross-sec

tions are regular polygons is used to assess the

importance of viscous coupling or lubrication

during simultaneous oil-water flow. Fluids are

nonuniformly distributed over tubes of different

characteristic dimension because of the require

ments of capillary equilibrium and the effect of

interfacial viscosity at oil-water interfaces is con

sidered. With these assumptions, we find that the

importance of viscous coupling depends on the

rheology of the oil-water interface. Where the in

terfacial shear viscosity is zero, viscous coupling

leading to a dependence of oil relative permeabil

ity on oil-water viscosity ratio for viscosity ratios

greater than one is important for a range of pore

cross-section shapes and pore size distributions.

For nonzero interfacial shear viscosity, viscous

coupling is reduced. Using values reported in the

literature for crude oil-brine systems, we find no

viscous coupling.

10A913. Bifurcation of plane voidage waves

in fluidized beds. - MF Goz

(Kernforschungszentrum Karlsruhe, Inst for

Neutronemphys and Reaktortech, Pf 3640, W.

7500 Karlsruhe 1, Germany). Physica D 65(4)

319-351 (15 Jun 1993).

A 2D fluidized bed model is investigated from

a bifurcation point of view. It is shown that bifur

cation to periodic travelling waves occurs when

the basic state of uniform fluidization becomes

unstable. The nature of these waves may be 1- or

2D. Here the main focus is on the bifurcation of

oblique travelling waves, ie, plane voidage waves

propagating into various directions in space.

These waves can be described by a 2D dynamical

system, which can be analysed extensively using

phase plane methods. Several stationary and peri

odic solutions as well as homoclinic and hetero

clinic orbits are shown to exist in the model stud

ied.

10A914. Penetration of jets into fluidized

beds. - PE Roach (Inst of Fluid Dyn and Heat

Transfer, Tech Univ, A-1040 Vienna, Austria).

Fluid Dyn Res 11(5) 197-216 (May 1993).

The present paper is concerned with the pene

tration of jets into fluidized beds. Simple models

are developed and compared with data from the

author's experiments and those from the literature.

Differentiation is made between three jet flow re

gimes: jetting, bubbling, and the transition be

tween these two. Jet penetration length is found to

increase as the orifice gas velocity increases, and

the rate of increase is a function of the particular

flow regime. This appears to be one of the main

reasons for the large disagreement between the

various correlations available in the literature. It is

also found that the bed gas velocity has a first-or

der effect on the jet penetration length, something

which is overlooked by most correlations in the

literature. A simple analysis has been used suc

cessfully to define the extent of the transition

Zone.

10A915. Results on the nonlinear theory of

dipolar porous elastic solids. - M Ciarletta (Dept

dell'Ingegneria dell'Informazione e Matematica

Applicata, Univ Salerno, 84100 Salerno, Italy)

and A Scalia (Dept Matematica, Univ Catania,

Viale A Doria n-6-1, 95.125 Catania, Italy). Int J

Eng Sci 31(8) 1165-1172 (Aug 1993).

In this paper we establish some uniqueness and

existence results in the framework of the nonlin

ear theory of porous elastic solids with micro

structure.

10A916. Pressure transient response of sto

lastically heterogeneous fractured reservoirs.

Braester (Dept of Civil Eng, Technion, Haifa

2000, Israel) and DG Zeitoun (Dept of Mech

and Civil Eng, Univ of Vermont). Transport

Porous Media 11(3)263-280 (Jun 1993).

A stochastic model for flow through inho

mogeneous fractured reservoirs of double poros

ity, based on Barenblatt et al's continuum ap

proach, is presented. The fractured formation is

conceptualized as an interconnected fracture net

work surrounding porous blocks, and amenable to

the continuum approach. The block permeability

is negligible in comparison to that of the frac

tures, and therefore the reservoir permeability is

represented by the permeability of the fracture

network. The fractured reservoir inhomogeneity

is attributed to the fracture network, while the

blocks are considered homogeneous. The mathe

matical model is represented by a coupled system

of partial differential random equations, and a

general solution for the average and for the corre

lation moments of the fracture pressure are ob

tained by the Neumann expansion (or Adomian

decomposition). The solution for pressure is rep

resented by an infinite series and an approximate

solution for radial flow, is obtained by retaining

the first two terms of the series. The purpose of

this investigation is to get an insight on the pres

sure behavior in inhomogeneous fractured reser

voirs and not to obtain type curves for determina

tion of reservoir properties, which owing to the

nonuniqueness of the solution, is impossible. For

the present analysis it is assumed an ideal reser

voir with cylindrical symmetric inhomogeneity

around the well. Fractured rock reservoirs being

practically inhomogeneous, it is of interest to

compare the pressure behavior of such reservoirs,

with Warren and Roots's solution for (ideal) ho

mogeneous reservoirs, used as a routine for de

termining the fractured reservoir characteristic pa

rameters A and o, using the results of well tests.

The comparison of the results show that inho

mogeneous and homogeneous reservoirs exhibit a

similar pressure behavior.

10A917. Darcy-Forchheimer natural, forced

and mixed convection heat transfer in non

Newtonian power-law fluid-saturated porous

media. - AV Shenoy (Dept of Energy and Mech

Eng, Shizuoka Univ, 3-5-1 Johoku, Hamamatsu

432, Japan). Transport Porous Media 11(3) 219

241 (Jun 1993).

The governing equation for Darcy-Forchheimer

flow of non-Newtonian inelastic power-law fluid

through porous media has been derived from first

principles. Using this equation, the problem of

Darcy-Forchheimer natural, forced, and mixed

convection within the porous media saturated

with a power-law fluid has been solved using the

approximate integral method. It is observed that a

similarity solution exists specifically for only the

case of an isothermal vertical flat plate embedded

in the porous media. The results based on the ap

proximate method, when compared with existing

exact solutions show an agreement of within a

maximum error bound of 2.5%.

See also the following:

10A115. Directional attenuation of SH waves in

anisotropic poroelastic inhomogeneous media

|
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10A918. "Pull up and "push down" effects is

seismic reflection:. A useful constraint. - J

Dyment (InstPhysique du Globe CNRS URA 323,

Univ Louis Pasteur, 5 rue R Descartes, 67084

Strasbourg Cedex, France) and M Bano

(Ndermarrja Gjeofizike, Qendra e Perpuimit

Sizmik, Fier, Albania). Geophys Trans 37(4) 279

295 (Mar 1993).

"Pull up" and "push down" effects are com

monly observed in seismic sections. These ficti

tious deformations of seismic reflections under
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Items with a reviewer byline (coded R) are by

AMR's corps of dedicated outside volunteer re

viewers. AMR will attempt to get critical reviews

of all relevant textbooks, professional books, ref.

erence works, and handbooks. Items without a re

viewer byline (coded N) are prepared by AMR in

house staff and are largely based on material

such as a book's table of contents and editor's

preface or foreword. In the interest of timeliness

most conference proceedings and multi-author

contributed volumes will receive descriptive notes

in this fashion. Books d d to be hat pe

ripheral to AMR's basic scope may simply be

listed by title (no code; not included in annual

index). Also listed by title when first received are

books under review.

|. FOUNDATIONS &

BASIC METHODS

11N1. Theoretical and Applied Mechanics

1992. Proceedings of the 18th International

Congress, Haifa, Israel, Aug 22-28, 1992. - Edited

by SR Bodner, J Singer, A Solan, Z Hashin.

Elsevier, UK. 1993. 492 pp. ISBN 0-444-88889

6. s.185.75.

Contained in this volume are the full texts of

the invited general and sectional lectures pre

sented at this conference concerning mechanics

and its development. The entire field of mechan

ics is covered, including analytical, solid and fluid

mechanics and their applications. A survey of

work in the fields of fluid and solid mechanics is

also given. The papers are written by leading ex

perts, which is reflected in the quality and diver

sity of the lectures and posters presented. They

will provide a valuable key to the latest and most

important developments in the various subfields

of mechanics.

Contents include: Preface; Sponsoring organi

zations and companies; Congress committees;

List of participants; Report on the Congress.

Opening and Closing Lectures: Instability and

turbulence in shear flows by A Roshko;

Micromechanics of fracture by GI Barenblatt.

Introductory lectures of minisymposia. Insta

bilities in solid and structural mechanics: Material

instabilities and phase transitions in thermo

elasticity by R Abeyaratne; Propagating insta

bilities in structures by S Kyriakides; Compu

tational approaches to plastic instability in solid

mechancis by YTomita. Sea surface mechanics

and air-sea interaction: The role of wave breaking

in air-sea interaction by WK Melville; Extreme

waves and breaking wavelets by OM Phillips;

Effect of wind and water shear on wave

instabilities by PG Saffman. Biomechanics: Na

ture's structural engineering of bone on a daily

basis by SC Cowin; Liquid layer dynamics in

pulmonary airways by RD Kamm, Energy-saving

mechanisms in animal movement by R McN

Alexander. Sectional Lectures: Controlling cha

otic convection by HH Bau, Application of struc

tural mechanics to biological systems by CR

Calladine; Viscous fingering as a pattern forming

system by Y Couder; Mechanics in sport by G

Grimvall; Aerodynamic sound associated with

vortex motions; observation and computation by

T Kambe, Nonlinear membrane theory by A

Libai; On the role of wave propagation and wave

breaking in atmosphere-ocean dynamics by ME

McIntyre; Computational aspects of integration

along the path of loading in elastic-plastic prob

lems by JB Martin; Constitutive modeling and

analysis of creep, damage, and creep crack

growth under neutron irridation by S Murakami;

Stability and bifurcation in dissipative media by

QS Nguyen; Bubble mechanics: luminescence,

noise, and two-phase flow by A Prosperetti; Wave

propagation in non-isotropic structures by MB

Sayir, Self-similar multiplier distributions and

multiplicative models for energy dissipation in

high Reynolds number turbulence by KR

Sreenivasan and G Stolovitzsky; Cardiovascular

fluid mechanics by AA van Steenhoven et al;

Trends in transonic research by J Zierep.

Advanced Formulations in Boundary

Element Methods. - Edited by MH Aliabadi and

CA Brebbia. Comput Mech, Billerica MA. 1992.

300 pp. ISBN 1-56252-111-X. ASME Book No

08. $144.00. (Under review)

II. DYNAMICS &

VIBRATION

11R2. Turbomachinery Rotordyn

amics--Phenomena, Modeling & Analy

sis. - Dara Childs (Mech Eng, Texas A&M

Univ, College Station TX). Wiley, New

York. 1993.476 pp. ISBN 0-471-53840-X.

$89.95.

Reviewed by Joseph Motherway (555

Park Shore Dr #213, Naples FL 33940).

This is a professional book which pre

sents analytical techniques and results use

ful in computer modeling and dynamic de

sign of rotating machines. The author is

well known for his extensive research in

the dynamic behavior of fluid film bear

ings, liquid and gas seals, and fluid-struc

ture interaction of rotors.

Curiously, the author divides the book

rather unevenly into three parts. The first

and third contain only one chapter each;

page length is 85 and 26, respectively. The

second part consists of six chapters.

However, most of its materials, 262 out of

345 pages, is contained in chapters 3-6,

covering the author's specialty. This em

phasis also makes for uneven coverage of

the field described by the title.

Part 1 deals with fundamental rotordy

namic phenomena. These are illustrated by

examining analytical results for some

simple idealized models. This is the sort of

material for which the designer must have

a qualitative understanding before begin

ning a development of a simple rotating

machine, eg, a single stage horizontal cen

trifugal pump for commercial application.

It would also be useful to an engineer who

is beginning to become involved in rotating

machine failure analysis.

The second part constitutes the major

portion of the book. Chapter 2 is a 45-page

review of matrix structural analysis meth

ods, and chapter 7 devotes an additional 36

pages to more advanced aspects of this

topic. Together they compromise a rudi

mentary introduction to the mathematics

associated with the most common eigen

analysis methods. However, no detail is

given on the numerical and computer

methods used to implement these analyses.

The middle four chapters of this part are

devoted to developing the dynamic coeffi

cients for stiffness and damping used in the

modeling of bearings, seals, and rotors.

Clearly, this is the meat of the book, con

taining 60% of its pages and listing 230

references. Chapter 3 is a very extensive

treatment of hydrodynamic bearings and

squeeze film dampers. Although full jour

nal bearings are principally treated, there is

also some discussion of multilobe, step,

and tilting-pad bearings. Squeeze-film

dampers are also included. The fourth

chapter considers liquid annular seals.

Equations and solutions for flow and pres

sure are presented. Force coefficients are

developed, and moment coefficients result

ing from rotor tilt are considered. Chapter

5 is devoted to annular gas seals. In these

two seal chapters, there are several com

parisons of theoretical and experimental

results. Also, they both end with an inter

esting section which poses some practical

questions and supplies their answers.

Chapter 6 is a somewhat brief (40 pages)

treatment of the modeling of forces in

duced by the interaction of turbines and

pump impellers with their structural sur

roundings. Space limitations have re

stricted coverage of fluid dynamical com

putational methods in these four chapters,

but the material presented is of consider

able use to rotor dynamic analysts.

The eighth chapter is a somewhat brief

description of the rotordynamic analysis of

a high pressure fuel turbopump used in the

Space Shuttle's main engine. It applies

some of the material discussed earlier in

the book. Although interesting, a more de

tailed treatment would have improved the

utility of the book for engineers who are

not expert in the field.

Unfortunately, several very important

rotordynamics topics are not addressed.

These include balancing, torsional and

coupled lateral-torsional vibrations, and

active control of bearings and dampers.

Given the emphasis on bearings and damp

ers, active control is a particularly signifi

cant omission.

This author contends that this book could

serve as a text for a rotordynamics course,

or as a supplementary reference for ma

chine design courses, as well as a source

for practicing engineers involved in design,

Appl Mech Rev vol 46, no 11, Part 1, November 1993 B143
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analysis and operation of turbomachines.

This is much too broad a statement.

Coverage of rotordyanmics is not suffi

ciently broad in scope or (except for chap

ters 3-6) detailed in presentation to warrant

use as a text. The large majority of users of

Turbomachinery Rotordynamics: Pheno

mena, Modeling and Analysis will be re

searchers in the field of dynamic behavior

of bearings and seals.

11N3. Multibody Computer Codes in Vehicle

System Dynamics. Supplement to Vehicle

System Dynamics, vol 22. - Edited by W Kortum

(Deutsche Forschungsanstalt fur Luft and

Raumfahrt, Germany) and RS Sharp (Cranfield

IT, England). Swets N America, Berwyn. 1993.

265 pp. ISBN 90-265-1365-8.

Vehicle Dynamics is one of the prime areas for

the application of multibody methods. Systems of

great commercial interest typically require repre

sentation as many interconnected rigid or flexible

bodies, making them difficult or prohibitive to

analyze by hand. Several computer codes have

been written to automate model building and

solving, some of them having special affinity to

vehicle dynamics problems.

In this volume, such computer codes are re

viewed against a background of explanation of

the technologies built into them and surrounding

them. Much information supplied by the code de

velopers has been organized and presented.

Representative problems, two from rail vehicle

dynamics and two from road vehicle dynamics,

have been specified and they have then been

solved by a number of contributors. Precise prob

lem statements are made and “good” solutions to

the problems established through agreement of

independent solvers. The benchmarking problems

are used to further characterize the codes re

viewed and they are expected to provide a useful

resource for code evaluations in the future.

Contents include: Introductions: Review of

multibody computer codes for vehicle system dy

namics by W Kortum; Testing and demonstrating

the capabilities of multibody software systems in

a vehicle dynamics context by RS Sharp. Section

2: Description of Programs: The A'GEM multi

body dynamics package by RJ Anderson;

Autodyn and Robotran by P Fisette, P Maes, J-C

Samin and PY Willems; Autosim by MW Sayers;

Bond graph based modeling using macros, an in

troduction to the progam Bamms by CH Verheul

and HB Pacejka, CMSP-Multibody systems

analysis and optimization program package by

Dao Trong Lien; A brief description of

COMPAMM, FASIM-a modular program for

simulation of nonlinear vehicle dynamics by M

Hiller, K-P Schnelle and A van Zanten; Program

LMS by J Auzinsh and P Sliede, MADYMO (

MAthematical DYnamical MOdel); Description

of the general 3D computer program 3D

MCADA by C Orlandea and NV Orleanda;

MECANO: A FE software for flexible multibody

analysis by M Geradin, DB Doan and I Klapka;

The multibody program MEDYNA by W

Schwartz, The software NEWEUL by G Leister,

E Kreuzer and W Schiehlen, NUBEMM: a special

multibody system as a part of a modern simula

tion concept in the automotive industry by E

Pankiewicz.

Also: Multibody program NUSTAR, OKAM2

General kinematic analysis and ODAM-General

dynamic analysis by V Stejskal and M Valasek,

An integrated MBS modeling environment for

vehicle motion control studies by AS Cherry, AN

Costa and RP Jones; Dynamic vehicle simulation

“SIDIVE Program” by JG Gimemez, LM Martin

and H Sobejano; SIMPACK-An "sis and de

sign tool for mechanical syste 'ka and

A Eichberger, Multibody "are

VAMPIRE by GA Scott. ann

ics analysis software b. way

dynamic codes-VOCC for

computation of multibody systems dynamics by J

Cervinka and F Hofmann; ADAMS-Mechanical

systems simulation software by RR Ryan; The

program system alaska; An introduction to DADS

in vehicle system dynamics by RR Kading and J

Yen, MESA VERDE-Generation and application

of complete simulation models for multibody sys

tems by A Schmidt, NUCARS-New and untried

car analytic regime simulation. Section 3:

Description of Benchmarks: Benchmark to test

wheel/rail contact forces; Railway benchmark

model #2: Bogie vehicle; Simulation of the

IAVSD railway vehicle benchmark #2 with

MEDYNA, SIDIVE and VOCO; Simulation of

the IAVSD road vehicle benchmark bombardier

Iltis with FASIM, MEDYNA, NEWEUL and

SIMPACK, Road vehicle benchmark 2- 5 link

suspension; names and addresses of developers

and distributors.

|. AUTOMATIC

CONTROL

11R4. Measurement Errors: Theory

and Practice. - Semyon Rabinovich. AIP.

1993. 270 pp. ISBN 0-88318-866-X.

$100.00.

Reviewed by Eugene E Covert (Aeronaut

and Astronaut Dept, MIT, Rm 33-215,

Cambridge MA 02139-4307).

Encyclopedic in its discussion of the

material described by the title, the book is

made up of 10 chapters: General informa

tion about measurements, Measuring in

struments and their properties, Prerequi

sites for the analysis of the inaccuracy of

measurements and for synthesis of their

components, Statistical methods for analy

sis of multiple measurements in the

absence of systematic errors, Direct meas

urements, Indirect measurements; Simulta

neous and combined measurements; Com

bining results of measurements, Calcula

tion of the errors of measuring instruments

and problems in the theory of calibration.

Chapters 1 and 2 are largely definitional.

Chapter 3 deals primarily with the dif

ficulties and false leads that can arise in

defining standards and procedures. Chap

ters 4, 5, 6, and 7 are standard material not

usually located in a single source. The

material in chapters 8, 9, and 10 are well

described by their title.

This book is completely different from

Kurt Lion's book, Instrumentation in

Scientific Research, Electrical Input Trans

ducers and HKP Neubert's book, Instru

ment Transducers, An Introduction to their

Performance and Design. The former is a

compendium of transducers. The latter is

less complete in that regard, but very

complete in its discussion of the role of

instrument dynamics in treating unsteady

data. RW Hamming's book, Digital Filters

treats problems associated by sampling and

is appropriate to the digital age. A

Practical Guide to Data Analysis for

Physical Science Students by Louis Lyons,

treats elementary statistics as an adjunct to

experimentation. (There are many other

books that I could have listed and apolo

gize to those authors in advance, but to

keep this review short I had to make

choices.) Rabinovich's book, Physical

Measurements and Analysis, complements

all those listed above. He discusses most of

the topics in the books cited, but not in

great depth.

Except for Lion's and Neubert's discus

sion of transducers, the book under review

synthesizes the most material contained in

the books cited above, as well as treating

topics not usually discussed. To quote from

the back cover of the book, “Building from

the fundamentals of the theory of meas

urement, the author offers a wealth of

practical recommendations and procedure.”

This is true.

I suggest that every technical library

should own a copy of Measurement

Errors: Theory and Practice. Serious ex

perimentalists whose interests are broad

will surely want to examine the book with

the intent of buying it.

As for the more general audience, they

ought to be sure their referencing system

will remind them of this book when it is

needed. At $100 per copy, it is not for eve

ryone.

An Introduction to Fuzzy Control. - Dimiter

Driankov, Hans Hellendoorn, Michael Reinfrank.

Springer, New York. 1993. 315 pp. ISBN 0-387

56362-8. $59.00. (Under review)

Linear Control Systems Vol 2, Synthesis of

Multivariable and Multidimensional Systems. -

T Kaczorek (Warsaw Univ of Tech, Poland).

Wiley, New York. 1993. 392 pp. ISBN 0-471

93434-8. $125.00. (Under review)

Loop Transfer Recovery: Analysis and

Design. - Ali Saberi, Ben M Chen, Peddapullaiah

Sannuti. Springer, New York. 1993. ISBN 0-387

19831-8. $89.00. (Under review)

Parallel Algorithms for Optimal Control of

Large Scale Linear Systems. -Z Gajic (Rutgers

Univ NJ) and X Shen (Univ of Alberta,

Edmonton, Canada). Springer, New York. 1993.

455 pp. ISBN 0-387-19825-3. $79.00. (Under re

view)

Robotics and Remote Systems for Hazardous

Environments. - Edited by Mohammad Jamshidi

and Patrick J Eicker (Albuquerque NM). Prentice

Hall, Englewood Cliffs NJ. 1993. 230 pp. ISBN

0-13-782590-0. (Under review)

Sensors for Industrial Inspection. - C

Loughlin. Kluwer, Netherlands. 1993. 456 pp.

ISBN 0-7923-2046-8. £125.50. (Under review)

V. MECHANICS OF

SOLIDS

11R5.

Structures.

Mechanics of Composite

- Valery V Vasiliev (Comp

Struct, Moscow Aviation Tech Inst,

Moscow, Russia). Taylor & Francis,

Washington DC. 1993. 506 pp. ISBN 1

56032-034-6.

Reviewed by Charles Parr (Eng and Mat

Sci Div, Southwest Res Inst, PO Box

28510, San Antonio TX 78284).



Appl Mech Rev vol 46, no 11, Part 1, November 1993 B145Book Reviews

This is a book for engineers written in

the Timoshenko tradition. The equations

are written out in full; tensor notation is

not used. Of the 48 references, half are to

works published in the USSR (or Russia?).

About one quarter are to Vasiliev's work.

Most of the rest are English, which makes

an interesting contrast with the number of

Soviet works one would find referenced in

an English language book.

The book is divided into seven chapters,

the first two chapters cover constituent

properties and the equations of elasticity of

composite materials. The second chapter

discusses simplification of the elasticity

equations for thin-walled structures, hy

grothermal effects, and several types of

nonlinearity. Included are elastic-plastic

behavior, nonlinear elasticity, structural

nonlinearity, nonlinearity due to resin

crazing, viscoelasticity, geometric nonlin

earity, buckling, and dynamic response.

This chapter takes 120 of the book's 500

pages.

The remaining chapters are devoted to

standard structural forms: Composite

beams, columns, and rings, Thin walled

beams; Composite panels and plates,

Circular cylindrical shells, and Axisym

metric deformation of shells of revolution.

In these chapters, the equations are de

veloped to the point that an engineer can

easily apply them to a particular structure.

Only brief mention is made of FEMs of

solution.

This is the first English edition of the

first Russian edition. It is edited by Robert

Jones of VPI & SU who wrote one of the

first books on mechanics of composites,

the well known Mechanics of Composite

Materials almost 20 years ago. The text is

lucid, a tribute to Jones and the translator,

Lucia Man of the Institute of Crystallo

graphy, Academy of Sciences, Moscow.

Mechanics of Composite Structures

would be a very readable and useable text

with only a first course in elasticity. No

problems are given, however. It is also

recommended for the practicing engineer

who designs composite structures, but has

a minimum amount of training in advanced

mechanics.

11R6. The Science and Practice of

Welding, 10th Edition, Vols 1 and 2. Vol

1: Welding science and technology, Vol 2:

The practice of welding. - A C Davies

(Welding Inst, UK). Cambridge UP, New

York. 1993. 500 pp. ISBN 0-521-43404-1.

Paper ISBN 43566-8. $75.00. Paper

$27.95.

Reviewed by Carl E. Cross (Metallurgy,

Colorado Sch of Mines, Hill Hall, Golden

CO 80401).

This two volume text on welding science,

technology, and practice serves as a gen

eral introduction to a very broad and en

compassing subject. It is presented at a

level that technicians can easily compre

hend, requiring little more than a high

school background. As such, no topic is

treated in great depth, making this text of

limited value to engineers or veteran

welding technicians.

References are made to British Standards

where appropriate and sample questions

are presented from examinations of the

City and Guilds of London Institute.

Craftsmen working to such standards

would find this information most useful,

which undoubtedly accounts for its popu

larity. (There have been nine previous edi

tions and ten reprintings since the book

was first published in 1941.)

A serious effort is made to incorporate

both English and metric (SI) units as well

as British and American welding symbols

and alloy designations. This duality per

mits the text to be used across continents

and may be particularly useful to those

having to work with both systems. On the

other hand, this duality may also serve to

confuse the beginning student.

The first volume, Welding Science and

Technology, deals with some of the basic

fundamentals of welding metallurgy, elec

trical power, inspection, testing, and design

drawings. It suffers from poor organization

of topics and inclusion of superfluous in

formation. For example, details are given

of atomic structure and extractive metal

lurgy processes that some might consider

impertinent information for shop welders.

Regarding structure (in the chapter on

metallurgy), the discussion of alloys is

found to oscillate between wrought cast,

ferrous and non-ferrous topics in a disor

ganized, confusing manner. The chapter

following the discussion of metallurgical

principles is devoted to phase diagrams, in

serted as if by accident or afterthought.

The breadth of subjects covered is com

prehensive, including a discussion of mod

ern-day issues such as duplex stainless

steel and inverter-type power supplies.

Also, a brief discussion is given to the

crack-opening-displacement test, although

the basic fundamentals of fracture mechan

ics are never addressed. Missing is an ex

planation of the important relationship

between welding input, cooling rate, and

microstructure using time-temperature

transformation curves. Also missing is a

good review of the many types of welding

defects, although bits of information are

scattered throughout the text. Also missing

(in both volumes) is the use of references

and a bibliography, suggestions for further

reading are not given.

The second volume, The Practice of

Welding consists of a comprehensive sur

vey of welding methods, tools, equipment,

and techniques. A wide spectrum of meth

ods are addressed, but no one method is

treated in depth. Concerns unique to cer

tain alloys are identified, as are safety is

sues. A special chapter on the welding of

plastics is included. Missing is information

regarding the use of variable polarity

welding, a relatively new innovation for

welding aluminum.

In summary, Davies' two volume, com

prehensive text on welding is designed

primarily for the entry level technologist

with guild (or union) certification in mind.

It is particularly well suited for those who

work to British Standards. Almost every

pertinent welding subject is covered to a

small extent, at a level that is easily com

prehended. However, its organizational

structure leaves much more to be desired.

From the standpoint of nomenclature, other

comparable texts may prove to be more

suitable for use in North America, (eg,

Modern Welding Technology, Prentice Hall

Pub, 1989).

Correction: The second paragraph of

review 6R23 on page B88 ofAMR Vol 46, no

6, June 1993, appeared incorrectly. Our

apologies to Professor Popescu. The

corrected paragraph follows:

This reviewer, who in 1987 was in

charge of reviewing the first edition of

the above mentioned successful book

for Engineering Geology (Elsevier) is

most pleased to review this new edition.

11N7. Advanced Materials and Coatings for

Combustion Turbines. Proceedings from

Materials Week ‘93. - Edited by V Swaminathan.

ASM Int, Materials Park OH. 1993. 265 pp. ISBN

0-87.170-487-0. S83.00.

This collection of papers provides critical in

formation about developments and applications

of advanced gas turbine materials, with emphasis

on hot gas path components. These include su

peralloys used in transition ducts, nozzles, and

blades. Application and service experience of

newly developed alloys and coatings, as well as

conventional alloys and coatings to both land

based gas turbine and aircraft engine components,

are covered. Metallurgical and mechanical prop

erty degradation of alloys and coatings during

service is also included.

Other areas covered include applications of

aero-engine technology to land-based gas tur

bines; materials and coating in electric utility

applications; chemistry and microstructural modi

fications on mechanical properties, corrosion, and

oxidation resistance; effects of service exposure

on properties and degradation of components;

and directionally solidified and single crystal

blade technology.

11N3. Computational Methods in Contact

Mechanics. - Edited by MH Aliabadi and CA

Brebbia. Comput Mech, Billerica MA. 1993. 360

pp. ISBN 1562521136. $160.00.

Modern engineering design leads to the realiza

tion of the importance of contact problems in

many technological fields. Contact problems are

complex and inherently nonlinear due to their

moving boundaries and the existence of friction

along contact surfaces. Until a few years ago, re

searchers were engaged only in the fundamental

concepts of contact problems. Today, due to the

great improvement in computer technolgy and

computational methods, it is possible to solve

many complex practical contact problems accu

rately and efficiently.

This book presents a comprehensive review of

the current state of theory of contact mechanics
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Kunming, China). Appl Math Mech 14(3) 285

298 (Mar 1993).

In this paper, Routh's equations for the me

chanical systems of the variable mass with non

linear nonholonomic constraints of arbitrary or

ders in a noninertial reference system have been

deduced not from any variational principles, but

from the dynamical equations of Newtonian me

chanics. And then again the other forms of equa

tions for nonholonomic systems of variable mass

are obtained from Routh's equations.

150G. DEFORMABLE BODY

DYNAMICS

11A51. Nonlinear dynamics of a flexible

beam in a central gravitational field I.

Equations of motion. - MRM Crespo da Silva

and CL Zaretzky (Dept of Mech Eng, Aeronaut

Eng and Mech, RPI). Int J Solids Struct 30(17)

2287-2299 (1993).

The complete nonlinear differential equations

governing the nonlinear motions of a beam able

to undergo bending and pitching in space, are

formulated in this paper. The formulation is based

on a variational principle and accounts for all the

nonlinearities due to deformation and gravity

gradient effects. The nonlinearities due to defor

mation arise due to geometric effects, which con

sist of nonlinear curvature and nonlinear inertia

terms. Expanded equations governing the nonlin

ear perturbed motion about an equilibrium are

also developed for the case when the beam is in

circular orbit. Such equations are suited for a per

turbation analysis of the motion, and nonlineari

ties up to cubic order in a bookkeeping parameter

are retained in them. Nonlinear motions involving

interactions between bending and pitching of the

beam are investigated in Part II of this work using

the equations developed here.

11A52. Nonlinear dynamics of a flexible

beam in a central gravitational field II.

Nonlinear motions in circular orbit. - MRM

Crespo da Silva and CL Zaretzky (Dept of Mech

Eng, Aeronaut Eng and Mech, RPI). Int J Solids

Struct 30(17) 2301-2316 (1993).

The coupled nonlinear pitch-bending response

of a free-free beam in a circular orbit, when the

beam is subjected to a periodic external excita

tion, is analyzed. The nonlinearities present in the

differential equations of motion are due to defor

mation of the beam (ie, curvature and inertia non

linearities) and to the gravity-gradient moments.

Perturbation methods are used to analyze the mo

tion. Several resonant motions exhibited by the

system are analyzed in detail, namely, harmonic

resonances when the frequency of the external

excitation, Q, is either near the natural frequency

of the flexural or the pitch motion, and a super

harmonic resonance when Q is near one half of

the natural frequency for the pitch motion. The

latter two resonances are associated with very low

excitation frequencies.

15OK. NONLINEAR DYNAMICS

(INCL CHAOS, BIFURCATION,

FRACTALS)

11A53. Bifurcations and chaos in voice sig

mals. - H Herzel (Inst of Theor Phys, Humboldt

Univ, Invalidenstr 42, 0-1040 Berlin, Germany).

Appl Mech Rev 46(7) 399–413 (Jul 1993).

The basic physical mechanisms of speech pro

duction is described. A rich variety of bifurca

tions and episodes of irregular behavior are ob

served. Poincare sections and the analysis of the

underlying attractor suggest that these noise-l"

episodes are low-dimensional deterr

chaos. Possible implications for the v

diagnosis of brain disorder are discuss

11A54, Chaos and noise in dynamical sys

tems. - T Kapitaniak (Div of Control and Dyn,

Tech Univ of Lodz, Poland) and J Brindley (Sch

of Math, Univ of Leeds, Leeds LS2 9JT, UK).

Appl Mech Rev 46(7) 359-444 (Jul 1993).

This collection of papers is concerned with

chaos and noise in a range of dynamical systems,

mostly within a context of mechanics.

11A55. Controlling chaos in mechanical sys

tems. - B Blazejczyk, T Kapitaniak, J Wojewoda

(Div of Control and Dyn, Tech Univ,

Stef kiego 1-15, 90-924 Lodz, Poland), J

Brindley (Dept of Appl Math Stud and Centre for

Nonlinear Stud, Univ of Leeds, Leeds LS2 9JT,

UK). Appl Mech Rev 46(7) 385-391 (Jul 1993).

The problem of controlling chaos, that is to

convert the chaotic behavior to a periodic time

dependence is discussed. We described a number

of effective controlling methods in the context of

mechanical systems.

11A56. Destruction of quasiperiodic oscilla

tions in weakly nonlinear systems. - AB

Belogortsev (Dept of Phys and Astron, Univ of

Maine, Orono ME 04469), DM Vavriv (Radio

Astron Inst, Acad of Sci of Ukraine, Kharkov

310002, Ukraine), OA Tretyakov (Dept of Radio

Phys, Kharkov State Univ, Kharkov 310077,

Ukraine). Appl Mech Rev 46(7) 372-384 (Jul

1993).

We consider the main regularities of the arising

of the dynamical chaos in weakly nonlinear oscil

latory systems. We show that the chaotic oscilla

tions in such systems can occur due to the de

struction of quasiperiodic oscillations. Various

analytical approaches are applied to study the

properties of the quasiperiodically forced passive

and active single-mode oscillators as well as the

conditions for the appearance of chaos. The re

sults of numerical and experimental investiga

tions are also discussed.

11A57. Dynamics of a rolling wheelset. -

Hans True (Tech Univ of Denmark and ES

Consult, DK-2800 Lyngby, Denmark). Appl Mech

Rev 46(7) 438-444 (Jul 1993).

We discuss the kinematics and dynamics of a

wheelset rolling on a railway track. The mathe

matical model of a suspended wheelset rolling

with constant speed on a straight track is set up

and its dynamics is investigated numerically. The

results are presented mainly on bifurcation dia

grams. Several kinds of dynamical behavior is

identified within the investigated speed range. We

find a stationary equilibrium point at low speeds

and at higher speeds symmetric and asymmetric

oscillations are found and ranges with chaotic

motion are identified. The bifurcations are de

scribed.

11A58. Homoclinics in the reconstruction of

dynamic systems from experimental data. - VS

Anishchenko and MA Safonova (Phys Dept,

Saratov State Univ, Astrachanskaja B3, Saratov

410071, Russia). Appl Mech Rev 46(7) 361-371

(Jul 1993).

The role of homoclinic effects in solution of a

reconstruction problem of system attractors and

model equations from experimental observable in

the presence of external noise is investigated nu

merically. It is shown that the possibility of re

construction essentially depends on character of

origin system homoclinic trajectories and noise

intensity. If the homoclinic structure belongs to

the attractor, then the reconstruction results in

restoration origin system attractors. A small noise

influence causes in this case a small perturbation

of attractors probability measure and practically

disappears due to filtering properties of the recon

struction algorithm. The homoclinic structure

does not belong to the attractor, then in the ab

sence of noise the probability measure concen

trates at the attractor, the structure of which is not

‘ined by the homoclinics. The noise perturba

induces new regimes. Then the attractor

ure essentially depends on the homoclinics

lure and noise level. In this case the model

system attractor of which reproduces "invisible"

homoclinic structure, is obtained as a result of

reconstruction.

11A59. Hopf bifurcation in gas journal bear

ings. - K Czolczynski (Div of Control and Dyn,

Tech Univ, Stefanowskiego 1-15, 90-924 Lodz,

Poland). Appl Mech Rev 46(7) 392-398 (Jul

1993).

This paper reviews a numerical investigation of

the problem of small self-excited vibrations in gas

journal bearings. The method of analysis is based

on the Hopf bifurcation theory, in which the ap

proximate periodic solutions of nonlinear equa

tions of motion are computed using the Fredholm

alternative. This theory enables us to construct the

bifurcating periodic solutions and to determine

their stability. The equations of motion of the in

vestigated gas journal bearing have been formu

lated after estimating the damping and stiffness

coefficients of a gas film. For this purpose, a new

method of identification has been proposed.

11A60. Sectional curvature and chaos in dy

namical problems: Toward the invariant

measure of chaos in Hamiltonian systems. - M

Szydlowski (Astron Observatory, Jagiellonian

Univ, Orla 171, 30-244 Krakow, Poland) and A

Krawiec (Dept of Economics, Jagiellonian Univ,

Wislna 2, 31-007 Krakow, Poland). Appl Mech

Rev 46(7) 427–437 (Jul 1993).

Chaotic phenomena in general relativity are in

vestigated. In relativistic astrophysical problems

no space-time coordinate system is privileged in

any way as far as the physical description of phe

nomena is concerned. Effects which depend on

the choice of the particular coordinate system

should be treated as an artifact of the incorrect

methods. To avoid such difficulties the gauge in

variant theory of chaos is proposed.

11A61. Spatio-temporal versus temporal

chaos in a spatially extended magnetic dynami

cal system. - JJ Zebrowski and A Sukiennicki

(Inst of Phys, Warsaw Univ of Tech, Koszykowa

75, 00-662 Warszawa, Poland). Acta Phys

Polonica B B24(4) 785-800 (Apr 1993).

Nonlinear dynamical states of a spatially ex

tended micromagnetic system - the Bloch wall -

were analyzed by means of spatio-temporal dia

grams and power spectral analysis in the spatial

frequency domain. The system studied exhibits

dynamics with propagating coherent spatial struc

tures - Bloch lines - which have soliton proper

ties. Although it is spatially extended only tempo

ral chaos occurs. The symptoms of this type of

chaos (spatially complex patterns changing vio

lently with the time) in such a spatially extended

system should not be confused with chaos in the

space and time simultaneously. The system is not

spatially chaotic due to the existence in it of co

herent spatial structures with a fixed length scale

(kink solitons).

11A62. Synchronization and chaotization of

oscillations in coupled self-oscillating systems.

- PS Landa (Dept of Phys, Lomonosov Moscow

State Univ, 119899 Moscow, Russia) and MG

Rosenblum (Mech Eng Res Inst, Russian Acad of

Sci, 101830 Moscow, Russia). Appl Mech Rev

46(7) 414-426 (Jul 1993).

The effects of synchronization of chaotic and

periodic self-oscillation systems are discussed.

Two mechanisms of synchronization of periodic

systems which manifest themselves at synchroni

zation of chaotic systems are determined.

Examples of synchronization of chaotic systems

by harmonic external force, mutual synchroniza

tion of periodic and chaotic systems, as well as of

mutual synchronization of two and more chaotic

systems are discussed.

See also the following:

11A49. Dynamical systems

Stroboscopic maps approach

11A113. Study and performance evaluation of

some nonlinear diagnostic methods for large

rotating machinery

with impulses:
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150Y. COMPUTATIONAL

TECHNIQUES

11A63. Accelerated iterative method for the

dynamics of constrained multibody systems. -

Kisu Lee (Dept of Mech Eng, Chon Buk Natl

Univ, Chon Ju, Chon Buk 560-756, Korea).

Comput Mech 12(1-2) 27-38 (Jun 1993).

An accelerated iterative method is suggested

for the dynamic analysis of multibody systems

consisting of interconnected rigid bodies. The

Lagrange multipliers associated with the kine

matic constraints are iteratively computed by the

monotone reduction of the constraint error vector,

and the resulting equations of motion are easily

time-integrated by a well established ODE tech

nique. The velocity and acceleration constraints

as well as the position constraints are made to be

satisfied at the joints at each time step. Exact

solution is obtained without the time demanding

procedures such as selection of the independent

coordinates, decomposition of the constraint

Jacobian matrix, and Newton Raphson iterations.

An acceleration technique is employed for the

faster convergence of the iterative scheme and the

convergence analysis of the proposed iterative

method is presented. Numerical solutions for the

verification problems are presented to demon

strate the efficiency and accuracy of the sug

gested technique.

11A64. Sufficient conditions for penalty for

mulation methods in analytical dynamics. - AJ

Kurdila (Dept of Aerospace Eng, Texas A&M

Univ, College Station TX 77843-3141) and FJ

Narcowich (Dept of Math, Texas A&M Univ,

College Station TX 77843-3368). Comput Mech

12(1-2) 81-96 (Jun 1993).

This paper derives sufficient conditions for the

convergence of a class of penalty methods by ex

tending the Rubin-Ungar theorem. One advantage

of the approach taken in this paper is that consid

erable simplification of the original Rubin-Ungar

derivation is achieved for the convergence of

transverse constraint velocities. This paper also

emphasizes the importance of maintaining a rank

condition on the Jacobian of the constraint matrix.

This is of particular importance in that one

claimed benefit of certain penalty methods is that

they are effective in cases in which the constraint

Jacobian loses rank. For the class of penalty

methods considered in this paper, if the Jacobian

does not meet the specified rank conditions, a di

verse collection of spurious, pathological re

sponses can be obtained using this method. In one

sense, this type of pathological response is worse

then encountering a "configuration-singular" gen

eralized mass matrix and having a simulation di

verge; indeed, the regularized solution procedure

can proceed along some incorrect trajectory with

little to no indication that something is amiss.

150Z. EXPERIMENTAL

TECHNIOUES

11A65. Geometric methods in determining

rigid-body dynamics. - GS Nusholtz (Chrysler,

800 Chrysler Dr E, CIMS 483-05-10, Auburn

Hills MI 48326-2757). Exp Mech 33(2) 153-158

(Jun 1993).

This research develops a measurement system

using linear accelerometers to determine the 3D,

6-dof, impact response of an anthropomorphic

test device (dummy). A procedure using spherical

geometric analysis (SGA) was developed. It uses

three triaxial accelerometer clusters for determin

ing angular velocity, angular acceleration, and

linear acceleration. SGA differs in its calculation

of angular velocity from other procedures which

determine rigid-body motion. Unlike procedures

which use linear accelerometers to determine

angular velocity by integration of angular accel

eration, SGA uses the topology of the sphere to

obtain both angular acceleration and angular ve

locity through algebraic manipulation of the out

put from the linear accelerations. The validation

of SGA is accomplished by the use of hypotheti

cal as well as experimental data.

|

152. Vibrations of solids

(basic)

152A. GENERAL THEORY

11A66. Forced harmonic response analysis of

nonlinear structures using describing functions.

- O Tanrikulu (Tubitak-Sage, PK 119

Bahcelievler, Ankara, Turkey), B Kuran, HN

Ozguven (Dept of Mech Eng, Middle E Tech

Univ, Ankara 06531, Turkey), M Imregun (Dept

ofMech Eng, Imperial Col of SciTech and Med,

London SW72BX, UK). AIAAJ 31(7) 1313-1320

(Jul 1993).

The dynamic response of multiple-dof nonlin

ear structures is usually determined by numerical

integration of the equations of motion, an ap

proach which is computationally very expensive

for steady-state response analysis of large struc

tures. In this paper, an alternative semianalytical

quasilinear method based on the describing func

tion formulation is proposed for the harmonic re

sponse analysis of structures with symmetrical

nonlinearities. The equations of motion are con

verted to a set of nonlinear algebraic equations

and the solution is obtained iteratively. The linear

and nonlinear parts of the structure are dealt with

separately, the former being represented by the

constant linear receptance matrix [a], and the

latter by the generalized quasilinear matrix [A]

which is updated at each iteration. A special tech

nique that reduces the computation time signifi

cantly when the nonlinearities are localized is

used with success to analyze large structures. The

proposed method is fully compatible with stan

dard modal analysis procedures. Several exam

ples dealing with cubic stiffness, piecewise linear

stiffness, and coulomb friction type of nonlineari

ties are presented in the case of a ten-dof struc

ture.

11A67. Normal modes for nonlinear vibra

tory systems. - SW Shaw and C Pierre (Dept of

Mech Eng andAppl Mech, Univ of Michigan, Ann

Arbor MI 48109). J Sound Vib 164(1) 85-124 (8

Jun 1993).

A methodology is presented which extends to

nonlinear systems the concept of normal modes

of motion which is well developed for linear sys

tems. The method is constructive for weakly non

linear systems and provides the physical nature of

the normal modes along with the nonlinear differ

ential equations which govern their dynamics. It

also provides the nonlinear co-ordinate transfor

mation which relates the original system co-ordi

nates to the modal co-ordinates. Using this trans

formation, we demonstrate how an approximate

nonlinear version of the superposition can be em

ployed to reconstruct the overall motion from the

individual nonlinear modal dynamics. The results

presented herein for nonlinear systems reduce to

modal analysis for the linearized system when

nonlinearities are neglected, even though the ap

proach is entirely different from the traditional

one. The tools employed are from the theory of

invariant manifolds for dynamical systems and

were inspired by the center manifold reduction

technique. In this paper the basic ideas are out

lined, a few examples are presented and some

natural extensions and applications of the method

are briefly described in the conclusions.

See also the following:

11A21. Perturbation technique that works even

when the nonlinearity is not small

152B. LINEAR THEORY

11A68. Note on modal summations and aver

aging methods as applied to statistical energy

analysis. - AJ Keane (Dept of Eng Sci, Univ of

Oxford, Parks Rd, Oxford OX1 3PJ, UK). J Sound

Vib 164(1) 143-156 (8 Jun 1993).

In this note the power transmission between

two, point spring coupled, axially vibrating rods

under various conditions is examined. The effects

of using a modal description for the rods, are ex

amined, with particular attention being paid to the

number of modes used when assessing energy

flows. Also considered are the various methods

commonly used to calculate the average energy

flows for this system. These studies have been

carried out as part of a larger study on variability

in SEA predictions for more complex models.

The differences between the averaging methods

used are shown to be significant and demonstrate

the inherent dangers of assuming that frequency

and ensemble averages are equivalent, a common

assumption of traditional SEA. The adoption of a

modal description for the system being studied is

seen to be sustainable provided that the correct

number of modes is used within the calculations.

This number rises with coupling strength and also

if the point of coupling shows model coherence

(such as occurs at the ends of the free-free rod).

These results lend credence to the adoption of

modal methods when studying SEA but indicate

that frequency averaging should be handled with

Care.

152D. STOCHASTIC EFFECTS,

INCL RANDOM EXCITATION

11A69. Chaotic behavior of a nonlinear oscil

lator. - Qin-Yuan Pei (Changsha Railway Univ,

Changsha, China) and Li Li (Peking Polytech

Univ, Beijing, China). Appl Math Mech 14(5)

395-405 (May 1993).

Behavior of bifurcation and chaos in a forces

oscillator x1 + 6x1 + o’ox1 - Bx’0 = feosort

containing a square nonlinear term is investigated

by using Mel'nikov method and digital computer

simulations.

11A70. Non-conservatively loaded stochastic

columns. - R Ganesan, TS Sankar (Concordia

Univ, Montreal, H3G IM8, Canada), SA Ramu

(Indian Inst ofSci, Bangalore, India). Int J Solids

Struct 30(17) 2407-2424 (1993).

A new FEM is developed to analyze non-con

servative structures with more than one parameter

behaving in a stochastic manner. As a generaliza

tion, this paper treats the subsequent non-self-ad

joint random eigenvalue problem that arises when

the material property values of the non-conserva

tive structural system have stochastic fluctuations

resulting from manufacturing and measurement

errors. The free vibration problems of stochastic

Beck's column and stochastic Leipholz column

whose Young's modulus and mass density are

distributed stochastically are considered. The sto

chastic FEM that is developed, is implemented to

arrive at a random non-self-adjoint algebraic

eigenvalue problem. The stochastic characteris

tics of eigensolutions are derived in terms of the

stochastic material property variations. Numerical

examples are given. It is demonstrated that,

through this formulation, the FE discretization

need not be dependent on the characteristics of

stochastic processes of the fluctuations in material

property value.

11A71. Spectral response of a bilinear oscil

lator. - RN Miles (Dept ofMech and Indust Eng,

SUNY, Binghamton NY 13902-6000). J Sound

Vib 163(2) 319-326 (May 1993).

An approximate analytical procedure is pre

sented to estimate the response power spectral

density of a randomly excited spring-mass

damper system having a bilinear spring. The ap
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- RS.Jeyaseelan and AJ Giacomin (Rheology Res

Lab, Mech Eng Dept, Texas A&M Univ, College

Station TX 77843-3123). J Non-Newtonian Fluid

Mech 47267-280 (Jun 1993).

11A556. Microscopic studies of static and

dynamic contact angles. -PA Thompson (Dept

of Mech Eng and Mat Sci, Duke Univ, Durham

NC 27708-0300), WB Brinckerhoff (Dept of

Phys, Ohio State Univ, 174 W 18th Ave,

Columbus OH 43210), MO Robbins (Dept of

Phys and Astron, Johns Hopkins Univ, Baltimore

OH 21218). J Adhesion SciTech 7(6) 535-554

(1993).

Molecular dynamics simulations are used to

test macroscopic theories for static and dynamic

contact angles. Young's equation is verified by

comparing observed static contact angles to an

gles calculated from the independently measured

surface tensions between phases. Laplace's rela

tion between the interfacial curvature and pres

sure is also checked. Both equations agree with

simulation results within statistical errors.

Hydrodynamic theories of dynamic contact an

gles are less well defined because they produce

diverging stresses at the contact line between the

solid and fluid interfaces if the usual no-slip

boundary condition is assumed. Our simulations

show that slip occurs within about two molecular

diameters of the contact line, and that local hy

drodynamics breaks down in the slip region. The

slip results from large tangential stresses along

the solid wall. A surprising result is that changes

in the boundary condition for single-fluid flow at

molecular scales produce dramatic changes in the

dynamic contact angle.

11A557. Brownian dynamics simulation of

finitely extensible bead-spring chains. - BHAA

van den Brule (Shell Res BV, PO Box 60, 2280AB

Rijswijk, Netherlands). J Non-Newtonian Fluid

Mech 47.357-378 (Jun 1993).

The behavior of infinitely dilute solutions of fi

nitely extensible nonlinear elastic (FENE) bead

spring chains in shear flow and uniaxial elonga

tional flow is analyzed under both steady-state

and transient conditions, using the method of

Brownian dynamics. Three FENE chain models

are considered: the original model using the

Warner spring force law and models using the

Peterlin approximation and the recently proposed

PM approximation. It is shown that the two ap

proximate models, which are based on pre-aver

aging of the spring constant, perform reasonably

well in elongational flow but fail in describing

shear flow.

11A558. Rheology of polydisperse polymers:

Relationship between intermolecular interac

tions and molecular weight distribution. - P

Cassagnau, JP Montfort, G Marin, P Monge (Univ

Pau et des Pays de l'Adour, Pau, France). Rheol

Acta 32(2) 156-167 (Mar/Apr 1993).

An expression of the relaxation function of lin

ear polydisperse polymers is proposed in terms of

intermolecular couplings of reptative chains. The

relaxation times of each molecular weight are

assumed to be shifted according to a tube renewal

mechanism accounting for the diffusion of the

surrounding chains. The subsequent shift is ap

plied to the relaxation function of each molecular

weight obtained from an analytical expression of

the complex compliance Jx(a). Therefore the

complex shear modulus Gx(a) is derived from

the overall relaxation function using the probabil

ity density accounting for the molecular weight

distribution and four species-dependent parame

ters: a front factor A for zero-shear viscosity, pla

teau modulus G°N, activation energy E and char

acteristic temperature T. All the main features of

the rheology of polydisperse polymers are de

scribed by the proposed model.

11A559. Simultaneous solution for

fiber orientation in axisymmetri

radial flow. - S Ranganathan and

(Dept of Mech Eng, Center for C.

Univ of Delaware, Newark DE 19716). J Non

Newtonian Fluid Mech 47 107-136 (Jun 1993).

The effect of the changing microstructure dur

ing the flow of fiber suspensions on the flow

kinematics is studied. The suspension is assumed

to consist of rigid cylindrical particles immersed

in a highly viscous Newtonian fluid. Further, the

suspension is modeled as an anisotropic fluid

whose rheological properties are functions of the

local microstructure. The effect of inertia is ne

glected during the flow of the suspension. The

orientation of the particles is assumed to be gov

erned by the flow field and the fiber-fiber interac

tions. The governing equations for the flow field

and fiber orientation are coupled and are simulta

neously solved in an axisymmetric radial-flow

configuration. These solutions are compared to

those obtained using the conventional decoupled

approximation where the bulk flow field is as

sumed to be unaffected by the presence of the

suspended particles.

11A560. Unsteady flow of a power-law dusty

fluid with suction. - AJ Chamkha (Fleetguard,

Cookeville TN 38.502). J. Fluids Eng 115(2) 330

333 (Jun 1993).

Equations governing flow of a particulate sus

pension exhibiting finite volume fraction in non

Newtonian power-law fluids are developed and

applied to the problem of unsteady flow past an

infinite porous flat plate with suction. Numerical

results for small volume fraction for the dis

placement thicknesses for both phases and the

skin-friction coefficient for the fluid phase are

obtained using an implicit finite difference

scheme and presented graphically to elucidate

interesting features of the solutions.

11A561. Electrorheological fluids applied to

an automotive engine mount. - EW Williams,

SG Rigby (Dept of Appl Math and Theor Phys,

Liverpool Univ, PO Box 147, Liverpool L693BX,

UK), JL Sproston, R Stanway (Dept of Mech Eng,

Liverpool Univ, PO Box 147, Liverpool L693BX,

UK). J Non-Newtonian Fluid Mech 47.221-238

(Jun 1993).

This paper is concerned with the mathematical

modeling of electrorheological fluids when used

in oscillating squeeze-flow mode; in a prototype

automotive engine mount. A solution of the prob

lem is found for the situation in which the non

Newtonian behavior of the fluid is represented by

a Bi-Viscous characteristic. This permits the pre

diction of the vibration damping characteristics of

the device. Finally these results are compared

with recently published experimental values.

11A562. Prediction of viscosities using

chemical graph theory. - EW Pitzer (Aero

Propulsion and Power Directorate, Wright Lab,

WPAFB). Trib Trans 36(3) 417-420 (Jul 1993).

The viscosities of three groups of lubricant bas

estock molecules are predicted using chemical

graph theory. Alkyl diphenylphosphates, tri

methyloethane esters, and oligomers of chloro

trifluoroethylene are modeled. These compounds

are similar for graph theoretical modeling pur

poses in that all are aliphatic in nature or vary

only by aliphatic substituents. The graph theoreti

cal approach for the modeling of these com

pounds uses summations of the shortest topologi

cal distances between atoms in the molecule. A

new topological index is introduced that weights

chlorine molecules in the chlorotrifluoroethylene

oligomers. For each group modeled, the coeffi

cient of determination y' was in excess of 0.99

with a standard error of estimate well below five

percent of the average value modeled.

11A563. Squeezing flow of a Bingham mate

rial. - SDR Wilson (Dept of Math, Univ of

Manchester, Manchester M139PL, UK). J Non

Newtonian Fluid Mech 47.211-219 (Jun 1993).

The "squeeze-flow paradox" for a Bingham

rial is investigated. The space between two

el discs is filled with liquid material of the

nam viscoplastic type and the discs are

ed together, the paradox arises from the re

quirement that the material between the discs

should move radially outwards, together with the

observation that the shear stress on the midplane

is zero so that the material should be solid. Here

we argue that the Bingham model should be re

garded as a limiting case of some other model

(the biviscosity model, here) and that this limit

clashes with the other limit process, in which

normal stresses are neglected, giving rise to lubri

cation theory. A distinguished limit is demon

strated and a corrected theory is derived which

contains the "paradoxical" theory as a special

CASC.

See also the following:

11A343. Numerical prediction of extrudate swell

of a high-density polyethylene: Further results

11T555. Best fit for differential constitutive

model parameters to nonlinear oscillation data

11A560. Unsteady flow of a power-law dusty

fluid with suction

|- -

352. Hydraulics

352A. GENERAL THEORY

11A564. Rheo-optical study of shear-thicken

ing and structure formation in polymer solu

tions Part II. Light scattering analysis. - AJ

Kishbaugh and AJ McHugh (Dept of Chem Eng,

Univ of Illinois, Urbana IL). Rheol Acta 32(2)

115-131 (Mar/Apr 1993).

Light scattering calculations based on

Anomalous Diffraction Theory (AD), Rayleigh

spheroids, and flexible macromolecules are used

to propose a phenomenological explanation for

the relationship between shear-thickening and

structure formation in polymer solutions.

Quantitative comparisons are made to experimen

tal data for the rheo-optical behavior of fraction

ated polystyrene solutions presented in part I of

this paper. Results from the ADA calculations

suggest that the viscosity and dichroism behavior

can be attributed to the production and growth of

micron-size, optically isotropic structures during

flow. The saturation dichroism behavior exhibited

by the solutions which shear thin can be attributed

to the formation of entanglement regions which

achieve a fixed size and act as Rayleigh spheroids

in their scattering behavior. The magnitude and

shear rate dependence of the observed birefrin

gence can be accounted for on the basis of the

nonlinear, flexible macromolecule model, imply

ing that birefringence is governed by the polymer

chains remaining in solution which do not take

part in the structure formation. The latter result is

consistent with the experimental observation that

the birefringence dependence on shear rate is the

same whether the solution exhibits shear thicken

ing or shear thinning in its viscosity behavior.

352B. CLOSED CONDUIT FLOW

11A565. Use of subdomains for inverse prob

lems in branching flow passages. - AK

Agrawal, S Krishnan, Tah-teh Yang (Dept of

Mech Eng, Clemson Univ, Clemson SC 29634

0921).J Fluids Eng 115(2) 227-232 (Jun 1993).

For inverse problems in complex flow pas

sages, a calculation procedure based on a mul

tizone Navier-Stokes method was developed. A

heuristic approach was employed to derive wall

shape corrections from the wall pressure error.

Only two subdomains sharing a row of control

volumes were used. The grid work in the com

mon region was identical for both subdomains.

The flow solver, inverse calculation procedure,

multizone Navier-Stokes method and subdomain

inverse calculation procedure were validated in

dependently against experimental data or numeri

cal predictions. Then, the subdomain inverse cal
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the horizontal plane in a certain range of ampli- central line below this point the flow descends

tude and frequency of the oscillations. and diverges, and we term this "flow splitting". 354O. FLOW AROUND BODIES

See also the following:

11A589. Added mass coefficient for rows and ar

rays of spheres oscillating along the axes of

tubes

3541. THERMAL CONVECTION

FLOW

See the following:

11A779. Convection heat transfer of closely

spaced spheres with surface blowing

11A781. Convective heat transfer in a curved an

nular-sector duct

11A783. Heat transfer and pressure drop of a

transversely finned concentric annulus with

longitudinal flow

11A785. Comparison of natural convection of

water and air in a partitioned rectangular enclo

sure

11A787. Laminar free convection in a nonrectan

gular inclined cavity

11A788. Laminar natural

horizontal rhombic annulus

11A789. Laminar natural convection in internally

finned horizontal annuli

11A790. Numerical study of laminar and turbu

lent natural convection in an inclined square

cavity

11A791. Scaling of the laminar natural-convec

tion flow in a heated square cavity

11A792. Transition to time-periodicity of a natu

ral-convection flow in a 3D differentially

heated cavity

11A794. Thermally unstable convection with ap

plications to chemical vapor deposition channel

reactors

11A798. Laminar mixed convection in a duct

with a backward-facing step: The effects of in

clination angle and Prandtl number

11A801. Mixed convection in an inclined channel

with a discrete heat source

11A805. Modeling of turbulent buoyant flow and

heat transfer in liquid metals

convection in a

354.J. STRATIFIED FLOW AND

FREE SURFACE FLOW

11T584. Calculation of interfacial flows and

surfactant redistribution as a gas-liquid inter

face moves between two parallel plates. - F

Wassmuth, WG Laidlaw (Dept of Chem, Univ of

Calgary, 2500 University Dr NW, Calgary, AB,

T2N IN4, Canada), DA Coombe (Comput Model

Group, Research Park, 3512-33 St NW Calgary,

AB, T2L2A6, Canada). Phys Fluids A 5(7) 1533

1548 (Jul 1993).

11T585. Computations of free surface flows

Part 2: 2D unsteady bore diffraction. - JY

Yang and CA Hsu (Inst of Appl Mech, Natl

Taiwan Univ, Taipei, Taiwan ROC). J Hydraul

Res 31(3) 403-413 (1993).

11A586. Upstream stagnation points in

stratified flow past obstacles. - PG Baines (Div

of Atmos Res, CSIRO, Aspendale Vic 3.195,

Australia) and RB Smith (Dept of Geol and

Geophys, Yale Univ, New Haven CT 06:511). Dyn

Atmos Oceans 18(1-2) 105-113 (Jun 1993).

An experimental study has been made of stag

nation points and flow splitting on the upstream

side of obstacles in uniformly stratified flow. A

range from small to large values of Nh/U (where

N is the buoyancy frequency, hm is the maximum

obstacle height and U is the undisturbed fluid ve

locity) has been covered, for three obstacle

shapes which are, respectively, axisymmetric, and

elongated in the across-stream and in the down

stream directions. Upstream stagnation for the

first two of these models does not occur until

Nhm/U>1.05, where it occurs at z = hm/2. On the

For the third model (elongated in the downstream

direction), upstream stagnation first occurs at

Nhm/U = 1.43, at z = 0. Results for this obstacle

are not consistent with the "Sheppard criterion",

and this upstream flow stagnation is not appar

ently related to lee wave overturning, in contrast

to flow over 2D obstacles.

See also the following:

11A583. Wavy mode of the streaked flow around

an oscillating cylinder in a stratified fluid at rest

11A588. Transient interface shape of a two-layer

liquid in an abruptly rotating cylinder

354K. ROTATING FLOW OR

SURFACES

11A587. Fluid flow and heat transfer be

tween finite rotating disks. - VK Garg (NASA

Lewis Res Center, MS 5-11, Cleveland OH

44135) and AZSzeri (Dept of Mech Eng, Univ of

Pittsburgh, Pittsburgh PA). Int J Heat Fluid Flow

14(2) 155-163 (Jun 1993).

The laminar flow between finite rotating disks

with a shroud has been analyzed using a velocity

and a stream function formulation, employing

Galerkin's method with B-spline basis. Though

results from both formulations are in good

agreement with the LDV data on velocity profiles,

and with each other, we find the stream function

formulation clearly superior computationally, and

we employ it subsequently to study heat transfer

between the disks. The calculations show strong

boundary-layer character near the disks. The

Nusselt number depends upon both geometry and

the Reynolds number.

11A588. Transient interface shape of a two

layer liquid in an abruptly rotating cylinder. -

Tae Gyu Lim, Sangmin Choi, Jae Min Hyun

(Dept of Mech Eng, Korea Adv Inst of Sci and

Tech, Yusungku, Taejon 305-701, South Korea). J

Fluids Eng 115(2)324-329 (Jun 1993).

A description is made of the transient shape of

interface of a two-layer liquid in an abruptly rotat

ing circular cylinder. The density of the lower

layer is higher than that of the upper layer, but the

viscosities may assume arbitrary values. The

overall Ekman number is much smaller than

unity, and the cylinder aspect ratio is 0(1). The

classical Wedemeyer model, which deals with the

spin-up from rest of a homogeneous fluid, is ex

tended to tackle the two-layer liquid system. If the

upper-layer fluid is of higher viscosity, the inter

face, at small and intermediate times, rises (sinks)

in the center (periphery). After reaching a maxi

mum height at the center, the interface tends to

the parabolic shape characteristic of the final-state

rigid-body rotation. If the lower-layer fluid is of

higher viscosity, the interface, at small and inter

mediate times, sinks (rises) in the center

(periphery). The deformation at the center reaches

a minimum height, after which the interface ap

proaches the final state parabola. The gross ad

justment process is accomplished over the spin

up time scale, En "Q", where En and Q denote

the lower value of the Ekman numbers of the two

layers and the angular velocity of the cylindrical

container, respectively. These depictions are con

sistent with the physical explanations offered ear

lier. A turntable experiment is performed to por

tray the transient interface shape. The model pre

dictions of the interface form are in satisfactory

agreement with the lab measurements.

See also the following:

11A237. Spectral methods for the viscoelastic

time-dependent flow equations with applica

tions to Taylor-Couette flow

11T595. Thermocapillary motion in a spinning

vaporizing droplet

11A589. Added mass coefficient for rows and

arrays of spheres oscillating along the axes of

tubes. - Xiaolong Cai (Fluid Flow Projects,

Tulsa Univ, Tulsa OK 74104) and GB Wallis

(Thayer Sch of Eng, Dartmouth Col, Hanover NH

03755). Phys Fluids A5(7) 1614-1629 (Jul 1993).

Rows of single spheres were attached to springs

and oscillated in water-filled tubes of several di

ameters and lengths with various boundary cond

itions at the ends of the tubes. Similar tests were

performed using arrays of spheres in a closed-end

tube. The added mass coefficient was deduced

from the measured natural frequency. Results for

finite systems were systematically extrapolated to

predict the coefficient for an infinite system. The

results are closely described by adapting the

spheres-in-tube potential flow theory of Cai and

Wallis and the image method applied to arrays by

Wallis et al. The coefficient of added mass is

shown to depend on the external impedance of a

fluid circuit to which the system is connected.

Wallis' and Zuber's coefficients are recovered as

limiting cases.

11A590. Flow past a needle in a cylindrical

tube. - Phan-Thien Nhan, Jin Hao, Zheng Rong

(Dept of Mech Eng, Univ of Sydney, NSW 2006,

Australia). J Non-Newtonian Fluid Mech 47 137

155 (Jun 1993).

In this paper, the uniform flow past a needle

place at the center-line of a tube is analyzed for a

class of constitutive equations of the Maxwell

type using a FE implementation of the explicitly

elliptic momentum equation formulation. In the

coupled FE approach, the Galerkin method is ap

plied to the modified momentum equations and

the continuity equation, while the treamline up

wind Petrov-Galerkin method is applied to the

constitutive equations of the viscoelastic fluids.

For the power-law and the Phan-Thien-Tanner

(PTT) fluids, an asymptotic analysis valid for

slender needles is also given. The flow is of prac

tical importance since it forms the basis of an

existing commercial viscometer. The viscometer

would provide the true shear stress-shear rate

relationship if the nominal shear rate is given by

KU/R, where U is the falling speed of the needle,

R is the radius of the tube, and K is a constant.

For the PPT model and the geometry used in this

paper, this constant is approximately 4, which is

also the value for power-law fluids with power

law index n = 1/3.

11A591. Point vortex model of the unsteady

separated flow past a semi-infinite plate with

transverse motion. -L Cortelezzi (Dept of Math,

UCLA) and A Leonard (Graduate Aeronaut Lab,

California IT, Pasadena CA 91125). Fluid Dyn

Res 11(6).263-295 (Jun 1993).

Two-dimensional unsteady separated flow past

a semi-infinite plate with transverse motion is

considered. The rolling-up of the separated shear

layer is modeled by a point vortex whose time

dependent circulation is predicted by an unsteady

Kutta condition. A power-law starting flow is as

sumed along with a power law for the transverse

motion. The effects of the motion of the plate on

the starting vortex circulation and trajectory are

presented. A suitable vortex shedding mechanism

is introduced and a class of flows involving sev

eral vortices is presented. Finally, some possibili

ties for actively controlling the production of cir

culation by moving the plate are discussed.

See also the following:

11A586. Upstream stagnation points in stratified

flow past obstacles
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354P. SURFACE TENSION FLOW

(EG IN LOW GRAVITY

ENVIRONMENTs)

11A592. Computer modeling of transient

thermal flows on mon-Newtonian fluids. - D

Ding, P Townsend, MF Webster (Dept of Comput

Sci, Univ of Wales Inst of non-Newtonian Fluid

Mech, Univ Col, Swansea SA2 8PP, UK). J Non

Newtonian Fluid Mech 47.239-265 (Jun 1993).

In this report two axisymmetric transient ther

mal non-Newtonian fluid problems are studied.

The first is a capillary flow model problem for a

thermal power-law fluid and Graetz number up to

60, governed by a derivative temperature bounda

ry condition. The second is a glass oven flow pr

oblem for thermal, Newtonian and power-law flu

ids, flowing in a complex shaped domain driven

by a gravitational body force for thermal Peclet

numbers up to 100. The flow domain in this case

is a straight pipe with a constriction formed from

an axisymmetric angled obstruction on the wall.

The results obtained for these problems provide

good agreement with both experimental and nu

merical results supplied by industrial collabora

tors. Of particular concern here is the nature of

the transient development of the flows involved

under varying material properties. To this end the

code has been validated under typical industrial

conditions and found to be robust up to Peclet

numbers of at least 100, and involving up to 1000

dof.

11A593. Thermocapillary convection in a

multilayer system. - P Georis, M Hennenberg

(Univ Libre de Bruxelles, Brussels, Belgium), IB

Simanovskii (Perm State Pedagogical Inst, Perm,

Russia), A Nepomniaschy (Perm State

Pedagogical Inst, Technion, Haifa, Israel), II

Wertgeim (Ural's Branch of Acad of Sci, Perm,

Russia). Phys Fluids A 5(7) 1575-1582 (Jul

1993).

The Marangoni-Benard instability for a sym

metrical three-layer system is examined theoreti

cally. Linear stability analysis and nonlinear nu

merical simulations show that the ratio of the heat

diffusivities determines the nature of the instabil

ity. Monotonic disturbances exist only when this

parameter is far enough from one, the motion be

ing driven by one interface. When the heat diffu

sivity ratio is close to one, oscillatory convection

is observed. This is explained on a physical base:

the oscillation rests on the coupling of both inter

faces, which creates a flip-flop mechanism lead

ing to a double inversion of the vortices rotation

during one period of oscillation.

11A594. Thermocapillary migration of a

small chain of bubbles. - Huailiang Wei and RS

Subramanian (Dept of Chem Eng, Clarkson Univ,

Potsdam NY 13699-5705). Phys Fluids A 5(7)

1583-1595 (Jul 1993).

The quasistatic thermocapillary migration of a

chain of two or three spherical bubbles in an un

bounded fluid possessing a uniform temperature

gradient is investigated in the limit of vanishing

Reynolds and Peclet numbers. The line of bubble

centers is permitted to be either parallel or per

pendicular to the direction of the undisturbed

temperature gradient. The governing equations

are solved by a truncated-series, boundary-collo

cation technique. Results are presented which

demonstrate the impact of the presence of other

bubbles on a test bubble. In the three-bubble case,

a simple pairwise-additive approximation is con

structed from the reflections solution, and found

to perform well except when the bubbles are close

to each other. Also, features of the flow topology

in the fluid are explored. Separated reverse flow

wakes are found in the axisymmetric proble"

and other interesting structures are noted for

case in which the line of centers is perpendi

to the applied temperature gradient. The obs

flow structure is shown to be the result of

position of simpler basic flows.

11T595. Thermocapillary motion in a spin

ming vaporizing droplet. - D Lozinski and M

Matalon (Dept of Eng Sci and Appl Math,

McCormick Sch of Eng and ApplSci, NWU). Phys

Fluids A 5(7) 1596-1601 (Jul 1993).

354R. NON-NEWTONIAN FLOW

11A596. Investigation of possible mecha

misms of heterogeneous drag reduction in pipe

and channel flows. - H-W Bewersdorff, A Gyr,

K Hoyer (Inst of Hydromech and Water

Resources Man, Swiss Fed IT, Zurich,

Switzerland), A Tsinober (Fac of Eng, Tel-Aviv

Univ, Israel). Rheol Acta 32(2) 140-149

(Mar/Apr 1993).

This study presents experimental results on the

mechanism of this type of drag reduction. The

experiments were carried out to find out whether

this drag reduction is caused by small amounts of

polymer removed from the thread and dissolved

in the near-wall region of the flow or by an inter

action of the polymer thread with the turbulence.

The friction behavior of this type of drag reduc

tion was measured for different concentrations in

pipes of different cross-sections, but of identical

hydraulic diameter. The parameters of the injec

tion, ie, injector geometry as well as the ratio of

the injection to the bulk velcoity, were varied. In

one set of experiments the polymer thread was

sucked out through an orifice and the friction be

havior in the pipe was determined downstream of

the orifice. In another experiment, near-wall fluid

was led into a bypass in order to measure its drag

reducing properties. Furthermore, the influence of

a water injection into the near-wall region on the

drag reduction was studied. The results provide a

strong evidence that heterogeneous drag reduc

tion is in part caused by small amount of dis

solved polymer in the near-wall region as well as

by an interaction of the polymer thread with the

turbulence.

11A597. New approach to the pulsating and

oscillating flows of viscoelastic liquids in chan

nels. - R Steller (Inst of Organic and Polymer

Tech, Tech Univ., Wroclaw, Poland). Rheol Acta

32(2) 192-205 (Mar/Apr 1993).

An approximate method for mathematical de

scription of unsteady flows of polymeric liquids

in channels generated by pulsating pressure gra

dient or vibration channel wall is presented. The

method is based on integration of the equation of

motion and determination of the shear stresses

and shear rates at channel walls, assuming the

inertia effects to be suitably small. The approxi

mate results have been compared with exact solu

tions using as examples the Newtonian fluid and a

special form of a generalized Maxwell model.

The applibility conditions of the proposed method

have been extensively discussed.

11A598. Two-dimensional planar flow of a

viscoelastic plastic medium. - A Isayev and YH

Huang (Inst of Polymer Eng, Univ of Akron OH).

Rheol Acta 32(2) 181-191 (Mar/Apr 1993).

The present study is concerned with FE simula

tion of the planar entry flow of a viscoelastic plas

tic medium exhibiting yield stress. The numerical

scheme is based on the Galerkin formulation.

Flow experiments are carried out on a carbon

black filled rubber compound. Steady-state pres

sure drops are measured on two sets of contrac

tion or expansion dies having different lengths

and a constant contraction or expansion ratio of

4:1 with entrance angles of 90°, 45°, and 15°. The

predicted and measured pressure drops are com

pared. The predicted results indicate that expan

sion flow has always a higher pressure drop than

- "ow. This prediction is in agreement

|al data only at low flow rates, but

rates. The latter disagreement is

ication that the assumption of

low in the upstream and down

is not realistic at high flow rates,

'e length-to-thickness ratio chan

- *---

nels employed. The evolution of the velocity,

shear stress, and normal stress fields in the con

traction or expansion flow and the location of

pseudo-yield surfaces are also calculated.

See also the following:

11A342. Hyperbolicity and change of type in

steady co-extrusion flow of upper-convected

Maxwell fluids

11A590. Flow past a needle in a cylindrical tube

11A592. Computer modeling of transient thermal

flows on non-Newtonian fluids

354Y.COMPUTATIONAL

TECHNIQUES

11A599. Boundary integral equations for

contact problems of plane quasi-steady viscous

flows. - LK Antanovskii (MARS Center, Via

Diocleziano 328, 8.0125 Naples, Italy). European

J Appl Math 4(2) 175-187 (Jun 1993).

Plane, quasi-steady, free-boundary flows of an

incompressible viscous fluid with surface tension

in a container are considered. The mathematical

problem is decomposed into an auxiliary elliptic

problem for the Stokes system in a fixed flow

domain, whose solution leads to the Cauchy prob

lem for the free boundary with the so-called nor

mal velocity operator. By introducing the com

plex stress-stream function and applying time

dependent conformal mapping, the auxiliary pro

blem is reduced to a boundary integral equation

via consideration of two Hilbert problems for ana

lytic functions in a unit disc. As an application,

plane capillary flow with moving contact points is

investigated asymptotically for small capillary

numbers. We prove that in the case when a dy

namic contact angle is equal to it, this problem is

well-posed for a filling regime, and ill-posed for a

drying one.

11A600. Determination of the stream func

tion and pressure distribution in some plane

discrete velocity fields. - WJ Prosnak and JM

Elszkowski (Lab of Numer Fluid Mech, Inst of

Fluid Flow Machinery, Polish Acad of Sci,

Fiszera 14 Pl-80-952, Gdansk, Poland). Bull

Polish Acad SciTech Sci 41(2)79-97 (1993).

The paper deals with the plane flow of viscous

liquid. It contains a method for construction of a

continuous stream function and a continuous

pressure field. The both functions correspond to a

plane, discrete, instantaneous velocity field, the

rectangular velocity components ui vij being

given only in nodes i, j of a rectangular grid, in

troduced in the domain of the flow. The paper can

be regarded as a complement.

11A601. Hele-Shaw flows with a free bound

ary produced by multipoles. - VM Entov (Inst

for Problems in Mech, Russian Acad of Sci, prosp

Vernadskogo 101, Moscow, Russia), PI Etingof,

DY Kleinbock (Dept of Math, Yale Univ, 2155

Yale Sta, New Haven CT 06520). European J

Appl Math 4(2) 97-120 (Jun 1993).

We study Hele-Shaw flows with a moving

boundary and multipole singularities. We find

that such flows can be defined only on a finite

time interval. Using a complex variable approach

we construct a family of explicit solutions for a

single multipole. These solutions turn out to have

the maximal possible lifetime in a certain class of

solutions. We also discuss the generalized Hele

Shaw model in which surface tension at the mov

ing boundary is considered, and develop a

method of finding steady shapes. This method

yields new one-parameter families of stationary

solutions. In the Appendix we discuss a connec

tion between these solutions and a variational

problem of potential theory.

11A602. Improved implicit residual smooth

ing for steady state computations of first-order

hyperbolic systems. - R Enander (Dept of Sci

Comput, Uppsala Univ, PO Box 120, Uppsala
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364. Internal flow (pipe,

channel, Couette)

364B. LAMINAR FLOW

11A647. Laminar, unidirectional flow of

thixotropic fluid in a circular pipe. - J

Billingham and JWJ Ferguson (Schlumberger

Cambridge Res, High Cross, Madingley Rd,

Cambridge CB3 0EL, UK). J Non-Newtonian

Fluid Mech 4721-55 (Jun 1993).

In this paper we study the unidirectional,

axisymmetric flow of a bentonite mud in a circu

lar pipe. Bentonite mud is an inelastic,

thixotropic, generalized-Newtonian fluid. We use

a rheological model that characterizes this behav

ior in terms of a single parameter A which is a

measure of the amount of structure in the fluid.

The behavior of A is determined by a single rate

equation which models the tendency of fluid

structure to increase whilst being limited by the

imposed shear rate. We find that, for certain pa

rameter ranges, the model is not structurally sta

ble, but that this problem can be eliminated by

including diffusion of fluid structure. A graph of

the equilibrium shear stress for a given shear rate

(the rheogram) is not monotonic, yet no mechani

cal instability occurs in pipe flow. We contrast

this with recent work on the pipe flow of a

Johnson-Segalman-Oldroyd fluid which displays

spurting and oscillatory behavior. The difference

lies in the relative magnitude of normal stress

effects in the two fluids. There appear to be no

grounds for discarding the constitutive model

studied here simply because of the nonmonoton

icity of the equilibrium rheogram.

364C. TURBULENT FLOW

11A648. Comparison of numerical and ex

perimental results for a turbulent flow field

with a longitudinal vortex pair. - JX Zhu, M

Fiebig, NK Mitra (Inst fur Thermo und Fluiddyn,

Ruhr-Univ Bochum, 4630 Bochum 1, Germany). J

Fluids Eng 115(2) 270-274 (Jun 1993).

A numerical simulation of a 3D turbulent flow

with longitudinal vortices embedded in the

boundary layer on a channel wall is presented.

The flow is described by the unsteady incom

pressible Reynolds averaged Navier-Stokes equa

tions and the standard k-e turbulence model. A

finite difference scheme based on the SOLA-al

gorithm is developed for the numerical solution

of the governing equations. Comparison with the

experimental data of Pauley and Eaton shows that

the numerical computations predict the general

characteristics of the flow correctly. Agreement to

within 13 percent is obtained for the worst loca

tion in mean velocity fields. The average devia

tion of predicted mean streamwise velocity from

the experimental data is 3.6 percent.

11T649. Generation of tripolar vortical

structures on the beta plane. - JS Hesthaven, JP

Lynov, JJ Rasmussen (Optics and Fluids Dyn

Dept, Assoc EURATOM, Riso Natl Lab, PO Box

49, DK-4000 Roskilde, Denmark), GG Sutyrin

(PPShirshov Inst of Oceanog, Russian Acad of

Sci, 23 Krasikova St, Moscow 117218, Russia).

Phys Fluids A5(7) 1674-1678 (Jul 1993).

11A650. Predicting equilibrium states with

Reynolds stress closures in channel flow and

homogeneous shear flow. - R Abid (High Tech

Corp, NASA Langley Res Center, Hamtpon VA

23681) and CG Speziale (Dept of Aerospace and

Mech Eng, Boston Univ, Boston MA 02215). Phys

Fluids A5(7) 1776-1782 (Jul 1993).

Turbulent channel flow and homogeneous

shear flow have served as basic building block

flows for the testing and calibration of Reynolds

stress models. In this paper, a direct theoretical

-4

connection is made between homogeneous shear

flow in equilibrium and the log layer of fully de

veloped turbulent channel flow. It is shown that if

a second-order closure model of the standard type

is calibrated to yield good equilibrium values for

homogeneous shear flow, it will also yield good

results for the log layer of channel flow provided

that the Rotta coefficient is not too far removed

from one. Most of the commonly used second-or

der closure models introduce an ad hoc wall re

flection term in order to mask deficient predic

tions for the log layer of channel flow that arise

either from an inaccurate calibration of homoge

neous shear flow or from the use of a Rotta coef

ficient that is too large. Illustrative model calcula

tions are presented to demonstrate this point

which has important implications for turbulence

modeling.

See also the following:

11A628. Film-thickness, pressure-gradient, and

turbulent velocity profiles in annular dispersed

flows

11A654. Experimental study of two flows

through an axisymmetric sudden expansion

tions it is advantageous to divide a heat-generat

ing board into two or more equidistant boards in

side the same channel, when the total rate of heat

generation of all the boards and the channel spac

ing are fixed.

See also the following:

11A657. Numerical study of fully developed

laminar flow and heat transfer in a curved pipe

with arbitrary curvature ratio

364M. NON-NEWTONIAN FLOW

See the following:

11A647. Laminar, unidirectional

thixotropic fluid in a circular pipe

flow of

364N. ROUGHNESS EFFECT

364E. UNSTEADY FLOW

11A651. Analytical solution of flow of sec

ond-order non-Newtonian fluids through annu

lar pipes. - Wen-hui Zhu (Natl Univ of Defence

Tech, Changsha, China) and Ci-qun Liu (Inst of

Porous Flow and Fluid Mech, Langfang, Hebei,

China). Appl Math Mech 14(3) 209-215 (Mar

1993).

This paper presents an analytical solution to the

unsteady flow of the second-order non

Newtonian fluids by the use of integral transfor

mation method. Based on the numerical results,

the effect of non-Newtonian coefficient HC and

other parameters on the flow are analyzed. It is

shown that the annular flow has a shorter charac

teristic time than the general pipe flow while the

correspondent velocity, average velocity have a

smaller value for a given He. Else, when radii ra

tio keeps unchanged, the shear stress of inner wall

of annular flow will change with the inner radius

compared with the general pipe flow and is al

ways smaller than that of the outer wall.

11A653. Evaluation of open channel flow

with varying aspect ratio and roughness ratio.

- Yongdi Yang and Atsuyuki Daido (Dept of Civil

Eng, Ritsumeikan Univ, 56-1 Kitamachi Tojin

Kitaku, Kyoto 603, Japan). Proc JSCE 467(II-23)

103-113 (May 1993).

A flow pattern with varying aspect ratio

(breadth-depth) and boundary roughness ratio

(bed roughness-side wall roughness) in open

channel is proposed in this paper. The distribution

of boundary shear and the mean boundary shear

are studied. On the basis of this, velocity distribu

tion and flow resistance are further discussed. The

evaluation formulate of boundary shear, velocity

distribution, and flow resistance are derived sys

tematically. The results are suitable for all aspect

ratio and roughness ratio, and are better in agree

ment with a wide range of experimental data.

These are much helpful to the study of sediment

transport, flow diffusion, river engineering, etc.

364P. OBSTRUCTIONS

364K. ROTATING FLUIDS OR

SURFACES

See the following:

11T649. Generation of tripolar vortical structures

on the beta plane

364L. HEAT ADDITION

11A652. Cooling of a heat-generating board

inside a parallel-plate channel. - A Bejan, AM

Morega (Dept of Mech Eng and Mat Sci, Duke

Univ, Durham NC 27706), SW Lee (Mech Tech

Dept, IBM NS, Research Triangle Park NC), SJ

Kim (Thermal Eng Center, IBM ADSTAR, Tucson

AZ). Int J Heat Fluid Flow 14(2) 170-176 (Jun

1993).

This paper addresses the fundamental question

of how to position a heat-generating board inside

a parallel-plate channel, where it is cooled by

forced convection. It is shown that when the

board substrate is a relatively good thermal con

ductor, the best board position is near one of the

channel walls, and the worst nosition is in the

middle of the channel. T worst posi

tions switch places we rate is a

relatively poor coi spacing

between a heat- rm tem

perature, or un nsulated

annel is

at condi

---

11A654. Experimental study of two flows

through an axisymmetric sudden expansion. -

WJ Devenport and EP Sutton (Eng Dept,

Cambridge Univ, Trumpington St, Cambridge,

UK). Exp Fluids 14(6) 423-432 (May 1993).

Two turbulent separated and reattaching flows

produced by a sudden expansion in a pipe have

been studied. The first was produced by a simple

axisymmetric sudden enlargement from a nozzle

of diameter 80 mm to a pipe of diameter 150 mm.

The second was the flow at the same enlargement

with the addition of a center-body 90 mm down

stream of the nozzle exit. Detailed measurements

of velocity and skin friction (made primarily us

ing pulsed wires) and of wall static pressure are

presented. Without the centerbody the flow struc

ture is similar to that observed in other sudden

pipe expansions and over backward-facing steps.

A turbulent free shear layer, bearing some

similarity to that of a round jet, grows from sepa

ration and then reattaches to the pipe wall down

stream. Reattachment is a comparatively gradual

process, the shear layer approaching the wall at a

glancing angle. The introduction of the center

body causes the shear layer to curve towards the

wall and reattach at a much steeper angle.

Reattachment is much more rapid; gradients of

skin friction and pressure along the wall are many

times those without the centerbody. The high cur

vature of the shear layer strongly influences its

turbulent structure, locally suppressing turbulence

levels and reducing its growth rate.

11A655. Prediction of pressure drop for in

compressible flow through screens. - E

Brundrett (Dept of Mech Eng, Univ of Waterloo,

Waterloo, ON N2L 3G1, Canada). J. Fluids Eng

115(2) 239-242 (Jun 1993).

A new pressure loss correlation predicts flow

through screens for the wire Reynolds number
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372L. HEAT AND MASS

TRANSFER (DIFFUSION,

DISPERSION, ETC)

See the following:

11A777. Numerical modeling of turbulent flow

and heat transfer in rotating cavities

11A806. Impinging jet studies for turbulence

model assessment I. Flow-field experiments

11A807. Impinging jet studies for turbulence

model assessment II. An examination of the

performance of four turbulence models

11A902. Effects of momentum ratio on turbulent

nonreacting and reacting flows in a ducted

rocket combustor

strate the possibility of universal behavior of the

pdfs of these quantities.

See also the following:

11A678. Flow structure and statistics of a passive

mixing tab

11A679. Observations of large-scale structures in

wakes behind axisymmetric bodies

11A698. Behavior of streamwise rib vortices in

3D mixing layer

11A769. Reconstruction of a quasi-instantaneous

image of coherent structures from hotwire sig

nals obtained by a multi-point simultaneous

measurement system

372O. MODELING OF

TURBULENCE

372N. GEOPHYSICAL

TURBULENCE

11T704. Energy and enstrophy transfer in

mumerical simulations of 2D turbulence. - ME

Maltrud (Fluid Dyn Group, MS B216, LANL) and

GK Vallis (UC, Santa Cruz CA 95064). Phys

Fluids A5(7) 1760-1775 (Jul 1993).

372O. NONEQUILIBRIUM AND

CHEMICAL EFFECTS

11A705. Calculation of turbulent combustion

of propame in furnaces. - XS Bai and L Fuchs

(Dept of Mech-Appl CFD, RIT, S-100 44

Stockholm, Sweden). Int J Numer Methods Fluids

17(3)221-239 (Aug 1993).

An evaluation of some numerical methods for

turbulent reacting flows in furnace-like geome

tries is carried out. The Reynolds averaged

Navier-Stokes equations and the two-equation K -

e model together with either finite-rate or infinite

rate reaction models are solved numerically.

Either single- or multiple-step reactions together

with the "eddy dissipation concept" (EDC) are

used to model reacting flows with finite reaction

rates. The numerical scheme is finite difference

based, together with a multi-grid method and a

local grid refinement technique. These methods

have been used to calculate the combustion of

propane in a single- and multiple-burner configu

rations. In the former case, the sensitivity of the

solution to variations in some model parameters

(determining the reaction rate) and numerical pa

rameters (mesh spacing) has been studied. It is

noted that different dependent variables exhibit

different levels of sensitivity to the variation in

model parameters. Thus, calibration and valida

tion of models for reacting flows require that one

compares that most sensitive variables. For engi

neering purposes, on the other hand, one may

calibrate and validate models with respect to the

most relevant variables. Our conclusion is that

since sensitivity of the temperature distribution is

relatively mild, one can still use EDC-like meth

ods in engineering applications where details of

the temperature field are of minor importance.

See the following:

11A650. Predicting equilibrium states with

Reynolds stress closures in channel flow and

homogeneous shear flow

11A670. Turbulent flow through bifurcated noz

zles

11A677. Adequacy of the the thin-shear-flow

equations for computing turbulent jets in stag

nant surroundings

11A699. Kolmogorov behavior of near-wall tur

bulence and its application in turbulence mod

eling

11A702. One-equation near wall turbulence mod

eling with the aid of direct simulation data

372Y. COMPUTATIONAL

TECHNIQUES

372P. INTERMITTENCY AND

OTHER FLOWSTRUCTURE

11A706. Universality of geometrical invari

ants in turbulence: Experimental results. ... A

Bershadskii, E Kit, A Tsinober (Dept of Fluid

Mech, Fac of Eng, Tel Aviv Univ, Tel Aviv 69978,

Israel). Phys Fluids A5(7) 1523-1525 (Jul 1993).

Experimental results on probability distribution

functions (pdfs) of full dissipation E, enstrophy

o°, and enstrophy generation olio's, in two dif

ferent turbulent flows: turbulent grid flow (Rex

74) and turbulent jet center (Rex = 880) demo

11A707. Three-dimensional mesh embedding

for the Navier-Stokes equations using upwind

control volumes. - BL Lapworth (Rolls Royce,

PO Box 31, Derby DE2 8BJ, UK). Int J Numer

Methods Fluids 17(3) 195-220 (Aug 1993).

A numerical model for the compressible

Navier-Stokes equations using local mesh em

bedding is presented. The model solves for 3D

turbulent flow using an algebraic mixing length

model of turbulence. The technique of control

volume upwinding is used to produce a novel

treatment, whereby the hanging nodes on the

mesh interfaces are left with null control volumes.

This yields an efficient discretization scheme

which ensures second-order accuracy, flux con

servation and stability at the mesh interfaces,

whilst retaining a simple interpolative treatment

for the hanging nodes. The discrete flow equa

tions are solved using the semi-implicit pressure

correction method. The accuracy of the embed

ded mesh solver is demonstrated by modelng the

3D flow through a cascade of turbine vanes at de

sign and off-design conditions. Mesh embedding

gives a saving of 48% in the number of nodes.

The embedded mesh solutions compare well with

fine structured mesh solutions and experimental

measurements. The capability of the embedded

mesh solver to perform solution adaptive calcula

tions is demonstrated using a 2D mid-height sec

tion of the cascade at the off-design flow condi

tions.

See also the following:

11A705. Calculation of turbulent combustion of

propane in furnaces

372Z. EXPERIMENTAL

TECHNIQUES

1 * \"08. Note on secondary flows in oscillat

mixing-box experiments. - HIS

IPD De Silva (Dept of Mech and

Arizona State Univ, Tempe AZ

nys Fluids A 5(7) 1849-1851 (Jul

Oscillating-grid induced turbulence in confined

geometries (tanks) is commonly used in the study

of turbulence with zero-mean shear. It is demons

trated that the mean secondary circulation gener

ated during such experiments can be reduced by

selecting conditions that lessen the Reynolds

stress gradients within the fluid. A simple power

law for the spatial decay of turbulent velocity

fluctuations is realized only in the absence of

such mean circulation.

-

374. Electromagneto

fluid and plasma

dynamics

11A709. Modified theory of ferroelectric liq

uid crystals as micropolar medium on bundle

space constitutive equations. - CZ Rymarz

(Military Univ of Tech, Warszawa, Poland). J

Tech Phys34(2) 185-197 (1993).

In this paper the verification and extension of

the paper has been presented. The verification

concerns the kinematics and, mostly, the conser

vation law and equations of evolution of the con

sidered medium. The extension concerns the con

struction of the constitutive equations for nondis

sipative stresses and internal body force. The pa

per contains some necessary remarks on the

kinematics of the considered medium, which sup

plement the results presented, derivation of the

evolution equations from the conservation laws,

both in the Euclidean space and in the fibre space,

and the construction of the constitutive equations

for the ferroelectric liquid crystalline medium. In

the kinematics the components of directors d,k

are presented as functions of the Euler angles 4,

u, ü, which are microstructural dof. The simpli

fied relations of the components of directors cor

responding to the straight or slightly bent smectic

layers have been presented. The generalized mo

mentum conservation law in fibre space is intro

duced and the role of the angular momentum con

servation law is discussed. The set of constitutive

arguments is established, the integrity base and

the set of invariants of the group of material

symmetry are obtained. The constitutive relations

for nondissipative stresses and internal body force

are constructed.

11A710. Electromagnetic billards. - R

Bolcato, J Etay, Y Fautrelle (MADYLAM

ENSHMG-BP95-38402, St Martin D'Heres,

Cedex, France), HK Moffatt (DAMTP-Cambridge

Univ, Silver St, Cambridge CB39EW, UK). Phys

Fluids A 5(7) 1852-1853 (Jul 1993).

Moffatt has argued that it should be possible to

control the motion of a metallic sphere immersed

in a nonconducting fluid using the electromag

netic force and couple generated by means of a

traveling and/or rotating magnetic field applied

externally. Such a system has been realized ex

perimentally: one or more aluminum spheres are

placed in a vessel containing fluid (air, water, or

silicone oil), the whole being placed in an induc

tor which provides an upward-traveling magnetic

field. The spheres move in response to the in

duced electromagnetic forces, the motion being

influenced by gravity, viscous drag, vessel

boundary reaction, and collisions. A range of pos

sible behaviors, stable, unstable, and chaotic, are

identified and discussed. The term

"electromagnetic billiards” seems appropriate to

describe this phenomenon.

11A711. Bounded multi-scale plasma

simulation: Application to sheath problems. -

SEParker (Electron Res Lab, UCB), A Friedman,

SL Ray (LLNL), CK Birdsall (Electron Res Lab,

# J Comput Phys 107(2) 388-402 (Aug

In our previous paper we introduced the multi

scale method, a self-consistent plasma simulation
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technique that allowed particles to have inde

pendent timesteps. Here we apply the method to

1D electrostatic bounded plasma problems and

demonstrate a significant reduction in computing

time. We describe a technique to allow for vari

able grid spacing and develop consistent bounda

ry conditions for the direct implicit method. Also

discussed are criteria for specifying timestep size

as a function of position in phase space. Next, an

analytically solvable sheath problem is presented,

and a comparison to simulation results is made.

Finally, we show results for an ion acoustic shock

front propagating toward a conducting wall.

11A712. Implementation of a semi-implicit

orbit-averaged gyrokinetic particle code. - BI

Cohen and TJ Williams (LLNL). J Comput Phys

107(2) 282-290 (Aug 1993).

A semi-implicit orbit-averaged time-integration

algorithm has been successfully implemented in a

gyrokinetic particle simulation code for the study

of self-consistent phenomena in a strongly mag

netized plasma. The semi-implicit aspect of the

integration scheme relaxes the timestep con

straints required to ensure numerical stability. The

orbit averaging is useful in reducing statistical

noise and relaxes the statistical constraints for

kinetic simulation. For appropriate applications,

the semi-implicit orbit-averaged algorithm should

be more efficient than are traditional particle-in

cell plasma simulation algorithms with explicit

time-integration schemes. Both a linear numerical

dispersion analysis and illustrative simulation

examples are presented.

11A713. Partially linearized algorithms in

gyrokinetic particle simulation. - AM Dimits

(LLNL) and WW Lee (Plasma Phys Lab,

Princeton). J Comput Phys 107(2).309-323 (Aug

1993).

In this paper, particle simulation algorithms

with time-varying weights for the gyrokinetic

Vlasov-Poisson system have been developed. The

primary purpose is to use them for the removal of

the selected nonlinearities in the simulation of

gradient-driven microturbulence so that the rela

tive importance of the various nonlinear effects

can be assessed. It is hoped that the use of these

procedures will result in a better understanding of

the transport mechanisms and scaling in

tokamaks. Another application of these algo

rithms is for the improvement of the numerical

properties of the simulation plasma. For instance

implementations of such algorithms (1) enable us

to suppress the intrinsic numerical noise in the

simulation, and also (2) make it possible to regu

late the weights of the fast-moving particles and,

in turn, to eliminate the associated high frequency

oscillations. Examples of their application to drift

type instabilities in slab geometry are given. We

note that the work reported here represents the

first successful use of the weighted algorithms in

particle codes for the nonlinear simulation of

plasmas.

376. Naval

hydromechanics

11A714, SES Dynamics in the vertical plane.

- AJ Sorensen, S Steen (Div of Marine Hydrodyn,

Norwegian IT, N7034 Trondheim, Norway), OM

Faltinsen (Postfach 52 03 65 Elbschaussee 277,

2000 Hamburg 52, Germany). Ship Tech Res

40(2):71-94 (May 1993).

The dynamic response of Surface Effect Ships

(SES) advancing at high speed in waves is stud

ied. The results show dominating vertical accel

erations in a frequency range of importance for

passenger comfort and crew workability. These

vibrations are analyzed using a mathematical

model for the air cushion. It accounts for the mo

tions and accelerations in heave and pitch in

duced by both the dynamic uniform and the spa

tially varying air cushion pressure. The latter is

described by a modal representation. High ride

quality can be achieved by compensating for

these vibrations using a ride control system.

Based on a mathematical model of such a system

it is shown that optimal placement of the fan and

the ride control system gives a significant im

provement in ride quality.

378. Aerodynamics

11A715. Control of vortices on a delta wing

by leading-edge injection. - W Gu, O Robinson

(Lehigh Univ, Bethlehem PA 18015), D Rockwell

(Dept of Mech Eng and Mech, Lehigh Univ,

Bethlehem PA 18015). AIAA J 31(7) 1177-1186

(Jul 1993).

This experimental investigation addresses the

control of flow past a half-delta wing at high an

gle of attack. Application of steady blowing,

steady suction, or alternate suction-blowing in the

tangential direction along the leading edge of the

wing can retard substantially the onset of vortex

breakdown and stall. The most effective period of

the alternate suction-blowing is on the order of

one convective time scale of the flow past the

wing. As a result of this type of control, the vor

tex structure in the crossflow plane is modified

from a fully stalled condition to a highly coherent

leading-edge vortex. This transformation to a re

stabilized vortex is represented by instantaneous

velocity fields, streamline patterns, and vorticity

Contours.

11A716. Major linear control problem. - AA

Baloev and TK Sirazetdinov (Izvestiya VUZ,

Aviatsionnaya Tekhnika, Russia). Russian

Aeronaut 35(4) 12-19 (1992).

We consider the stochastic alternate of solution

of the major problem of control in the linear sta

tionary formulation. We perform the numeric

search method using as the base the method for

constructing the linear differential equations.

11A717. Aerodynamic design and investiga

tion of a high-loaded turbine. - J Guiming

(Marine Boiler and Turbine Res Inst, PO Box 77

Harbin, Heilongjiang Province 150036, Peoples

Rep of China). Int J Turbo Jet Engines 10(1) 19

30 (1993).

This paper presents a design method with its

specific features of a high-loaded turbine stage

through a design practice to change a two-stage

marine power turbine to a one-stage one. The de

sign was conducted by using the meridional

streamline curvature method based on a full radial

equilibrium. In the design, a controlled vortex

concept was adopted so as to attain a high-loaded

stage. The advantages and disadvantages of the

high-loaded turbine design are discussed through

an analysis and comparison of both design re

sults. In particular, some views and comments are

made in this paper with respect to marine power

turbine engine.

11A718. Complete thrust vectoring flight

control for future civil jets, F-22 superiority

fighter and cruise missiles Part I. Vectored F

22, F-16, and F-15. - B Gal-Or, V Sherbaum, M

Lichtsinder, M Turgemann (Jet Lab Technion,

Israel IT, Haifa 32000, Israel). Int J Turbo Jet

Engines 10(1):1-17 (1993).

Tailless vectored F-22, F-16, F-15, stealth

cruise missiles, stealth unmanned vehicles and

civil-cargo designs are investigated. The fastest

possible "Cobra" and Herbst-turn-back maneu

vers are flight-demonstrated via new unique

thrust-vectoring techniques. Maximized vectoring

agility-controllability is flight-demonstrated by

scaled F-22, F-16, F-15, and other prototypes.

Introducing vectoring control laws and laboratory

and flight-tests proves that new, fast-responding,

roll-yaw-pitch nozzles, provide alternative flight

control for military and civil vehicles. Unaffected

by flow on conventional fight control (CFC) sur

faces, complete thrust-vectoring flight control

(TVFC) dramatically enhances safety-agility-ef

fectiveness during critical take-off, landing, spin,

CFC-damage, and offensive-defensive, air-to

ground and air-to-air, post-stall combat maneu

vers. Vulnerability, accuracy, terrain-following,

range, payload, stealth limits, and final maneu

verability of manned and unmanned vehicles, in

cluding cruise missiles, are expected to be signifi

cantly improved via proper CFC-TVFC.

11A719. Propulsion system flight test analy

sis using model techniques. -SJ Khalid (Pratt &

Whitney, PO Box 109600, W Palm Beach FL

33410-9600) and MF Faherty (General Dyn, Ft

Worth TX). Int J Turbo Jet Engines 10(1) 31-43

(1993).

This paper presents the use of these analytical

tools in emulating the in-flight performance and

operation of a modern fighter engine designed to

meet stringent operational requirements. The pre

flight predictions and accurate post-flight analy

ses contributed to the successful flight test evalu

ation of the F100-PW-229 (PW229) engine,

which is an increased thrust derivative of the

highly successful F100-PW-220 (PW220) engine.

The use of simulation in the thorough pre-flight

checkout of every logic path of the digital control

is illustrated with the example of an enhanced

failure mode accommodation of the PW229

Improved Digital Electronic Control. This in

creased capability control and its thorough verifi

cation, adds to the confidence in the safety and

dependability of single engine installations. The

suitability of the state-variable piece-wise linear

model for the functional checkout of the control

logic and for continuous engine performance syn

thesis over long periods of thermal non-equilib

rium is explained. For applications requiring in

creased accuracy, use of test data driven nonlin

ear dynamic engine model is preferred and is il

lustrated by determining in-flight thrust response

to small throttle movements. The significance of

this analysis is that it helps identify small pertur

bation response requirements which greatly influ

ence airplane handling during formation flying,

refueling, approach, and landing. In addition, the

paper includes calculation of quasi-steady net

propulsive force and specific excess power which

is substantiated by measured airplane accelera

tion.

11A720. Cryogenic wind tunnel - MU

Goodyer (Dept of Aeronaut and Astronaut, Univ

of Southampton, Southampton, UK). Prog

Aerospace Sci 29(3) 193-220 (1992).

Until recently engineers have been unable to

reach full scale Reynolds number in most wind

tunnel tests. The cryogenic wind tunnel has been

introduced to provide the aerospace community

with the means to test models at near-full-scale

Reynolds numbers, satisfying a particular need at

transonic speeds. The background to the need for

high Reynolds number wind tunnels is outlined

together with options. The main advantages of the

cryogenic option are highlighted which led to this

type being adopted for transonic testing. The

novel technology is described together with brief

descriptions of several of the more major tunnel

projects.

See also the following:

11A146. Stability of shock waves

11A752. Aeroelastic response, loads, and stability

of a composite rotor in forward flight
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380. Machinery fluid

dynamics

380B. FUNDAMENTALS

11A721. Conservation of rothalpy in tur

bomachines. - FA Lyman (Dept of Mech and

Aerospace Eng, Syracuse Univ, Syracuse NY

13244-1240). J Turbomachinery 115(3) 520-526

(Jul 1993).

The conditions under which rothalpy is con

served are investigated by means of the energy

and moment-of-momentum equations for un

steady flow of a viscous, compressible fluid.

Differential and integral equations are given for

the total enthalpy and rothalpy in both stationary

and rotating coordinates. From the equations in

rotating coordinates it is shown that rothalpy may

change due to: (1) pressure fluctuations caused by

flow unsteadiness in the rotating frame; (2) angu

lar acceleration of the rotor; (3) work done by

viscous stresses on the relative flow in the rotat

ing frame; (4) work done by body forces on the

relative flow; (5) changes in entropy due to vis

cous dissipation and heat transfer. Conclusions of

this investigation are compared with those of pre

vious authors, some of whom have stated that

rothalpy is conserved even in viscous flows. A

modified Euler's turbomachine equation, which

includes viscous effects, is derived and errors in

previous derivations noted.

11A722. Discs and drums: The thermo-fluid

dynamics of rotating surfaces. - FJ Bayley, CA

Long, AB Turner (Thermo-Fluid Mech Res

Centre, Univ of Sussex, Brighton). Proc Inst Mech

Eng C207(C2) 73-81 (1993).

This paper reviews long-term experimental and

theoretical research programs concerned with

flow and heat transfer over the large rotating sur

faces, commonly discs, often drums but some

times conical, used to support the blades in tur

bomachinery. The account begins with a geome

try found in turbomachinery from the oldest

steam plant to the most modern gas turbine, in

which a disc rotates near a stationary, usually co

axial member. The flow in the intervening

"wheel-space" is well understood, but external

conditions can affect the extent and nature of in

gress from the surrounding fluid. In the gas tur

bine this fluid is the mainstream hot gas, an in

flow of which could have serious consequences,

so that the study of ingress has become the prin

cipal subject of research for rotor-stator systems

and recent work is fully reported here.

See also the following:

11A539. Tilting pad journal bearings: Measured

and predicted stiffness coefficients

11T738. Probabilistic simulation of fragment dy

namics and their surface impacts in the SSME

turbopump

380C. UNSTEADY FLOW AND

SYSTEMS STABILITY

11A723. Rotordynamic coefficients of in

compressible flow damping seals using

Colebrook's formula. - JK Scharrer, N Rubin

(Rocketdyne Div, Rockwell Int, Canoga Park CA

91304), CC Nelson (Texas A&M Univ, College

Station TX 77843). Int J Mech Sci 35(8) 669-673

(Aug 1993).

The basic equations are derived for

incompressible flow in an annular seal with large

scale roughness. The flow is assumed to be com

pletely turbulent in the axial and circumferential

directions with no separation, and is modeled us.

ing Colebrook's friction factor relationshi

Linearized zeroth- and first-order perturbati.

equations are developed for small motion abo.

an arbitrary position by an expansion in the ec

centricity ratio. The zeroth-order continuity and

momentum equations are integrated, yielding the

axial and circumferential velocity components

and the pressure distribution. The first-order

equations are integrated to satisfy the boundary

conditions and yield the perturbation pressure dis

tribution. This resultant pressure distribution is in

tegrated along and around the seal to yield the

force developed by the seal and the correspond

ing dynamic coefficients. Results of this analysis

are compared with one using Moody's equation

and with experimental data for leakage and ro

tordynamic coefficients.

380D. TURBINES (GAS AND

VAPORS)

11A724. Aerodynamic design of turboma

chinery blading in 3D flow: An application to

radial inflow turbines. -YL Yang, CS Tan, WR

Hawthorne (Gas Turbine Lab, MIT). J

Turbomachinery 115(3) 602–613 (Jul 1993).

A computational method based on a theory for

turbomachinery blading design in 3D inviscid

flow is applied to a parametric design study of a

radial inflow turbine wheel. As the method re

quires the specification of swirl distribution, a

technique for its smooth generation within the

blade region is proposed. Excellent agreements

have been obtained between the computed results

from this design method and those from direct

Euler computations, demonstrating the corre

spondence and consistency between the two. The

computed results indicate the insensitivity of the

pressure distribution to a lean in the stacking axis

and a minor alteration in the hub-shroud profiles.

Analysis based on a Navier-Stokes solver shows

no breakdown of flow within the designed blade

passage and agreement with that from a design

calculation; thus the flow in the designed turbine

rotor closely approximates that of an inviscid one.

These calculations illustrate the cause of a design

method coupled to an analysis tool for establish

ing guidelines and criteria for designing turboma

chinery blading.

11A725. Aerodynamic performance of a

transonic low aspect ratio turbine nozzle. -SH

Moustapha (Turbine Aerodyn, Pratt & Whitney,

Montreal, PQ, Canada), WE Carscallen (Combust

and Fluid Eng Lab, NRC, Ottawa, ON, Canada),

JD McGeachy (Dept of Mech Eng, Queen's Univ,

Kingston, ON, Canada). J Turbomachinery

115(3)400-408 (Jul 1993).

This paper presents detailed information on the

3D flow field in a realistic turbine nozzle with an

aspect ratio of 0.65 and a turning angle of 76°.

The nozzle has been tested in a large-scale planar

cascade over a range of exit Mach numbers from

0.3 to 1.3. The experimental results are presented

in the form of nozzle passage Mach number dis

tributions and spanwise distribution of losses and

exit flow angles. Details of the flow field inside

the nozzle passage are examined by means of sur

face flow visualization and Schlieren pictures.

The performance of the nozzle is compared to the

data obtained for the same nozzle tested in an

annular cascade and a stage environment.

Excellent agreement is found between the meas

ured pressure distribution and the prediction of a

3D Euler flow solver.

11A726. Aeroloads and secondary flows in a

transonic mixed-flow turbine stage. - KR

Kirtley, TA Beach (LeRc Group, Sverdrup Tech,

Cleveland OH 44135), C Rogo (Teledyne CAE,

Toledo OH 43612). J Turbomachinery 115(3)

590-601 (Jul 1993).

A numerical simulation of a transonic mixed

flow turbine stage has been carried out using an

average passage Navier-Stokes analysis. The

n- 'urbine stage considered here consists

ozzle vane and a highly loaded

tion was run at the design pres

sure ratio and is assessed by comparing results

with those of an established through flow design

system. The 3D aerodynamic loads are studied as

well as the development and migration of secon

dary flows and their contribution to the total pres

sure loss. The numerical results indicate that

strong passage vortices develop in the nozzle

vane, mix out quickly, and have little impact on

the rotor flow. The rotor is highly loaded near the

leading edge. Within the rotor passage, strong

spanwise flows and other secondary flows exist

along with the tip leakage vortex. The rotor exit

loss distribution is similar in character to that

found in radial inflow turbines. The secondary

flows and nonuniform work extraction also tend

to redistribute a nonuniform inlet total tempera

ture profile significantly by the exit of the stage.

11A727. Incidence angle and pitch-chord eff

ects on secondary flows downstream of a tur

bine cascade. - A Perdichizzi (Dipt Meccanica,

Univ Brescia, 25060 Brescia, Italy) and V

Dossena (Dipt Energetica, Politec Milano, 20100

Milano, Italy). J Turbomachinery 115(3):383-391

(Jul 1993).

This paper describes the results of an experi

mental investigation of the 3D flow downstream

of a linear turbine cascade at off-design condi

tions. The tests have been carried out for five in

cidence angles from -60 to +35°, and for three

pitch-chord ratios: s/c = 0.58, 0.73, 0.87. Data in

clude blade pressure distributions, oil flow visu

alizations, and pressure probe measurements. The

secondary flow field has been obtained by trans

versing a miniature five-hole probe in a plane lo

cated at 50% of an axial chord downstream of the

trailing edge. The distributions of local energy

loss coefficients, together with vorticity and sec

ondary velocity plots, show in detail how much

the secondary flow field is modified both by inci

dence and by cascade solidity variations. The

level of secondary vorticity and the intensity of

the crossflow at the endwall have been found to

be strictly related to the blade loading occurring

in the blade entrance region. Heavy changes oc

cur in the spanwise distributions of the pitch-av

eraged loss and of the deviation angle when inci

dence or pitch-chord ratio is varied.

11A728. Investigation of rotor blade rough

ness effects on turbine performance. - JL

Boynton, R Tabibzadeh (Rocketdyne Div,

Rockwell Int, Canoga Park CA 91303), ST

Hudson (NASA Marshall Space Flight Center,

Huntsville AL 35812). J Turbomachinery 115(3)

614-620 (Jul 1993).

The cold air test program was completed on the

SSME (Space Shuttle Main Engine) HPFTP

(High-Pressure Fuel Turbopump) turbine with

production nozzle vane rings and polished coated

rotor blades with a smooth surface finish of 30

win (0.76 um) rms (root mean square). The

smooth blades were polished by an abrasive flow

machining process. The test results were com

pared with the air test results from production

rough-coated rotor blades with a surface finish of

up to 400 uin (10.16 um) rms. Turbine efficiency

was higher for the smooth blades over the entire

range tested. Efficiency increased 2.1% points at

the SSME 104% RPL (Rated Power Level) condi

tions. This efficiency improvement could reduce

the SSME HPFTP turbine inlet temperature by 57

R (32 K), increasing turbine durability. The tur

bine flow parameter increased with the midspan

outlet swirl angle became more axial with the

smooth rotor blades.

11A729. Measurement and prediction of the

tip clearance flow in linear turbine cascades. -

FJG Heyes (European Gas Turbines, Lincoln,

UK) and HP Hodson (Whittle Lab, Cambridge

Univ Eng Dept, Cambridge CB3 ODY, UK). J

Turbomachinery 115(3):376-382 (Jul 1993).

This paper describes a simple 2D model for the

calculation of the leakage flow over the blade tips

of axial turbines. The results obtained from calcu

lations are compared with data obtained from ex

perimental studies of two linear turbine cascades.
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for near-surge operation at design and off-design

conditions.

11A747. Off-design performance prediction

for radial-flow impellers. - SC Lee (Dept of

Mech and Aerospace Eng, Univ of Missouri,

Rolla MO) and D Chen (Univ of Missouri, Rolla

MO). Int J Turbo Jet Engines 10(1) 45-60 (1993).

A numerical method was developed to consider

the 2D flowfield between impeller blades of a

given geometry. Solution of the laminar Navier

Stokes equations in geometry-oriented coordi

nates was obtained for stream functions and vor

ticities. Velocities and pressures were calculated

to determine the output fluid-energy head. The

circumferential components of the normal and

shear stresses along the blade were evaluated to

give the input mechanical-energy head.

Performance predictions were obtained for differ

ent load conditions. Comparisons were made with

the measured velocity vectors of the flowfield of

an air-pump impeller and with the measured per

formance of a production water pump; good

agreements were reached.

11A748. Separated flow in a low-speed 2D

cascade Part I. Flow visualization and time

mean velocity measurements. - AM Yocum

(Appl Res Lab, Penn State Univ, State College PA

16804) and WF O'Brien (VPI). J Turbomachinery

115(3)409–420 (Jul 1993).

This study was conducted for the purpose of

providing a more fundamental understanding of

separated flow in cascades and to provide per

formance data for fully stalled blade rows.

Cascades of a single blade geometry and a solid

ity of unity were studied for three stagger angles

and the full range of angle of attack, extending

well into the stalled flow region. Results are pre

sented from flow visualization and time-mean

velocity measurements of stalled flow in the cas

cade. Surface and smoke flow visualization re

vealed that the blade stagger angle is a key pa

rameter in determining the location of the separa

tion line and the occurrence of propagating stall.

Time-mean velocity measurements obtained with

a dual hot split-film probe also showed that the

separated velocity profiles within the blade pas

sages and the profiles in the wake have distinctly

different characteristics depending on the stagger

angle.

11A749. Separated flow in a low-speed 2D

cascade Part II. Cascade performance. - AM

Yocum (Appl Res Lab, Penn State) and WF

O'Brien (VPI). J Turbomachinery 115(3) 421-434

(Jul 1993).

This study was conducted for the purpose of

providing a more fundamental understanding of

separated flow in cascades and to provide per

formance data for fully stalled blade rows.

Cascades of a single blade geometry and a solid

ity of unity were studied for three stagger angles

and the full range of angle of attack extending

well into the stalled flow regime. The Reynolds

number was also varied for a limited number of

cases. Results from velocity and pressure meas

urements made in the cascade and the overall

cascade performance evaluated from these meas

urements are presented. In addition, results from a

numerical simulation of the flow through a cas

cade of flat plate airfoils are used to illustrate

further the effects of blade stagger and to define

the correct limits for the cascade performance.

The results indicate that the slope of the total

pressure loss versus angle of attack curve for the

flow immediately downstream of the cascade is

steeper for cascades with greater stagger. The

normal force coefficient was found to increase to

a peak value near the angle of attack where full

leading edge stall first occurs. A further increase

in angle of attack results in a decline in the nor

mal force coefficient. The peak value of the nor

mal force coefficient is greater and occurs at a

higher angle of attack for the cascades with smal

ler stagger.

11A750. Shock formation in overexpanded

tip leakage flow. - J Moore (Dept of Mech Eng,

VPI) and KM Elward (Gas Turbine Eng and Dev,

General Elec, Schenectady NY 12345). J

Turbomachinery 115(3):392–399 (Jul 1993).

Shock formation due to overexpansion of su

personic flow at the inlet to the tip clearance gap

of a turbomachine has been studied. The flow was

modeled on a water table using a sharp-edge rec

tangular channel. The flow exhibited an oblique

hydraulic jump starting on the channel sidewall

near the channel entrance. This flow was ana

lyzed using hydraulic theory. The results suggest

a model for the formation of the jump. The hy

draulic analogy between free surface water flows

and compressible gas flows is used to predict the

location and strength of oblique shocks in analo

gous tip leakage flows. Features of the flow

development are found to be similar to those of

compressible flow in sharp-edged orifices.

Possible implications of the results for high-tem

perature gas turbine engine design are considered.

11A751. Supersonic turbomachine rotor flut

ter control by aerodynamic detuning - KM

Spara (Tech Dept, Aerospace Corp, Los Angeles

CA) and S Fleeter (Sch of Mech Eng, Thermal Sci

and Propulsion Center, Purdue). J Propulsion

Power 9(4) 561-568 (Jul-Aug 1993).

A mathematical model is developed to analyze

the flutter stability characteristics of an aerody

namically detuned rotor operating in a supersonic

inlet flowfield with a supersonic axial component.

Alternate-blade aerodynamic detuning is consid

ered, accomplished by alternating the circumfer

ential spacing of adjacent rotor blades. The un

steady aerodynamics are determined by develop

ing an influence coefficient technique which is

appropriate for both aerodynamically tuned and

detuned rotor configurations. The effects of this

detuning on the flutter stability characteristics of

supersonic axial flow rotors are then demonstr

ated by applying this model to baseline 12-bladed

rotors. Results show that, dependent on the spe

cific blade row and flowfield geometry, alternate

blade aerodynamic detuning is a viable flutter

control mechanism for supersonic through-flow

rotors.

crease up to 30% due to unsteady aerodynamic

effects.

38OY. COMPUTATIONAL

TECHNIQUES

11A753. Practical application of solution

adaption to the numerical simulation of com

plex turbomachinery problems. - WN Dawes

(Whittle Lab, Cambridge Univ, Cambridge, UK).

Prog Aerospace Sci 29(3)221-269 (1992).

This paper describes some recent developments

in the application of unstructured mesh, solution

adaptive methods to the solution of the 3D

Navier-Stokes equations in turbomachinery

flows. By adopting a simple, pragmatic but sys

tematic approach to mesh generation, the variety

of simulations which can be attempted ranges

from simple turbomachinery blade-blade primary

paths towards complex secondary gas paths and

can include the interactions between the two

paths. By adopting a hierarchical data structure,

mesh refinement and derefinement can be pre

formed sufficiently economically that it becomes

practical to perform unsteady flow simulations

with zones of mesh refinement "following" un

steady flow features, like vortices and wakes,

through a coarse background mesh. The com

bined benefits of the approach result in a power

ful analytical ability. Solutions for a wide range of

steady flows are presented including a transonic

compressor rotor, a centrifugal impellor, the in

ternal coolant passage of a radial inflow turbine

and a turbine disc-cavity flow. Unsteady solutions

are presented for a cylinder shedding vortices and

for a turbine wake-rotor interaction.

See also the following:

11A707. Three-dimensional mesh embedding for

the Navier-Stokes equations using upwind con

trol volumes

380Z. EXPERIMENTAL

TECHNICAUES

38OR. PROPELLERS AND

HELICOPTER ROTORS

11A752. Aeroelastic response, loads, and

stability of a composite rotor in forward flight.

- EC Smith (Aerospace Eng Dept, Penn State) and

I Chopra (Dept of Aerospace Eng, Center for

Rotorcraft Educ and Res, Univ of Maryland,

College Park MD 20742). AIAA J 31(7) 1265

1273 (Jul 1993).

The aeroelastic response, blade and hub loads,

and shaft-fixed aeroelastic stability are investi

gated for a helicopter with elastically tailored

composite rotor blades. A new FE-based struc

tural analysis including nonclassical effects such

as transverse shear, torsion related warping, and

in-plane elasticity is integrated with the

University of Maryland Advanced Rotorcraft

Code. The structural dynamics analysis is corre

lated against both experimental data and detailed

FE results. Correlation of rotating natural fre

quencies of coupled composite box-beams is

generally within 5-10%. The analysis is applied

to a soft-in-plane hingeless rotor helicopter in free

flight propulsive trim. Changes in blade loads are

relatively small; however, aeroelastic stability can

be significantly improved by the use of elastic

pitch-lag coupling. For example, lag mode damp

ing can be increased 300% over a range of thrust

conditions and forward speeds. The influence of

attached flow unsteady aerodynamics on the

blade response and vibratory hub loads is also in

vestigated. The magnitude and phase of the flap

response is substantially altered by the unsteady

aerodynamic effects. Vibratory hub loads in

11A754. Blade row interaction effects on

compressor measurements. - T Shang (Gas

Turbine Lab 31-256, MIT), AH Epstein (Gas

Turbine Lab 31-266, MIT), MB Giles (Gas

Turbine Lab 31-264, MIT), AK Sehra

(Compressor Aerodyn Dept LSD-10, Textron

Lycoming, 550 Main St, Stratford CT 06497). J

Propulsion Power 9(4) 569-578 (Jul-Aug 1993).

The influence of a downstream stator row on

the measurement of compressor rotor perform

ance has been examined using a 2D computa

tional fluid dynamic code backed by laser

anemometry data on a transonic fan stage. The

upstream potential influence of the stator causes

unsteady circulation about the rotor blades which

is a function of the rotor circumferential position.

This, in turn, results in a nonuniform circumferen

tial pattern of time-averaged temperature and

pressure in the stationary frame. A relatively fast

calculational procedure using a linearized, poten

tial flow approach coupled with an analytical the

ory relating the temperature and pressure vari

ations to the circulation perturbation is developed

and shown to give good agreement with the nu

merical calculations. The results of a parametric

study show that the magnitude of this effect is a

strong function of rotor-stator blade row spacing

and relative blade counts. The effects range from

negligible for large spacings typical of high by

pass ratio fans, to several percent of the stage

pressure and temperature rise for closely spaced

blade rows typical of high compressors. Because

the temperature and pressure perturbation are in

spatial phase, the net effect on measured rotor

efficiency is negligible so long as the pressure

and temperature measurements are made in the

same location relative to the stators. If they are

not, errors of ti.5% can res"t. The effects of ax
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Analytical and numerical modeling is presented

for predicting the thermofluid parameters of the

cool-down process of an open-to-air vertical tube

carrying liquid nitrogen. A two-fluid mathemati

cal model is employed to describe the flowfield.

In this model, four distinct flow regions were ana

lyzed: 1) fully liquid, 2) inverted annular film

boiling, 3) dispersed flow, and 4) fully vapor.

These flow regimes were observed in an experi

mental investigation constructed for validating

the mathematical model, and also in previous ex

periments by other investigators. For the single

phase regions, the 1D form of mass, momentum,

and energy equations were used. For the two

phase regions, the volume-averaged, phasic 1D

form of conservation equations were applied. The

1D energy equation was formulated to determine

the tube wall temperature history. The numerical

procedure is based on the semi-implicit, finite

difference technique. The calculations for the in

verted annular film boiling were performed im

plicitly. The computations for the tube wall, fully

liquid, and dispersed flow regions were per

formed implicitly. The computations for the tube

wall, fully liquid, and dispersed flow regions were

performed explicitly. In each region, the appro

priate models for heat transfer and shear stress

rates are used. Results and comparisons of the

predicted numerical models with the experimental

data for several constant inlet flow rates of liquid

nitrogen into a vertical, insulated tube are pre

sented.

11T796. Correlation formulas for mixed

convection heat transfer in saturated porous

media. - DA Nield (Dept of Eng Sci, Univ of

Auckland, Auckland, New Zealand). Int J Heat

Fluid Flow 14(2) 206 (Jun 1993).

11A797. Investigation of transient mixed

convection heat transfer of cold water in a tall

vertical annulus with a heated rotating inner

cylinder. - CJ Ho and FJ Tu (Dept ofMech Eng,

Natl Cheng Kung Univ, Tainan, Taiwan 701,

ROC). Int J Heat Mass Transfer 36(11) 2847

2859 (Jul 1993).

The transient buoyant rotating convective flow

and heat transfer in a tall vertical annulus contain

ing cold water near the density inversion have

been investigated via a finite difference proce

dure. Simulations are carried out by solving

axisymmetric Navier-Stokes equations adhering

to the Boussinesq approximation coupled to the

energy equation for an aspect ratio A = 8 and ra

dius ratio RR = 2, two density inversion parame

ters 6m = 0.4 and 0.5, three Reynolds numbers Re

= 50, 100, and 150, and varying Rayleigh number

(up to 106). Numerical results demonstrate that

the transient mixed convective flow and heat

transfer may evolve into sustained oscillation

over a certain range of Rayleigh number at given

6m and Re; outside such unstable Ra-range, the

transient evolution converges to steady-state solu

tion. The transition into oscillatory convection

arises at higher Rayleigh number with higher

Reynolds number. Within the unstable convection

regimes, simple as well as complex periodic oscil

lation, and chaotic oscillations have been de

tected. Moreover, the unstable Ra-ranges under

fixed Re for 0 = 0.5 are found to be wider than

those for 6m = 0.4, clearly reflecting the effects of

the density inversion on the transient buoyant ro

tating convective flow and heat transfer in the

wall vertical annulus.

11A798. Laminar mixed convection in a duct

with a backward-facing step: The effects of in

clination angle and Prandtl number. - B Hong,

BF Armaly, TS Chen (Dept of Mech and

Aerospace Eng and Eng Mech, Univ of Missouri,

Rolla MO 65401). Int J Heat Mass Transfer

36(12) 3059-3067 (Aug 1993).

Mixed convective heat transfer results for 2D

laminar flow in an inclined duct with a backward

facing step are presented for both the buoyancy

assisting and the buoyancy opposing flow condi

tions. The wall downstream of the step is main

tained at a uniform heat flux, while the straight

wall that forms the other side of the duct is main

tained at a constant temperature equivalent to the

inlet fluid temperature. The wall upstream of the

step and the backward-facing step are considered

as adiabatic surfaces. The inlet flow is fully de

veloped and is at a uniform temperature. The eff

ects of the inclination angle and Prandtl number

on the velocity and temperature distributions are

reported.

11T799. Mixed convection flow in a curved

annulus: Effect of radius ratio. - SO Park and

HK Choi (Korea Adv Inst of Sci and Tech,

Kusong-Dong Yusung-Ku, Taejon, Korea). Phys

Fluids A5(7) 1843-1845 (Jul 1993).

11A800. Mixed convection heat transfer in

open ended inclined channels with discrete

isothermal heating. - C Yucel, M Hasnaoui, L

Robillard, E. Bilgen (Ecole Polytech, Univ of

Montreal, CP.6079 St A, Montreal, PQ, H3C 3A7,

Canada). Numer Heat Transfer A 24(1) 109-126

(Jul-Aug 1993).

A numerical study is carried out on mixed con

vection heat transfer (laminar natural and forced

convection) in inclined open ended channels. The

isothermal discrete heating elements are equally

distanced and placed on one side, while isother

mal conditions are imposed on the other. The

governing equations are solved using the finite

difference method. Normalized average and local

Nusselt numbers are calculated as functions of the

Rayleigh number (10's Ras 105), Reynolds

number (10s Res 50), inclination angle (0 < 0 <

90), various heat sources (0.1 < As 1), and vari

ous aspect ratios (5 s B s 20). These include, as

limiting cases, horizontal and vertical positions.

Flow and temperature fields for various cases are

also produced.

11A801. Mixed convection in an inclined

channel with a discrete heat source. - CY Choi

and A Ortega (Dept of Aerospace and Mech Eng,

Univ of Arizona, Tucson AZ 85721). Int J Heat

Mass Transfer 36(12) 3119-3134 (Aug 1993).

The effects of laminar forced flow on buoy

ancy-induced natural convection cells throughout

the regions of natural, mixed, and forced convec

tion have been numerically investigated for a par

allel planes channel with a discrete heat source.

Emphasis is placed on the influence of the inlet

flow velocity and the inclination angle of the

channel, and the local buoyancy induced by the

discrete source. The results indicate that the over

all Nusselt number of the source strongly depends

on the inclination angle (Y) in the natural and

mixed convection regimes when Y > 45°. On the

other hand, the changes in Nu and 6...max are neg

ligible when the channel is from 0 to 45°, there is

no significant penalty in heat transfer due to the

inclination of the channel up to Y = 45°. As Gr

increases at a fixed Re, the entrainment of the air

from the downstream exit is observed for the case

of aiding flow.

11A802. Mixed convective flow with mass

transfer in a horizontal rectangular duct

heated from below simulated by the conditional

Fourier spectral analysis. - I Hosokawa, Y

Tanaka (Dept of Mech and Control Eng, Univ of

Electro-Commun, Chofu, Tokyo 182, Japan), K

Yamamoto (Natl Aerospace Lab, Chofu, Tokyo

182, Japan). Int J Heat Mass Transfer 36(12)

3029-3042 (Aug 1993).

With application to a horizontal chemical vapor

deposition apparatus in mind, mixed convection

and mass transfer in a horizontal rectangular duct

heated from below are numerically investigated.

The computer simulation is carried out based on

the conditional Fourier spectral method recently

developed by the authors. Unsteady flo"

occurring at rather high Grashof

highlighted as good conditions f

spanwise uniformities of time-a

ture distribution " ' tim

number dis'

bottom

402I. ROTATING FLUIDS OR

SURFACES

See the following:

11A587. Fluid flow and heat transfer between fi

nite rotating disks

11A686. Computation of convective heat transfer

in rotating cavities

402L. NON-NEWTONIAN FLOWS

11A803. Forced convection heat transfer to

an elastic fluid of constant viscosity flowing

through a channel filled with a Brinkman

Darcy porous medium. - AV Shenoy (Dept of

Energy and Mech Eng, Shizuoka Univ, 3-5-1

Johoku, Hamamatsu 432, Japan). Warme

Stoffubertragung 28(5) 295-297 (May 1993).

An analysis is presented of fully developed

flow and heat transfer in a channel confined by

two parallel walls subjected to uniform heat flux

in a highly porous medium saturated with an elas

tic fluid of constant viscosity. The Brinkman-ex

tended Darcy model is used for studying the ef

fect of the boundary viscous frictional drag on the

heat transfer characteristics. The approximate

integral method is employed to obtain a solution.

402M. LIQUID METAL FLOWS

11A804. Low Prandtl number convection in

layers heated from below. - V Kek and U

Muller (Kernforschungszentrum Karlsruhe, Inst

Angewandte Thermo- and Fluiddyna, Postfach 36

40, W-7500 Karlsruhe 1, Germany). Int J Heat

Mass Transfer 36(11) 2795-2804 (Jul 1993).

Experimental results are presented for the heat

transfer across a horizontal layer of liquid sodium

heated from below. The experiments show that up

to a Rayleigh number of Ra - 7000 heat is mainly

transferred by conduction for this low Prandtl

number fluid. Beyond this threshold value the

heat transport by convection increases signifi

cantly. For higher values of the Rayleigh number

the measured Nusselt numbers follow a power

law Nu - Ra” which is slightly smaller than the

one predicted for the so-called flywheel convec

tion as suggested by Jones et al.

11A805. Modeling of turbulent buoyant flow

and heat transfer in liquid metals. - AA

Mohamad and R Viskanta (Sch of Mech Eng,

Purdue). Int J Heat Mass Transfer 36(11) 2815

2826 (Jul 1993).

Turbulent convection in a cavity filled with low

Prandtl number fluids is investigated. The cavity

is either heated from below and cooled from

above or heated differentially and the other con

necting walls are assumed to be thermally insu

lated. Direct numerical simulations, and 2D and

3D low Reynolds number k-e turbulence models

are used. It is shown that the turbulent Prandtl

number equal to one or slightly greater than one

produces useful results, regardless of the value of

molecular Prandtl number. A correlation is sug

gested for the Nusselt number as a function of Ra

Pr (Boussinesq number) for natural convection in

a differentially heated cavity. The flow becomes

turbulent for Ra Pr= 4.8 x 10°.

402P. TRANSPORT

MECHANISMS

06. Impinging jet studies for turbulence

sessment I. Flow-field experiments. -

per, DC Jackson, BE Launder, GX Liao

Mech Eng, UMIST, Manchester, UK). Int

Mass Transfer 36(10) 2675-2684 (Jul
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cavity. A shock is produced at the initiation point

of the arc and propagates down the cavity, even

tually exiting the plug. The velocity of the shock

was both measured experimentally and simulated

by the model.

416D. LAMINAR FLAME

PROPAGATION

11A889. Burning of a spherical fuel droplet

in a uniform flowfield with exact property

variation. - K Madooglu and AR Karagozian

(Dept of Mech Aerospace and Nucl Eng, UCLA).

Combust Flame 94(3):321-329 (Aug 1993).

An analytical and numerical model is devel

oped for single droplet evaporation and burning

in a convective flowfield. The model is based on

the boundary-layer approach, and chemical reac

tion kinetics are represented by a one-step, finite

rate reaction mechanism, while variation of gas

properties with temperature and gas composition

is based on the kinetic theory of gases. Four drop

let models differing in the degree of complexity

concerning property variation and chemistry are

compared. Comparisons are also provided with

existing empirical correlations for convective

droplet evaporation and burning.

11A890. Burning velocities of hydrogen-air

mixtures. - GW Koroll, RK Kumar, EM Bowles

(AECL Res, Whiteshell Lab, Pinawa, MB,

Canada). Combust Flame 94(3) 330-340 (Aug

1993).

Laminar and turbulent burning velocities of

hydrogen-air mixtures have been determined in a

17-L vessel using the double-kernel technique for

a range of hydrogen concentrations between 9%

and 70% by volume. Over the range of mixtures

investigated, simple empirical correlations yield

laminar burning velocities that are in good

agreement with those measured. A turbulent

burning-velocity correlation that includes the

flame-generated turbulence produces burning ve

locities in good agreement with the values meas

ured experimentally. The data and correlations for

the hydrogen burning velocity are used in models

to predict hydrogen combustion behaviour in en

closures containing hydrogen-air-diluent mixtures

and in combustion systems that employ hydrogen

as the fuel.

11A891. Compositional structure and the

effects of exothermicity in a nonpremixed pla

mar jet flame. - CJ Steinberger, TJ Vidoni, P

Givi (Dept of Mech and Aerospace Eng, SUNY,

Buffalo NY 14260-4400). Combust Flame 94(3)

217-232 (Aug 1993).

Results are presented of direct numerical simu

lation (DNS) of a randomly perturbed compress

ible, spatially developing 2D planar jet under the

influence of a finite rate chemical reaction of the

type F + O -- Product. The objectives of the

simulations are to assess the compositional struc

ture of the flame and to determine the influence of

reaction exothermicity by means of statistical

sampling of the DNS generated data. It is shown

that even with this idalized kinetics model the

simulated results exhibit features in accord with

experimental data. These results indicate that the

Damkohler number is an important parameter in

determining the statistical composition of the

reacting field and that the results are not very sen

sitive to the mechanism by which this parameter

is varied. It is demonstrated that as the intensity of

mixing is increased and the effect of finite rate

chemistry is more pronounced, the magnitudes of

the ensemble mean and variance of the product

mass fraction decrease and those of the reactants'

mass fraction increase. Also, at higher missing

rates the joint probability density functions of the

reactants' mass fractions shift towards higher val

ues within the composition domain, indicating a

lower reactedness. These trends are consistent

with those observed experimentally and are use

ful in portraying the statistical structure of non

equilibrium diffusion flames. The DNS-generated

data are also utilized to examine the applicability

of the "laminar diffusion flamelet model" in pre

dicting the rate of the reactant conversion with fi

nite rate chemistry. This examination indicates

that the performance of the model is improved as

the value of the Damkohler number is increased.

Finally, the simulated results suggest that in the

setting of a "turbulent" flame, the effect of the

heat liberated by the chemical reaction is to in

crease the rate of reactant conversion. This find

ing is different from those of earlier DNS results

and laboratory investigations that indicate a sup

pressed chemical reaction with increasing heat re

lease.

11A892. Liftoff characteristics of methane

jet diffusion flames. - JP Seaba (Dept of Mech

Eng and Aerospace Eng, Univ of Missouri,

Columbia MO 65211), L-D Chen (Dept of Mech

Eng, Univ of Iowa, Iowa City LA 52242), WM

Roquemore (Aero Propulsion and Power

Directorate, Wright Lab, WPAFB). J Propulsion

Power 9(4)654-656 (Jul-Aug 1993).

The mechanisms responsible for the liftoff from

the burner rim and stabilization of the jet flames

are not clearly understood. Early works studied

the stability of jet flames in open air and identi

fied four different regimes concerning flame sta

bility. Of the four stability regimes 1) liftoff, 2)

blowoff, 3) lifted, and 4) blowout, only the liftoff

process will be studied in this Note. The liftoff

condition is referred to the instant when the flame

detaches from the burner rim in a discontinuous

manner. After the flame detaches from the burner

rim, it may stabilize at a downstream location (ie,

lifted flame) or it may result in flameoff condi

tions (or the blowoff condition).

oscillations. Other phenomena which can lead to

unstable oscillations have been identified as well,

these include naturally occurring hydrodynamic

instabilities and convectively coupled oscilla

tions. Due to their potential harm to system per

formance, it is often necessary to find ways to re

duce the magnitude of these oscillations in the

course of developing a new combustion system.

Historically, the control and suppression of com

bustion instabilities has been achieved through

hardware design changes. These modifications

have included changes in the fuel delivery syste

m, including feedlines and pumps, changes in the

fuel injection distribution pattern, and modifica

tions to the combustor or the combustor liner ge

ometry. In general, these design modifications

have been made in an attempt to change the reso

nant behavior of the combustion system so as to

avoid the resonantly coupled oscillations which

lead to combustion instability. In recent years,

much attention has been focused on the control

and suppression of combustion instabilities by

actively and continously perturbng certain com

bustion parameters in order to interrupt the

growth and persistence of resonant oscillations.

The strategies used in this field of active control

vary greatly in nature, both with respect to the

theoretical basis for the control system and the

system hardware which is employed. The purpose

of this paper is to present a discussin of different

methods which can be used to suppress combus

tion instabilities using active control, as well as to

give a review of the work which has recently

been performed in this area of combustion re

search.

416F. FLAME STABILITY AND

STABILIZATION

416I. KINETICS AND

MECHANISMS

11A893. Feedback control of an unstable

ducted flame. - TP Parr, E. Gutmark, DM

Hanson-Parr, KC Schadow (Res Dept, Code

3892, Naval Air Warfare Center Weapons Div,

China Lake CA 93555). J Propulsion Power 9(4)

529-535 (Jul-Aug 1993).

Active control of a naturally unstable ducted

flame was realized using acoustic forcing of

either the shear layer of the flame jet or the duct

itself. The feedback signal was derived from

either the duct pressure signal or the CH intensity

(related to the flame heat release rate), and de

layed in time to produce cancellation of the natu

ral resonant oscillations of the system. Direct

driving of the shear layer using the duct pressure

signal feedback produced the best control with

the lowest power requirements. The controller

was able to reduce the acoustic power in the duct

at the resonant frequency from 19 Pa to about 0.7

Pa, or nearly 30 dB. When operating in the con

trolled mode, the driving speaker is producing a

sound pressure level more than three orders of

magnitude below the natural duct uncontrolled

level (both measured in the duct), so the effect is

clearly not just acoustic cancellation.

11A894. Review of active control of combus

tion instabilities. - KR McManus (Phys Sci, 20

New England Bus Center, Andover MA 01810), T

Poinsot, SM Candel (Lab EM2C du CNRS, Ecole

Centrale Paris, 92295 Chatenay-Malabry,

France). Prog Energy Combust Sci 19(1) 1-29

(Aug 1993).

Combustion instabilities in modern high-per

fomance propulsion systems are often manifested

as large amplitude pressure oscillo' nd can

result in serious performan se

pressure oscillations are of

lations in heat release as

the combustor throug

tween various oscill n

been traced to an as in

component ed

11A895. Reduced kinetic mechanisms and

their numerical treatment I. Wet CO flames. -

W Wang and B Rogg (Dept of Eng, Univ of

Cambridge, Trumpington St, Cambridge CB2

1PZ, UK). Combust Flame 94(3):271-292 (Aug

1993).

In the present article we investigate laminar,

premixed freely propagating wet CO flames, ie,

flames whose initial mixture contains small

amounts of hydrogen and water vapor. Attention

is focused on the derivation and validation of re

duced kinetic schemes that provide both more

computational efficiency in the calculation and

the basis for asymptotic analysis of such flames.

Specifically, a short detailed mechanism and sys

tematically reduced three-step, two-step, and one

step mechanisms are derived that allow realistic

predictions of burning velocities and flame struc

tures over a wide range of stoichiometries. Inner

iteration is discussed in detail and its black box

character is identified. Also presented and dis

cussed are numerical tricks for efficient use of

reduced kinetic mechanisms in flame calcula

tions. In particular, the so-called partially explicit

numerical schemes are identified.

11T896. Review of chemical-kinetic problems

of future NASA missions I. Earth Entries. - C

Park (NASA Ames Res Center, Moffett Field CA

94035). J Thermophys Heat Transfer 7(3) 385

398 (Jul-Sep 1993).

416.J. UNSTEADY COMBUSTION

AND COMBUSTION ACOUSTICS

11A897. Low-frequency combustion

oscillations in a model afterburner. - MA

Macquisten (Combustion Dept, Rolls Royce,

Filton, Bristol BS12 7QE, UK) and AP Dowling

(Eng Dept, Cambridge Univ, Trumpington St,

Cambridge CB2 1PZ, UK). Combust Flame 94(3)

253-264 (Aug 1993).

Low-frequency combustion oscillations, in

volving the interaction between longitudinal
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accurate predictions for ultimate tar and gas

yields.

11A905. Slowly varying filtration combus

tion waves. - MR Booty (Dept of Math, S

Methodist Univ, Dallas TX 75275) and BJ

Matkowsky (Dept of Eng Sci and Appl Math,

NWU). European J Appl Math 4(2) 205-224 (Jun

1993).

£ describe the slow evolution of the wave

speed and reaction temperature in a model of fil

tration combustion. In the counterflow configura

tion of the process, a porous solid matrix is con

verted to a porous solid product by injecting an

oxidizing gas at high pressure into one end of a

fresh sample of the solid while igniting it at the

other end. The solid and gas react exothermically

at high activation energy and, under favorable

conditions, a self-sustaining combustion travels

along the sample, converting reactants to product.

Since the reaction rate depends on the gas pres

sure p in the pores, small gradients p cause vari

ations in the conditions of combustion, which, in

turn, cause inhomogeneities in the physical prop

erties of the product. We determine the slow evo

lution of the wave speed, the reaction tempera

ture, and the mass flux of the gas downstream of

the reaction zone. In the absence of a pressure

gradient, there is a branch of steadily propagating

solutions which has a fold. For planar distur

bances on the slow time scale, we show that the

middle part of the branch is unstable, with the

change of stability occurring at the turning points

of the branch. When the pressure gradient is non

zero, there are no steadily propagating solutions

and the wave continually evolves. Conditions on

the state of gas at the inlet are described such that

the variation in the wave speed and reaction tem

perature throughout the process can be mini

mized.

radation, and to semi-global reaction mechani

sms, accounting for both primary solid degrada

tion and secondary degradation of evolved pri

mary pyrolysis products. Semi-global kinetic

models have been coupled to models of transport

phenomena to simulate thermal degradation of

charring fuels under ablation regime conditions.

The effects of bubble formation on the transport

of volatiles during thermal degradation of non

charring fuels, described through a one-step

global reaction, have also been modeled. On the

contrary, very simplified treatments of solid phase

processes have been used when gas phase com

bustion processes are also simulated. On the other

hand, the latter have also always been described

through one-step global reactions. Numerical

modeling has allowed controllng mechanisms of

ignition and flame spread to be determined and

the understanding of the interaction between

chemistry and physics during thermal degradation

of solid fuels to be improved. However, the

chemical processes are not well understood, the

few kinetic data are in most cases empirical and

variations of solid properties during degradation

are very poorly known, so that even the most ad

vanced models do not in general give quantitative

predictions.

416S. FLAME AND FIRE

(SPREAD AND EXTINCTION)

416Q. LIQUID FUELS

11A906. Comparison of droplet combustion

models in spray combustion. - TL Jiang and W

Hsu (Inst of Aeronaut and Astronaut, Natl Cheng

Kung Univ, Tainan, Taiwan 70101, ROC). J

Propulsion Power 9(4) 644-646 (Jul-Aug 1993).

For a spray-burning combustor, experimental

observations reveal that different spray combus

tion modes are present under various atomization

conditions. In a fine-droplet spray, fast evapora

tion of small droplets make gas-phase combustion

much more significant than droplet combustion

and a diffusion gas-phase flame, with a relatively

short spray length with respect to the overall

flame length results. As spray droplets become

larger, both individual droplet burning of large

droplets and group burning of small droplets are

possible, and a mixed combustion mode consist

ing of diffusion gas-phase flame and droplet

combustion occurs. Massive droplet combustion

with either envelope or wake flames are observed

when the spray droplet size is further increased.

11A907. Modeling and simulation of combus

tion processes of charring and non-charring

solid fuels. - C Di Blasi (Dept di Ing Chimica,

Univ di Napoli, Piazzale V Tecchio, 80.125

Napoli, Italy). Prog Energy Combust Sci 19(1)

71-104 (1993).

Some of the progress that, owing to modeling

and numerical simulation, has been made to the

understanding of chemical and physical proc

esses, which occur during combustion of solid fu

els, is presented. The first part of the review deals

with thermal degradation processes of charring

(wood and, in general, cellulosic materials) and

non-charring (poly-methyl-methacrylate) materi

als. Gas-phase combustion processes (ignition,

flame spread and extinction) are discussed in the

second part of the review. Solid fuel degradation

has been described by kinetic models of different

complexity, varying from a simple one-step

global reaction, to multi-step reaction mechani

sms, accounting only for primary solid fuel deg

11A908. Extinction of pool flames by means

of a DC electric field. - E Sher, G. Pinhasi, A

Pokryvailo, R. Bar-On (Dept of Mech Eng,

Pearlstone Center for Aeronaut Stud, Ben-Gurion

Univ of the Negev, Beer-Sheva, Israel). Combust

Flame 94(3):244-252 (Aug 1993).

The application of an electric field to a combus

tion system can produce large and potentially use

ful effects, such as reducing carbon formation,

affecting flame velocity, extending flammability

limits, increasing flame luminosity, and stabiliz

ing and extinguishing flame. The present study is

concerned primarily with the corona discharge

interaction with pool fires. The fuel surface

served as the blunt electrode and several specially

designed sharp probes have been examined as the

high-voltage electrode. The most effective sharp

electrode appeared to be a simple thin wire paral

lel to the liquid surface situated above it at a dis

tance of several millimeters. The flame was re

pelled from the probe, thus creating a possible

pool flame extinction device. Similar results were

achieved with a mechanical blower that repro

duced the velocity profile of the electric wind.

The gas composition in different locations was

examined for both the corona and blower cases.

No significant difference was found, and it was

concluded that ion pumping has no influence on

the extinction performance. It is suggested that

extinction by corona discharge is caused solely

by the aerodynamic action of the electric wind

with its remarkably flat, sharp velocity profile.

Fire extinctions under hot and aggressive envi

ronments are possible applications of the present

device.

416T. COMBUSTION, FLAME,

AND FIRE MODELING

11A909. Integral combustion simulation of a

turbulent reacting flow in a channel with cross

stream injection. - SL Chang and SA Lottes

(Energy Syst Div, ANL). Numer Heat Transfer A

24(1) 25-43 (Jul-Aug 1993).

A new integral one-step reaction submodel has

been developed for an Argonne combustion com

puter code to sir ting flows of an ad

vanced com etohydrodynamic

power gen ombustion code

n" a reacting flow

eft hile still preserv

ing the major physical effects of the complex

combustion processes. Results of the simulation

indicate that (1) fluid mixing is mainly responsi

ble for combustion performance and (2) counter

flow injection with an injection angle in the range

of 120° to 140° yields the best mixing and com

bustion performance.

11A910. Mixing of multiple jets with a con

fined subsonic crossflow. - JD Holdeman (NASA

Lewis Res Center, Cleveland OH 44135). Prog

Energy Combust Sci 19(1)31-70 (1993).

This paper summarizes experimental and com

putational results on the mixing of single, double,

and opposed rows of jets with an isothermal or

variable temperature mainstream in a confined

subsonic crossflow. The studies from which these

results came were performed to investigate flow

and geometric variations typical of the complex

3D flowfield in the dilution zone of combustion

chambers in gas turbine engines. The principal

observations from the experiments were that the

momentum-flux ratio was the most significant

flow variable, and that temperature distributions

were similar, independent of orifice diameter,

when the orifice spacing and the square-root of

the momentum-flux ratio were inversely propor

tional. The experiments and empirical model for

the mixing of a single row of jets from round

holes were extended to include several variations

typical of gas turbine combustors, namely vari

able temperature mainstream, flow area conver

gence, noncircular orifices, and double and oppo

sed rows of jets, both inline and staggered. All

except the last of these were appropriately mod

eled with superposition or patches to the basic

empirical model. Combinations of flow and ge

ometry that gave optimum mixing were identified

from the experimental and computational results.

Based on the results of calculations made with a

3D numerical model, the empirical model was

further extended to model the effects of curvature

and convergence. The principal conclusions from

this study were that the orifice spacing and mo

mentum-flux relationships were the same as ob

served previously in a straight duct, but the jet

structure was significantly different for jets in

jected from the inner wall of a turn than for those

injected from the outer wall. Also, curvature in

the axial direction caused a drift of the jet trajec

tories toward the inner wall, but the mixing in a

turning and converging channel did not seem to

be inhibited by the convergence, independent of

whether the contraction was radial or circumfer

ential. The calculated jet penetration and mixing

in an annulus were similar to those in a rectangu

lar duct when the orifice spacing was specified at

the radius dividing the annulus into equal areas.

11A911. Prediction of the pulsation fre

quency of flames formed over a semi-infinite

horizontal surface. - IK Puri (Dept of Mech Eng,

MC 251, Univ of Illinois, PO Box 4348, Chicago

IL 60680). Int.J Heat Mass Transfer 36(10) 2657

2663 (Jul 1993).

The pulsation frequency of horizontally situ

ated semi-infinite reacting surfaces is studied

using linear stability theory. The analysis consid

ers the flow to consist of an initially laminar base

flow and a periodic disturbance. The governing

equations are cast into a self-similar form analo

gous to previous analyses of boundary layers. The

base flow is analyzed in terms of a flame sheet

approximation, the solution to which is required

to solve the disturbed flow. Some boundary con

ditions pertaining to the disturbances are evident

but some others are inferred herein. The govern

ing equations are solved for a flame burning n

heptane, and the results of the analysis relate the

disturbance frequency of the flame to a Grashof

type number, which, in turn, is related to the

length of the thermal boundary layer. It is deter

mined that the frequency scales according to a

power law expressed as (iength)".
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where wi, w? and T are the minimum frequency, maxi

mum frequency, and the sweep duration (in seconds).

An effective angle of attack component , aG, due to the

gust can be represented as

wg(t)

U

In Eq.(1)–(3), expansions in general mode shape functions

are used to obtain ordinary differential equations in terms

of generalized modal co-ordinates. They are expressed in

series form as follows.

aG(t) = • (10)

N

v=XXV.(),(:). (11)

TU - 5. Wi(t)wh; (+),

1J
·

5.q = - 4;(t)6; (+),

1J
-

where ( ) indicates non-dimensionalization of the span

wise coordinate with respect to the blade span, R, and,

wh; and 6, are the characteristic functions for cantilevered

beam bending and torsional vibrations, respectively.

Substituting these expansions into Eq.(1)–(3), and using

the Galerkin method one obtains a set of nonlinear modal

equations of motion.

Solution procedure

Unstalled gust response solution

For the unstalled gust response problem, the aerodynamic

drag and pitching moment coefficients are explicit alge

braic functions of the effective angle of attack, but the lift

coefficient is described as a first order differential equa

tion which also depends upon the position of aerodynamic

element. There are NN degrees of freedom for the aero

dynamic model.

A linearized perturbation procedure was used to solve

the nonlinear equations. The static equilibrium equa

tions are 3N nonlinear algebraic equations in the static

equlibrium values, Voj,Woj and po; which are solved by

iteration using the Newton-Raphson method. In addi

tion, there is a set of 6N+NN first order linear non

homogeneous perturbation differential equations in the

small time dependent structural perturbation variables,

AV,AW, Ap; and the lift coefficient perturbation veri

ables, ACly. It is expressed as a matrix equation of first

order by:

Mjj Mji || Aqai l = | Kjj Kji

Mij Mu Aja2 Kij Ku

Aqal Fid } { Fiv } -

12

{ Aqa2 }+{ £ ea + | f | ed (12)

where

{Aqal)" = 1....AV, AV, AW,AW,A#,A#,....]

{Aqsa)" = 1....A.Col...]

For the solution using the Sears aerodynamic model,

the perturbation equations are expressed as a set of 6N

first order linear non-homogeneous differential equations

by:

[M.]{Adal] = [K.]{Aqal} + {F.} b,(k)ag

+ {F} ag (13)

Stalled gust response solution

Stalled gust response can be determined by the following

procedure. The structural model are second order, non

linear differential equations in the variables, Vi, W, and

Qi, respectively. Two state variables are required for each

jth variable. Thus 2x3xN structural state variables are

required. For the ONERA aerodynamic model, a third

order system for the lift coefficient and a second order

system for both drag and pitch moment coefficients are

required. Hence, seven state variables are required per

aerodynamic section. The total number of state variables

for the aeroelastic system is thus 6N+7NN.

The resulting system of the state variable equations is

given by:

Mi Mii |{ is, }= Ki Ki |{ Qbj }
Mij Mu Qbl Kij Ku Qbl

F;

+{ F. } (14)

where

- - - T

{q,]" = { %, Ví, Wi, W,3,3,...} *

T • - - T

{qui) ={-Curcu Concalcanic",caw, ) -

Eq.(14) is a set of nonlinear differential equations. The

solution of the equations can be obtained by numerical

time integration. The section angle of attack ,al, and sec

tion inflow angle, bx , involve the state variables V, W,

and 45. The initial values of an and bat are determined by

the initial values of the state variables that then change

during the numerical integration in a time step fashion.

The following calculation results are for the blade di

vided into 4 equal length spanwise strips. The blade sec

tion is a NACA 0012 airfoil. The static lift, drag and pitch

moment coefficients are identified from the experimental

data using curve fitting.

EXPERIMENT

An experiment for a flexible rotor blade responding to

a gust was performed in the Duke University low speed,

closed circuit wind tunnel as shown in Fig.2. The gust

was created by placing a rotating slotted cylinder (RSC)

behind a rigid, fixed airfoil upstream of the flexible blade.

The gust generator configuration in the wind "nel had

two airfoils or vanes and two rotating sl 'ers.
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MATERIAL BEHAVIOR

Whereas materials normally expand upon heating and

contract during cooling, steel also undergoes phase

transformations which alter its thermal expansion behavior

over certain temperature ranges. An experimentally obtained

plot (Reed, 1990) of longitudinal strain versus temperature

for an unconstrained specimen of X22 stainless steel (X22

CrMoV 12 1) is shown in Fig. 1. The strain measurements

were made using a quartz push-rod dilatometer.

Cver a temperature range of approximately

813 K6 (856 K, where 6 denotes the rise in

temperature from ambient (room) temperature, a phase

change from martensite to austenite occurs. Temperature

increases during this transformation period result in thermal

contraction rather than expansion. Under subsequent cooling

of the steel, a transformation from austenite back to

martensite takes place. During this phase change, which

begins at approximately 6 = 262 K, the metal expands

rather than contracts with decreasing temperature. The

phase-transformation process is assumed here to be

independent of time.

Temperature Rise (K)

Fig. 1. Strain versus temperature curve

for unconstrained specimen of

X22 stainless steel.

For the purpose of the present analysis, the measured

strain-temperature behavior described by Fig. 1 is represented

by the piecewise linear approximation ABCDEF shown in

Fig. 2. The slopes of the four line segments in this

idealization represent the values of the coefficient of linear

thermal expansion a (6) over the respective temperature

ranges.

Temperature Rise (K)

Fig. 2. Strain versus temperature curve

used for the analysis (values

of o given in 1/100K).

In addition to accounting for the influence of temperature

on the thermal expansion coefficient, temperature-dependence

of the material's elastic modulus and yield stress is included

in this investigation. Other material properties are, however,

assumed to be unaffected by temperature.

THEORETICAL ANALYSIS

Temperature Field

The plate under consideration (Fig. 3) is thermally insulated

on its lower face (z=-h/2) and along its edges (x=0,a; y=0,b).

During the time interval 0 < t < to there is uniform

heat input go over the top face z=h/2, while thereafter this

face is subject to convective cooling.

The temperature rise 6 (z) in the plate is assumed to

satisfy the Fourier heat conduction equation

A. 6°6 – 6

622

(l)

in which 6=T- TA is the temperature increase from an

ambient, stress-free temperature TA; A=k/pc is the

thermal diffusivity, where k and pc denote thermal

conductivity and volumetric heat capacity, respectively.
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Heat input, So

* : {

insuld? ed

Fig. 3. Stainless steel plate.

The initial and boundary conditions for the problem are

expressed mathematically as

0 (z, 0) = 0 (2)

k 60 (+h/2, t) = 0 too (3)

02

k "'E - -a. 0< t< to (4)

30 (h/2, t) = -

k+--H 6 (h/2, t)

t2 to

(5)

in which H is the boundary conductance at z=h/2.

The temperature distribution satisfying equations (1)–(5)

is (Boley and Weiner, 1960)

• – hgo| 24At 2 \ 2

tote: 6 (2, t)=# #12(#)

2. 48

+ 12 (#)-1-#.
-m2n3At

- (-1) "...": 2-1.2. m2 e cos"(#)

(6)

- -*te-tel

to te: 6 (z, t) => a.e. "
m=1

cosa.(##)
(7)

in which

an= TÉ. 's (z, to) cosa,

(# + #) dz (8)

# -2

*-ā'...)

where a , are the roots of the equation

(9)

a tan a = Hh/k

Stress Field

In order to obtain an approximate solution for the stress field,

the plate is idealized as a laminate having N layers. Within

each layer the material’s thermoelastoplastic properties are

assumed to be uniform. For those properties which are

presumed to vary with temperature, a value based upon the

average temperature within the layer is used; i.e., a typical

layer (k) occupying the region zk-1 < z < zk and

having a mean temperature rise

6* = [6 (2x) + 6 (2-1)] /2 (10)

has temperature-dependent properties

E(k) = E(6(k)), (11)

Y (k) = Y(6(k))

The plate material is taken to be elastic-perfectly plastic, and

to satisfy a temperature-sensitive von Mises yield criterion

defined by the yield function

2

3 (12)

where Sij denotes the component of the stress deviator.

The behavior is assumed to be elastic if



Appl Mech Rev vol 46, no 11 part 2 Nov 1993 Tauchert, Webster, and Reed: Thermoelastoplastic analysis of steel plate S15

f « 0, or if f=0 and

(# 2, #8, so (13)

whereas plastic flow is assumed to occur if

f #" and of . (14)

(#°, * 55 •) > 0

Assuming that a state of plane stress exists for the traction

free plate under consideration, the stress components are

taken to be

oxx = oxy = C,

(15)

all other os = 0

In this case equation (12) yields

f = 2 (o2-y2)3 (16)

and it follows that the stress state is elastic if

o' a Y”, or a - Y’ (17)

and o O - YY & O

and plastic if

O2 = Y2
- (18)

and oo – YY > 0

The flow conditions (17) and (18) associated with the case o’= Y”

can be expressed in terms of incremental changes occurring

during a small time interval At as follows. For elastic

behavior

o Ao - Y AY (0 (19)

and for plastic flow

o Ao - Y AY > 0 (20)

Considering thermoelastoplastic behavior, the constitutive

relation is taken to be

_ E (6)

1–v
(21)

(e – e.” – £a (*) de)
O

in which e” denotes the plastic portion of the total strain

component ex=eyy=e. During thermoelastic response

(Ae *=0), the stress increment Ao-Ao" becomes

* = do A. . do.AC * = de Ae + 66 A6

E(6) Ae –+

deto, i-V.
E. – a P

[+ (e-e £a (*) do
– g (6) E(0) ] A6

(22)

or introducing (21),

Ao" - +9). (Ae-a (e) Ae)
1–V (23)

dE (0) o
++ E(6) A6

If the usual assumptions of classical (Kirchhoff) theory of

plates are employed, the strain component e is related to the

middle-surface strain e' = e, , = e” and

curvature (kx=Ky=k) by the expression

e = €” + 2 K (24)

The strain increment Ae appearing in equation (23) thus

becomes

Ae = Ae" + z Ak (25)

For the layered idealization of the plate, it is convenient

to define a function g (k) (t) (similar to that

introduced by Boley and Weiner, 1960) which is equal to

unity when layer k is in the elastic state, and zero when the

layer is in the plastic state. Thus when g (*=1:
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region of the plate, and since this layer alone has undergone

contraction due to austenitizing, it experiences a large tensile

stress (Fig. 4).

When t”=10.0 all layer temperature increases0"

are less than 3.K., indicating a near steady-state thermal

condition has been reached. The plastic deformation which

occurs in layer 12 during heating, followed by elastic

response during cooling, results in residual compressive top

surface stresses, tensile stresses immediately subsurface, and

nearly zero stresses elsewhere.

Figure 5 shows a similar set of results for the stress

distributions resulting from a larger heat input time, namely

t = 0.215. In this case both layers 11 and 12 undergo

phase transformations. Note that while the increased heating

time results in a deeper zone of compression at the top of the

plate, the magnitudes of the stresses within this zone are

much reduced.

0.5
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-800 -600 -4 400 600 800

Stress (MPG)

Fig. 5. Stress distributions for heating

duration t£= 0.215.

The degree of martensite formation which takes place

during cooling has a pronounced effect upon the residual

stress magnitudes. To examine this effect, the calculated

stress distributions are compared with those which would

occur if the plate material were to return to its original

microstructure following the phase transformations; i.e., if the

martensitic transformation were represented by line EA rather

than EF in Fig. 2. Note that curve ABCDEF characterizes

a situation in which the contraction of the affected layers

resulting from the austenite formation exceeds the expansion

associated with the subsequent martensite formation, whereas

for the "closed" curve ABCDEA the net deformation

resulting from the two transformations is zero. The residual

stress distributions for these two situations are plotted in

Figs. 6 and 7, corresponding to heat input durations of

t = 0.18 and 0.215, respectively. Since the

expansion which occurs during martensitic transformation has

the effect of increasing the compressive stresses in the

affected layers, the magnitude of the compressive residual

surface stresses are greater in the case of "complete"

martensite formation (curves b) than in the case of

incomplete martensitic transformation (curves a).

Also shown in Figs. 6 and 7, for the purpose of

comparison, are residual stress distributions calculated

assuming that no phase transformations occur (curves

labelled c). In this case the upper region undergoes thermal

expansion during heating which is large relative to expansion

elsewhere in the plate, resulting in compressive surface stress

and plastic flow. Following elastic unloading (cooling) the

surface stresses become tensile, as indicated in the figures.
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- t
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- Ti

-0.3 W
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w

-

# ,
-oš'":":":": Ö"200" 400 500" "#00"

Stress (MPa)

Fig. 6. Residual stress distributions for heating

duration t.= 0. 18. (a) incomplete martensitic

formation;(b) complete martensitic formation;

(c) no phase transformations.



Appl Mech Rev vol 46, no 11 part 2 Nov 1993
Tauchert, Webster, and Reed: Thermoelastoplastic analysis of steel plate S19

0.5

- : PQ £

: ef - - - *

•. b “f---------|-- -

: --|-- =# =%

*: - - T --- * *

i Al T 1- 1

i \ |

h o

\ | 1
0.1 \ , ;

-- v i ;
~

\ ,

N a ti

-0.1 - *:

: },

-0.3 : II* v

i 17 W.

i || | \

- J M \,

-0.5 +rrrrrrrrr!"rrrrrrrr!"rrrrrrrrk"rrrrrrrrrrrrrrrrrhrrrrrrrrrtry":
-600 -600 -4 600O0 -200 200

Stress (MPa)

Fig. 7. Residual stress distributions for heating

duration t. = 0.215. (a) incomplete martensitic

formation;(b) complete martensitic formation;(c) no

phase transformations.

The effects of the temperature dependence of Young's

modulus and yield stress upon residual stress also have been

examined. Figures 8 and 9 show stress distributions

calculated on the basis of the relations E(6) and Y(6)

given in equation (36), as well as those based on constant

modulus E(0) = 216.8 GPa and constant yield stress Y(0) =

896 MPa. For either of the elastic modulus expressions

(E(0) or E(0)), the predicted residual compressive

stress at the heated surface is greater when the yield stress

decreases with temperature than when it is considered

constant (cf. curves a and c, or b and d in the figures). On

the other hand, when either of the yield stress relations

(Y(6) or Y(0)) is employed, the compressive

residual surface stress based upon a modulus which decreases

with temperature is smaller than that based upon a constant

value of modulus (cf. curves a and b, or c and d).

Also shown in Figs. 8 and 9 are residual stress

distributions obtained from a purely elastic analysis

(Y=o0), assuming a temperature-dependent Young's

modulus (see curves e). Nearly identical results (not shown)

were found when a temperature-independent modulus E(0)

was considered. In both cases residual tensile stresses

develop at the heated surface as a consequence of overall

contraction associated with the material’s phase

transformations.

CONCLUDING REMARKS

A procedure has been developed for predicting the transient

stresses which develop when a steel plate is exposed to heat

input over one surface. Plastic deformation which occurs in

the higher temperature region of the plate, followed by

elastic response during subsequent cooling, results in residual

compressive surface stresses and tensile subsurface stresses.

Such compressive surface stresses are beneficial from the

point of view of reducing the likelihood of fracture due to

surface cracking; however this advantage may be partially

offset by the presence of tensile subsurface stresses. The

numerical results presented indicate that the stress

distributions are affected signficantly by the duration of

applied heat input, the degree of phase transformation which

occurs, and the temperature sensitivity of the

thermomechanical properties of the material.
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Fig. 8. Effect of temperature-dependent

properties on residual stress

distributions for t. = 0. 18.

(a) Y(0),E(0);(b) Y(0),E(0);

(c) Y(0),E(0);(d) Y(0),E(0);

(e)Y=co,E(0).
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critical temperature can be neglected. Moreover, thin

slices can be removed from the “frozen” body with

out altering either stress fringes or deformations. In

other words, no live stresses remain and it is the stress

fringes and displacements obtained above critical tem

perature which remain.

After describing the refinements introduced in the

two above concepts, several examples of the use of the

resulting method of analysis will be described.

II – REFINEMENTS

A) The Algorithm for Converting Optical Data

Into SIF Values

As a result of the analytical models described above for

the plane problem, the local state of stress is usually

described in terms of a single parameter, the SIF, for

small scale yielding with Mode I loading. If all three

local modes are present (Fig. 1) then three parameters

K1, K2, K3 are indicated. However, when making

photoelastic measurements in the neighborhood of the

crack tip, since the stress fringes are proportional

to the maximum in plane shear stress, then, if the

non-singular shear stress does not vanish near the

crack tip, it must be included in the algorithms for

converting stresses into K values. On the other hand,

if one moves too far from the crack tip, then the

contribution to the data from the non-singular stress

field increases as the contribution from the singular

field decreases. A number of algorithms have been

proposed for converting data around the crack tip into

K values. Smith and Olaosebikan (1984) have shown

that all of these algorithms yield essentially the same

results for near tip measurements in plane problems.

In three dimensional problems, the singular zone is

further constricted by nearby boundary effects. The

following analysis has been used successfully in dealing

with such problems.

Z

r

6

->

2

q) n

Z Z

n n n

b) t t t

Mode I Mode II Mode III

1. Local modes of deformation.

Consider a general rived mode flaw geometry

with notations as pict 2. It has been shown

[Kassir and Sih (196 resses near the bor

der of an elliptical ressed in terms of a

set of local moving rectangular cartesian coordinates

in a plane perpendicular to the flaw border, have the

same form as the stresses in a plane perpendicular to

the border of a straight front crack. Consider a half

space containing a surface flaw at an angle 6 to the

boundary with remote uniform tension parallel to the

z' direction (Figure 2). The local moving orthogonal

coordinate system tnz is always oriented such that t is

tangent to the flaw border and n is normal to the flaw

border but both n and t are in the flaw plane. The z

axis is normal to the flaw plane. In such a problem, all

three local modes of near field deformation (i.e., Modes

I, II and III) will be present as we move around the

flaw border. We note that at a = 0, however, Mode

III will be absent.

2. General problem geometry

and notation.

The stress distribution near the part through

crack in the data zone, corresponding to the opening

mode of deformation can be taken as

or ==#-co." 1 sin' si 30 oàn (1)
" " (2rr)1/2°2 5 sin2 − "an

K 6 6 36

Ozz = G'H"; | +sin; m: - o!, (2)

- K1 ... 6 6 36 1

7 n2 - UTY"2 *: cos: -Ti, (3)

where K1 is the Mode I SIF and the coordinates r and

6 are shown in Figure 2 o', represent the contribution

of the Mode I regular stress field to the measurement

zone which is taken far enough from the crack tip to

avoid a non-linear zone very near the tip. While they

may generally be regarded as expressible in Taylor

Series Expansions, it turns out that only the leading

terms of said series are normally necessary so that o!,

are constants for a given point in the flaw border but

vary from point to point. Stresses in the data zone

corresponding to the Mode II can be taken as

K2 .. 6 6 36

Onn F (TY"2 |: + cos; *: – o', (4)



Appl Mech Rev vol 46, no 11 part 2 Nov 1993 Smith: SIF distributions in engineering problems

36 2
Ozz - —#=sin'cos - cos-- Ozz (5)

(2rr)!/? 2 2 2

K 6 6 36

Tnz F G'H"; | - sin; ": - T#. (6)

where K2 and o: are analogous to K1 and o';.

And finally the stresses in the data zone corre

sponding to the Mode III loading can be taken as

K3 . 6

Tnt = -UTYH"5 – T. (7)

Tzt - (TY"? - Tat (8)

with K3 and r: analogous to K1 and o';.

If the above modes of loading are superimposed,

one gets the following stress distribution in a plane

perpendicular to the crack front (the n-2 plane)

_ _K1 6 1 — si 6 : 36

** = (X,YH"; -sin; sin:

K ... 6 6 36

-G##"; |2+*: *: – o', (9)

Of –––co: 1 + si 6 - 30Z.Z. T(2Tr)1/2 2 in? Sln 2

(10)

+ +sin: COS- cos' – o'(2Tr)1/2”2 2 2 z.2

7" x = K1 sin: cos' cos'

" - (2Tr).72"2 “2 2

+co.' 1 sin: sin" T0

(2Tr)1/2”2 5 sin2 = Ti,

which are independent of equations (7) and (8); (i.e.,

the local field equations for Modes I and II are com

pletely separate from those for Mode III).

(11)

While o: has no influence upon the singular

stress field itself, it does alter the isochromatic fringe

pattern, which is proportional to the maximum in

plane shearing stress.

From the stress field given in equations (9)-(11),

the maximum shearing stress in the plane perpendic

ular to the crack front, n2, can be obtained using

2

(r 'a- J (* 2*) + T#.

and, truncating to the same order as equations (9)

(11), one gets

1/2

(12)

(*): = +, + = (13)mar " T1/2

for fringe loops approaching the shape of Fig. 3 where

1/2

A = {: (Kisin^{2K2cose) + (Kisine)'

(14)

and

B = B (o')

The maximum shearing stress in the n2 plane, the

left side of equations (12) and (13), is determined

photoelastically.

FRINGE

6 m range

F--- ~£as

*m —s

1– r/d

3. Determination of 6', for

mixed mode.

Now, in general, the effect of o: involves both a

folding and a change in eccentricity of the fringe loops

(Figure 3). If folding occurs, 6m, the angle along which

the distance to a fringe from the crack tip is greatest,

will vary with the fringe order n and one must plot 6m

vs r/a and extrapolate to the origin in order to obtain

6', the value of 6m associated with K1 and K2. In the

present problem 6m was constant over the data range

in the fashion indicated qualitatively by Figure 3. As

noted in Fig. 3, data are always taken from forward

leaning loops. In case K2 > K1, Eq. 13 and Fig. 3

may require modification. Upon computing

*2.

Jim, (e.)"2:(***)

= 0 (15)

one obtains

K2\* 4 / K2 0 1 –

(#) -#(#)-2'-#=0 (16)

Since 6', can be measured experimentally, (K2/K1)

can be calculated from equation (16). Then by com

bining the Stress-Optic Law with a modified form of

Equation (13)

/

(*):... =# = (17)rnor 2t!
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where KAP = (r):...(8rr)” is the “apparent" SIF,

f is the material fringe value, n' is the fringe order,

and t' is the slice thickness, hence

KAP = (Kwesin". + 2K2APcosó...)"

. . .211/2 (18)

+ (K2APsin6m) |

and one can solve for the individual values of K1 and

K2.

In order to do this, one must obtain

K* = [(K, sin 8', 42K, cos 0.)”

1/2 (19)

+ (K, sin ')',

from KAP by plotting KAP = (r):..(8rr)” vs

(r/a)” identifying a linear zone, and extrapolating

to the origin. This will yield K". A typical set of

fringe data illustrating such a determination is given in

Figure 4. Once K*, K2/K1, and 6', are known, K1 and

K2 can be calculated which then can be normalized

using proper quantities.

Note that the above approach utilizes a two pa

rameter (A,B) model since the linear zone can be lo

cated experimentally (Figure 4). However, if one can

not locate such a zone experimentally then additional

terms leading to an equation of the form

Since such criteria are not yet established independent

of experiment, this latter approach is avoided where

possible and was not necessary in the studies described

in the sequel.

The stress distribution (ott), acting in a plane

perpendicular to the crack surface and tangent to the

crack front (zt plane) or in a plane parallel to the zt

plane can be found from equations (9)–(10).

O', s : K1 COs 6 |+" 6 sin #
*=(2:H77* 2 5 * 7(2rr (21)

# 0

+ cos 5 cos -5-I - or,

2 ... 6

#* :* ~ *

In order to arrive at a value of ott, prior experiments

by the authors indicate that the usual assumption

of plane strain (for the plane problem) may not be

valid here. However, if one assumes a state of nearly

generalized plane strain such that the value of 8tt

can be considered constant over a portion of the

length of the flaw border, then the observed state of

varying transverse contraint along the flaw border can

apparently be approximated rather well. Thus, we

assurne

&: :- Ott - v (onn + o..)

E

whence on 2 E& + w(ann + o-,) where & may be

adjusted at intervals along the flaw border and where,

again from equation (10),

2 & (22)

A £ K 6 6 36
** - - n/2 - 1 - – sin - sin -

(r):a: = r1/2 + * Bn r (20) Onn =UTH" 2 | sin 5 sin #
n: K 6 36 (23)

2 -

with suitable truncation criteria must be considered. T (2:r IHsin; |: +*: – o',

I.O H. o °

S

G

S

# O.5 2

*: |- K" : [(K, sin *m +2K2cos •m) + (Kasin")']

5 (76)" G (7-0)/2

O I I l I 1 1 I -

ol O2 O3 04 os os o? (to)”

4. Def* “ion of K’ from test data. 3 is the remote normal

s' z' direction in Fig. 2.
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For v = (1/2) (as in the present experiments) we then

have

6 K2 :- " -0 . Fa

5-GTH" 5–2 +Ee (24)

1

Ott = GTH"

Moreover, from Mode III, we have

* = GTH "5-5, (25)

1/2

zt O'zz - Ott 2 2 /

(r max F —— + Ti, (26)

Consider the line normal to the crack surface

which passes through the crack tip in the zt plane. For

this case 6 = (r/2), and when substituted in equations

(21), (24) and (25), there results

1 0

Ozz =T:BK-Kl-2. (27)

1 -

O'tt =3G+H (K, – K2] – o' + E& (28)

K3 0

7.2t *2(T).77 - Tst (29)

then for a two parameter model as before,

Z C

(r :- *: r177 + D (30)

where

1 1 2, val"
C = (AT).77 |: (K1 + K2) + K: (31)

and

D = D (E8, o') (32)

Now by combining the Stress-Optic Law with a

modified form of equation (30)

_ fn'_
K.'"(r): - - AP

2.7 - (ST) 73 (33)

1 1/2

KAP = { |:(*******) (34)

the value of K3 can be obtained.

In order to do this, one must obtain

1/2

K** = |: {# (K1 + K2) + K3} (35)

from K'p by plotting a K3' = (r):...(8rr)” vs

(r/a)” curve, identifying a linear zone, and extrapo

lating to the origin. This will yield K".

At the points where the flaw border intersects

the boundary of the plate, SIF values are uncertain

and require a boundary layer analysis for an accurate

evaluation.

(B) Methods for Increasing Fringe Sensitivity

Due to the lack of stiffness of the material above

critical temperature, it is necessary to keep loads small

in the frozen stress experiments in order to avoid finite

deformations near the crack tip. Moreover, the slices

which are removed from the stress frozen body which

are oriented normal to the crack plane locally and the

t direction will be quite thin (t' < 0.5mm). These

limitations result in only a few stress fringes near the

crack tip. In order to increase the number of fringes,

two special techniques, the method of Tardy (1929)

and the fringe multiplication method of Post (1966)

are applied in tandem. In this way one fiftieth of

a fringe is routinely measured, providing ample data

near the crack tip.

Finally, as noted earlier, the value of Poisson’s

Ratio for stress freezing materials is nearly one half.

No correction is made for this deviation from metals

but it may slightly influence the results towards the

locally plastic situation which actually exists in metals.

III - GENERAL APPROACH

Given a general cracked body problem with all three

local modes of deformation, the general procedure

for obtaining SIF distributions along the flaw border

would be the following:

a) Construct transparent model from stress freezing

material.

b) Insert crack of desired shape and size in desired

location. Natural starter cracks can be made by

striking a sharp blade held against the body surface

with a hammer. Then the crack may be grown

above critical temperature to desired size without

knowing the crack shape a-priori. The shape is

dictated by body shape and load orientation.

c) Reduce load required to grow the crack to stop

growth and cool to room temperature.

d) Remove thin slices mutually orthogonal to flaw

border and its surface at intervals along the flaw

border and analyze photoelastically with polarized
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Fig. 6. Since the fringes spread approximately normal

to the crack plane we can set 0 = */2 in Eq. (14), and,

if we replace o: with To, the non-singular maximum

shear stress resulting from o', Eq. 13 becomes:
*j :

rız K

(r): as - G#H + 70 or (36)

(r):...(8rr)"/* = K1 + (8x)"/?ror'/* (37)

KAP 49

4.8 H P (ra)'/2

4.6

4.4

4.2

6. Mode I stress fringe pattern. 40

So if we define

KAP = (r):... (8wr”), the ap

parent SIF, and normalize with

respect to p(ra)*/2 where p

is the internal pressure, a the

crack depth, and q is an ellip

tic integral defined in Fig. 7

which is known as the shape fac

tor for a semi-elliptic crack, then

3.8

3.6

3.4 H.

Along 6 = T/2, we measure n' which determines T',

(Eq. 17) and corresponding values of r which allow

computation of KAP. Now, if one plots KAP9 V

p(ra)*/?

r 1/2

(#) , a straight line results, the intercept of which

is the normalized SIF, or K1. Such a plot is shown in

Fig. 7. In order to locate the appropriate linear zone

in a three dimensional problem, such plots must be

|

KAP= Tmax (8"r) /2

p = internal pressure

Ki-model stress intensity foctor

K14. Q = # q)"sin"+ + cos” %

| p(vo)72 £[(#) $ *] $

KAP® K14.

p(ra)*/2 p(ra)*/2 3.2 H.

D

(8) /? r \ 1/2 |

++ *(#) (38)

3.O l 1 1 l I 1 I _l

O.O O.2 O.4 O.6 O.8

-

O

7. Determination of normalized SIF from test data.
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obtained for several slices along the flaw border. The For cracks located on the axis of symmetry of the star

zone which is common to all slices usually lies between finger, the crack remained planar as it grew but its

Vr/a of 0.2 and 0.4 (or greater). (Smith, et al., 1984) aspect ratio, (a/c)(Fig. 7) changed somewhat and the

data and resulting SIF dis

8 tributions for several crack

sizes are given in Fig. 8, sug
A T0 e T1 s T2 gesting that the cracks adjust

6 their shapes during growth

El A 6 to maintain a nearly constant

A. © SIF along the flaw border.

4 o

However, if cracks are initi

ated off of the axis of symme

try of the star finger, (Fig. 9)

the surface orientation and

SIF curves vary (Fig. 10).

Crack E-2 broke through the

outer surface but the SIF dis

• Li # x tribution was estimated by

holding the internal pressure

constant during cooling.

When the crack paths were

#

6|

| compared with principal

O - -

Kit

p:/ra

MOdefate Depth
O T3 x T4 - T5

o T6 a T7 planes obtained from un

cracked frozen stress models

O S S S G at the crack midpoints, the

paths were found to closely

follow principal planes. Some

details are found in Smith

and Wang, (1992).

mIT

3.6

3.2

4.1

6.2

6.6

7.3

8.4

7.9

1. See figure 7.

2. Internal pressure.

8. T. data and SIF distributions for symmetric cracks.
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.25

x

:

.2O

SLICE H

11. Loading and slice locations

for pin loaded, cracked hole.

C9

&
O TEST 7P

q/T = O.80

q/c = 2.04

c/F = 1.68

2F/T = O.46

DDDDDD

O at H

D at S

* l l I

SLICE S

. .2 .3 .4

SQ. ROOT OF NORMALIZED DIST.

FROM CRACK TIP (r/a)!/2

12. Normalized values for K.

and Kii for pin loaded

cracked hole.



 

 

 





Implementation of viscoelastic behavior in

a time domain boundary element formulation

M Schanz and L. Gaul

University of the FederalArmed Forces Hamburg

Postfach 7008 22, D-22008 Hamburg, Federal Republic of Germany

The boundary element method (BEM) provides a powerful tool for the calculation of elas

todynamic response in frequency and time domain. Field equations of motion and boundary

conditions are cast into integral equations, which are discretized only at the boundary. The

boundary data often are of primary interest because they govern the transfer dynamics of

members and the energy radiation into a surrounding medium. Formulations of BEM cur

rently include conventional viscoelastic constitutive equations in the frequency domain. In the

present paper viscoelastic behaviour is implemented in a time domain approach as well. The

constitutive equations are generalized by taking fractional order time derivatives into account.

INTRODUCTION

It is well known that the boundary element method

(BEM) reduces the dimension of a boundary value prob

lem by one. The variables in the domain of a 3-d prob

lem are for example governed by the surface variables

on the 2-d boundary via the boundary integral equa

tion which includes the boundary conditions. The BEM

provides a powerful tool for the 3-d calculation of elasto

dynamic response in frequency and time domain because

in space only the boundary has to be discretized. The

boundary data are CAD compatible and detailed consti

tutive properties can be modelled (Beskos D. E., 1987,

Gaul L., 1990). Domain variables can be determined at

arbitrary locations from the complete boundary data. If

infinite (fullspace 3-d) or semi infinite (halfspace 3-d)

domains are treated, no artificial boundaries with non

reflecting boundary conditions need to be introduced.

This is why the Sommerfeld radiation condition is ful

filled by the so called fundamental solution of the bound

ary integral equation. Formulations of BEM currently in

clude conventional viscoelastic constitutive equations in

the frequency domain. One aim of the present paper is

to implement viscoelastic behaviour in a time domain

approach as well. The elastic Stokes fundamental solu

tion is converted to a viscoelastic one by adopting a cor

respondence principle. A novel viscoelastic fundamental

solution is obtained analytically by inverse Laplace trans

formation. Viscoelastic constitutive equations are genera

lized by taking fractional order time derivatives into ac

count (Gaul L., Schanz M., Fiedler C., 1992).

INTEGRALEQUATION OF ELASTODYNAMICS

For consistency the boundary integral equation describ

ing elastodynamics in time domain is recalled. The

part of "MECHANICS PAN-AMERICA 1993 edited by MRM Crespo da Silva and CEN Mazzilli

Appl Mech Rev vol 46, no 11, part 2, November 1993

field equations of a homogeneous elastic domain Q with

boundary T are given by

(ci – c') ui, 4 c uji + b = i, (1)

with displacement coordinates u, and wave speeds

K + 4G G
2 3 2

c1 = —, co = - 2

1 Q 2 Q (2)

with given boundary conditions

t(n), (x,t) = aiknk = p, (x,t) x € T1,

ui (x,t) = qi (x,t) x € Tu (3)

and initial conditions

tli (x, 0) := t40i (x) *

tli (x, 0) = voi (x) x € Q. (4)

The 3-d Stokes fundamental solution of the Lamé

equation (1) in an unbounded space, excited by

b; (x,t) = 6 (t – T) 6 (x - £) ej is given by (e.g.

(Eringen A. C., Suhubi E. S., 1975))

1:{# 3riri – £i,

4Tg l r2 r3 7"

tlij (x, £, t)

+

## (-:
6ij r

* I' *(*-#)} (5)

where r = V/riri , r = xi – £i. The corresponding fun

damental traction vector components are obtained from

ASME Reprint No AMR134
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Eq. (3) after replacing the stresses by strains and dis

placements

fa), = e(cf-2c%) immóiene + ec (uji ene + n, kine)

(6)

with the outward normal nk.

The dynamic extension of Betti's reciprocal work theo

rem combining two states of displacements and tractions

(i,j, ton)ii) and (uj, ton)ii) leads to the integral equa

tion

£ij (&) uí (&, t) = / [u, * ton) - fon), * u, dT

T

+/- [u, * bj + tiij voj +à uoil d'Q (7)

Q

where * denotes the convolution with respect to time and

si, (S) = # for a smooth boundary. Initial conditions

being zero and vanishing volume forces reduce (7) to a

boundary integral equation. As a prerequisite for a later

application of a correspondence principle, the Laplace

transform of the fundamental solution (5) is given as

_1_J_1 (3riri – £i

4rg Ur? r3 r

tii; (x, £, s)

s: + 1 -áis s# + 1 – #s
s2 e --> e

firi || --5 – 1 -5,
+ = |: # * :

čij ---s
- c - 8

+ =: *} (8)

GENERALIZED WISCOELASTIC

CONSTITUTIVE EQUATIONS

Linear constitutive equations are assumed to describe the

propagation of small disturbances. Elastic-viscoelastic

correspondence principles convert Hooke's law of elas

ticity

sij = 2Gei, Oil - 3Ksii, (9)

with shear and bulk moduli G, K respectively to

viscoelastic laws by adopting the differential op

erator concept or the hereditary integral concept

(Flügge W., 1975). More flexibility in fitting measured

data in a large frequency range with less parameters and

lower order time derivatives is obtained by replacing in

teger order time derivatives in differential operator for

mulations by fractional order time derivatives.

The derivative of fractional order a

t

d's (t) 1 #/#!
dt° T (1 – a) dt To

0

dr 0 < 0 < 1

(10)

defined with the gamma function

cx.

r(1-2)=/~ (11)

0

- -----

is the inverse operation of fractional integration at

tributed to Riemann and Liouville (Ross B., 1977).

It can be shown that the definition by Grünwald

(Grünwald A. K., 1867)

d°e (t) 1: t \"\" r(j- a)

dto -*{(#) 2 FI:#F#T

- (-4)] (*
is equivalent and more convenient in constitutive equa

tions treated by time-stepping algorithms. The genera

lized viscoelastic constitutive equations of differential op

erator type

N M

XX: X ##
* f

Pk dro. Sij *k Ita. 11 *

k=0 k-0

M M

dok dok
// f/

X PkToii X Qk £ii (13)
k=0 dtok k-0 dtok

correspond to Hooke's law (9).

As defined by Eq. (10) the fractional derivative appears

complicated in time domain. However both Laplace and

Fourier transforms reveal the useful results

c(#20) = s°C{e (t)} = s°ā (s),

*# (0) = (-)^*(e(0). (14)

Laplace transformation converts Eq. (13) to

"(s) s, = Q' (s) éij,

?"(s) āti = Q"(s) £i, (15)

N

with e.g. P’ = XD p's" and vanishing initial conditions.
k=0

NEW WISCOELASTIC FUNDAMENTAL

SOLUTION IN TIME DOMAIN

The correspondence principle replaces the elastic moduli

according to

_ Q"(s) - Q(s)3K p"(s)" G T' (s) (16)

and leads to the transformed wave speeds

2 =#|# # 3 = 119 (s)
* T c 13 p"(s)" 3 p. (s)| * - c.2 pr(s)'

(17)

for a viscoelastic domain.

The rheological Maxwell model of a spring and dashpot

in series (Fig. 1) with spring and damping coefficients

3K, FK respectively corresponds to the constitutive equa

tion (e.g. hydrostatic state)

3K

di. + Yorii = 3K #1 Y = (18)
F

–

-

–
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the first integral in (24) for example leads to

t"

f ü, (x, &, t-T) dr=

t m-1

( 0 interval I

r

t---

f" G1 (r, t – r) dr

**-1

f G1 (r, t – r) dr

* m-1

interval II

interval III

1 tm

Tro t !, G1 (r, t – r) dr

t–5

– J 2 G2 (r,t – r) dr interval IV

t m-1

tra

f [Gl (r,t - r)

t m-1

t —G2 (r,t – r)] dr interval V

(26)

with the abbreviations

G1 (r,t – r) = fo(r) |c. (t – r) + #D. (t– ".

+fl (r) [A1 (t – r) + 3 B1 (t – r)]

G2 (r,t – r) = fo(r) |c. (t – T) + #D. (t– ".

—f2 (r) [A2 (t – T) + 3 B2 (t – T)]

and the time intervals

(27)

r

t < tm_1 + -

Cl

interval I

r r

tm–1 + - © t < tm + -

Cl Cl

interval II

- r r

interval III trn + - « t < trn_1 + -

Cl co

r r

tn-1 + — < t < tm + -

C2 C2

r

tn + - © t.

C2

interval IV

interval V

The time integration of the expressions A3 to Ds in

(27)contain the integration of Dirac distribution, con

stant function or modified Bessel function only.

The modified Bessel functions are defined by

* ) 2k+nC- 1

In * =XXIII: (# (28)

2

By inserting the argument # V(t– -)” – (#) in Eq.

(28) the Bessel function becomes

In (: (t–r) – (#) -

- t-n - 2 k++

S-(#) + F. #) ) (29)

After interchanging integration and summation the an

alytical time integration within a time step has to be

carried out for expressions like

t"

f (-)-(#))." (30)

*m-1

Analytical integration becomes possible by decomposing

the sum according to

2 k

2 r

(-)-(#)) -
k a k! r \?" 2(k-u)

2"T-TV (#) (t–r)*T* (31)

where the binominal theorem (Bronstein I.N., Semendja

jew K. A., 1984) has been used. Thus the integral reduces

to

f ( – r)” – (#)) k e-#(*-*)dr =

-£er: (#)"c6

t"

(t–1)*-*) e-#(*-*)dr. (32)

t m-1

This integral is solved by partial integration n times

t-tra-1

|- (--) (t-t')"-" —

e-#(*-*--) (t - trn-1 ya--)

o \ n+1

+n! (#) |->|--|--|--|--|.
CY

(33)

The above mentioned steps lead to the analytical time

integration of Eq. (26).

After time and space integration the integral equation

(23) reduces to a set of linear algebraic equations. The in

tegrated fundamental solutions depend on the difference

between the observation and impact time only. Because

of this property it is possible to use the recursive equation

(Steinfeld B., 1993)

C'y" = D'y" + R” (34)

of the associated elastic boundary integral equation. The

algebraic equations in (34) are ordered such that y”
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contains the unknown boundary values and y” contains

the known values at time step m. The matrixes C and

D' contains the influence functions. The time history is

stored in the vector

R” – s: (u'er-" -t"-") - (35)

k=2

containing the influence functions of the integrated fun

damental solutions of the displacements U" and the trac

tions T".

NUMERICAL EXAMPLE

The propagation of waves in a 3-d continuum has been

calculated by a boundary element formulation in time do

main. The problem geometry, with associated boundary

discretization is shown in Fig. 3 with chosen viscoelastic

material data. Linear shape functions have been used.

The free end is excited by a pressure jump according to

a unit step function H(t). The opposite end is fixed in

welded contact.

Fig.2 shows the longitudinal displacement in the cen

ter of the free end cross section via time. An associated

viscoelastic 3-d FE solution has been calculated by the

FE-program MARC.

Both BEM and FEM solution are compared with the

1-d analytical elastic solution. Ongoing research analyzes

the effect of time step and space discretization with re

spect to the errors of both discretization methods.

- 0

0*10 #: 3.

; :

".. "Y;
: • # \;
:

*

*

*

geometry data:

>
<

length l = 4 m

heigth = 2 m

width = 2 m

time step BEM:

At = 0.002825

E

l/

Q

"Y

viscoelastic material data:

100000:

0.25

1 #

0.001

Figure 3: Step function excitation of a free fixed bar

- bem

# 2:10'- -- - - fem

--- analytic

.#

Q/D

E 4:10:# -4*10

(1)

Q tl (', ')..." tic -#. 6*10*— y

- : Oo

.2 "Seb" ("C ; n>1

* E

-8*10*- C - 4 I -

Q

I I I

0.0 0.05 0.1 0.15

time in Sec

Figure 2: 3-d BEM and FEM solutions comparised with the analytic elastic 1–d solution
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A3(T# – 2DoF2) + A1 T.

A1(A243 - A1A4) - A0A '

TS0 (2)

where S0 is the power spectral density of the

white noise excitation; Ao = w w ś, A1 =

24monw' +26.92%; A2 = w; +(1+u)": +

4&mGatom wa; A3 = 26mom + 2(1 + 1)Gača:

A4 = 1; To = -(1+u)a'; T = -2(1+u) awa;

T2 = -1; and where w = km/mm = the

natural frequency of the main system; (m =

cm/(2mmwm) = damping ratio of the main

system; w = ka/ma = the natural frequency

of the absorber; Qa = ca/(2mawa) = damping

ratio of the absorber; and u = ma/mm = the

mass ratio.

It is noted that a similar equation to Eq

(2) can be obtained for the case of elastic

bodies with attached vibration absorbers, pro

vided that their vibration can be represented

by a single normal mode. In those cases the

parameters that described the main system

can be defined by means of a modal anal

ysis approach or by an energy balance ap

proach (Wirsching and Campbell, 1974; War

burton and Ayorinde, 1980). In this study,

the frequency and damping properties of the

main system are assumed to be uncertain and

they are described in a probabilistic sense.

The mathematical characterization of the fre

quency parameter wm, and damping param

eter Qm, is based on a Bayesian probabilistic

interpretation together with the maximum en

tropy principle. Then, the probabilistic distri

butions for these parameters are chosen by the

maximum entropy principle that produces the

greatest uncertainty in the parameters consis

tent with the specified constraints. For exam

ple, if the set of plausible values for the pa

rameters is a bounded region, then the prin

ciple produces uniform distributions. If addi

tional information is available for the parame

ters, then other probabilistic characterizations

can be used as well (Jaynes, 1968). Here, it

is assumed that the only available informa

tion for the frequency and damping parame

ters of the main system is that they lie inside

an interval. Therefore, the parameters win and

Qm are modeled as uniform random variables,

with mean values &m and &m, and variances

o:... and o?, respectively. The mean values

of wrn and Qm represent their nominal values

while the variances measure the variability of

the parameters with respect to their nominal

values.

In the classical analysis, the optimum ab

sorber parameters are found by minimizing

the response of the main system. Due to the

uncertainties of the main system properties,

the response of the system, measured by the

variance of the displacement response, is itself

uncertain. Therefore, the deterministic mini

mization problem becomes a stochastic opti

mization problem. The next section presents

the optimization techniques that are consid

ered in this study to assess the performance

of the vibration absorber.

OPTIMIZATION PROBLEM

In the classical vibration control problem, the

optimum absorber parameters, that is, the fre

quency and damping properties are found for

a given value of the absorber mass by min

imizing some response function of the main

system. Then, the optimization problem can

be stated as

Minimize(...c.) [Response Function] (3)

for a given mass ratio u.

The response function to be considered

in this study is the standard deviation of the

stationary displacement response of the main

system. This response depends on the prop

erties of the main system as well as the prop

erties of the dynamic absorber. Since the fre

quency and damping parameters of the main

system are assumed to be uncertain, then

the response function is also uncertain and

the classical minimization problem becomes

a stochastic optimization problem. In order

to determine the optimum absorber parame

ters, an equivalent deterministic optimization
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where a....(optimum) is the optimum standard

deviation of the stationary displacement re

sponse of the main system with the vibration

absorber attached to the system, and oo is

the standard deviation of the stationary dis

placement response of the main system with

out the absorber. The optimum standard de

viation response oz.,(optimum), corresponds to

the standard deviation response evaluated at

the optimum parameters of the vibration ab

sorber. It is noted that if the performance

parameter is less than one, the vibration ab

sorber has decreased the level of response of

the main system, and vice-versa. When un

certainties in the main system properties are

taken into account, four performance parame

ters are considered in this study, and they are

defined as

E(or optimum

p2 = *("...(optimum) 5 (7)

O'0

where E(or,(optimum)) is the expected value

of oz., evaluated at the optimum parameters

of the deterministic optimization problem de

fined in the previous section with a 1 = 1 and

a2 = 0, that is

Minimize(.....) [E(or,)] . (8)

The next two performance parameters, p3

and p4, are defined as in Eq. (7) but evaluat

ing the expected value of oz. at the optimum

parameters of the optimization problems

Minimize...) |VVar(...) (9)

and

Minimize(...) E(or,) +

VVar(a .,,), (10)

respectively. These problems correspond to

the general optimization problem defined in

Eq.(5) with a 1 = 0 and a2 = 1, and a1 =

a2 = 1, respectively. The last performance

parameter p5, is defined as

p5 = E(or,(optimum) +

O'0

Var(or,(optimum))

O 0

, (11)

where E(a....(optimum)) is the expected value

and Var(a....(optimum)) are is the variance of

o,..., respectively, evaluated at the optimum

parameters of the optimization problem given

by Eq. (10).

Numerical Results

Figs 1,2 and 3 show the performance param

eters as a function of mass ratio u, for differ

ent levels of uncertainty of the main system

properties. A nominal damping parameter of

the main system corresponding to 1% of crit

ical is considered in these figures. The com

parison of the performance parameters p2, p3

and p3 with p1 shows that there is loss of ef

fectiveness of the vibration absorber due to

the uncertainty of the main system properties.

This loss of effectiveness is particularly sig

nificant for high levels of uncertainty and for

small mass ratios. That is, as the coefficient

of variation of the main system parameters in

creases the efficiency of the vibration absorber

decreases. For example, for a 30% coefficient

of variation and for a mass ratio less than 5%,

the optimum response of the main system is

about twice its nominal response. Therefore,

the loss of efficiency of the vibration absorber

is quite severe.



S58 MECHANICS PAN-AMERICA 1993 Appl Mech Rev 1993 Supplement

The effects of uncertain main system

properties on the performance of the vibration

absorber are more dramatically illustrated by

the performance parameter p5. According to

its definition, the main system response is

taken as E(a,...) + VVar(or,), evaluated at

the optimum parameters of the optimization

problem given by Eq.(10). Then, the response

function is defined as the expected value plus

one standard deviation of the standard devi

ation of the main system stationary displace

ment response. So, if the response of the main

system is measure in this form, the loss of

efficiency of the absorber is quite significant,

particularly for high levels of uncertainty and

small mass ratios. On the other hand, these

results indicate that once the level of uncer

tainty of the main system properties is high,

the use of absorbers is not effective for vibra

tion reduction if the system is subjected to a

white noise base excitation.
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FIG 1. Comparison of performance parameters. Nominal main
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variation.
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Figs 4,5 and 6 present the performance

parameters when a nominal damping coeffi

cient of the main system corresponding to

5% of critical is considered. The information

given by these figures is qualitatively similar

to that for the case of 1% of nominal crit

ical damping. That is, uncertainty of the

main system parameters produces a loss of ef

ficiency in the performance of the vibration

absorber. However, as can be observed, in

creasing the nominal damping parameter of

the main system decreases the loss of effi

ciency, but for high levels of uncertainty and

small mass ratios the effect on the absorber

efficiency is still significant.
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FIG 3. Comparison of performance parameters. Nominal main

system damping parameter: 1% of critical. Level of uncer
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variation.

The results presented in Figs 1-6 show

that the loss of effectiveness of the vibration

absorber due to uncertain main system prop

erties is invariant with respect to the perfor

mance parameter used to quantify the effi

ciency of the absorber. Thus, the effects of un

certainty on the efficiency of the absorber are

qualitatively similar independently of the ob

jective function used for minimization of the

system response. The number of Gaussian in

tegration points used throughout this exam

ple to compute the expected value and the

standard deviation of the response function is

the following. A second-order quadrature is

used when a 10% coefficient of variation of the

uncertain parameters is considered, a fourth

order quadrature is used for a 20% coefficient

of variation, and a sixth-order quadrature is
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FIG 4. Comparison of performance parameters. Nominal main

system damping parameter: 5% of critical. Level of uncer

tainty of the main system parameters: 10% coefficient of

variation.
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used for the case of a 30% coefficient of varia

tion. It is found that these orders of integra

tion are adequate for the present application

since the use of higher-order quadratures pro

duces essentially the same optimum parame

ters and therefore the same system response.

It is noted that as the uncertainty of the

main system parameters increases, the opti

mum absorber frequencies, that are obtained

from the optimization problems described in

the previous section, decrease. Contrarily, the

optimum damping parameters increase as the

level of uncertainty increases. For low level

of uncertainty the optimum absorber param

eters are close to those obtained by assuming

deterministic properties for the main system.

However, for high level of uncertainty, such as

30% coefficient of variation, the difference is

quite significant.
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FIG 5. Comparison of perform 'ers. Nominal main

system damping parameter: Level of uncer

tainty of the main system % coefficient of

variation.

As stated before, the classical approach

in passive vibration control is to find the opti

mum absorber parameters assuming nominal

properties for the main system. Using this so

lution as the optimum solution, one can then

include the effects of uncertain main system

properties to compute different statistics of

the solution. For example, the first statisti

cal moment of the system response is given

by P(or,(optimum)), where °rm (optimum) is

the optimum standard deviation response ob

tained from the classical approach, and E(.)

is the expected operation with respect to the

uncertain parameters. In this manner, a new

performance parameter can be defined as

*(***(optimum)at m ( optimumD6 = rn • (12)
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FIG 6. Comparison of performance parameters. Nominal main

system damping parameter: 5% of critical. Level of uncer

tainty of the main system parameters: 30% coefficient of

variation.
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This performance parameter can be com

pared with the performance parameter p2, de

fined in the previous section. Fig 7 shows a

comparison of p2 and p5 for different levels of

uncertainty of the main system properties. A

nominal damping parameter of the main sys

tem corresponding to 1% of critical is consid

ered in this case.

For low levels of uncertainty the two per

formance parameters are very similar. How

ever, for high coefficient of variations, the

difference is quite significant. These results

show that the efficiency of the vibration ab

sorber obtained from the stochastic approach

is greater than the one from the classical ap

proach. The same conclusions are obtained if

other performance parameters are considered

as well. Therefore, the stochastic approach

considered in this study is suggested to be

used instead of the deterministic approach if

there is some level of uncertainty or error in

the specification of the main system proper

ties.

CONCLUDING REMARKS

The present study has shown the effects of

uncertainty in the main system properties on

the performance of vibration absorbers. Dif

ferent response functions of the main sys

tem have been used to find the optimum ab

sorber parameters and the optimum system

response. It was found that the loss of effi

ciency is qualitatively similar, independently

of the objective function used to minimize the

system response. The numerical results have

shown that uncertainty in the model parame

ters of the main system may cause significant

changes on the response characteristics of the

absorber. In these situations, the errors or un

certainties in the specification of the main sys

tem properties should be properly accounted

for in the vibration control problem. If these

uncertainties are not accounted for, then the

performance of the vibration absorber can be

affected significantly. On the other hand, the

results obtained from this study suggest that

for large levels of uncertainty, the use of vi

bration absorbers is not justified for the re

duction of the main system response. This is

specially true when the absorber mass is only

a small fraction of the main system mass. Fi

nally, when there is a moderate level of error

in the specification of the main system proper

ties, it is recommended to use the stochastic

approach considered in this study instead of

the classical deterministic approach. The new

method may achieve a substantial improve

ment on the efficiency of the absorber com

pared with the one obtained by the classical

tuning approach.
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A = A + B Re (3)

where A and B are constants.

At low Reynolds numbers, Eq. (3) indicates that the

resistance coefficient is a constant, which means that the

pressure drop is directly proportional to the superficial

velocity. This behavior is commonly known as the Darcian

regime. At high Reynolds numbers, the pressure drop is

proportional to u”. In this regime, inertial effects in the pores

dominate over viscous effects.

The constants A and B vary slightly from one packing to

another, depending on shape and roughness of the particles,

and packing procedure.

One of the most important aspects of the flow of

solutions of high molecular weight polymers through porous

media is the sizable increase in pressure drop with

increasing flow rate that is commonly observed for polymers

with flexible molecular conformations. This increase in

pressure drop is much more pronounced than the one

observed for Newtonian fluids, and it leads to a departure of

the resistance coefficient from the Newtonian behavior.

Figure 1 shows a typical curve of resistance coefficient

vs Reynolds number, comparing Newtonian with polymer

solution behavior. The Newtonian fluid is in this case pure

water and the polymer solution is a dilute solution of

poly(ethylene oxide) (PEO) in water. The Newtonian fluid

follows the behavior represented by Eq 3. Three

characteristic regions can be distinguished in the polymer

solution case. In region 1, the polymer solution behaves as a

Newtonian fluid, yielding practically constant values of the

resistance coefficient. In region 2, the departure from the

Newtonian behavior occurs. This is characterized by a

sudden increase in flow resistance. In region 3, the value of

A reaches a plateau. Some investigators have reported the

existence of a fourth region, at still higher values of the

Reynolds number, in which the resistance coefficient drops

from the plateau value (e.g. Kulicke and Haas, 1984). It has

been argued that this fourth region is a consequence of the

mechanical degradation of the polymer molecules in the

medium.

The increase in flow resistance for polymer solutions was

first analyzed by Marshall and Metzner (1967), and Dauben

and Menzie (1967). These investigators quantified this effect

in the flow of PEO and polyacrylamide (PAA) solutions

through packed beds of spheres. They proposed that the

thickening behavior was due to the elongational nature of

the flow, caused by the frequent contractions and expansions

experienced by the fluid as it passes through the pore space

in the medium.

James and McLaren (1975) performed experimental

studies of the flow of PEO through packed beds. They

suggested that the increase in flow resistance with flow rate

was a result of the increase in the "nal viscosity of

the solution due to the extension molecules in

the pores. More recently, Hoag mme (1989)

have confirmed the stretch of flexible

polymers in porous mediat' he technique

termed hydrodynamic chromatography, which is based upon

the injection of a pulse of a dilute polymer solution into a

porous medium conformed by small particle packing. This

technique allows to measure the effective lateral size (in a

direction perpendicular to the mean direction of flow) of the

polymer molecules as they pass through the pores. Hoagland

and Prud’homme found that this effective size decreases as

the flow rate through the medium increases, indicating the

existence of a stretched molecular conformation.
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FIG 1. Typical behavior of flow resistance for

Newtonian fluids and polymer solutions.

The hypothesis that molecular coil-stretch transition is

the only mechanism responsible for the increase in flow

resistance was challenged by Odell et al (1988) on the basis

that the observed criticality of the phenomenon, in terms of

the narrow range of Reynolds number through which it

occurs, is not consistent with the wide molecular weight

distributions of the polymers used. Odell et al proposed that

the creation of transient networks of molecules was more

consistent with the observations found in the literature.

Recently, Rodríguez et al (1993) have provided more

experimental evidence that suggests that in addition to coil

stretch transition, transient entanglement network formation

seems to explain the sudden increase in flow resistance.

In the last two decades, a series of published works have

assessed various aspects related to the flow of polymer

solutions through porous media. Hill et al (1974) performed

experiments with partially hydrolyzed PAA and xanthan

polysaccharides, which are the polymers most commonly

used in tertiary oil recovery. The PAA exhibited the increase

in flow resistance discussed above, whereas the xanthan

polymer showed shear thinning. They concluded that the

xanthan polymers are less susceptible to mechanical

degradation in the porous medium than the polyacrylamides.

They also observed that degradation was evident only at

flow rates that were higher than those corresponding to the

onset of non-Newtonian behavior for PAA. Degradation of

PAAs was also studied by Maerker (1976) and, more

recently, by Farinato and Yen (1987). Maerker quantified
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the degradation in flow through consolidated and

nonconsolidated porous media. Farinato and Yen analyzed

the effect that polymer concentration has on molecular

weight loss, defined as the ratio between the apparent

molecular weight of the polymer after it passed through the

medium and the original molecular weight. They concluded

that the molecular weight loss is larger for solutions of lower

concentrations.

James and McLaren (1975) reported that the non

Newtonian behavior and the mechanical degradation of the

polymer were enhanced by a decrease in particle diameter. A

lower particle diameter implies a locally higher stretching

rate; i.e., a stronger elongational flow in the pores, which

induces the changes in molecular conformation that produce

the non-Newtonian effects and favor the break up of the

polymer molecules. Since the increase in flow resistance is

directly related to the elongational flow in the pores, one

would expect the onset of this behavior to be controlled by

the value of the average stretching rate (defined, for

example, as the local fluid velocity divided by the particle

diameter). Chauveteau (1986), through the analysis of

experimental information, has confirmed that the onset

stretching rate is independent of particle diameter.

The effect of solvent quality, solvent viscosity and

solution temperature on the non-Newtonian effects was

studied by Durst et al (1981), and Kulicke and Haas (1984).

Invariably, any effect that leads to a decrease in the shear

viscosity of the solution results in a decrease in the flow rate

at which the onset of non-Newtonian effects is observed. In

fact, this onset flow rate is inversely proportional to the

shear viscosity of the solution, a fact that is consistent with

the behavior observed in elongational flows through simple

geometries, in which the relaxation time of the polymer

molecules is known to be directly proportional to the

viscosity of the solvent with which the molecules interact.

Kulicke and Haas (1984), Farinato and Yen (1987), and

Rodríguez et al (1993) analyzed the effect of polymer

concentration. Kulicke and Haas stated that the onset

Reynolds number was independent of concentration in the

dilute regime. However, Farinato and Yen, and Rodríguez et

al found a definite decrease of onset Reynolds number with

an increase in polymer concentration. The latter observation

is consistent with the transient network hypothesis.

The parameter that has the greatest influence over the

increase in flow resistance is the molecular weight of the

polymer. Durst et al (1981) reported that an increase in

molecular weight leads to a decrease in onset Reynolds

number. The fact that the molecular weight can be

considered the controlling factor of the non-Newtonian

effects in flow through porous media has led several

investigators to propose that a porous medium can be used

as a rheometer in which resistance coefficient curves can be

used for an approximate determination of the molecular

weight of a polymer sample (Haas and Kulicke, 1984,

Farinato and Yen, 1987).

To our knowledge, the increase in flow resistance with

Reynolds numbers has not been reported in the literature for

xanthan polysaccharides, which are polymers with semi

rigid (worm-like) molecular conformations. These polymers

exhibit shear-thinning behavior in the porous medium.

Sorbie and Huang (1991) have recently characterized this

behavior. They observed the fact that the shear-thinning

behavior was more drastic under shear flow conditions than

in the porous medium. They attributed this observation to

the existence, and change with the flow rate, of a layer close

to the solid phase that exhibits lower concentration of

polymer molecules due to topological restrictions caused by

the worm-like structure of the xanthan.

In this work we address three aspects of the flow of

polymer solutions through porous media. First, we study the

nonuniform flow of such fluids, in order to establish the

impact of the presence of polymer on the flow distribution,

and the effect that the flow nonuniformities have on the

macroscopic non-Newtonian pressure drops. Second, we

analyze the degradation of the polymer in the porous

medium, emphasizing the differences in degree of

degradation encountered in the three different regions of

behavior of the resistance coefficient (see Fig 1). Finally, we

presents results regarding the effect of the molecular weight

of the polymer of the non-Newtonian behavior.

EXPERIMENTAL

A detailed description of the experimental set up used can be

found in a previous work (Rodríguez et al, 1993). The

apparatus allows the fluid to pass through a bed packed with

spheres of diameter 1 mm, and average porosity of 0.4. Two

different beds were used. One of them was designed to

ensure a one-dimensional (uniform) flow of the fluid

through the packing. This bed was a cylinder with an

internal diameter of 1.9 cm and a packing length of 30 cm.

Nonuniform flow experiments were performed in a different

bed, which was also cylindrical, but it had a diameter of

6 cm and a length of 27.5 cm. The flow pattern was

completely three-dimensional since the entrance and exit of

the fluid to the bed were located on the surface of the

cylinder at a distance of 4.7 cm from the ends. Both entrance

and exit were circular orifices with diameter equal to 3 mm.

The experiments were carried out at 20°C, and

atmospheric pressure conditions at the exit of the set up.

Pressure drops and fluid flow rates were measured at steady

state. The fluids used were distilled water, and aqueous

solutions of two polydisperse PEOs provided by

Polysciences Inc. The viscometric average molecular

weights of the polymers were 3E06 and 4E06.

Measurements of shear viscosity of the solutions were

performed by means of a Ubbelohde viscometer submerged

in a temperature-controlled bath. These measurements were

used to quantify polymer degradation by determining the

viscometric molecular weight of the polymer.

RESULTS AND DISCUSSION

Flow distribution

The influence of the flow distribution on the resistance

coefficient is presented in Fig 2, for PEO solutions with a
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viscometric molecular weight (Mv) equal to 4E06. For the

uniform flow case, the water curve exhibits the expected

behavior for Newtonian fluids, for which A is nearly

constant at low Reynolds numbers, and increases for Re=10,

a point at which inertial effects become important. When the

PEO solutions flow through the uniform porous medium,

they exhibit a sudden increase in A beyond a critical

Reynolds number, which we denote as the onset Reynolds

number (Reo), where deviations from the Newtonian

behavior occur. Notice that the onset Reynolds number

undoubtedly decreases as the polymer concentration

increases. It is also interesting to point out that the curves

reach the expected plateau. The plateau value of the

resistance coefficient increases with increasing

concentration. Another aspect of interest is the fact that, for

small Reynolds numbers, the results corresponding to high

polymer concentrations (e.g. C=1000 ppm for the uniform

flow case) do not reach the water value of A, but a higher

value. This is due to the fact that the viscosity used in the

calculation of the resistance coefficient is the viscosity of the

solvent and not the shear viscosity of the solution. If this

latter parameter were used, one would expect all the curves

to reach the viscous limit of the water curves as the

Reynolds number becomes small.
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FIG 2. Effect of flow distribution on resistance coefficient,

Mv - 4E06.

The behavior of the resistance coefficient in nonuniform

flow is qualitatively similar to that observed for uniform

flow (Fig 2). However, the A vs Re curves are shifted to

much higher values of resistance coefficient, and to lower

values of Reynolds number. This behavior is caused by the

nonuniformity of the flow. The values of A represented in

Fig 2 were calculated by considering a superficial velocity

based on the total available cross-sectional area of the

porous medium. Rodríguez et al (1993) have argued that, in

the nonuniform flow case, the sr-ficial velocity of the

fluid is not constant over th "ow section, and

therefore there are regions fluid velocity

which contribute to increas ire drop and to

——T -

decrease the Reynolds number for the onset of inertial and

non-Newtonian effects. Rodríguez et al were able to show

by means of a quantitative analysis of the data in Fig. 2 that

the addition of polymer modifies the macroscopic flow field

and that that flow modification effect is enhanced with

increases in polymer concentration.

One of the most important aspects of the results shown in

Fig 2 is the fact that, despite the flow modifications induced

by the polymer in the nonuniform flow case, there is still a

large increase in resistance coefficient with respect to the

Newtonian value. We will now explore how the magnitude

of this increase compares with the increase observed in

uniform flow. For this purpose, we will quantify the increase

corresponding to the plateau levels by normalizing the

plateau resistance coefficient with respect to the Newtonian

and water values.

Let Ap be the plateau value of the resistance coefficient.

First we will express this value in terms of the shear

viscosity of the solution. Consider the ratio of solution to

solvent shear viscosities, defined by

"sin

x=-T. (4)

The parameter x should also be equal to the ratio between

the resistance coefficients of solution and solvent as Re—0,

since, in the viscous limit (Darcian regime), the pressure

drop is proportional to the shear viscosity of the fluid.

The value of the plateau resistance coefficient that takes

into account shear viscosity effects; i.e., the value of Ap

calculated by using in Eq 1 the shear viscosity of the

solution instead of that of the solvent, is given by

A

Ax =# (5)

Let A0 be the resistance coefficient of the solvent (water) at

the Reynolds number at which the plateau is reached. Then,

the ratio Ap/A0 represents the maximum excess resistance

coefficient caused by the presence of polymer, regardless of

flow distribution effects. One might expect the curves Ap/A0

vs C to be the same for uniform and nonuniform flow. These

curves are presented in Fig 3. Notice that the maximum

excess resistance coefficient is very close between uniform

and nonuniform flow for low concentrations, but the

nonuniform flow values are appreciably higher at high

concentrations. This is caused by the fact that, in the

nonuniform flow case, the solution is subjected to point

velocities that are substantially higher than the superficial

velocity. These high velocities lead to strong elongational

flow fields in the pores, that yield a macroscopic pressure

drop that exceeds that obtained in uniform flow. This

analysis shows that the changes in rheological properties of

the solution caused by the elongational flow field result in a

higher friction at the pore level, instead of a drastic change

in the flow distribution. These results have special relevance

in the simulation of non-Newtonian flow in petroleum

reservoirs, where the flow distribution is three dimensional.
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FIG 3. Effect of flow distribution on excess A values.

Flow-induced degradation

In order to investigate the mechanical degradation induced

by the flow, two PEO (Mv=3E06) solutions (C=100 and

1000 ppm) were repeatedly passed through the uniform-flow

porous medium at a constant flow rate while the pressure

drop was being recorded.
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FIG 4. Decrease in resistance coefficient during

mechanical degradation of the solution (C=100 ppm).

Figures 4 and 5 show the variation of the resistance

coefficient with the number of passes (N) at constant

Reynolds number. It can be seen that, at the lowest Reynolds

number, there is no appreciable variation in the value of A

with the number of passes (Fig. 4). At higher Reynolds

numbers the value of A rapidly decreases with N, achieving

a nearly constant value after 3 to 4 passes. The decrease in

the value of A at constant Reynolds number indicates that

the solution is being degraded at a particular average strain

rate, which is proportional to Reynolds number. Such strain

rate for fracture is expected to be dependent on the polymer

molecular weight (Odell et al, 1992). Hence when most of

the molecules that can be broken at that particular strain rate

have been degraded the resistance coefficient will become

COnStant.

5000

A A D Re=12

4000 H. A Re=21

3OOO H. A

D.

2000 H. A.

D A. A. A

D

1000 H. D D D

O a –1 l 1 i l I l

N

FIG 5. Decrease in resistance coefficient during

mechanical degradation of the solution (C=1000 ppm).

The flow induced degradation can also be assessed by the

relative displacement of the A versus Re curves measured

after the solution was circulated at constant Reynolds

number. Figures 6 and 7 show how the degradation of the

polymer affects the A versus Re curves in the whole range of

Reynolds number in which the polymer induces a non

Newtonian effect. The onset of non-Newtonian behavior of

the solution is shifted to higher values of Reynolds number

after degradation occurs. The increase in onset Reynolds

number (Reo) can be interpreted as an increase in the critical

strain rate for chain extension or for the onset of transient

entanglement network formation, depending on the theory

used to explain the sudden increase in flow resistance

(Müller et al., 1988). These theories predict that the onset

strain rates are proportional to the longest relaxation time of

the chain or to the disentanglement time of the molecule,

respectively, and both quantities are proportional to the

molecular length. Any increase in onset Reynolds number

will therefore indicate a decrease in the average molecular

weight of the polymer if the same porous medium is used

and the solution concentration remains constant.

Figures 6 and 7 also show that the solution is

significantly degraded only if the Reynolds number at which

it is circulated through the porous medium is higher that the

original Reo of the undegraded solution. In fact, the value of

onset Reynolds number after degradation is close to the

Reynolds number at which the solution was degraded. This

result implies that most of the molecules break once they are

in the stretched state either in isolation or as part of a

transient entanglement network. A similar conclusion has

been reported in idealized elongational flow experiments

(Odell et al., 1990).
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Performing the variational operation, grouping terms,

and through application of Green's theorem, the varia

tional equation (1) reads

– J," |ov'w': F.". dA

A R

1 - c. 1+/*|#v F-#". dA

–/sw |M. +2M.,.] dy:/ 6w |M. +2M. dz

C C

+/*. May-Jaw, M, as 'M., ôw] dy
C C C * M

-/M., öw] as +/-Fu. dy

C ** C

- |"F". ** | *. *.*-Jef. u, dz

C C C

1 + 1/ 1 + l/

+ ET, /* F.I. dy--E. /* F.I. dr

+#T A [cos A w.x + sin A wy]6w dA

+ / [Nes tly,zz + Nvy tD,yy + 2 Nry w.ry] 6w dA :- 0 (3)

A

FIG 1. Shell geometry and notations.

Using Eq. (3), the Euler-Lagrange equations governing

the problem read,

DV*w 4- # F., + p h w,

-:/. [cos A w.x +

- Nex w, x - Nvy wivy - 2 Nry w.ry = 0 (4)

h

V4F –# w... = 0 (5)

and the boundary conditions are given by

1. On z = constant

w is prescribed or M... + 2 Mry, = 0

r• w... is prescribed or Me = 0

F is prescribed or u, , = 0

F. is prescribed or v, = 0

2. On y = constant

w is prescribed or My, + 2 Mey. = 0

• w, is prescribed or My = 0

F is prescribed or v... = 0

• F, is prescribed or u. = 0

3. At a corner (discontinuity in C) Mry = 0 (equivalent

to w..., =0) if w is not prescribed; and F., = 0, if

F is not prescribed.

The first conditions are the forced or geometrical con

ditions, and the second ones are the free or natural condi

tions. When using a variational formulation for a bound

ary value problem, the admissible functions should satisfy

only the forced boundary conditions. Therefore, using

the above conditions, we can write the classical boundary

conditions on an edge say, v = constant, as

1. Clamped edges w = w. = 0, and at the corner

F., = 0

2. Free edges F = F. = 0, and at the corner M., = 0

(i.e., w, = 0)

**/

*n

3. Simply supported edges w = 0 and at the corner

F = 0

4. Freely supported edges w = F = 0

A finite element solution for the problem at hand can

be performed using rectangular elements preserving C*

continuity based on the functional given in Eq.(1). Thus,

we can write

[Ho:(z) Hoj(y) zij + His(r) Ho;(V)2-,

2 2

- 1

z(z, y) =XX
i=1 j

+ Hoi(x) Hij(y) zy, + His(x) Hij(y) **wul (6)

where 2 stands for w or F, and Hmn are first order Her

mitian polynomials; other notations are as given in Ref

3. Using the standard finite element technique we obtain

: each element a set of two equations cast in the form

elow:

[kww]{w} + [kwF]{F} + [m]{w} + X [a]{w} +

|N-Iko...]+N, [ka...]+ N., [ka...]{w}=(0)

#[kFw (w) + [kFF]{F} = {0} (7b
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FIG 5. Combined shear and axial stress buckling param

eter for all edges clamped.

The next set of computations was performed for curved

panels with all edges clamped and for the same loading

cases and aspect ratios as for the previous calculation set.

The results are shown in Fig 5.

From the results of Figs 4 and 5, the following conclu

sions can be drawn:

• A curved panel under the action of inplane compres

sion or shear is expected to buckle essentially as a flat

plate when the curvature is small and to buckle in the

same manner as a cylinder when the plate curvature

is large. Between the two limits there is a transition

region from one type of behavior to the other.

• The buckling loads depend not only on the geome

try, but also on the boundary conditions. For the

freely supported case the curves are smoother in the

transition region if compared with the clamped end

condition cases. Further, the buckling loads in the

transition region are more affected for values of as

pect ratio near unity.

• As the length-curvature parameter z increases, it is

expected that the buckling load changes character

izing the flat plate behavior with buckling occurring

with the first number of half waves to the cylinder

behavior characterized by a large number of waves

or a diamond-buckle-pattern deflection. In the tran

sition region, it is, therefore, expected to find cups

in the curves as the critical waves change by integer

values.

4

*...?

y”
7000.

6000- /
/ D Dowell H - 1

5000- o

• Voss P = 1

4000- --" H = 1.5

-*

j

3000. /

2000. : 1

D -// D --~"
o -o-o- _.

-tr" -

"£2.2% **** -- ~ *

_*

|- - - -

1

FIG 6. Flutter dynamic pressure parameter versus shell

rise for flow in the z-direction and all edges freely sup

ported.

Supersonic flutter analysis

Flutter characteristics determination of shallow shells is

of prime importance in supersonic aircraft and launch

vehicles designs. The first analytical research on su

personic flutter of thin cylindrically curved panels was

made by Voss", who used Reissner's shallow shell

equations, quasi-static aerodynamic theory, and the

Galerkin method for the solution of freely supported

ends boundary conditions. Nonlinear flutter analysis of

two-dimensional" and three-dimensional" curved pan

els were performed by Dowell using a quasi-static aero

dynamic theory. Dowell's investigations showed that the

inplane edge restraints had a great influence on the flut

ter boundaries and this was attributed to the frequency

spectrum of the shells analyzed. The effect of edge re

straints was again investigated by Matsuzaki" using the

Galerkin method for the solution of the problem.

Since the introduction of the aerodynamic matrix con

cept by Olson", many authors exploited the application

of the finite element method in the field of supersonic

panel flutter. The application of Olson's concept has

been extended to three-dimensional plates”,£

plates”, circular cylindrical shells", and conical shells”.

Finite element flutter formulations with structural non

linearities were studied by Mei”, Rao and Rao” for flat

plates and Ueda” for conical shells. Yang" introduced

in the formulation of the aerodynamic matrix a numeri

cal integration technique in order to obtain more accurate

results tending to the exact linearized flow theory
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FIG 7. Flutter dynamic pressure parameter versus shell

rise for flow in the y-direction and all edges freely sup

ported.

case of high order frequencies. Except for Ref 25, where

the problem was formulated using a hybrid element cou

pled with the classical modal superposition technique for

the solution of the flutter problem, all other formulations

were performed based on the total potential energy prin

ciple with the displacements taken as field variables. In

Ref 7 finite element analysis of the supersonic flutter of

cylindrically curved panels based on Reissner's two field

variable variational principle was presented and several

numerical results were given. In this section further re

sults not given in Ref 7 are presented, namely, the effect

of aspect ratio is analyzed and the flow condition parallel

to the y-axis is solved.

Figures 6 to 9 summarize the results obtained in the

present investigation. Figure 6 presents the critical flut

ter parameter Aer versus the shell rise H/h, where H is

the maximum shell height and h the shell thickness, for

different values of the panel aspect ratio u of rectangular

freely supported panels. The results are compared with

the two mode Galerkin's solution of Voss" and Dowell's

solution".

Dowell's solution is a six chordwise mode Galerkin ap

proximation with a half-sine wave in the cross-stream di

rection. Dowell's solution practically coincides with the

present finite element solution for the part of the curve

where n = 1 are the critical modes for instability. Voss'

two mode solution, despite being conservative, shows the

same trend as the present finite e' "ent solution with in

creasing values of nor as the a parameter H/h

cr

3000

2000.

1000

e

H/h

FIG 8. Flutter dynamic pressure parameter versus shell

rise for flow in the z-direction and all edges clamped.

increases.

Figure 7 presents the results of freely supported panels

with flow in the y-direction and for different aspect ratio

of the panels. In Figs 8 and 9, the same cases analyzed in

Figs 6 and 7 are repeated for panels clamped on all edges.

Observing the results of Figs 6 to 9, the following con

clusions can be made:

• For flows parallel to the z-direction, the critical

modes of flutter are for n = 1 and are for the first

spanwise modes. In this region the curvature effect

is stabilizing in the sense that the critical dynamic

pressure increases with the increase of the curvature.

With further increase of the curvature, the panel

passes through a transition region characterized from

a flat plate behavior to a deep shell behavior. This

region is characterized by the dips, knees, and cups

observed in the dynamic pressure parameter versus

curvature effect, and is explained by the coalescence

of successive higher modes to produce the first crit

ical flutter condition. After this transition region,

with further increase in the curvature, the panel be

haves as a deep shell and the critical flutter modes

are those with an elevated number of waves in the

cross stream direction and the first spanwise modes.

In this part the shallow shell theory is no longer ad

equate and deep shell theory must be used. The

present shallow shell theory is, therefore, limited to

the flat plate and the transition part behavior of the

curved panels.
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FIG 9. Flutter dynamic pressure parameter versus shell

rise for flow in the y-direction and all edges clamped.

• For flow parallel to the y-direction, as can be seen

from the results obtained in Figs 6 to 9, the curvature

effect is destabilizing in the sense to decrease the flut

ter dynamic pressure with the increase of curvature.

Again, this is explained by the frequency spectrum of

the panel. In the transition region the panel is char

acterized by the same behavior demonstrated in the

z-direction flow case and coalescence for successive

values of nor occur.

• For clarity of the exposition, as was made in Ref 7,

no damping effect, whether of structural or aerody

namic nature has been incorporated in the present

formulation. If a constant viscous type structural

damping and/or aerodynamic damping term pf the

potential flow theory are used in the analysis, it can

be shown that their effect is always stabilizing (see

discussion of Ref 4) in the sense to increase the criti

cal dynamic parameter. The effect of such dampings

is small in the flat plate behavior and deep shell re

gions. In the transition region such dampings have

a greater influence on the panel stability and remove

the sharp minima or dips observed in the critical dy

namic pressure parameter, which are due to coales

cence of modes with nearly identical frequencies and

small aerodynamic coupling.

CONCLUSIONS

Free vibration, buckling, and supersonic panel flutter

analyses of cylindrically curved panels have been pre

sented. The analyses are based on Reissner's two field

variable variational principle. It is shown that the bound

ary conditions on Airy stress function are as simple and

direct to apply as for the boundary conditions on the

transverse displacement. The element used in the analy

ses is characterized by its high precision and direct appli

cation of the boundary conditions.
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increases the distance from the body and that distur

bances should dye out completely far from the body.

Instead of considering two different domains of fluid

separated by the surface f = 0, the idea of general

ized derivative is to automatically handle these jumps by

adding to the regular derivative terms valid only on the

surface. Thus, a single mathematical formulation can be

used to link information between the two distinct regions

of fluid.

Let us consider a general fluid field property denoted

by F(x,t), with i = 1,2,3. The generalized derivative

of this function with respect to time has been defined

previously (see, for example, Farassat (1977)) as

6f 6f

5 - 5 (1)

where AJ represents the property jump through f, which

is dictated by physical reasoning, and 6(f) stands for

the Dirac delta function of the surface f. Note that the

regular time derivative is recovered for all field points not

on f = 0.

The difficulty here is that definition (1) is not unique,

depending on a multiplicative constant contained implic

itly inside the function f. This definition can be made

unique as follows:

% = 0 + A* of
6t 6t ' |Vf 6t

because the gradient of f is defined in the whole domain

and carries also the same multiplicative constant. There

fore, definition (2) is more rigorous than (1), and will be

used whenever necessary in this paper.

6f

+ A*:: *(I)

6(f) (2)

outside conditions p, p, T, ui, ()

->

s

->

n

t

inside conditions po, po, To ui= 0 = 0

FIG 1. Definition of geometry and jump conditions.

Consider now a right-handed triad of unit vectors sit

ting on a point of the surface f, as depicted in Fig 1.

This triad has a unit vector normal to the surface, here

denoted by ii, and two mutually perpendicular tangential

unit vectors, represented respectively by i and s. Note

that the directions of i and 5 are left free, being defined

according to the problem at hand.

The generalized derivative of the fluid property F with

respect to the spatial coordinate xi, i = 1,2,3 has been

defined previously (see, for example, Farassat (1977)) as

6+ 07: ðf

#=# *A* : *#8(I)
(3)

Again, the first difficulty here is that this definition is not

unique. Besides, the definition accounts only for property

jumps normal to the surface.

It should be observed that a scalar property, like den

sity, may present only normal jump across the surface.

However, vector and tensor properties, like velocities and

stresses, may present jumps in directions other than the

normal to the surface.

To solve the problems pointed above, we propose the

following alternative definition for this generalized deriva

tive: -

6 F 8 F

- - - i + ti -ðr, ðr, + A* (n + + si)6(f) (4)

Here, as before, AP represents the fluid property jump

across the surface. Furthermore,

_ 1 6f

" * RISE,

is the i-th component of the unit vector in normal to the

surface at the point considered. The two remaining unit

vectors can be obtained from the relations of orthonor

mality.

Note that if in this definition F is a vector or tensor

property, from the Dirac delta term we obtain projec

tions of these properties along the normal and tangential

directions defined as shown in Fig 1.

The advantages of using definition (4) instead of (3)

may be described as follows: first, the new proposition

is established without ambiguity regarding surface defi

nition; and second, it also accounts for property jumps

occurring along the two tangential directions orthogonal

to the normal defined at a point on the body surface. As

we shall see, important effects may be introduced in the

physics of the problem due to this extension on the con

cept of generalized derivatives.

CONSERVATION EQUATIONS

In Computational Fluid Dynamics it is common to work

with homogeneous conservation equations, with later in

clusion of forcing boundary conditions. The purpose of

working with generalized derivatives is to include inho

mogeneities at the very beginning of the mathematical

fluid flow modeling, so that we do not have to worry

about them later. Therefore, the goal of this section is

to use definitions (2) and (4) to obtain generalized ver

sions of first principles of Fluid Mechanics. Here, these

principles will involve conservations of mass, momentum,

energy, and energy momentum.

Continuity Equation

The equation of conservation of mass has its regular con

servative form displayed as

6 6)

#+#(ou)=0 (5)

Here, p is the fluid particle specific mass (or density,

according to the aerodynamicist usual parlance) in the

perturbed state and ui is the i-th component of the per

turbed velocity vector related to the immovable reference

system of coordinates. This is a single partial differen

tial equation for four unknowns, namely, p and ui, with

i = 1, 2, 3.
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If we now transform the regular derivatives of Eq (16)

into generalized ones, according to Eqs (2) and (4), we

obtain

6 6

6t (eus) + 6x, (eu, ui + Pik uk u + qi us) =

J

# (eus) +# (eu, u + Pik uk u + qiw

eu: /öf - 0f

+|#(#+, #) &n

+ (qn u + Pik uk u nj)6(f)

+ (euiuj + Qjui + Pikukui) (t; + sj) 6(f)

Deleting the two square brackets on the right hand side,

based on the same arguments given before, there results

6 6

5 (eu)+ 32, (eu, ui + Pik uk u + qi ui) =

[evi (vi + v.) + v (qn + qi + q.)].6(f)

+ Pik vk vi (n + t, + sí) 6(f) (17)

As expected, Eq (16) can be retrieved from Eq. (17) if

there are no surfaces of discontinuity in the flow. Equa

tion (17) is the generalized form of the energy momentum

equation derived within the present focus. This inhomo

geneous partial differential equation states that changes

of energy momentum are forced by boundary mechanisms

which act normally and tangentially to the discontinu

ity surface. This idea, presented in preliminary form by

Brandão (1988b), is here extended to a more general con

text.

A comparison between the generalized conservation

equations here displayed with their previous counterparts

shows that the inhomogeneous normal terms are now

uniquely defined and that tangential terms are added as

sources of mass, momentum, energy, and energy momen

tum. These results are consequences of the new defini

tions of the generalized derivatives with respect to time

and space.

As a final remark, it may be observed that the con

servation laws here presented are also valid for problems

involving multiple bodies. In a wind tunnel, for example,

the surface f may incorporate the body-fluid boundary

of a testing model, as well as of the testing section walls.

This possibility was successfully explored by Medeiros

and Brandão (1991). For high-speed flows, shock surfaces

may also be considered as additional sources of discon

tinuity, as described by Farassat (1987). Therefore, the

generality of the present approach allows application of

these results to both external and internal flows, ranging

from the incompressible to the supersonic case.

POTENTIAL FLOW CONNECTIONS

A general approach should allow its reduction to simpler

contexts. This approach is called non-potential because

it makes no use of hypotheses of potentiality and also, be

cause viscosity effects appear explicitly within the tensors

&; and Pij. Here, we explore the rally the simplifi

cation of the method to the we' ‘ential theory

framework, for the case of inc d compress

ible fluids.

Incompressible fluids

Equation (5), when specialized for an incompressible

fluid, reads simply

tli

- - 18#=0 (18)

If now we admit the existence of a potential function 6

whose gradient yields the perturbation velocity vector,

Eq (18) becomes the classical Laplacian equation

6%
3.5: "" (19)

The idea here is to generalized the derivatives of this

equation.

If we consider that by hypothesis the velocity potential

q) is equal to zero in the reference condition, as shown in

Fig 1, according to definition (4), the first generalized

derivative of the velocity potential with respect to the

spatial coordinate ri is given by

öd, - 64, - - -

#=#*(n+', 's)*(I)

The second generalized derivative then yields

6% 6 [0%
ôrðr, T âr, # + b (ni + ti + si)An

62

= #+ #6. + ti +.) 6(f)

+ #20. + ti + si)6(f)]

If we now use Eq (19) and the velocity potential defini

tion, the generalized Laplacian equation which governs

the mass effects in incompressible fluids reads as follows:

62

6.x, 6xi
= (vn + v. + v.) 6(f)

#20, £4,000 (20)
Ti

This is a Poisson equation which incorporates normal and

tangential boundary conditions. As it stands, the equa

tion does not allow an immediate analytical or computa

tional treatment due to the presence of Dirac delta terms

of the surface function f on its right hand side. An in

tegral transformation of the equation is required a priori

to permit this objective to be achieved.

According to Morse and Feshbach (1953), the basic

solution to the Poisson problem

6°g - -

2r: – - * || || - -

V%=# = * (X(r,t) Y(r,t))

reads 1

where r is the distance between a source point at position

Y(r,t) and the observer point at position X(r,t), that

is, r = |X(r,t)-Y(r,t). This is the basic Green's func

tion of Laplace's equation for the unbounded domain V.
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From here, a formal solution for Eq. (20) can be con

structed as follows:

*=-T. v

1 6 4) (n + ti + si)

476:l+8(f) dy

The element of volume dy which appears in Eq. (22)

may be expressed in various forms. Among them, the

most convenient to our purpose is the one which considers

elements of distance conformed to the body surface and

centered on the source point, as depicted in Fig 2, that

1S,

1 +(Day

(22)

d}} = dm d£ d( = dn dS

Here, dn is an element of distance along in from the sur

face source, whereas d6 and d6 are elements of distance.

along the curvilinear coordinate axes locally tangent to t

and 5 respectively, so that their product yields an element

of area dS of the body surface.

element of volume d17

ZZ

|

element of surface dS

FIG 2. Body-fitted volume element.

With this geometrical set-up, Eq (22) assumes the fol

lowing form:

•==#| / +++ 8(f) as an
T Jf=0 Jo r

1 6 ° p(n; + ti + si)

-#/.../+8(f) as dn (23)

Since the domain of integration on n contains the surface

f = 0, which is equivalent to the lower bound m = 0,

an operational property of the Dirac delta function of f

allows us to reduce Eq (23) to

*=-|- / "it" as
4T f =0 r

--- *("itti + sí) as (24)

4T 6xi f=0 r

One could choose to solve this integro-differential equa

tion for the velocity potential. The unknown variable %

appears independently and also inside both integrands

on the right hand side. A numerical solution is possible

by iteration, having as starting condition the known mo

tion of the body with respect to the reference coordinate

system, as well as a reasonable guess for the unknown ve

locity potential p on the body surface. Note that Eq.(24),

although driven by surface information only, as it should,

is valid for all field points.

One could also choose to differentiate Eq (24) to ob

tain a governing equation for the perturbation velocity

component ui. This choice may be motivated by the fact

that is physically more appealing to work with velocities

than with potentials. Then, if we take the gradient of p

in Eq. (24), we obtain the following result:

* =-|--|- I +as
4t öri J/-0 r

–– 66 © (nj +t, + si) dS (25)

4t öriðr, JJ-0 r

This equation relates a perturbed velocity component us

to integrals on the surface of the moving body, having the

motion kinematics as major information. If we replace

vn, vi, and v, by their expanded inviscid versions given

by Eqs (8a – c) and we keep on the left hand side what

is unknown, the Eq. (25) above can be expressed as the

following integro-differential equation:

_0_ ut + us

dS

+ 6x, f=0 "

4 Tui

66 4) (n + ti + sí) dS

ðriðr, Jr=0 r

6 Vn + V + V,
= — – 1 –d.S

ðr, f=0 r (26)

where the meaning of the five velocity projections is now

intuitive. Taking the velocity component us as reference,

a result like this is known in the mathematical nomen

clature as an integral equation of the Fredholm type, of

the second kind, because the unknown ui appears inde

pendently and inside one integrand on the left hand side.

However, Eq. (26) is a little bit more complicated than

that, in the sense that it also includes another unknown,

namely, the velocity potential b.

If the body surface is smooth, we are allowed to replace

the generalized derivatives of the surface integrals by reg

ular ones and to commute the differential and integral

operators. Then, we can rewrite Eq (26) symbolically as

4 Tui + Ku, dS + Ke, dS = - Kv, dS (27)

f=0 f=0 f=0

where 6

" _ _9 |*: + us

Ku, = ôzi | r |

K > 62 © (n + ti + sí)

©, ðriðr; r

K.-:##|ðr, r

Note that Eq. (27) represents a set of three linear equa

tions for four unkonwns, namely, the three velocity com

ponents ui and the velocity potential b. Numerical solu

tions of this set can be obtained in an iterative fashion.

To start the process, the unknown integrals on the left

hand side can be ignored and the equations solved only

for the known input on the right hand side. In the next



S86 MECHANICS PAN-AMERICA 1993 Appl Mech Rev 1993 Supplement

iteration, the solution of the previous iteration can be

plugged into the unknown integrals, and the process as

sessed with respect to convergence. To speed up the pro

cess, reasonable guesses for the perturbed velocity field

and its potential can be prescribed in the first iteration in

order to render known the integrands Ku, and K4, . Once

a solution is achieved, the field pressure distribution can

be obtained by means of a steady or unsteady version of

Bernoulli's equation.

The success of these propositions are still to be evalu

ated with practical applications. However, since pertur

bation velocities are small compared to the velocity of ref

erence, the greatest input in the process is already known

and appears as the driving term on the right hand side of

Eq (27). Perturbation techniques in Aerodynamics have

long suffered when the starting point was a homogeneous

equation. Here, the starting point is the solution of an in

homogeneous equation and, hopefully, closer to the final

anSWer.

An important remark to be made here is that, for a

two-dimensional problem, the surface integrals appear

ing in Eq. (27) become closed line integrals along the

cross section boundary. In this case, the integral with

the tangential velocity term is linked to the classical cir

culation integral (see, for example, Karamchetti (1973)),

whereas the other integral on 4 may be connected to the

classical downwash integral (see, for example, Mangler

(1951)). Therefore, known lifting mechanisms have been

introduced in the formulation and this inclusion is evident

at its simplest framework. The validity of this statement

wil be checked in future applications of this approach.

Compressible fluids

It is known in Compressible Aerodynamics that a se

quence of derivation steps involving the regular conti

nuity and momentum equations, with the help of a ther

modynamic relation between pressure and density, leads

to the so-called full-potential equation. Linearization of

the complete, non-linear equation yields the convected

wave equation for an observer on the body surface or

the acoustical wave equation for an observer in the fixed

fluid frame of reference. If exactly the same ingredients

are used in the recipe, but now under generalized form, a

new result can be obtained. However, in complete form

the result is lengthy and cumbersome. In order to show

connections between the present approach and already

established theories, here we will choose to study the sim

plified framework of small perturbation problems.

The governing equation now is the wave equation

1624, 624,
** = ++ -–-

D*4 = c2 6t2 6xiðr, 0 (28)

The generalized version of the Laplacian operator is given

by Eq. (20). According to Eq. (2), the first generalized

derivative of 4 with respect to time is given by

öð 64, , p 6 f
- = - +-- 6

# = 5 + RTS. *(I)

Then, the second generalized derivative yields

%= 0 (0.21 –
6t2 6t | 6t -

624 [6d, 1 6f 6 [ 4, 6f

317 |### *(n+#|#40

64, 6

- -: *, *(I) - # * v- 8(f)]

with the help of Eq. (28) and Lamb's non-penetration

condition. If we join this result accordingly with Eq (20),

we obtain

5'--(, "vosq)-; 26.4% +...)*(D)

1 (.6% 6

-###" (n+#"O) (*)

Note that Eq. (20), the incompressible limit of Eq.(29), is

recovered if we let the sound speed c go to infinity.

According to Morse and Feshbach (1953), the basic

solution of the wave problem in unbounded domain

2a – 10% - 0°9 – F (-, *) – V/-.

D'g=##–5:= (-r) *(X(r,t)-Y(r,t))

is given by

g (X,Y,t,”) <-# (30)

In this solution, 6(g) is the Dirac delta function of a

sphere g = t – T – r/c = 0 of information triggered at a

source position Y(xi, r) at retarded time r = t – r/c and

received at an observer position X(xi, t) at actual time

t. In addition, r = |X(x,t) – Y(xi, r) is the distance

traveled by the information with constant speed c. As we

can see, this model reproduces what happens in nature

with propagation of perturbations in compressible fluids.

The application of the solution (30) to the governing

equation (29) yields the following transformation:

*=-| |+ (0%) was

6 f* i -t- ti -t- Si

-#/.../*#+#+ (0%)avar

1 / / 0¢ va.

– 5 J.J. :: *@*@avar

6 f* n

-##| |**(I) () avaroo Jy T

The integration on r yields (see Brandão (1989))

47rq = -/[+G' Mo' 40 d))

6 l [… +++) (1+M.)3r,
6(f) dy

ret

1 64 vn
- #/. |##0 Mo' 40 d))

1 6 |'sT Cyål J, Tr (1+M) (now
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where Mr = vr/c = (v, ri)/(cr) is the source Mach vec

tor projected onto the direction of propagating informa

tion (from source to observer). Here, for the purpose of

demonstration only, it is admitted that the entire flow

field is subsonic. Moreover, the subscript “ret” means

that during the convolution the information coming from

a source and arriving at time t at the observer should be

taken as having been emitted at the corresponding re

tarded time r. If we now consider the volume integration

as performed in the last subsection, we obtain

*=-/ [+G+M) dS

f=0 r ret

#/..[+a+") isTöz,

1 64 vn |
- - ++ (1 + Mr. dS#/..: r ( + ) ret

1 6 4 vn

-#/. r ('' '')...as

One can choose to solve this integro-differential equa

tion for the velocity potential p or, as indicated for the

incompressible case, to take its derivative and solve the

result for the velocity component ui. In the second case,

if the body surface is smooth, we can rewrite Eq. (31) in

the following symbolic form:

(31)

4 T ui + Ku, dS + Kø, as +/ K4M, dS

f=0 Jf=0

+ K4M, dS ·- -

f=0

KV, dS

f=0

(32)

where

6 [. + u,

r (1+M) ret

x =#|+.= 5-5- 1 + M.)ôzióz; ret

6 # Mn

K*M, = 6x, #(1+ M.)
ret

© Mn

c r

62

K4M, = 6x16t | (1 + M.)
ret

6 [...+x+.
KV = -|+–

ôzi r

When comparing Eq.(32) with its incompressible coun

terpart (Eq. (27)), we observe that compressible effects

appear in this mathematical model by means of

(1 + M.) ret

• the subsonic Doppler magnification factor (1 + Mr.)

shown inside all integrands;

• the consideration of the contents of all integrands at

retarded time r during integration; and

• the inclusion of the KeM, and K.M. integrals in the

equation.

As discussed for the incompressible model, the integro

differential equation (32) can be solved by iteration. To

start the process, for a given motion the Kv, integral is

totally known and the Ku, K*, K*M, and Kim, can be

estimated. Then, the velocity field can be computed and

the answer compared to the estimate of the previous step.

If convergence is not reached under a certain criterion,

the process goes over another cycle and so on. From the

velocity field we can proceed to compute pressure and

temperature distributions.

Equation (29) and its integral solution (31) is more

complete in terms of boundary sources than the one used

by Lee and Yang (1990) to determine via a panel method

the pressure distribution on the surface of rotating bod

ies and airfoils in the subsonic regime. Their governing

equation can be obtained from Eq. (29) if the vi, v,, ti,

and si terms are deleted.

The results obtained by Lee and Yang show a certain

difficulty in capturing the full expansion on the surface of

an ONERA rotor blade in the non-lifting case. The same

difficulty is apparent for the pressure distribution on a

NACA 0012 blade in a lifting condition. It is possible that

they have experienced the same problems encountered by

Long (1985) with large expansions and application of the

Kutta condition to simulate viscosity effects. The new

terms in Eq. (29), linked to tangential information on the

surface, may help in obtaining better correlation between

theoretical and experimental results, thus, proving the

adequacy of the approach for subsonic potential flows.

The incompressible model expressed by Eq. (27), de

rived from the continuity equation, has no free-field

contribution. The linear compressible model given by

Eq (29), derived from the continuity and momentum

equations, also has only surface contributions. Lee and

Yang reported the adoption of dipoles in the wake to

capture lift, a viable, though somewhat arbitrary mea

sure. Had we considered the full potential equation as

starting point, non-linear and well-defined volume and

surface contributions would appear. Therefore, even bet

ter correlations can be obtained if the generalized version

of the full potential equation is used. Besides, the appli

cability of the approach can then be extended into the

transonic regime. An exploration of this issue is left for

future studies regarding the present technique.

NON-POTENTIAL FLOW CONNECTIONS

The ultimate goal of the aerodynamicist is to solve the

fluid mechanics about a body of given geometry in motion

relative to the air, so that from this solution useful infor

mation can be extracted. Among what can be deemed

useful certainly lies pressure and thermal loading, used

to design the body shape and to analyze its performance

in motion. When dealing with the concept of velocity po

tential, once a solution is obtained, we have to advance to

velocity, then to pressure, and, finally, to temperature. In

the last section we established connections of the present

approach to the potential theory framework, so that a

more direct formulation for velocity was obtained in the

incompressible and compressible cases. The objective in

this section is to proceed with these developments, now

considering the complete physics given by the conserva

tion laws. We will derive in this section two governing

equations, one for pressure and another for energy prop

agation. There are no potential assumptions made in

these derivations.
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A governing equation for pressure

If exactly the same derivation steps leading to the equa

tion of Ffowcs Williams and Hawkings are repeated, but,

this time, using as major components the conservation

laws (7) and (11), an even more complete governing equa

tion can be obtained. The completeness here should be

understood in the following senses:

• with respect to potential theory, the result includes

fluid viscosity and should be regarded as a concise

statement of the Navier-Stokes framework.

• with respect to the Ffowcs Williams and Hawk

ings equation, the result contains new source terms

of tangential discontinuity and better definition of

source terms of normal jump.

For the sake of completeness, the derivation of the gov

erning equation occurs as described below:

1. Take the generalized time derivative of both sides of

the continuity equation (7).

2. Take the generalized derivative of both sides of the

momentum equation (11) with respect to xi.

3. Subtract the result of the previous step from the

result of step 1.

4. Subtract from both sides the term c” V*p.

5. Subtract from the result obtained in step 4 the fol

–2 -

lowing identity: E. c”po = – c’ V*po.

6. Replace, where applicable, P.; by ?, in order to

remove constants and work only with perturbations.

The result we are envisioning reads as follows:

E’ [c” (p – p.) : #". + p(vi + ve) 6(f)]

-# |P, (nj +t, +s)6(f)]

6 62 ii

-:Iov (, : ".)8(f)]+# (33)

J

With respect to the Ffowcs Williams and Hawkings

equation, Eq. (33) introduces two tangential mechanisms

of perturbation generation which might be important in

some problems of Fluid Mechanics. The new terms re

inforce the monopole and dipole behaviors of sound di

rectivity. Furthermore, the normal terms are now better

defined, removing ambiguities created in the establish

ment of the surface function f.

The result represented by Eq. (33) is quite general. It

allows, among other possibilities, the limiting case where

the fluid becomes incompressible. Letting c go to infinity,

we obtain

V°p = -# [po (vn + v. H. v.) &(f)]– 6*T,

ðriðr,

+ #{P. (n + ti + sy) | (f)) (34)

with -

Tij = &j + pou, uj

This limit can find practical applications to low speed

motions in air or to motions inside nearly incompressible

fluids, like water.

Equations (33) and (34) involve boundary terms which

can be handled more easily after integration processes.

These mathematical operations are also useful to allow a

practical interpretation of the 6(f) terms. If we make use

of the Green's functions (30) and (21) for the wave and

Laplace equations, respectively, and of other analytical

tools applied in the last section, the integrated results

are given by

dri Ju-0 r ret

- 0. [... + p(v. + v.) (1 + M.) dS

ôt J/=0 r ret

-#/ [+o, wo dS

dri Jy–0 r ret

6° f [Ti,

"5.5., | |: (1 + M.)" (35)

for the compressible case and

**::/ *("it 5 tes) as =
*i JJ =0 r

ò po(wn + vi + v.) 62 Ti,

ôt h. r ast 5:/. av

––/ ^*(*, + ".) as (36)
ðr, Jr=0 r

for the incompressible limit.

Now comes a critical issue. The Green's functions (21)

and (30) are intrinsically singular. If derivatives of these

solutions are taken, there result stronger singularities

which cannot find interpretation in the ordinary sense,

but can have meaning in the sense defined by Hadamard

(1952). It is a matter of choice taking the derivatives be

fore or after integration. Brandão (1987) and (1990) has

shown that for better computing efficiency, which com

prises both accuracy and time spent on numerical com

putations, it is always preferable to derive a singular in

tegral and to handle its finite-part later than to compute

the singular integral and to obtain later its numerical

derivative.

With the singular integration issue in mind, Eq. (35)

can be written symbolically as

4tc” (p – p.)+/ K# ds = K'; d.S+| K., dy (37)
f =0 f=0 V

This represents a non-linear integral equation for the

perturbation pressure p, forced by velocity dependent

boundary and volume integrals. Above, K' denotes a

singular surface kernel for p, with a weak dependence on

the velocity field. On the right hand side, K' symbolizes

a singular surface kernel which depends on the velocity

field only, whereas K', represents a singular volume kernel
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INVISCID FLUIDS

The continuity equation (7) is valid for a compressible

fluid and requires no specialization regarding viscosity.

On the other hand, the momentum equation (11) for the

inviscid case is reduced to

6 6

#(out)+ #("u + p us uj) =

[p (n + ti + si) + p v (vi + v.)].6(f) (41)

From these four basic equations, a single wave equation

can be obtained following the same steps described for

the derivation of Eq. (33). The result yields

E” [c” (p – pe)] = #". + p(vi + ve) 6(f)]

- #24 ..

-#"**@*#

-#"(" "):0 (42)

where

tij = put u + [p – c’ (p-po)]6, (43)

is the inviscid version of Lighthill's stress tensor.

Equation (42) is a non-linear relation between the

perturbation pressure p and several other fluid proper

ties. The non-linearity is built inside Lighthill's variable

c” (p – pe) which also appears in the definition of tij, as

given by Eq. (43). For example, from a series expansion

for Lighthill's variable given by Brandão (1991) we can

rewrite this stress tensor as

* 7 2

tij = p us uj + 22.5" 6ij

where y = ce/cy is the ratio between specific heat co

efficients at constant pressure and volume. It is easily

perceived that the non-linear pressure term is small in

magnitude due to the squared perturbation pressure in

its numerator and to the squared sound speed term in its

denominator.

This non-linearity is equivalent, within compressible

potential theory, to consider the sound speed c variable

from point to point in the field, according to its ther

modynamic state. This is not the case in the present

approach, since here c is the speed of sound in the ref

erence condition and, therefore, a constant. From this

discussion, if the problem at hand excites only small per

turbations, we are allowed to disregard this non-linearity

and simplify Eq.(42) to

–2 – 0. ö*puru,
D. p = 5. [povn + p (vi + v.) 6(f)] + 3:52,

-: {{p(n; +t, + si) + pu, (vi + v.)].6(f)} (44)

The addition of the hypothesis of incompressibility pro

vides further reduction of Eq.(44) to

- 6°pou, u,
W°p : -# [po (vn + v. + v,) 5(f)] - öriór,

# {{p(n; +t, + si) + pov, (vi + v.)] 6(f)} (45)

Equation (42) should be considered as equivalent to

the Euler equation in the Computational Fluid Dynam

ics parlance. The velocity potential p does not appear

there explicitly. During its derivation, the background

is established in the sense that the fluid is inviscid, and

nothing else in terms of hypotheses.

In integral form, Eq.(42) assumes the same structure

given by Eq. (37), but with kernels given by

6 p(n; + ti + sí)
* --1:

K# = ðr, | r ('' '').

* – d [evat p(v, tw.) |s:=#| r (1 + Mr) ret

6 [p v (vi + v.)

T 5,[***('' '').

t=#–[+G+ M)y – ðriðr, r r ret

Similarly, the incompressible limit (45) can be rewritten

with the structure of Eq. (38) but, this time, with the

kernels simplified to

k" – 9 [P(n + i + i)
S - ðzi r

k: = + p. (wn tw.tv.)l__0 [evi(w, tw.)
s - 5, r 6x, r

E, 6° [*:
* T âz,62, r

As remarked previously, Eqs (42) and (45) are prototypes

of general relations between pressure, density, and veloc

ity for inviscid fluids. As such, these equations are single

relations involving several variables. They cannot con

stitute solutions themselves, but can be used as mother

equations in iterative schemes already tested in simplified

form (see Brandão (1989)) as well as others presently in

development.

SUMMARY AND CONCLUSIONS

Results of theoretical nature have been presented con

cerning the application of an aeroacoustic approach to

Aerodynamics. These results cover general issues, like

non-linear, viscous, three-dimensional, unsteady, and

compressible flows, as well as related simplifications.

These simplifications have been discussed in order to con

struct parallels between the new governing equations and

well-established mathematical models of Fluid Mechan

ics. Therefore, the discussion here has explored from the

Navier-Stokes to the Laplacian context, passing through

the Euler, full-potential, and linearized potential frame

works.

The inclusion of boundary conditions as source terms

of partial differential equations is a characteristic of mod

ern boundary element methods. This mathematical task

can be accomplished with the help of the concept of gen

eralized derivatives. In the approach, this trend of incor

porating boundary conditions to the governing equations
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which depends heavily on the velocity field and weakly

on the pressure field. For smooth surfaces, these kernels

are given explicitly by

6 || Pi (n; +t, + sí)
– – 1++-44

K# = ôzi | d").
r

ö [pov, + p(vi + v.)
* - – 1+---

K: = 6t | r (1 + Mr) ret

6 [p v (vi + v.) |
--||—(1 + Mr

ôzi | r ( ) ret

, 6” [Ti;
K# öz,öz, # (1 + M.) ret

Similarly, Eq. (36) can be represented concisely as

***/ K# dS= k; as +/k; aw (38)
f=0 f=0 V

with the following simplified kernels

k = 0 ||P. (with + i)
* T âr, r

K% = 6. po (vn + v. + v.) - _6_ povi (vi + v.)

s - 5, r ôzi r

-. 62 [T,
* -— I+

K# = ðriðr, | r |

Equations (37) and (38) are single integral equations

involving several unknowns. As before, an iterative so

lution technique is recommended to obtain the pressure

field. This solution starts with a reasonable guess for the

velocity field, which can be constructed taking as basis

the known motion of the body with respect to the ref

erence system at rest. This guess allows estimation of

the K' and Ky integrals, the driving input for pressure

determination. Once one cycle is completed, the momen

tum equation can be used to yield a better distribution

for the unknown perturbation velocity field. Then, the

pressure can be recomputed and convergence evaluated.

Further details on this solution algorithm have been pro

vided by Brandão (1991). There are reasons to believe

that convergence can be reached within a few cycles be

cause iterations begin with an input very close to the

converged solution. However, applications are necessary

to demonstrate this point.

A governing equation for energy

It is known that for high speed air flows, the temper

ature of the fluid near or on the body surface becomes

an important issue. Since Eq. (33) is mostly concerned

with pressure propagation generated by motion, no tem

perature information can be obtained from this equation.

Therefore, studies regarding this objective are required.

Here we explore a theoretical possibility, integrating into

a single statement the physics of the energy and energy

momentum equations, so that we can have access to tem

perature distributions in the field, as well as to mecha

nisms of energy propagation through the flow.

A new governing equation "ends the Acoustic

Analogy into this issue, car "lowing the steps

below, in complete simila tion of Eq. (33):

1. Take the generalized time derivative of both sides of

the energy equation (13).

2. Take the generalized derivative of both sides of the

energy momentum equation (17) with respect to zi.

3. Subtract the result of the previous step from the

result of step 1.

4. Divide the whole equation by c”.

5. Subtract from both sides of the previous step the

term V*.e.

The result of this process yields

–2 1 ( ò 6
C e = #{#w 6(f)]– #(P. 6(f)]

- 3:52, - 6tór, (qi +*} (39)

where we define

M = eovn + e (vi + v.) + (P: vi + qi) (n + ti + si)

TP = ev, (vi + v.) + v. (Piev, + w) (n + ti + sí)

and

Qij = eu, ui + Pikukui + uíqi + c’e 6ij

as the energetic monopole scalar, dipole vector, and

quadrupole tensor, respectively.

Equation (39) is a wave equation for the total fluid el

ement energy e driven by two surface and two volume

source terms of different natures. The surface terms,

in the order given, have the behavior of the traditional

monopole and dipole. The first volume term is a free

field quadrupole, like in Lighthill's equation. Finally, the

second volume term is a free-field contributor of mixed

nature, still to be interpreted.

If we now consider the incompressible limit of Eq. (39),

the following identity results:

- 62e
22 – - -

V*e = 6xióz; 6ij (40)

which gives no useful information. However, a result like

this was expected because the energy equation introduces

new effects in the flow physics only in the compressible

case. The “locking phenomenon” is well-known in Com

putational Fluid Dynamics for low Mach number flows.

The reduction of Eq. (39) to identity (40) is just an equiv

alent manifestation of the same phenomenon.

Like the other governing equations before in this paper,

Eq. (39) can now the integrated and solved numerically

by an iterative scheme. However, these details will be

omitted here for reasons of brevity and to allow time for

maturation of the concept.

Equations (33) and (39) are the most sophisticated re

sults presented in this contribution. Together, they form

a mathematical model within the Navier-Stokes environ

ment of modern Computational Fluid Dynamics. For

the sake of completeness, now we can simplify the con

text with the hypothesis of motion inside inviscid fluids,

which places the mathematical model inside the Euler

equations framework.
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the vector V onto the directions Gx and G*, respec

tively, while the components (8g, h) are the orthogonal

projections over the same directions, respectively. Ricci

and Levi-Civita (1901), had already introduced these four

sets of components.

Observe that the double indices in the metric symbols

do not contribute to the summation convention. For the

deformed state, similar formulas as the preceding ones

can be obtained by substituting the uppercase indices and

letters which enter in the above expressions by lowercase

OneS.

ANHOLONOMIC COMPONENTS OF

TENSORS OF DOUBLE FIELD

A second order tensor of double field T can be defined as

linear combinations of tensor products of the type U & E

(or £3J), where ū and g are elements that belong to one

of the bases of the sets {U, U, U*, U") and {u, u, u", u"},

respectively. For example, the expressions

T = XL [T"]. IIM & in =

M,m

XL TMm GM & Jin

M,m

(9a, b)

represent a covariant second order tensor of double field,

where B = U & u is a basis of the considered tensorial

space and the notation [TM") denotes the anholonomic

components of the tensor of double field referred to the

basis B. Taking into account the identity (9a, b) and the

expressions of UM and üm as functions of GM and jin,

respectively, one obtains

V9mm

GMM

[Twn]. J TMm
(9c)

where M = I, II, III and m = 1,2,3. Similarly, fifteen more

anholonomic components of T can be obtained.

A third order tensor of double field can be defined as

linear combinations of tensor products of anyone of the

following types: %, &#, &#, #, &W, @#2, #, &#39,
£1&Q,&ll, £18,80, and £1&ll,8:1, where !, and

gi. (1 = 1, 2) are elements that belong to one of the bases

of the sets {U, U, U*, U"} and {u, u, u', u"}, respectively.

Similarly as above, the expressions

T = XD [T"L]e UM & I, 2 U" =
M,m,L

XL T". Gw & 5, & G"
M,m,L

(10a, b)

represent a mixed third order tensor of double field, where

B = U & u & U" is a basis of the considered tensorial

space. The substitution of the vectors Tw. ü, and U*

as given by formulas (7) into expressions (10a, b) leads to

V9mm x/ELL TMm

which is the expression of the anholonomic components

of a third order tensor of double referred to the basis

B = U & u & U".

[T"..]. :

It should be observed that since the covariant deriva

tives of the vectorial and tensorial components have also

a tensorial character, the above theory can be utilized to

obtain their anholonomic counterparts. For instance, uti

lizing formula (11) for the covariant derivative of the first

Piola-Kirchhoff stress tensor with respect to X*, denoted

by Sk'., one obtains

& Kr = V9** VGLI &KR

|s "le." VGKK Gui s', (12)

which is the expression of the anholonomic components

of S**t, referred to the basis U 2 u & U".

As a particular case, the anholonomic components of

tensors of single field (Oliveira and Altman, 1981) can be

obtained from the preceding theory by making U = u,

U = u, U* = u", and U" = u". In this context the an

holonomic components of the displacement gradient u',

and lll:J referred to the bases U & U and U & U, respec

tively, can be determined from the expressions

- -J - -

XD [u'lueg. U. 2 U' =XXu', G, 3G (13a)
I.J. - I,J

and

- I -J - - -

XD (MI,J) ev U & U = XXui, G" & G’ (135)

I,J --- I,J

leading to

I _ VGif,,1
'ilvey VG, l', (13c)

and 1

l/r. = -== l{r. 13(Migluey VTV: “” (13d)

Furthermore, note that in the case of single field ten

sors, formula (9c) coincides with Green and Zerna's phys

ical components of the stress tensor.

Expressions (9) to (13) will be needed in the sequel.

DIMENSIONAL ANALYSIS OF

ANHOLONOMIC COMPONENTS

In this section it will be proved the dimensional invariance

of the anholonomic components of a second order tensor

of double field, under transformation of coordinates.

Firstly, it should be observed that the dimension of

VGirdx' and of VGNdz is L, where L denotes the di

mension of length. This follows from the Riemannian

metrics

dS* = GI, dx' dx' , ds” = g, dz dz (14a,b)

The dimensions of G' and g” can be calculated as func

tions of Gil and gii, respectively, by observing that if

G1 = dim (G11) and gi = dim (gii), then

dim G = G1 GJ GK , dimg = g g g (15a, b)

where

G = det (GII) , g = det [gij] (15c., d)
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The substitution of expressions (15a, b) into

=# , , =# (sen

where

dim A11 = GJ GK , dim aii = gj gh (15g, h)

lead to 1 : 1

G’ = C. : g = g (15i,j)

The dimension of a tensor of double field T, which is

denoted by dim T, can be defined as being the dimen

sion of its components in orthonormal cartesian systems

£ (M = I, II, III; m = 1,2,3). It can be proved

that the dimension of the anholonomic components of T

in any coordinate systems (x*, *), where K = I, II, III

and k = 1,2,3 is invariant and equal to dim T. Let the

contravariant components T^* be chosen to represent the

double tensor field of second order in the coordinate sys

tems (X*, r*) and T*" its components in the orthonor

mal cartesian systems (Y”, y”). From the formulas for

changing coordinates

T**(x,z) = TM"(Y,y)## (16)

one can write

dim T^* = dim (X*) L-1

dim (*) L-dim T" (17a)

Or

dim T^* = dim (X*), dim (*) L-*dim T (17b)

where

dim T^*" = dim T (17c)

and dim (X,*) and dim (z*) are the dimensions of the

X* and z* coordinates, respectively. From formula (9c),

where B = U & u, it can be written

Qkk

GKK
dim [T"]s = dim ( ) dim T^* (18a)

After substituting formula (17b) into expression (18a),

one obtains

dim [T"]s = [VII dim(*)]

|VGA dim(x*) L-'dim't (18b)

Or dim (T^*] = dim T (18c)

since

VGEdim(z") = VGKdim(X*) = L (18d)

By the same reasoning, it can be shown that the di

mensions of the anholonomic counterparts of the covari

ant and mixed components of a double tensor field are

also equal to dim T. Furthermore, this theorem can be

extended for higher order tensors of double field.

ELASTICITY EQUATIONS IN TERMS OF

ANHOLONOMIC COMPONENTS

As an application of the preceding theory, the nonlinear

elasticity equations of a continuous body will be written in

terms of anholonomic components of vectors and tensors

involved.

Equations of motion

Consider Cauchy's first law of motion expressed in terms

of the reference state (Eringen, 1962)

S**k + P* = p, a” (k = 1,2,3) (19a)

and the boundary conditions

vK S** = F* (k = 1,2,3) (19b)

where

S*** = S^* + S*" T', 'k + S** Ták (19e)

In these expressions, S** are the components of the

first Piola-Kirchhoff stress tensor; T's and T', are the

Christoffel symbols in the reference state and in the de

formed state, respectively, z = x*(X*,t) express the

motion of the body which carries various material points

through various spatial Position: po is the mass density

in the reference state; P* and F* are contravariant com

ponents in the directions j of the body force and pre

scribed surface traction referred to the unit volume and

unit area before deformation, respectively; a” are con

travariant components of the acceleration in the direc

tions ge; and finally, vK are the covariant components of

the exterior normal in the directions G*, (K = I, II, III).

Based on formula (9c), the anholonomic components of

S** relative to the basis B = U & u, denoted by 6",

reads

2. K. k – &K k – V9kk &KR
Cr-- " - |s l, T VGKK S

Substituting expression (20a) into equations (19a, b) and

taking the anholonomic components of P*, F*, a", vk as

p = [P"]... = VIII P* ,

(20a)

f*=[F*]. = VIII F* (21b — d)

a" :- [a"]. = V Qkk a" *

nk = [vk].J. = VG** vK (21e – h)

one obtains

VGKK

V9kk 6**| + p = p, a” (22a)

V9kk : K.

and

vK 6** = f* (22b)

which are the desired equations. Observe that if L = K,

then formula (12) (where the symbol (;) was replaced by

(:)) reduces to

|s".]. = VIII S6'k (23a)
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or taking into account expression (20a)

|S"..]. = Vg: # *] (23b)

The latter expression gives the anholonomic com

ponents of the covariant derivative of the first Piola

Kirchhoff stress tensor directly in terms of the derivatives

of its anholonomic components. The substitution of for

mulas (23b) and (21) into equations (22), yield

[s".]. + [P*]. = po [a"]. (24a)

5Kk - k

["klu. |s le. - [F l.

which shows that the anholonomic components in equa

tions (24a, b) are related just in the same way as their

tensorial components in equations (19a, b).

Some authors prefer the use of convected coordinates

which can be obtained from the foregoing coordinates by

equating the numerical value of the coordinate r" of a

given point as to that of X*. For these coordinates the

following relation

S*" = (64 +u%) s” (25a)

holds true, where the notations u', SK!, and SKR, for

I, R, K = I, II, III, denote the displacement gradient tensor

components, the first and second Piola-Kirchhoff stress

tensors components, respectively. In this case equations

(19) reduce to

(24b)

[(8%+u')S"]... + P’ = p, u' (25)

vk (6% +u'.) S** = F^ (25c)

where

In terms of anholonomic components equations (25b, c)

can be written in the form

Z-|VGKK
GII | VGIF (aka + u% ..") + p' = po ü'

II ;K

(26a)

nk (a^* + u% o”) = f' (26b)

where the formulas

# = u'] = VGE ll' *

VGIF

A = ['ilveg = VÖ),

l/r.

VCT, cIJ

V(''

p' = [P], = VC

u',

o' = $"lgev 2

f! *: [F'], <- /Gir FI

relate the vectorial and tensorial components which enter

into equations (25b, c) to their anholonomic counterparts.

The anholonomic components ofu', and lll:J can also be

expressed as

(27a – 1)

I - VGII ( u’ + u" "I
* = W: (#), #:+ ". (28a)

1

Pu IJ = VGIFVGJJ (al GT),

(28b)

III

+ XX VGKK uk rt
K=l

by substituting into expressions (27d) and (27.f) the fol

lowing formulas

u', = (#) +* —"— T#x (28c)

* VGT/J K=I VGKK

III

l(I,J = ( GII al) , + XLux VGKK T', (28d)

* K=I

Kinematic and linear constitutive equations

The expression of Green strain tensor components

1

Eu = eu +5uwa u% (29a)

when written in terms of anholonomic components, reads

1

e1 = €1, +:HMI u!" (29b)
2

In these formulas

1

e1 = 7 (l(I,J + l\,,1)

E GII E.

e J - - -

1 = [EIJlv.2, QTJ Ply

|GIt 1 /Gri
£1J = [eivlu.8L = GI," " 2 W.G., (l(I,J +lly,1)

- GII

Rui = "wilgev. = Wä. "Ma

GMM

H' = [lı'ilveg =W# u",

where l/1.J is given by Eq.(28d) and

(29c – l)

III

l/J;1 = ( GJJ w) I + XL HK VGKK T#, (29m)

1. '" K= I
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Furthermore, taking into account the last formula (and

substituting J by M), the expression (29i) can be written

as (VGTaw),
GII

GMM

III

XL VGKK uk*
R =I

HMI =

(30)

and the expression for u' is given by formula (28a) by

making M = I.

In order to obtain the linear constitutive equations ex

pressed in terms of anholonomic components, consider the

following stress-strain relation

SR = CI*** Ekt (31)

where C** are the elastic coefficients. They depend

on the metric of the undeformed body and on its physi

cal properties. From the #ymmetries of the second Piola

Kirchhoff stress tensor S'' and Green's strain tensor #.

it follows that C1JK L = C-11K L and CIJK L = CI*** .

Furthermore, it should be pointed out that since the elas

tic potential is invariant under transformation of coordi

nates, the sets of anholonomic components of S’’’ and

EIJ are chosen so as to have reciprocal bases, that is,

the bases U & U and U" & U, respectively. Thus, the

anholonomic components ofGrik* can be obtained from

XD [C**]. Ü, & J & J. & J =
I,J, K, L

XD C” G, 3G, 3G, 3G, (32a)
I, J, K,L

yielding

clux = [c"k"]. _ VCJJ VCEE (32b)

ovegrev - VGITVGKK

The substitution of formulas (27h), (29c), and (32b) into

relation (31), leads to

[s"lgev :- IC"lgevegev [EKLlu-ev (33a)

Or

** = c^*** ext (33b)

As it can be seen from this discussion, the difference be

tween equations (33b) and (31) lies only on their bases of

reference.

or

SHELL EQUATIONS IN TERMS OF

ANHOLONOMIC COMPONENTS

As another application, the geometrically nonlinear equa

tions of the first order shear deformation shell theory

(Pietraszkiewicz, 1979; Schmidt and Reddy, 1988, Alt

man and Palmerio, 1991 and 1992) will be expressed in

terms of anholonomic components of vectors and tensors.

In order to carry out this, the formulas for the anholo

nomic components of vectors and tensors on a surface will

be determined and the derivation of the needed tensorial

equations, based on the work of Altman and Palmerio

(1991,1992), will be outlined in the next subsections.

Notation and geometry of a surface

Let V be the volume of the undeformed body bounded by

the upper St and lower ST surfaces, which are equidis

tant from the midsurface Q, and by a lateral surface A.

The distance between St and ST, denoted by h, is the

thickness of the shell. Let A, and Au, be the two parts

of the lateral boundary surface A, where the stresses and

displacements are prescribed, respectively. In addition,

let T, and Tu be the intersections of A, and Au with Q,

respectively. To each point of V, it is associated a set of

curvilinear coordinates (# 6,5%) where (6',6*) denotes

the curvilinear surface coordinates of a point in Q and 9m

the normal coordinate to Q. The position vector R at a

point (6", 6", 6") of y can be written as

R = R (9,6") +6"N (9,6") (34a)

where Ro is the position vector of a point (6',0") in Q and

N is the unit vector normal to Q at point (6',6"). In what

follows, Greek indices will have range I, II, while Latin

indices will have the values I, II, III. At each point in the

undeformed shell space the covariant and contravariant

base vectors (GI, G') and the corresponding components

of metric tensor (Gry, G’’) are given by

Gr = Rr = Ror +6" Nr. , Gn = N ,

Gra <- Gr - GA * GI - GIJ G, *

GIK G** = 6; , G" = Grm = 0 ,

G" = Gmm = 1 (34b – k)

Similarly, at each point on the midsurface, the base vec

tors and their associated metrics read

Ar = Ror , Ara = Ar AA ,

A" = A*AA , A"Ana = 6; (35a – d)

A" = Arm = 0 , A" =Ann = 1 (35e – h)

The base vectors (Gr, G') and their corresponding met

rics (GL, G’’) are related to those of the midsurface as

follows:

Gr= AAAA , G'= (A-1) A^ (36a,b)

Gra = ARARAne , (36c)

- 1 \T - 1 \ A

Gra :- (A '), (A '): Ame (36d)

where the components of the shifter tensor and its inverse

are given by (Naghdi, 1963)

(36e, f)

The components of the curvature tensor are defined by

- 1 \ Q

A# = 8 – 6"B' , Xà (A"): = #

BrA = -Ar. NA = N Ara (36g, h)

The following definitions and relationships are needed in

the sequel:

dy = u d6" do , dS = u d'Q , (37a,b)
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A = det(AIA) , G = det (GIJ) , (37c,d)

p = VG/A (37e)

where d) is the volume element and d9 and dS are the

area elements of the midsurface and of a surface 6" # 0,

respectively.

The relative displacement vector ü of any point in the

shell space, referred to the undeformed configuration of

the body, may be represented as

w = u'GI = uró” (38a, b)

Or

I = U"Ar + U*N = UrA" + UmN (38c, d)

where (u,ll') and (Ur, U") are the covariant and con

travariant components of the vector ü in the shell space

and on the midsurface, respectively. The derivative of ü.

with respect to 6’ is given by

üJ = ui, G' = u',G, (38e, f)

where the symbol (), denotes the covariant derivative

with respect to 6°. The covariant derivative with respect

to the surface metric is designated by a stroke, e.g., ( )A.

It should be noted that 6' = 0 and 6* = 0°, since the

system of coordinates is supposed to be convective.

Anholonomic components of tensors on a surface

The vector V given by formulas (6a,b) can also be ex

pressed in terms of the base vectors Ar and N in Q as

W = V"Ar + V*N = VrAT + Wii N (39a, b)

with T = I, II, where (VF, Vr) denote the contravariant

and covariant components of V in Q. Similarly, as it was

done before, the unit base vectors read

N Ar "r A"
T = * - TFF ,

VATF VATT

Am = A" = N (39c – f)

and their reciprocal bases

N' = VATA , Nr = VATAr ,

-III - -

A = Am = N , T = I, II (399 — j)

Expanding the vector V with respect to these bases, one

obtains

W = [V"], Nr + V"N =[Vrly. N* + VIN (40a,b)

-T - - -

= [Vr]." N + VIN = [V"]... Nr. 4 V"N (40c,d)

where

[V"]... = VATFV" , [W]. = VATV: ,

[V"]... = [V]N. = V"= V

[Vr]N. : #: *

(40e - i)

[Vr *

-

--- -

[V] = [V"]... = V = V" (40j — n)

are the physical or anholonomic components of V on the

surface Q relative to the bases N = {N}. N* = {N}.

N={N'}, and N = {N,}, i = r. m.
A second order tensor of single field T on a surface Q

can be defined as linear combinations of tensor products

of the type N, (3) A2, where N, and N. are elements that

belong to one of the bases of the set {N, N*, N, N'}. For

example, the expressions

T =XDIT"]... N, < N, =XDT”A, 8A, (41a, b)

I,J I,J

represent a covariant second order tensor of single field

on the surface Q, where I, J = T, III, B = N & N is a

basis of the considered tensorial space, and the notation
[T/J ] denote the anholonomic components of the tensor

of single field referred to the basis B. Taking into account

the identity (41a, b) and the expressions of N1 and N, as

functions of AI and AJ, respectively, one obtains

[T"lwen = V/Ati VA.J. T.' I, J = T, II

where Am = A" = 1. This formula will be utilized in

the sequel to obtain the anholonomic components of the

stress tensor and also as a starting point to construct a

compatible set of anholonomic components for the shell

equations.

(41c)

Strain-displacement relations

The kinematic equations of a shell are derived here from

the Green-Lagrange strain tensor which can be written

in terms of the displacement gradient components in the

shell space as

1

EIJ = 2 (M1, + l/J:1 + l/M;1 u%) (42a)

This relation, along with

u' = unr = 4rn = Unr + B£ Ua ,

u? = G" unir , uAr = AR for ,

unir u' = bar 4%. , u' = (A"). U# ,

*Ar = UAIr – Bar Um , 4' = U - B' Um ,

urn = A; Un m = Urim – 6"B£ Unn ,

unim u' = (Umm)' , urn u' = Urim U'. ,

um.ru' = Prm Pam , war u' = 4ar U# ,

um r u: = Prm Umm (42b – q)

yield the following expressions for the strain components:

1

ErA = erA + 2 (pril 4am + bar 4%) ,

1

5*rn U# ,

1

Erm = erm + #U: ©or +

-
----" " -



Appl Mech Rev vol 46, no 11 part 2 Nov 1993 Altman and Oliveira: Anholonomic components S99

1

Emu = emm + #U' Un,m

where

- III / res. Q

2erA = prA + PAT – 6" (B: ©na + B' far) ,

2ern = Urm +4'rm – 6"B£ Unm ,

emm = Um," (43a – f)

Introducing the following representation of the dis

placement components across the shell thickness

T all (0) I' m 9 T

U1 (6 ,6 , t) = U 1 (6 , t) + 6 U1 (0 ,t) (44)

into relations (43a – f), one obtains

(0) (1) (2)

EFA = Era +6"Era + (6")''Era (45a)

(?) , on 9 (0)

Erm = Erm + 6" Erm , Emm = Emm (45b, c)

where

(0) (0) 1 / (0) (0) (0) \,

ETA = era +5 © Tm p Am + 4 or 4%

(1) (1) 1 / (0) (1)

ETA = era +5 © Tm 4 Am

(1) (0) Q ' , 9 ''',
+ prim p Am + 4 or p"A + p or p'

(2) 2 1 / (1) (1) (1) (1)

ETA ='''pat: (8. &Am + 4 or 4%

(0) 0) 1 (Cl), (0) (1) (0)

F.-?...}(' 4 or + U m 4 Tim

(1) 1 1 /('), (1) (1) (1)

Erm = 'ret 2 (). 4 or + U m 4 Tm

1 '' '') (1) '.

Emm = en" +5 U” U 0 + UIU (46a – f)

0 1 / (0) (0)

'ra =5 (*. *...) 5

1) 1 ((1) : (1) (0) (0)

( 2 (** *Ar – Bf 4 na – B' far ,& ITA =

(2) 1 (1) (1)

era = -5 (* ©na + B' for *

(0) 1 / (0) (1) (0) (0)

*=}(8.1% , emm = U m ,

1) 1 / (1) (1)

'-- ("-".
*

(0) (0) a 9 (1) (1) a')
q rm = U m,r + BH U n , 4 ru = U m,r + BH U a

(0) (0) (0) (1) (1) (1)

4 FA = U TIA - BrA U. m. , 4 FA = U TIA - BrA Um

(0) (0) (0)

4% = UN – B' Um ,

# - # or 9

Since the elastic potential is invariant under transfor

mation of coordinates, the anholonomic components of

the stresses and strains will be chosen so as to have the

following reciprocal bases N&N and N&N, respectively.

Taking into account formulas (40), and the expressions

which define the anholonomic components of second or

der tensors relative to the bases N. & N and N & N, it

can be written

(n) [(n) (n)

u" = |U"| = V/AFF U" ,

N

brA = [B _ BrA

ra=[Pralges=WT: .

n (n) 1 (n)

''A = Urla = ~H=H= U TIA ,

N&N VATFVAAA

(".

|
tl" A = U |A - U |A |

N&N " AAA

(n) (n)

% TA = | pw
N&N.

(n). |:
%2 A = QP ...A - ...A *

N&N VAAA

(n) _ (n) _": |:q) 1 (n)

'p = 'p = PT T = DIII -ITIII III" I' N VATF q. TIM

(48a – z)

where n = 0, 1. After substituting in these formulas

(n) (n) (n) *

Urla = U ra – Un F'A = (VT£)
,A

(49a, b)
- y: (VI.£) T#A

Q=I
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' ' ' ', "r '.

"w = "A-"Tha = | W:

, A

I '',

–XL-'=rha (49c, d)
n=1 V Ann

(n) (n) (n)

4 TA = U r|A - BrA U m = (VT '')
|A

–Värværx's (49e, f)

' ' ', or 9 '
q)" A = U 1A – B' U m =

A = w w = Pa * * = | W:

|A

_v4AA#5'', (499, h)

(n) (n) (n)

*rn = Umr + B' U n = (8.)
,D

+VATF'''a (49i,j)

where

1

T#A = g” Trae = ;" (Are A + AAer - ArA,e)

(49k, l)

it is obtained

(n) 1 ( (n) )
td. −-- Arr 'uDA TAFF *| VArr ur , A

II (n)

–XD VAnn''m ". (50a)

Q=l

o, A. ( ' ' ', 'T IT ti tl T

tl a =- - - –T 50bA - VA: VATF £v: #A (50b)

,A

(n) 1 ( (n) )
%TA = ->==|[VAff'.D'A z:x: IT u T |A

-VADr VAAA bra ''. (50c)

(n) (".

# = 4r ||—|| – 4: ''', 600
VAAA VATF VAtt

|A

(n) 1 (n) (n)

*r = W: (...) * (50e)

Furthermore, taking into account that the anholonomic

(*) (m) (2) (n) (2) (2)

components of E TA, eTA, Erm, erm, EIII, emm,

for m = 0, 1,2 and n = 0, 1, are given by

(m) # 1 #
6 TA = DA J TA ,

N&N. VATFVAAA

*=[*]...-wr:*N&N. Tr"VAAA *

(n) (n) 1 (n)

e'rm = | Erm : Erm ,I' | , VAT T

0

'?'" = [Emm] = EMI ,

(0) | | (0)

& IIIII = | 6’ IIII | = € IIII

the substitution of the vector and tensor components of

expressions (46) and (47) in terms of their anholonomic

counterparts given by formulas (48) and (51), leads to

(51a – 1)

(o) (0) . 1 ((o) (0) . (o) '

*-**}(2. #An +%ar 2%

€ TA = era +5 %2 III 92 AII

() () , () "h , () %)

(1) (1) #(9 (1)

+ 2 rim $2 Am + p or 2% + p or 2%

(2) (2) : 1 ((1) (1) : (1) "'

*-*}(9.9."
0) 0) 1 /('), (0 1) (0

'rs ='''s # (). 'art'...'"
2

(). 'art's "..)

*=''n'' : ().'a's3) (52a – f)

'ra 2: # (%. +%) 5

(1) 1 / (1) (1) (0) (0)

era = 5 (9.4 #Ar – bf #aa – 5% %)

(2) 1 (1) (1)

era = -5 (# #aa + b% %) *

1 /(0) (1) (0) (1)

*=#(9.4%) , & IIIM = ti II
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(1) 1 /(1) (1)

& ITI = 2 (9--" £)

(n) (n)

where '''TA, p"A, and

(50c - e), respectively.

(53a – f)

(n)

%rm are defined by formulas

Equations of motion and boundary conditions

The equations of motion and the boundary conditions

will be obtained by a variational approach. Consider the

dynamic version of the principle of virtual displacements

written in the form -

T • -

0-f (-| U su, avt/s"se, dy0 V V

–/1 sway-/ s' su a- " ", as) dt

y A. S

(54)

where p is the mass density, UI is the time derivative of

the displacement components U1, S'' are the components

of the second Piola-Kirshhoff stress tensor, f* are the

body forces per unit volume of the undeformed body, S'

and P' are the components of the specified stress vectors,

for the undeformed body: S' act on the lateral surface

and P' on the upper and lower surfaces, St and ST. In

order to derive the equations of motion it will be made

use of the linear displacement representation (44) and of

the following definitions:

IJ h/2

R£) = J
-h/2

/4 SIJ (9")" d0" *

(n) h/2 n

Fm =/ p fin (9") d6" 5

-h/2

h/2
(n)

*=[*)' , "I',

si n sr ' , an ''

S su, A=X / St.) 5U r + St.) 5U m| dr

A. n:0 IT,

- h/2 - n

S.) :- J*" uà San va (9")" do" ,

- h/2 .

S', <- J." SA" v. (g")" d?" (55a – h)

where n = 0,1 and S" are the first Piola-Kirchhoff stress

tensor components which have been defined by formula

(25a). Thus, expression (54) takes the form

T (0) (1) (0)

0=/ / II U" + 12 U' | 6U I

0 Q

(0) (i) \ (1)

+ | I2 U' + 12 U' | 6U 1

(0) (0) (1) (0) (1)

+ [BRT"A 5Ur + [BRT"A + Q"] 5Ur

(0). (0) (1) (0) (1)

-BrA TTA 6U m + [-BrA TTA +g" 6U II

(0). (0) (1). (1)

+Tra 6 UTA +Tra 6 UTA

(0) . (0) (1)... (1)

+TIA 6U m,A + TIA 6U m,A

(0) (0) (1). (1)

–F* 6 U 1 – F* 6U I do dt

T st ' , 81 %

- || || Sto) 5U 1 + St.) 5U 1|df dt

T (0) (0) (1). (1)

-/ / P* 6U 1 + P* 6U 1 dø dt (56)

0 Q

where

'A '. QA '' A. T A '. IIIA

(1) (0) (1) (1)

T* = L# R$ 4 to R' – B, R$ + Ur R:

(0) (0) (1) (1)

T* = 35 R' +4' R' + ( + #) #

#. '. QA '' A # IIIA

's '. QIII ''' III T III '' IIII

Q" = L# R' + 4, R: - B, R: + Ur R:

£n '. QIII '' III # III

Q" = * R'+* R£4 [1+U") R'

(0) (0)

L" n = 65+ +" a ,

(n) (n) %

© Tm = b mT = @"r , n = 0, 1 (57a - i)

Finally, performing the classical operations, the equations

of motion are obtained as follows:

(0) (0) (0) (1) (0), (0)

TrAIA – BRT"A = I, Jrt I, ür – Fr–Pr

(0) (0) (0) (1) (0) (0)

T"AA+ BEA TrA = 1, 5* + 1, 5* – F – Pn

(1) (1) (0) (0) (1), (1), (1)

Trai. - BR TIA — Qrn > I2 U" + 13 jT – FF – PF
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Proposition 1 For every F in Lint we have

(i) prf = cFrp

(ii) %2. F = 2cFT XXrF-1

where rF : Lint – Lin" is given by re(G) = GF.

Proof. From (i), whose proof is left to the reader, it

follows that p = cFT prF-1. By taking differentials, one

obtains

92.1 - (cFT).1%.1(TF-1). F

. Then (ii) follows by observing that (cFT).1 = cFT,

(rF-1). F = rR-1 and that

9.1(N) = 1" N + N" 1 = N + N" = 2×(N)

Corollary 2 p is a submersion.

Proof. It follows from (ii), since rR-1 is a diffeomor

fism, and XD and cFT are surjective.

INTERNAL CONSTRAINTS

Definition 3 (a) A constraint manifold (Podio

Guidugli and Vianello, 1989) is a connected regular sub

manifold M of Lint such that

(i) RotM C M (ii) 1 e M

(b) A reduced constraint manifold is a connected regu

lar submanifold C of Psym such that 1 € C.

Lemma 4 If M is Cl constraint in oln

ifold then M n Psym is a reduced constraint manifold,

whose dimension is dim WA - 3.

Proof. Clearly 1 e M n Psym.Now if we can prove that

(1)

for every U in M n Psym, then it will follow that the

sum (Rotu ) -- Sym is direct, and since its dimension

is 3+6=9, it must coincide with Lin.

Since

(Rotu )w n Sym = {0}

(Rotu), c Mu, (Psym), = Sym, (Lin"), = Lin,

we have - - -

AAU + (Psym)) = (Lint),

Accordingly, WA and Psym are transversal in each U

of their intersection, so that (Varadarajan, 1974) such

intersection is a regular submanifold of Lin". -

To prove (1), we observe that an element of (Rot),

is of the form WU, with W in Skw. If WU is in Sym,

then –WU = UW, so that if e is an eigenvector of U

corresponding to the eingenvalue A, one obtains

–AW(e) = U(W(e))

would

. Since

so that W(e) must be zero, othe

be eigenvalues of the positive de'

there is an ortonormal basis formed by eigenvectors of U,

it follows that W = 0, so that (1) is proved.

The statement about the dimension follows from

dim M + dim Psym

= dim (M n Psym) + dim Lint

Finally, since M n Psym = u(M), M is connected and

u continuous, it follows that M O Psym is connected.

Proposition 5 The mapping

AA – p(M)

is a bijection between the set of constraint manifolds and

the set of reduced constraint manifolds, its inverse being

given by

C - p"(C)

Forthermore, dim p(M) = dim M – 3

Proof. Since M contains 1, and

‘p(M) = r" (M n Psym) (2)

where r : Psym — Psym is the diffeomorphism given by

r(C)= C#, we can conclude by Lemma 4 that p(M) is

a reduced constraint manifold.

On the other hand, if C is a reduced constraint man

ifold then p"(C) is a regular submanifold of Lint for,

according to Corollary 2, p is a submersion.The relation

2"(c) = U 2"(C) = U Rotc.:
CeC CeC

and the fact that C is connected allows us to conclude

that p"(C) is connected. The same relation shows that

condition(i) of Definition 3 is satisfied. Clearly condition

(ii) is also satisfied, so that p"(C) is a constraint mani

fold.

Since p is surjective we have p'(p(C)) = C, and from

(2)

p"(p(M)) = p"(r"(AA n Psym))

= u"(AA n Psym) = M

The statement about dimension follows from Lemma 4

and from (2).

CONFIGURATION INDEPENDENT

CONSTRAINT MANIFOLDS

In (Podio-Guidugli and Vianello, 1989) it is proved that

in order to a constraint manifold be independent of the

(local) configuration at a body point it is necessary and

sufficient that it be a subgroup of Lint. In this section

we determine such constraint manifolds.

We shall need the following result, proved in (Podio

Guidugli, 1979), for which we give a new proof.

Proposition 6 If W is a proper vector subspace of Sym

invariant by cF for all R in Rot, then W=Dev or W=Sph.
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Proof (a) We claim that there is no proper vector sub

space of Dev invariant under cR for all R in Rot.

By a standard result of Group Representation The

ory (Varadarajan, 1974), this will be proved if we can

show that a linear operator T of Dev that commutes with

cRDev for all R in Rot must be a multiple of the identity.

To see this, extend T to a linear operator T of Sym by

imposing it to be the identity in Sph. It is easy to see

that T commutes with cF for all R in Rot, that is, T is

isotropic, so it is of the form (Gurtin, 1981)

T(A) = a A + 6trA 1

Hence T(A) = a-A for all A in Dev.

(b) Since cF is an orthogonal operator of Sym, the

fact that W is invariant under cR implies that the same

occurs with W* . Clearly W n Dev and W* n Dev

are invariant under cR. But we must have WO Dev #

{0} or W* n Dev # {0} (otherwise dimW = 1 and

dimW* < 1, which is impossible). In the former case

we have by part (a) that WO Dev = Dev, so that WD

Dev. Since dimDev = 5 and W is a proper subspace

of Sym, we must have W = Dev. The other case is

treated similarly, to conclude that W* = Dev, that is,

W = Sph.

Lemma 7 If M is a constraint manifold then

(i) Skw F C MF, for every F in M.

(ii) plAA is a submersion.

Proof (i) For W in Skw choose a curve a(t) in Rot such

that a(0) = 1, d(0) = W. Then the curve a(t)F is in M,

by Definition 3 (a)(i), passes by F at t=0, and has WF

as tangent vector at this point, so that WF is in M.F.

(ii) By Proposition 1 (ii) we have ker p.F = Skw F, so

that by part (i) ker p.F is contained in MF. Hence the

kernels of p.F and (pl.A.A).F coincide. Using this we have

dim AA dim ker(p|AA). F

dim (ala).e(AAF)

= 3 + dim p.F(MF)

+

so that, in view of Proposition 5, we have

dim e.F(AAF) = dim M – 3 = dim p(M).

Theorem 8 Let M be a constraint manifold that is a

subgroup of Lint. Then M is Rot, R. Rot, Unim, or

Lint.

Proof. Since M is a regular submanifold of Lint as

well as a subgroup, it is a Lie subgroup of Lin". Put

C = p(M). Then using Proposition 1, we have, for R in

Rot,

cR(C) = p rRT (M) = p(M) = C

where we have used the fact that Rot is contained in the

group M.

From this relation it follows that for every R in Rot,

cR(C1) = C1 (3)

Case 1 : C1 is a trivial vector subespace of Sym.

If C1 = 0 we have C = {1}, and M = p"{1} =

Rot. If C1 = Sym then C is an open submanifold of

Psym, so that M = p"(C) is an open submanifold of

Lin". This group is generated by any neighbourhood of

1 (Varadarajan, 1974), in particular by M. Since M is

a group, we have M = Lin".

Case 2: C1 is a non-trivial vector subspace of Sym.

By (3) and Proposition 6 we must have C1 equal to

Dev or Sph. Notice that

2.1(M1) <- C1, $2.1 (H) J H + H" (4)

for every H. in M1,the first equality being granted by

Lemma 7 (ii).

Now if C1 = Dev we must have by (4), that H+H" be

longs to Dev for every H in M1, so tr H = 0. Hence M1

is contained in the Lie algebra of the Lie group Unim.

Since both are of dimension 8 (dim M = dim C +3),

they must coincide, so that M must be Unim.

Finally, if C1 = Sph, we must have by (4) that H +

H" = a1 for every H in M1, where the scalar a depends

on H. Noting that

Oy Cy

H = –1 + (H – –1

2 + ( 2 )

and that

*1\T – I, T – “.(H 51) – H. 51

Cy Oy

- o1–H–51 = -(H–51)

we see that M1 is contained in R1 + Skw. Since both

are of dimension 4, they must coincide, so WA must equal

the corresponding Lie group of the Lie algebra R1+Skw,

namely M = R. Rot

REACTION SPACE

Definition 9 (Podio-Guidugli, 1990) The reaction space

at a point F of a constraint manifold M is the vector

space -

T(F) = (AAF F-1)*

Clearly the dimension of R(F) is 9 – dimM.

Lemma 10 (i) For any subset C of Lin we have

E+ n Sym = (X(C))+.

(ii) For any subset W of Sym and any F in Lin we have

(FMFT)+ = F-TA + F-1

Proof (i) It suffices to observe that for N in Sym and

A in Lin the equality N : A = 0 is equivalent to N :

X(A) = 0.

(ii) clearly FNF" is contained in Sym. Since

X : FN FT = FT X F : N

we see that a symmetric X is in (FMF")* if and only

if F"X F is in M*', that is, if and only if X is in

F-TA-1, F-1.
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extreme caution should be taken when the finite-element

technique is introduced into the formulation. The usual

hypothesis that the displacement field within a finite

element is given by a linear combination of nodal dis

placements may be inadequate for the nonlinear analysis.

Hence, at the Solid Mechanics level it is necessary that

the underlying structural theory be consistently nonlinear

and further that at the structural discretization level, via

the finite-element technique, nonlinearities are not subtly

lost within the matrix equations of motion.

The kinetic energy is:

=#| | Redo2 Ja

where Q is the region occupied by the undeformed system

and p the specific mass. The velocity vector is:

= 6R 6R

R=#2,#

and consequently:

l - - - 1

T – 5A"Q. Q. + B" Q, + 5C

with:

6R 6R
A” – - d'Q;

Q 6Q, 5Q,”

, - I 0R 6R o.
B" – a 69, 6t pd{};

6R 6R
C = Q 61 - #pdo

Recasting Lagrange's equations, one gets:

rs A 6A". 10A" - - 6A". -

a"d, "['-#|o.o. 1 #4. "

#-#4,#-# –#4 N'
6Q, 69, “’ 6t 2 69r ôQ,

A special though still rather general class of holonomic

constraints is now considered. It is supposed that there

exists a reference frame Yy'y°y”, called “relative”, with

respect to which the system constraints are scleronomic.

Support excitations are defined by rigid-body motion of

the relative frame Yy'y”y” with respect to an inertial

frame X******. Calling R the position vector in the

inertial frame, f the position vector in the relative frame

and S the vector (Y-X), one writes:

R = F+S, S = S'ê; F= a, y'é,

where the matrix [a;] defines the relative frame rotation

with respect to the inertial frame. It can be explicitly

given in terms of the Euler angles (Mazzilli, 1988). For a

planar problem, the matrix [a;] can be written in terms

of the support rotation b(t):

[a;]= cos @ – sin 4

* sin p cos p

It was already observed that it is a feature of nonlin

ear structural theories to render nonlinear functions for

the coordinates y' in the variables Q1, Q2, ..., Qn. Ad

ditionally, support excitations are defined by rotations

through the matrix [a;(t) or by translations through

S*(t). Hence:

R = [a;(t)y'(Q1, Q2,..., Q.) + S'(t)]é,

Back into expressions for A", B' e C, and taking these

into Lagrange's equations, one arrives at:

F’”6,6}, +

(* - !") &ng,9. 4

(F" – F")aja',640, 4

H”a $46, +

G”"a;ā',6" = -U, + N'

Notation (), indicates partial differentiation with re

spect to Qr, 6m being the Kronecker's symbol and:

- öy 6y”
rs 7m - -

F .##".

- 6y
Gr” – | __2,.” dG};

Q 69, y p

- ôy
H” – d'Q

Q 69, p

All terms dependent of F", G" e H" in the above

equations of motion are inertial forces, there included the

Coriolis forces:

(F" – F")aja',6,10,

and the centrifugal forces:

G?"a;ā#6,

Since F***", Gri” e H” may be functions of the general

ized coordinates, it is clear that geometrical nonlinearities

can in fact generate nonlinear inertial forces. The elastic

force vector Ur, on its turn, may also include nonlinear

terms caused by geometrical nonlinearities, as it is well

known even in Statics. It is supposed that the generalized

force vector always include viscous damping:

p"Q,

The global nonlinear equations of motion can now

be written in the compact form:

N" = P” –
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M”Q, + D’’Q, +U, = f'

where:

M” – Fr”6,

D” – H” + (Freim - F")aja',6,

("-##!").o.

£" = P” – G”"a;&#6, - H”a $6.

It should be observed that the introduction of the stiffness

matrix in the global equation of motion is, in some ways,

arbitrary. In fact, what naturally appears there is the

elastic force vector U.r. Obviously, one could think of the

secant stiffness matrix K$', as:

U, = K, Q,

Nevertheless, several other matrices could be thought of,

as the linear theory stiffness matrix, for example. Once a

particular stiffness matrix IV" has been chosen, one can

add to both sides of the global equation of motion the

term K"Q,. Introducing now the definition:

AF = K”Q, -U,

one finally gets for the global equations of motion:

M”Q, + D"Q, + IY" Q, = F" + Af"

In other words, the arbitrary choice of the stiffness matrix

implies in adding to the load vector F" a correcting term.

It should be observed that, even in Statics, the global

equilibrium equation:

U. = P'

can well be written in the form:

K”Q, = P + A.F.”

and, in numerical nonlinear analysis, this latter suggests

an iterative procedure equivalent to that of the modified

Newton-Raphson method. In fact, choosing a particu

lar matrix K” and supposing in the first iteration that

A3" = 0, one can obtain Q, from the equilibrium equa

tion. The new value for AF" would then come after its

definition and so forth.

In a great number of cases it may be more convenient

to work with the incremental equations of motion:

M#66, + D''' \, = 67P"

where:

M#' : Mr.”

D# = u + (F" – F")aja',6,

+ (F'" + F#" – F#").5,0.

K# = Ur, +G'?"a;ā',6" + H' a'S*6 =

+ £9.4 ("-###"), o.o.

+ (F.” – F")a'a',6,43, 4 u'Q.

6P = 6P" – G""(6a;&#, +a;6ā')6.

– H”(6a;S* +a;6S*)6.

– (F" – F")(6aja', +a;6ā'),

A PLANAR STRUT FINITE ELEMENT

As an application example of the previous section general

formulation, we consider now the 2-D strut finite element

according to the Bernoulli-Euler theory (Mazzilli, 1990).

From Figs 1a and 1b the following relations can be de

rived for the displacements u (local system y' direction)

and v (local system y” direction) of the elemental mass

dm situated in a cross section defined by the strut axis

coordinate x and at a distance y from the cross section

centroid:

u = u-ysin a

= 0 + y(cos o – 1)

where u and ü are the u and v displacements of a material

point on the strut axis and o is the cross-section rotation,

for which rigorously:

f

sin a = w

T \

1 + u’

COS or - -

X

t;"

t J.an or 1 + ti'

Notation ()' denotes differentiation with respect to x.

The axis stretching is:

X = V/(1 + w()2 + (V)2

Observe that the “local system” Yy'y” is defined by a

rotation 6, independent of time, with respect to the rel

ative frame Yy'y”. In what follows here, the elemental
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Fig 2

matrices and vectors will be defined for the local system.

The constraint equations will then be:

1

= y + x + i – ysin a

:- # 4 U + y cos a

y

2

y

The following approximations will be assumed from now

On:

Fig 1a

sin a ~ a ~ tan a ~ 5'

cos a 2 1 – #6').

The Bernoulli-Euler strut does not allow for shear strain

and the longitudinal strain & can be defined as:

e = & – yo' 2 & – yü"

- - - / 1,–1,2
& = A – 1 < ū +5(t)

To formulate the finite element it is necessary to introduce

the discretization, that is, the displacement field within

the element should be defined in terms of the nodal dis

placements, interpreted as generalized coordinates (Q1 to

Q6) and indicated in Fig 2.

As in the standard applications of the finite-element

method, one can think of stating that the transversal dis

placements 5 result from a linear combination of the

nodal displacements:

5 = Q,W, , sum from 1 to 6, where :

W1(x) = W4 = 0

W2(x) = 1 –# +2}:

*==-2'- **

Fig 1b £ £2

W5(x) =# - 2:

W6(x) = _* + z"

£ £2
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Nevertheless, if the longitudinal displacements u are also

supposed to result from a linear combination of the

nodal displacements, important geometrical nonlineari

ties will be lost. Instead, we shall follow here the simple

hypothesis proposed by Souza Lima and Venancio Filho

(1982) for Statics, that is, the constancy of normal forces

N inside the element. It is interesting to remark that an

equivalent hypothesis was recently proposed by Salami

and Morley (1992), still in Statics.

d

N = # / as& Jo

EA

£
ü(£) – u(0) + :/*

= #|o-o,+$2,000.

where EA is the axial stiffness and:

aij(x) =/ W(z)W,(z)d:

Therefore:

- /

tl -

(Q.-Q0+ $99,200-$20,33,#

and, after integration in x:

u = Q1+ |#9. – Q1) + #38,200 -:29,296)

Or:

* l

Q1 (l - #) + Q4 (#) +59.0, #a,() - ai;(x)

It should be noted that the field of longitudinal displace

ments u has not resulted a linear function of the general

ized coordinates!

The constraint equations can now be written in compact

form as:

y <- *(x, Q1, Q2, ..., Q6) + yó'(r, Qı, Q2, ..., Q6)

where:

u

- 1

* = y + r + Q,4,(r) + 50,9,8,(:)

6 = –Q, W,

** = yj + Q, W,

1 f f

6* = 1 – $9.9, W.W.

In the above equations, pi(x), i = 1,2,..., 6, are the stan

dard interpolation functions of the linear analysis:

41(x) -

q)

42(z) = 43(z) = 45(x) = 46(x) = 0

and t

Aij(x) = |#29(e) - ag(s)

One is now ready to write in explicit form the elemental

matrices and vectors used in the global equations of

motion. In the local system, they are written as:

d d

M” = p.A/ (7'-3' + 7.7%)dz +pI/ (6'6' +6.6%)dr
0 0

d

Dr. ·- H” - 2¢ */ (7.7%-*.
0

- * / 1 1 - 1 1 -.1 1-1 - 1
+ ona/ 37 ri", + 7.7%i - 57.r7, dr

0 2 2

d

+ on I 6.6%dr
0

- EA 1

U.r -- &Q;4 + #2009, [84. + Qkakr(8)]

+

d

Elo. f*@*@*0

f* = K"Q, -U, +P*

d

+ 6°pA/ (7'-3' + 7.7°)dz
0

- d

+ * / (6.6' 4-6.6°)dz
0

- d

+ dipA/ (7.7°–7.7%)dz
0

d

+ * / (6'8"–5'8")dz
0

- d d

– paS' |--| ***/*
0 0

d d

– paS” |-"/ ****/*

In the above equations b(t) stands for the support ro

tation characterized by the imposed angle between the

relative Yy" axis and the inertial Xz' axis.

The matrices and vectors of the incremental formu

lation are now explicitly written for the local system:

d rt

M# = p.A| (7'-3' + 7.5%)dz +pI/ (6.6, 46.6%)dr
0 0

- d

D# = u” – 2d, |a/ (7.7% –*

d d

+ 2 |a| 7' 5'.,dx + pl/* Q,

0 0
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K# =

6p" =

= #4 + 2.02 × 4 o'er (0.
EA , . 1

+ = |* + #68. Cars

d

+ EI/ W'(x)W'(z)dz

0

U.r. + a'Q,

d

6°pA| (7',3' + 7.5' + 7.7%)dz

t

d"pI/ (6.6, 4-6.6° 46.6%)dr
0

t

©pA | (7',” + 7.5% – 7.5')dz
0

t

©pI/ (6.6% – 6.6 – 6.6%)dz
0

- f d

pAS' |--| ***/ 7%, dr
0 0

- d d

pAS* -*/ ****/ 3%, dr
0 0

- t

onal (0.7% + 7.5')dr

d

Gol/(4.84%)*
t t - -

|al*+m /* Q,Q,
0 0

- f -

24 |p.A / (0.5% - 7.7%)dr|Q,
0

6Pr

- f -

2@pA /6:3'3')" 6¢

O

• d •

2¢pI |/ (6'6"* 6¢

0

t -

2pA / (7.7% – 7.5%)dr|6%
0

d -

2p 1 / (6.6 – 6.6%)dr|6%
0

t -

pA / (7.7° – 7.5')dr|6%
0

d -

pI /*-*)a. 64,

0

t d

pAS' |- sin*/ 7' dr + COS*/* 64)

0 0

d d

- pAŠ” |-*/ 7'dz -*/* 6%

0 0

d d -

pA |- sin*/ 7'dz + COS*/* 652

0 0

d d -

pA |- COS*/ 7'dz – sin*/* 6S1

0 0

Note that all matrices and vectors of both the global

and the incremental equations of motion can be explicitly

given in terms of the generalized coordinates, by consid

ering the expressions for Y', y”, 6 and 6° previously

written and the derivatives:

7. = @r + Qi/%r 7. : £r,

3. = Wr 7", = 0

6' = -\' 6', = 0

6. = –Q, W, W.

The authors implemented at the Computational Me

chanics Laboratory of Escola Politécnica da Universidade

de São Paulo, the ANDROS system of FEM programs to

perform nonlinear dynamical analysis of structures, based

upon the global formulation (Mazzilli and Brasil, 1992).

It has been successfully used in several nonlinear analy

ses reported in a number of papers (Brasil and Mazzilli,

1991), (Brasil and Mazzilli, 1992).

6, = –W.W.

INFLUENCE OF AXIAL FORCES ON UN

DAMPED VIBRATION FREQUENCIES OF

PLANAR FRAMED STRUCTURES

If a considerable level of static load is applied to pla

nar framed structures, resulting in high axial forces in

some members, their natural frequencies of undamped

free vibration may change considerably. The undamped

equation of motion for those (small) vibrations about the

deformed configuration is:

m# 64, + k? 6q, = 0

where k?' stands for the coefficients of the tangent stiff

ness matrix for that level of static loading. The coeffi

cients of the tangent mass matriz m?' are those of m”

and can usually be made equal to those of the linear the

ory mass matrix. These are the two matrices one should

use in the eigenvalue problem solution to find the natural

frequencies of free undamped vibrations for the statically

loaded deformed structure.

One of the programs included in the ANDROS sys

tem performs a static nonlinear analysis of planar framed

structures, via the Modified Newton-Raphson algorithm,

to obtain the tangent stiffness matrix at a certain level

of loading. The system also features a standard eigenval

ues routine, based on Holseholder-QL algorithm, to give

the frequencies of undamped free vibrations about the

statically loaded deformed configuration of the structure.
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Fig 5

variant manifolds and their tangencies are required. Non

linear parametric studies for the associated few-degree-of

freedom system would follow, supplying a valuable quali

tative knowledge of alternative competing regimes. These

studies would them be used to define the quantitative

analysis to be performed in the original large-size sys

tem via the finite-element method. An effort in this way

was made by Mazzilli and Brasil (1993). As a matter

of fact, such a research line is already being pursued at

LMC – Computational Mechanics Laboratory – of Escola

Politécnica, University of São Paulo. At this moment, a

general consistent formulation of analytical dynamics -

which is part of the subject of this paper – is already avail

able. Based upon it the ANDROS finite-element program

was developed (Mazzilli and Brasil, 1992). ANDROS was

capable of capturing in large systems the expected non

linear phenomena after the study of associated simple

systems.

Initial work is already under way on the condensation

of multiple into few-degree-of-freedom systems, to which

perturbation analyses can be applied in automatic fash

ion with the help of symbolic computation. So far this

has been done following very much the intuitive engineer

ing reasoning and considerable help is expected from the

applied mathematicians in the more rigorous search of

the invariant manifolds.
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(g) the issue of conservative external moments is com

pletely elucidated;

(h) an exact expression for the Fréchet derivative of the

weak form of equilibrium is obtained in closed form,

which is always symmetric for conservative loadings,

even far from an equilibrium state;

(i) objectivity requirements are exactly observed;

(j) conservation laws can be exactly satisfied;

(k) weak formulations of mixed type are easily obtained,

that can be readily applied to formulation of reliable

finite elements.

The developed rod model can be easily implemented

in a nonlinear finite element code. Some simple numer

ical examples are shown at the end of the work as an

illustration of the model usefulness.

Along the text, intensive use of vector and tensor cal

culus is made. Vectors are denoted by small case bold let

ters while tensors and matrices are denoted by bold cap

ital letters. Summation convention over repeated Greek

subscripts from 1 to 2 is adopted.

KINEMATICS

As reference configuration a straight rod with length f is

considered, as shown in figure 1. The domain occupied

by it is denoted by B. If needed, initial curved config

urations can be mapped from B. The boundary of B

is here identified by S = SL U.S.E, where SL represents

the lateral surface of the rod whereas SE denotes its end

surfaces.

A local orthogonal vector system {e1, e2, e3}, with

e3 along the rod axis, is placed as shown in figure 1.

Thus, a cross section lies on the plane defined by the

vectors et and e3. Material points have their position in

B given by the vector

& = G + a”, (1)

where G describes the points on the rod axis while a”

describes the relative position of points on a cross section

with respect to the axis. Local Cartesian coordinates are

defined in the reference configuration by

za = a' . e. and r3 = & e3, (2)

where the dot indicates the scalar product of two vectors.

Thus, a can be represented by

a' = rae', . (3)

The third local Cartesian coordinate is chosen here

as the primary parameter and replaced by

Q = x3 . (4)

It is assumed that Q lies in the interval (0, ), i.e. Q = 0

at one end of the rod and Q = { at the other end. Cross

sections are identified by A whereas their contours are

denoted by C.

During the rod motion, the position of the material

points can be described by the mapping

a = £(&, t), (5)

where t is the time. z can be decomposed as follows

2 = z + d , (6)

where

z = *(Q,t) (7)

describes the motion of points on the rod axis whilst a

is a vector field indicated by

a = a(&, t), (8)

that describes the relative motion of the remaining points

on a cross section.

The basic kinematic assumption states that cross

sections remain plane and undistorted during the motion.

Hence, a is given by

a = Qa', (8)

where -

Q = Q(Q,t) (10)

is a rotation, i.e. an orthogonal tensor with positive de

terminant. A local orthogonal system attached to the

cross sections, as displayed in the figure 1, can be de

fined by

e = Qe: , (i = 1,2,3). (11)

e3 remains normal to the cross section during the rod

motion while for a the following representation holds

(11)

i.e. a has constant components on the moving local basis

{e1, e2, e3} attached to the cross sections.

O = 2o'eo ,

FIG 1. Rod de:ormatio
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The components of the axial displacement vector

tu - 2 - Ç * (12)

are regarded as the cross section translational degrees of

freedom. On the other hand, the rotation tensor Q can

be expressed by the Euler-Rodrigues formula

Q = I + ae + be’, (13)

where I is the identity tensor and 69 is a skew-symmetric

tensor, whose axial vector is denoted by 6 and

1 sen”(6/2)
6 and b = 2 (6/2)? (14)

are real continuous functions of 6.6 is the rotation angle

given by the norm of 6, as follows

6 = ||6||. (15)

We register here that 6 = 6e, where e is the unit vector

along the rotation axis with positive sense given by the

right-hand rule. The components of 6 are regarded as

the cross section rotational degrees of freedom.

The deformation gradient

F = F(&, t) (16)

can be computed through

62 r r

=#2 * **** (17)

where the notation ()' stands for the differentiation with

respect to Q and the notation & stands for the tensor

product. After some manipulation, the deformation gra

dient can be expressed by

F = Q + (n + r. x a) & e3, (18)

where

n = z' – e3 and

19

* = T6' (19)

can be regarded as generalized strains. In (19) the tensor

I = I + b6+ co” (20)

has been introduced, where b is already defined in (14)

and c is the continuous function of 6 below

1 – a

c = -7- (21)

We remark that k is the axial ed from the

skew-symmetric tensor

K. – (22)

where the notation ()" indicates the transposition of a

tensor or matrix. Note that k is not the curvature of the

rod axis.

The generalized strains n and & are affected by su

perposed rigid body motions. Hence, they are not con

venient for constitutive description. The rotated strains

n = n (Ç, t) and r" = k" (Q,t)

defined by

(23)

r T T -/ r

- :- z' – e’. and
77 '" £ 3 (24)

r" = Q* r = I* 6'

are not affected by superposed rigid body motions. In

(24)2 the property

QTI = TT (25)

has been used. The deformation gradient can be ex

pressed, with help from (24), by

F = Q [I + (n + x' x a") & es]. (26)

Indicating the differentiation with respect to time

by a superposed dot, as usual, the velocity of a material

point is given by

a = u + w x a, (27)

where x stands for the vector product and w is the cross

section spin vector, which is the axial vector of

* = QQ". (28)

Similarly to (19)2, w can be computed through

w = I'6. (29)

By time differentiation of (26), the following expres

sion for the velocity gradient can be obtained

F = mF + Q [(n + k" x a") & es], (30)

where

n' = Q" (ü' + 2 x w) and

• r T. r (31)
r:' = Q* w

are generalized strain rates. Alternative expressions for

(31) are obtained by insertion of (29) in (31)

n = Q" [u' + z' x (T6)]
- - 2

* = Q"(I'6+ T6') (32)

In (32)2 one has, by differentiation of (20) with respect

to Q, the tensor

I" = bo'+ c(60' + 6'6)+

+ d(6.6’)0 + e(6.6')6°, (33)
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where

a -2b b - 3c

d=== and e = 62 (34)

are continuous real functions of 6.

The cross section displacement vector

d = d(Q,t) (35)

given by

td

a=[:] (36)

is now introduced. The cross section strain vector

e - £(d) (37)

given by

C = [...] - (38)

can also be introduced. The time differentiation of (38)

leads to

* = B.A.d, (39)

where A is the differential operator

I# o
A = | O I, (40)

o I#

and B is the matrix given by

_ [QT O I Z'I' O

B-[% or||o r r| (41)

O and Z’, that appear in (41), are the null tensor and

the skew-symmetric tensor whose axial vector is

(42)z' = e3+ u'.

KINETICS

Introducing the notation : for the scalar product of two

tensors, the internal power is given by

d

*- / J. P. Faak,0 J.A

P = P(&,t)

(43)

where

(44)

is the non-symmetric Piola stress tensor. P can be ex

pressed by

P = to & e... + r & e3. (45)

Since the cross sections remain plane and undistorted, T

is also the stress vector acting on them, i.e.

(46)T = Te2,

where T is the Cauchy stress tensor. Hence, the force

and moment resultants on a cross section

n = n(Q,t) and m = m(Q,t) (47)

can be defined by

* = / TdA and

A.

(48)

m= | a x raa.A.

The resultants n and m are affected by superposed

rigid body motions and are, for this sake, not convenient

for constitutive description. On the other hand, the ro

tated vectors

n = n (Ç, t) and m = m (Q,t) (49)

defined by

n' = Q'n and m = Q'm (50)

remain invariant under superposed rigid body motions.

If one introduces the rotated stress vector r" given by

(51)

the rotated cross section resultants can also be defined

by

T = QTT,

n = | "da and

A. (52)

m = | c. x r" dA.

A.

At this point we recall that a”, n', k", n", m" and

t" have the same components on {e1, e2, e3} as a, n, k,

n, m and r on {e1, e2, e3}.

Introducing (30) and (45) in P : F and considering

that PF" = det(F)T is symmetric and for this reason

PF": {2 = O, from (43) one arrives at

d

Pint = / (n' n + m” . k") d4. (53)

0

Defining the cross section vector of stress resultants

by

|:
or = r *

77t

(53) can be written as

(54)

d d

*- / • *=/ a B.Add(, (55)

0 0

where use of (39) was made.

Suppose that surface and body loadings are applied

along the rod. The surface loading per unit reference

area is mapped from SL and denoted by t while the body

loading per unit reference volume is mappe R and
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identified by b. The external power along the rod is then

given by

d

2- F. : b. *d -

Pert / [/" sac: /* adA] d4 . (56)

Introducing (27) in (56), one obtains

d

P. = | (a "+" ~)*, (57)0

where

n = n(Q,t) and m = n(Q,t) (58)

are the external force and moment resultants per unit

reference length given by

* = | tact / baa and

C A.

- (59)

m= | exiac: / extaa.C A.

Introducing (29) in (57), one has

d -

P. = | (a "+".6%, (60)0

where

H = H(Q,t), (61)

given by

H = I'Trn * (62)

is the external loading energetically conjugate with 6.

We emphasize that m is not conjugate with 6.

At this point, the following rotated external force

and moment per unit reference length can be introduced

n' = Q" n and m = Q'rn. (63)

Taking account of (25), one has

i = I'm = Trn". (64)

Introducing now the vector of external loading per

unit reference length defined by

in

T = | | | , 65Q |: (65)

the external power can be written as

d -

P. = / ada. (66)0

STATICS

The virtual strains

&n' = &m". &"(() (67)

are obtained by consistent linearization of (24). Their

expressions, similar to (32), are displayed below

&n' = Q"[öu' + 2 x (r.66)] and
68

& = Q" (I'604 r89), (68)

where -

& = &(C) and & = &(C) (69)

are virtual displacements. Hence, with help from

& = &(C) and &d=&i(G), (70)

which are defined similarly to (36) and (38), one has

& = B.Aöd. (71)

(71) is analogous to (39). The internal virtual work can

then be expressed by

d

6Wint = / (n" &n" + m” . &c")dć

0

=/2 -
d

=/ or . BAöd d(,

0

(72)

which are similar to (53) and (55). 6Wint is a functional

of the fields or and öd as indicated below

ôWint = &Wint[g, &d] - (73)

The external virtual work is defined by

d

*= | (a ": " ")d.0 (74)

d

0

which are similar to (60) and (66). 6West is a functional

of the fields q and &d as indicated below

6Wert = &Wint[q, &d] - (75)

The weak form of the equilibrium equations is given

by the virtual work theorem, viz.

&Win' – 8w... = 0, Vöd |&i(0) = &i(t) = 0. (76)

Inserting (72) and (74) in (76) and performing par

tial integration on terms with öu' and (T66)', one ob

tains, after some manipulation,

d

/ [(n' + n). & + I" (m' + 2 x n + m). &] d4 = 0.
0
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Hence, by the standard argument of variational calcu

lus, the following local equilibrium equations in (0, £) are

obtained

n' + n = o and

77

m' + z' x n + m = o, (77)

where o is the null vector. With the aid of (50) and (63),

the equilibrium equations can be replaced by

n" + "c" x n + n’ = o and

78

m" + "c" x m' + (e3 + n’) x n + m = o. (78)

•=||

which is similar to (65), is now introduced. u in (79) is

analogous to (64), i.e.

The vector

(79)

w = I'm = I'm . (80)

(76) is now extended in order to incorporate the virtual

work of the external forces on the rod ends, as follows

(=t

, Vöd,

(=0

6Wint – 6Wert = q* &d (81)

where q* are prescribed values at Q = 0 and Q = £. In

serting (72) and (74) in (81), performing the partial in

tegrations done in (76) and considering (77), one obtains

(=t

= 0.

(=0

(q – q"). &l

Thus the natural boundary conditions of this model are

q = q.” at Q = 0 and Q = 8. (82)

We remark that the natural boundary condition involves

pu at the rod ends and not m.

POTENTIALS

A rod is called elastic if there is a scalar valued function

Vint = Wint(e) (83)

such that 6th

- int

a = −5-. (84)

Wint is called strain energy per unit reference length.

The gradient of or defines an operator D, given by

D = 0.2 = [&n'/?n' #|
3. T | 6m /öm 6m"/6x" (85)

D contains the cross section elastic tangent moduli. Re

garding (84), D is also given by

6°Wint
D = 6e2 (86)

Thus, D is symmetric.

For linear elastic rods D is constant. Hence, for such

rods, one has

Wint = #. . De and or = De . (87)

The functional

Wint = Winsld] (88)

defined by
d

Wint = / thin, o £(d) d. (89)

0

is called internal potential energy or strain energy of the

rod. In (89) the notation o stands for the composition of

two functions, as usual.

The Fréchet derivative of (88) with respect to d

yields
d

6Wint =/ or . BA&ldC. (90)

0

6Wint is a functional of two fields indicated by

6Win = 5%ald, & J. (91)

Note that 6Wint can also be expressed by

6Wint - &Wint |# O “(a) a - (92)

The second Fréchet derivative of (88) with respect

to d can be computed through the Gateaux derivative of

(91) with respect to d. The outcome is a functional of

two fields indicated by

6°Win = 6°Wint[d, & (93)

and given by the following symmetric bilinear form

6°Win = /d [(DBA&l). (BA&l)+

0

+(GAöd). (A&A)] d4,

where D is defined in (86) and G is a symmetric opera

tor which characterizes the geometrical effects from the

internal forces. G can be expressed by

(94)

O Gu's O

G = |G: Gee Ges (95)

O G#, O

With the aid of the skew-symmetric tensors N and M,

whose axial vectors are n and m, and introducing the

following continuous functions of 6

_c – b – 4d d – "

f 62 and g = - (96)
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the elements of G are

Gu's = – NIT,

G99. =}r'Mr

- #(Me + 6M)

- #(em 2.6462 em)

+ #(e’m & 6 + 6 @ 6°m),

Ges =}r"(Z'N + NZ')r

+ #(r"Mr. – r"Mr)

- #(Nz' – Z'N)6

+ 6(NZ" – Z'N)

/ f (97)

+ Me' + e'M]

- #alen x z') & 6 + 6 @ 6(n x z')

+ 6'm & 6 + 6 & ©'m

+ em & 6' +6' & em]

+ #(eem @ 6 + 6 @ 66'm

+ 6'6m & 6 + 6 @ 6'6m

+ 6°m & 6 + 6' & 6°m)

- #(e 6')(&M + M6)

- #f(0.9)(em 264 6 & ©m)

+#(6.60(e’m 2.6462 em).

The external loading q is called conservative if there

is a scalar valued function

wbert = W. (d) (98)

such that 6th

n: - - ert

q = --5T. (99)

Hence, for such loadings, the gradient

ög

6d (100)

is a symmetric operator given by

6°ves:
L = - 6d2 (101)

L characterizes the geometrical effects from the external

loading distributed along the rod.

For example, if t and b dor n the dis

placements, one has

ôq (

L = 3d 7 | (102)

where, with the aid of the skew-symmetric tensors A,

M, T and B, whose axial vectors are a, rn, t and b,

respectively, Lee is given by

Lee =#r"I /.(TA +AT)dC]T

+ }r'I/54 +AB)dA] T

- #(Me + 6M) (103)

- #(em 2.6462 em)

+ #(e’m 2.6462 e”).

If t and b do not depend on the displacements and

comply with

/ (TA +AT)dC+ | (BA + AB)dA = O, (104)
C A.

then the external moment m is called semi-tangential.

Thus, for semi-tangential external moments, one has

Lee = - #(Me+ 6M)

- #(em & 6 + 6 & ©rn) (105)

+ #(e’m 2 6 + 6 @ 6°rn).

Notice that, for semi-tangential moments, Lee does not

depend on the application points of the external forces.

Semi-tangential moments are conservative and comply

with

m = #. x m . (106)

(106) justifies the nomenclature.

An external moment such that

i = I'm = constant (107)

is also conservative and leads to

L96 = O. (108)

However, in practice such a moment is unlikely to occur.

The functional

West = "...[d] (109)

defined by
d

Wert = | West dò. (110)

is called external potential energy of the rod.

The Fréchet derivative of (109) with respect to d

yields
d ôvert

6Wer -

‘T J. 6d
- 6d d6 . (111)

----- =–**
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6West is a functional of two fields indicated by

6West = 5%, Id, &#. (112)

Note that 6West can also be expressed by

- 6 er

6West = -óWert #4. - (113)

The second Fréchet derivative of (109) with respect

to d can be computed through the Gateaux derivative

of (113) with respect to d. The result is the following

symmetric bilinear form

d

6°W.e. = -/ (Löd). 6d d4. (114)

0

The functional

W = W(d] (115)

defined by

W = Wint + Wert (116)

is the potential energy of the rod. In view of (76), (92)

and (113), one concludes that

6V = 0. (117)

Thus, W is stationary at an equilibrium configuration.

On the other hand, regarding (94) and (114), the sec

ond Fréchet derivative of (115) with respect to d is the

following bilinear form

6°W =f [(DBA&l). (BA&l)+

0

+ (GA&l). (A&l)–(Löd). & dć.

(118)

We remark that the bilinear form (118) is always sym

metric, even far from an equilibrium state. (118) is im

portant in numerical procedures like the Newton method

as well as in the stability and bifurcation analysis of

structures.

FINITE ELEMENTS

The application of the finite element method is standard.

In a pure displacement model the displacement field d is

interpolated within an element through

d = Np, (119)

where p is the vector of the element nodal displacements,

which collects the vectors d from the element nodes, and

N is an interpolation matrix. For linear elements with

two nodes N contains linear functions of Ç, while for

quadratic elements with three nodes N contains quadr

atic functions of Ç. In the standard Galerkin projec

tion the virtual displacements are likewise interpolated

through

&d = Nóp. (120)

The vector of the element nodal forces r, that col

lects the vectors q* from the element nodes, is defined,

in agreement with (81), by

d

**=/ [o BA&l - G - 6d. d4 . (121)
0

Introducing (119) and (120) in (121), the resulting pro

jection is

d

7T = / [(AN)" B'o - N'al dó. (122)

0

The element tangent stiffness matrix K is defined, in

harmony with (121) and (118), by

d

(Köd). &l = | [(B" DB + G)(A&A). (A&t)

– (Löd). &!] d4.

Introducing (119) and (120) in (123), the resulting pro

jection is

(123)

d

K = | (ANY("on-can) a.,

– N*LN] d4.

An advantage of the developed formulation is that

all interpolations and operations can be performed in

the global system of the structure. This saves numer

ous transformations from element local systems to the

global system or vice-versa. As a matter of fact, the

transformation of D from the local reference system to

the global system is the only one required in the code.

It is known that exactly integrated displacement fi

nite element models, like the one derived above, present

the phenomenon of shear locking. In the one-dimensional

case this can be circumvented by reduced numerical inte

gration. For example, in the case of linear elements a one

point Gauss scheme can be adopted while for quadratic

elements a two-point Gauss scheme is sufficient. At first

sight this seems a rather numerical trick. However it can

be justified by mixed models, which interpolate simulta

neously displacements, strains and stresses. The varia

tional basis of such models is an extended functional that

includes the fields d, e and or. This three-field functional

H = H(d, e, o] (125)

can be given by

d -

H=/ (wate): " -(a)-.]+...(a)" (120

The Fréchet derivative of (126) with respect to d, e and

or conducts to

d

th=/o Baa-3 and:0

d ôvin'

+/ (#-:) -a.

*/co-owa.

(127)
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(127) is suitable for mixed Galerkin projection or for any

other generalized projection like, for example, the collo

cation method.

NUMERICAL EXAMPLES

Some simple numerical examples are presented in this

section as an illustration for the developed formulation.

A linear elastic rod was assumed. The operator Din (87)

was taken from the geometrically linear theory and its

matrix in the rod local system at reference configuration

1S

GA 0 0 0 0 GS:

GA 0 0 0 GS:

- EA ESI ES2 0
D = £ £, 0 | (128)

sym. EJ22 0

GJ:

In (128), E is the Young modulus, G is the shear modu

lus, A is the cross section area, So are the cross section

static moments defined by

S1 = |*A and s:=-| z1dA, (129)

A A.

Jos are the cross section inertia constants defined by

J11 =/.444,
A

J22 = /.444 and (130)

J12 = –/ z1z2dA,

A

J. is the torsion constant given by

Ji = J. + Asasa, (131)

where Ji is the Saint-Venant torsion constant and so are

the coordinates of the cross section shear center. Finally,

S. are the following constants

S = -As2 and S2 = As1, (131)

The assumed cross sections are described in figure 2 and

are represented by the letters R, T, I, C, L and V. All

cross sections have the same area. The assumed material

Young modulus was E=210,000 MT he assumed

shear modulus was G=800,000 M ples were

computed with linear and qua with at

least five elements. The result with re

spect to element type and nu

+

R T I

53 100

== 6

6 6

- *- || 100 100

| L

C

e: V

e; Dimensions in mm

FIG 2. Cross sections

Example 1

The first example shows the lateral buckling of a can

tilever beam with a concentrated load at the tip. Six

cross sections were considered as displayed in the figure

2. The axis is placed along the cross section centroids

and the load is applied on the axis in the direction of

e', as displayed in the figure 2. Figure 3 shows the com

puted lateral displacements of the point of load applica

tion. Only three cases presented a symmetric stable bi

furcation. Notice the large displacements and rotations.

Rotation angles over 0.30 rd were observed. The Newton

method for solving the nonlinear problem at each load

level could be applied in exact form, showing always its

characteristic quadratic asymptotic rate of convergence.

The load increments were controlled by an automatic al

gorithm. To circumvent bifurcation points a very small

geometric perturbation was introduced, when necessary.

The examples were computed varying the position of the

rod axis but retaining the position of the load. The re

sults remained invariant.

Example 2

The second example, shown in figure 4, is similar to the

first one, but the axis is placed along the cross section

shear centers. The load at the tip is applied on the shear

center of the end cross section. Notice that, this time,

five cross sections have presented a symmetric stable bi

furcation. Even the asymmetric C and V sections pre

sented this time a bifurcation. Note that the T section

has exhibited the highest critical load.
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Example 3

This example shows the lateral buckling of a L-shaped

frame with a concentrated load at the tip. Axis and load

were placed on the shear centers of the cross sections.

Only the frames with double-symmetric sections like the

R and I section presented a stable symmetric bifurcation,

as one can see in figure 5. In the other four cases a

continuous nonlinear behavior was observed.

D R.

20 - + T

o 1

a c

16 - * L

Z v V

:

£

; 12

P

T:

* s -

2400 mm

+-4

4

0 I T T T T T T T

0.4 0.6 0.8 1.0 1.2

Lateral Displacement (m)

FIG 3. Example 1

l6

i
12

8

0.2 0.4 0.6 0.8 1.0 1.2

Lateral Displacement (m)

FIG 4. Example 2

Example 4

This example shows the lateral buckling of a I-beam un

der concentrated and uniformly distributed loading. The

loadings were placed on the top and at the bottom of

beam, as displayed in figure 6.

Example 5

This example, displayed in figure 7, shows the lateral

buckling of a I-beam under different end moments. The

first two cases correspond to quasi-tangential moments

and the third case corresponds to a semi-tangential mo

ment. The critical loads for the quasi-tangential mo

ments coincide and are one half of the critical load for

the semi-tangential moment.

12 -

10

8

i
6

2

0.0 0.4 0.8 1.2 1.6 2.0

Lateral Displacement (m)

FIG 5. Example 3
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FIG 6. Example 4
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FIG 7. Example 5
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n

v(z) =XXp, + ion)2" + ht.” (3)

can be used to fit isochromatic data for important

problems such as stress concentration near holes, V

- notches, and also the brazilian disc problem.

For example, polynomial functions work well

for stress concentration problems such as bars with

holes and U-notches. For a hole in a infinite plane

subjected to tension load, 2 = a-1z" + a1z and

w = p-32 °4-p1z give the exact solution. For other

problems envolving holes and U-notches, polyno

mial functions such as

ø = XD anz" and

give good results. In general, m and n vary from -3

to +5 to fit data which can be taken relatively far

from the maximum stress location and may be af

fected by the far field stress distributions, including

the influence of free boundaries.

w = XXpaz" (4)

The constants am, bm, pn, q, w and h are de

termined through a Newton-Raphson least-squares

fitting technique as proposed by Sanford (5,6] using

the basic photoelasticity equation,

N

01 - 0.2 = +f. (5)

where N is the isochromatic fringe order, f, is the

fringe calibration value and t is the specimen thick

ness. For stress separation purpose, boundary con

ditions must be given. Free boundary conditions

near the stress concentration location are given by

on = 0 and Tnt = 0 (6)

where n and t are the normal and tangential direc

tions for points at the free boundary.

Additional conditions for points located along

symmetry lines can be established as

Tie = 0 (7)

where j and £ are directions parallel and perpen

dicular to the symmetry axes. If the isochromatic

fringe orders N for points along the free boundary

can be reliably measured, equations (8) below can

be applied

N

Ot = +f. (8)

Coupling equations (2) and (3) or (4) with (1)

and substituting into (5) gives the non-linear equa

tion

2

(a1 – 22)* = (#) = (a, -os)” + 41% =

Fi(am, bm...., w, r,6)

(9)

Linear equations are generated from the sub

stitutions of (2), (3) or (4) into (1) and later into

(6) to (8), giving

on = F2(am, bm, ..., w, r,6) = 0 (10)

rnt = Fs(am, bm, ..., w, r,0) = 0 (11)

* = F(..*.*.*.*)=#. (12)

The = Fs(am, bm, ..., w, r,6) = 0 (13)

It is interesting to note that the solution of the

problem for am, bm, ..., w will need only data collec

tion (isochromatic fringe orders) at interior points

of the models. Use of equations (12) and (13) is op

tional and will depend on the quality of data N that

can be collected along the boundary. Data need

to be collected only inside the particular region of

the model that is being studied. Depending on the

model geometry, loading conditions, and complex

ity of the aproximated stress function selected to

use in the problem, the chosen region may be the

entire model or just a small part of it. A total of

i + s + c data points is collected, where i, s and c

are, respectively, the number of data taken from the

interior points, from the symmetry lines and from

the free boundary.

In general, i + s + 3c equations (9) to (13) are

solved simultaneously through a Newton-Raphson

least-squares fitting technique. For this, g functions

are generated such that

N.

911 = Fi, (am, bm, ..., w, r., 6) - (#) (14)

g2e = F2,

g3c = F3.
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N. . \”
Q4c - Fae - (#)

Q5s – F5,

(17)

(18)

The unknowns am, bm, ..., w are iteractively de

termined using initial estimations such as amo, bmo,

..., wo and the recurrence expressions such as (19)

where the A increments are determined from the

matricial equation (20) - (23).

(19)*rnk-1 ~ Ornk + Aam.

A = (A* A) *AG (20)

A* = (Aam, Abn,..., Aw) (21)

GT - (-g1,W1, ..., -95.Ws) (22)

W: Wi: ... W.'

W: Wi: ... W.'

It was shown in [11] that about k = 10 iteractions

are needed to reach final convergence. The weight

functions W1 to W5 were used to equilibrate numeri

cally the system of equations and have the following

shape [11],

W = if XXgie)”.S (24)

W5 = s/Xow's (25)

S = (1 + s + 3c)

(X's 4 × 53+ XX % +X's; +2')
(26)

Problems of the plane elasticity have already

been tested with success. Among them are classi

cal problems such as bars under uniaxial tension,

three, and four point bending; finite and infinite

bars with holes; U-notches under bending; and the

brazilian disc problem. It can be noticed that stress

separations were succesfully accomplished in both

cases. In one case (brazilian disc) the whole speci

men was analysed [7]. In the other case (U-notch)

only a small region of interest, near the stress con

centration, was focused. Results for this example

are shown below.

Bar with Symmetrical U-Notches Under Bending

Data for this example was collected directly from a

photograph presented by Frocht in [12], page 234.

Results [12] for stress separation applying the shear

difference and the slope equilibrium method were

also used for comparison purposes.

OV SLOPE EQUILIBRIUM

DASHEAR DIFFERENCE

-SHALLOW NOTCH

-...-SHARP NOTCH

P/q

FIG. 1 - Bar with symmetrically located U-notches under bending. Comparison between stress separation

results obtained from Frocht [12] and the present method. Region of data collection is shown in the Figure.

A = origin for shallow notch approach. B - origin for sharp notch approach.
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The region of data collection was small and is

hown in Fig. 1. The coordinate system was coin

ided with the curvature center of the notch. Sixty

ive data points were used, 45 of which were inte

ior points, 10 were along the symmetry line and

0 were along the notch boundary. The stress func

ions o and b used the terms a(–2) to a(5) and

(–3) to p(5). It should be noted that the terms

t(–1), a(1), p(-3), p(-1) and p(1) interpolate ex

ictly the case of an infinite plane with a circular

1ole under tension.

Principal separated stress values obtained from

quations (1) to (3) after determination of the terms

1 and p by the minimization scheme are presented

n Fig. 1 and compared with Frocht’s results. It can

he seen that the agreement is very good. Results for

he isochromatic fringe order fitting was also very

;ood. Maximum fringe order determined by this

method was 8.0, while Frocht's was 8.2.

Equations for Singular and Sharp V-Notches

\fter William's [1], Mahinfalah and Zachary [2] de

reloped the following equations (27) for the stress

!omponents at points in the neighborhood of the

tertex of reentrant singular corners for mixed mode

and II (Fig. 2). They used a stress function such

is p(z) = r^**f(6). The stress equations are

o, = K,r"-"Q"[f(0)]– Kur"-"Q-[f(9)

as = K,r***(1 + A*)2+[fs(8)]– Kur"T-"

(1 + AT).QT [f.(6)]

rs = Kir"Q"[f;(0)]+ Kur"T-"Q"[fe(0)

(27)

where K1 an KII are defined as in expression (28)

and the other terms are given in the Appendix.

KI,II = lings)”, (28)
r

The values of A* and AT are solutions of the eigen

value equations

Asin2a = +sin2Xa (29)

and their first determinations (smaller values of A #

0) are show in Fig. 2. The degree of singularity

of the stress, 1 – A, is maximum when the angle

o of the V-notch is zero. For this case, A = 1/2,

and the notch assumes a crack shape. Freire and

Carvalho [13] showed that stress intensity factors

for 45° V-notches and crack-like notches (a = 0)

and their stress distributions near the notch tip are

very simitar. For example, Fig. 3

F- W

15O

X-1

O.O

•osol

*

_>

|l

O 5O 1OO 15O 2OO

cć (°)

–

G. 2 - Geometry notation for singular and bl:

Igle (a) of the reentrant corner.

V-notches. Degreee of singularity (1 - A) with the
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shows computer-plotted isochromatic fringe distri

butions for a crack and for a 45° V-notch speci

mens under tension [13]. Considering that X = 1/2

in mode I for V-notches with opening angle 0 <

a < 60°, KI for these notches and for cracks can

be used indistinctly. Based on this conclusion it is

possible to determine the stress field for the region

near the root of blunt V-notches by coupling the

isochromatic photoelastic response to the Creager

Paris equations [10] and to the Sanford's overdeter

ministic approach [5,6].

FIG. 3 - Computer-plotted isochromatic fringe dis

tributions for a crack and for a 45° V-notch speci

men under tension a/w = 0.05, near field.

The Creager and Paris [10] elastic stress equa

tions for points near the root of sharp notches are

presented below for mode I for blunt cracks (small

p/a) in a form equivalent to the usual sharp crack

tip stress fields. They showed that their difference

was a simple function of the curvature radius at the

crack-tip. For these equations, the origin of the co

ordinate system (r, 6) is located p/2 away from the

notch-root.

Oz = Cos

(2Tr)1/2”2

K1 p

(2rr)1/2 #cos;”

KI #|
2

6 3

1 — sin-sin-6 || –st n *#)

+cos' 1+sin'sin's +

T (2Tr)1/2”2 2 2

KI p 3

(2rr)1/2 #cos;"

(30)

KI .

Try =E:#";"5*

KI p .. 3
--sin-6

(ETY752,"2

Substitution of equations (30) into the photoe

lasticity equation (2) and generation of a functional

G. fort each collected i data point will give

- 2

G, = (a, - a 2)? – (#) -

2 (31)

F. (KI, p, r, 6.) – (' 1.)
t

The application of the minimization scheme pre

sented in the preceding section for G will lead to

the determination of the KI constant which best fit

the data points in the least-squares sense. The de

termined KI will be the stress intensity factor for

a equivalent crack (or V-notch with 0 < a < 60°)

which has its tip located at the origin of the (r, 6)

coordinate system.

Two examples were chosen to demonstrate the

method. The first example was a bar with symmet

rical U-notches under bending. The second example

envolved a bar with a sharp V-notch under tension.

This U-notch geometry is equivalent to a Charpy

notch used for impact tests.

Bar with Symmetrical U-Notches Under Bending

Due to its geometrical relations, this example can

be considered as a limiting case, where both proce

dures for SCF determination for shallow and sharp

notches can be applied.

Results for the sharp-notch SCF determination

are also plotted in Fig. 1 for comparison purposes.

It can be seen that these results agreed very well

with the shallow notch procedure and also with

Frocht's results. Only 25 data points were used

in this case. KI determination through the fitting

procedure gave satisfactory results (10% difference

from the analytical value), reminding that the effec

tive crack length a+ should be determined from the

origin of the system of coordinates, a' = a-p/2, for

the sharp notch approach. In this case, it is not ex

pected that the procedure furnish an accurate value

for KI since this geometry is considerably different

from a crack. In this case, K1 plays the whole of

an adjusting parameter for the experimental data.

Bar with Charpy V-Notch Under Tension

The second example applied the sharp notch pro

cedure to the Charpy V-notch bar geometry under
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APPENDIX

fi(0) = [(3 – A*) cos(A* – 1)6–

– (1 + A*)61cos(A* + 1)6]

f2(0) = [(3 – AT) sin(AT – 1)6–

– (1 + AT)62sin(AT + 1)6]

f3(0) = [cos(A* – 1)6 + 61cos(A" + 1)6]

f.(0) = [sin(AT – 1)6 + 62 sin(A + 1)6]

f5(6) = [(A* – 1) sin(A* – 1)6+

+ (A* + 1)61sin(A* + 1)6]

fe (0) = [(AT – 1) cos(AT – 1)6+

+ (AT + 1)62cos(AT + 1)6]

(A-1) sin (A - 1) a

A = -\T:Tij.

_ sin (A - 1)a
A2 = sin (A + 1) a

C1 = Q1 KI

C2 = -Q2 KII

Q1 = 1/{(2x)”(1 + 61)(A*)(1 + A*)

Q2 = 1/(2x)*(AT)[AT – 1 + 62(AT +1)

Q* = A" (Q1)

QT = A" (Q2)



Micromechanics as a basis of stochastic

finite elements and differences: An Overview

M Ostoja-Starzewski
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Michigan State University, East Lansing, MI 48824-1226

A generalization of conventional deterministic finite element and difference methods to deal with

spatial material fluctuationshinges on the problem of determination of stochastic constitutive laws.

This problem is analyzed here through a paradigm of micromechanics of elastic polycrystals and

matrix-inclusion composites. Passage to a sought-for random meso-continuum is based on a scale

dependent window playing the role of a Representative Volume Element (RVE). It turns out that

the microstructure cannot be uniquely approximated by a random field of stiffness with continuous

realizations, but, rather, two random continuum fields may be introduced to bound the material

response from above and from below. Since the RVE corresponds to a single finite element, or finite

difference cell, not infinitely larger than the crystal size, these two random fields are to be used to

bound the solution of a given boundary value problem at a given scale of resolution. The window

based random continuum formulation is also employed in analysis of rigid perfectly-plastic mate

rials, whereby the classical method of slip-lines is generalized to a stochastic finite difference

scheme. The present paper is complemented by a comparison of this methodology to other existing

stochastic solution methods.

1. INTRODUCTION

The necessity to account for random effects in determining

the response of a mechanical system is due, in general, to

three different sources: random external forcing, random

boundary conditions, and random material parameters. In the

last fifteen years the powerful finite element method has

undergone various new developments to incorporate these

random effects, and is now termed Stochastic Finite Elements

(SFE), see e.g. (Contreras, 1980, Benaroya and Rehak, 1988).

In this paper we focus only on the type of SFE problems

which deal with randomness stemming from fluctuations in

material properties. Most of the past research in that area

concerned linear elastic structural responses and relied on a

straightforward generalization of Hooke's law, that is

g = C(x, GD) g (1.1)

In equation (1.1) x stands for a location within the body

domain, Go is an index from the sample space Q and C(x, 0)

is a continuous realization of a random tensor field of stiff

nesses. Part of the assumption (1.1) is the invertibility of such

a constitutive law, that is

S(x, 0) = C" (x, 0)g = S(x, 0)) Q. (1.2)

whereby g and g in (1.1) and (1.2) are uniform fields

applied to a hypothetical and unspecified Representative Vol

ume Element (RVE) of a random medium. In fact, typically,
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a locally isotropic form

on = M. (x, 0)*** +2}l (x, 0) *i; (1.3)

is adopted by simply postulating one or both elastic constants,

such as the Young's modulus, to be a random field.

While the effort in SFE has been on the development of effi

cient numerical methods for solution of boundary value prob

lems, the above model – equations (1.1-3) - lacks a connection

to the material microstructure. It is the determination of that

missing micromechanics link, which forms the main objective of

this paper. Additionally, our methodolgy may also be applied to

other than elastic microstructures, and used in solution of ran

dom media problems by finite differences. A very closely related

issue of specification of continuum random fields approximating

elastic microstructures is studied by Ostoja-Starzewski (1993b).

The paper's outline is as follows. In Section 2 we describe the

passage from the level of a linear elastic microstructure to that of

two random meso-continuum models Cs(x, 0), where ö indi

cates the scale dependence. Next follows a stochastic variational

formulation of finite elements - in both dispalcement and force

approaches - which illustrates the role of these meso-continuum

models in bounding the actual response. The micromechanics

approach is employed in Section 3, which focuses on rigid--per

fectly plastic materials with random fluctuations in the yield

functions. It follows here that the method of slip-lines - well

known from the deterministic homogenous media problems - is

now to be generalized to stochastic finite differences. Section 4

ASME Book No AMR134
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is devoted to comparisons with other existing approaches.

Thus, we briefly review the classical SFE methods for elastic

structures and discuss their applicability in micromechanics

based analyses. In the area of plasticity, we discuss the rela

tion of our formulation of Section 3 to a recent study of Nor

dgren (1992).

2. ELASTIC MEDIA PROBLEMS

2.1 Random medium model

Fundamental role in our formulation is played by the concept

of a random medium (or random microstructure), which, as is

commonly done in mechanics of random media (Willis,

1981), is taken as a family B = {B(Go); Go e Q ) of determinis

tic media B(Go), where (0 indicates one specimen (realization),

and Q is an underlying sample (probability) space. Formally,

Q is equipped with a C-algebra F and a probability distribu

tion P. In an experimental setting P may be specified by a set

of stereological measurements, while in a theoretical setting P

is usually specified by a chosen model of a microstructure. All

specimens B(GO) occupy the same domain in x1, x2-plane; we

employ a two-dimensional setting (2-D) for the clarity of pre

sentation.

In the following we consider two types of the random

medium B. In the first one, we take every specimen B(GO) to

be modeled by a realization of a Voronoi tessellation (Fig.

1.a), while in the second by a realization of a matrix-inclusion

composite (Fig. 1 b). Fundamental in both cases is a planar

space-homogeneous Poisson process of some given density.

In case of a Voronoi tessellation each cell, centered at a Pois

son point x , is assumed to be occupied by a homogeneous

continuum governed by a stiffness tensor C(x, 0) following a

space-homogeneous probability distribution P(C). In case of

the matrix-inclusion composite, we use an inhibition Poisson

process to ensure that there is no overlap of inclusions shaped

as round disks. We assume the disks to be occupied by a

homogeneous isotropic continuum of one kind, while the

matrix by a continuum of another.

In case of both models we assume all the phases to satisfy

the so-called ellipticity conditions: Ho, 3 > 0 such that for

any g the following inequalities hold for all the phases

Oggs gCes Bgg (2.1)

Thus, we have two realistic ergodic media models without

holes and rigid inclusions described by random fields C =

{C (x, 0); x e B; GD e Q} with piecewise-constant realiza

tions. This piecewise-constant nature of stiffness fields is an

obstacle to employing the governing equations of continuum

elasticity, which require that the stiffness fields be differentia

ble. Thus, there is a need for another continuum model - one

that possibly loses some information due to a “smearing-out”

procedure, but is sufficiently differentiable and grasps the

meso-level behavior.

2.2 Two scale-dependent random continuum fields

First, with the help of Fig. 1, we introduce a square-shaped

window of scale

S = ~

d (2.2)

Equation (2.2) defines a nondimensional parameter ö, typi

cally greater than 1, specifying the scale L of observation

(and/or measurement) relative to a typical microscale d (i.e.

grain size) of the material structure. 6= 1 is the smallest scale

we consider: scale of a crystal or inclusion. In view of the fact

that the Voronoi tessellation is a random medium, the window

bounds a random microstructure BS = {B3(CO); GD e Q}, where

B8(GO) is a single realization from a given specimen B(@).

FIG 1.a) A Voronoi tessellation with an average cell sized; b) a matrix-inclusion composite

with inclusions of average diameter d, in both cases a window of size L is indicated.
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A continuum-type constitutive law is obtained by postulat

ing the existence of an effective homogeneous continuum

B:" (GO) of the same volume V8 (i.e. area in 2-D), whose

potential energy U, or complementary energy U*, under given

uniform boundary conditions equals that of a microstructure

B8(GO) under the same boundary conditions. These are of two

basic types:

i) displacement-controlled (essential)

– 20
u(x) = *# On dBs (2.3)

where go is a given constant tensor and dBs is the bound

ary of B5,

ii) stress-controlled (natural)

– ~0
t = off", On OBS (2.4)

where go is a given constant tensor.

Boundary condition (2.3) results in an effective random

stiffness tensor C# (Go), with the Hooke's law being

- – r"c 0

g(0) = C5 (G) g (2.5)

which points to a random nature of the resulting stress field;

overbar indicates a volume average (i.e. area average in 2-D).

It has to be pointed out that the surface traction is random

inhomogenous on dB8(a), with the fluctuations disappear

ing in the limit 8 – co .

On the other hand, (2.4) results in a following random form

of Hooke's law, involving a compliance tensor,

#(o) = S$(o)g" (2.6)

which points to a random nature of the resulting strain field,

and the presence of random fluctuations in the dispalcement u,

on the window boundary. Hereafter, superscripts" and "stand

for essential and natural conditions, respectively. Also, we

shall use the same type of notation for conductivity and out

of-plane elasticity, whereby £ and g are vectors, Ci is con

ductivity, and Sii is resistivity.

Following (Ostoja-Starzewski, 1992a, 1993a, b) we list

here these principal observations:

1. Due to the heterogeneity of the microstructure B3(CO), the

1nVerse

C#(o) = [S:(0)] 1 (2,7)

is for any finite 6, in general, different from C# obtained

under essential conditions.

2. C# (GO) and C# (Go) satisfy an inequality

C#(o) < C# (6) (2.8)

Hereinafter, for two fourth-rank tensors A and B, an order

relation B s A means

" * 0
'#Bijk'kis 'i' (2.9)

f microstructure's sta

as 6 tends to infinity;

3. In view of the spa

tistics, C# (GD) and

this defines a deterministic continuum Bdet for a single speci

men B(a))

C"(0) = C' (o) = C# (o) (2.10)

whereby the window of infinite extent plays the role of an

RVE of deterministic elasticity theory; in other words, it is at

6 — co that the invertibility of the constitutive law is

obtained.

4. Ergodicity of the microstructure implies that

C*(q) = Ceff voe Q (2.11)

where C" is the effective response tensor (independent of Go)

of a homogeneous medium.

5. At any finite 6 both response tensors are, in general, aniso

tropic, with the nature of anisotropy dependent on any specific

B3(CO). This indicates that the model (1.3) is invalid. On the

other hand, (2.8) is isotropic due to the spatial homogeneity

and isotropy of the underlying Poisson point process and the

spatial homogeneity of P(C).

6. Since the window may be placed arbitrarily in the domain

of B(Go), the essential and natural boundary conditions define

two different inhomogeneous tensor fields at the scale 6 with

continuous realizations, which lead to two random meso-con

tinuum approximations: B. = {B} (0); Go e Q} and

B: - {B}: (Go); Go e Q }, respectively. Accordingly, a win

dow of size 6 may be considered as an RVE of these two ran

dom continuum models; this calls into question the unique

response law (1.1-2).

7. Our definition of two inhomogeneous tensor fields is con

ceptually similar - but not the same (!) - to the procedure of

local averaging in the theory of random fields applied to a sin

gle realization C(Go); Go e Q (Vanmarcke, 1983); it becomes

the same in case of a 1-D model only when applied to compli

ance. In two and three dimensions computational mechanics

methods have to be implemented - in a Monte Carlo sense -

to find the energies and, hence, the effective moduli of finite

windows and their probability distributions P (C#) and

P (C#) . Similarly, the autocorrelation (autocovariance)

functions may be determined (see also Ostoja-Starzewski and

Wang, 1989 and 1990).

8. Principles of minimum potential and complementary ener

gies can be used to obtain a hierarchy of scale-dependent

bounds on the effective stiffness tensor Ceff (see also Huet,

1990)

"s (s'y's sy's ce's

(2.12)

C#)s (C#)s (C#)=c" v8'<8

This is equivalent, by inversion, to a hierarchy of bounds on

the effective compliance Seif- (Ceff).

s" = (S')2 (S$) = (s')=s">
(2.13)

" v8' 2.8
(C#)'s C#)"> (C#)"> (c")

9. Since two different random anisotropic continua result, a
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given boundary value problem must then be solved to find the

upper and lower bounds on response according as random

fields C# and C# are employed, see Sections 2.3 and 2.4.

2.3 Variational approach to stochastic finite elements

2.3.1 The displacement method

We start from the principle of minimum potential energy for

each B(GO) of B

6 II (a) = 6 (U (Go) – W) = 0 (2.14)

where U(GO) is the (random) strain energy and W is the work

done by body forces f and surface tractions t . More

explicitly,

6 II (0) = jo (o) Stav-jišudv-jiSuds = 0

V V
t

(2.15)

where St is the part of the body on which tractions are pre

scribed. Now, with respect to Fig.2 showing a typical B(Go),

we introduce a triangulation of the body domain B of B(Go), a

closed set, into a finite number of (closed) triangles Ki (i = 1,

2, ..., N) such that

N

B = '' K. (2.16)

1 =

whereby (2.15) is replaced, approximately, by

6 II (Go) =

N N N

=X. jg (ostav- X. jfövdv- X. | Suds=

i = 1 Vi i = 1 Vi i-Is,

- (2.17)

It is noted here, in this displacement method, that the kine

matic constraints are imposed on each triangle so that the first

term in (2.17) becomes

N

X Je'c' (ostav (2.18)

i = 1 V.

where "Ce (()) should be the tensor C# determined accord

ing to Section 2.2 for the i-th particular triangular finite ele

ment. In other words, this finite element specifies a window

over which the essential boundary conditions are prescribed,

while 6 may be chosen to be the base of an isosceles right tri

angle; of course some other definiton of 6 may be adopted

here, such as, for example, 6 being an equivalent diameter of

a circle of the same area as the given triangle.

An important issue concerns the choice of interpolation

functions: linear ones

ue (x1, x2) = a + bx +cx2 (2.19)

are fully consistent with the uniform strain implied by (2.3).

Observing that the uniform strain (as well as uniform stress)

is the strain used in micromechanics to define a passage to

effective constitutive law, we see an inconsistency in using

micromechanical inputs for finite element methods using

higher order interpolation functions. Thus, a 2-nd, and higher,

order triangular elements as well as all quadrilateral elements

would not be consistent with (2.3).

Returning to (2.17) and (2.18) we find

[K (a)] {U} = {F} (2.20)

which provides the basis for a Monte Carlo solution of the

finite element problem, as well as for solution in terms of

moments; see Section 2.3.3 for a discussion of the ensemble

average solution. The global stiffness matrix in (2.20) is syn

thesized from the stiffness matrices of all the elements

N

[KO)] = X. I'K(0)] (2.21)

i = 1

where each ['K (0)] is obtained as follows

"Kol = [['B''col ('Bjøv
'V

(2.22)

= ['Bl" ('C' ('B'v

In the above ['C (())] is the matrix of material moduli, given

by ice (GD), while ['B] is the gradient matrix.

2.3.2 The force method

We start from the principle of minimum complementary

energy

6 II" (do) = jogs (o)dv-jStuds = 0

V S
u

(2.23)

for each B(GO) of B, and Su is the part of the body on which dis

placements are prescribed. By employing the triangulation

(2.16), we obtain (again approximately)

N N

8Tr (o) = X. jagg (odv- X. | Studs = 0

i = 11 i = 1
V S. (2.24)

Since now force constraints are imposed on each triangle, the

first term in (2.24) becomes

N

X. j82's"(o) gdV

i = 1 V

(2.25)

where's" (GD) should be the tensor S$ (GD) determined

according to Section 2.2 for the i-th particular finite element.

Also here the system (2.24) may now be expressed in a

form.
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2.3.3 Ensemble average formulations

It follows from the Section 2.2 that (2.17) would provide a

“stiffer” statistical solution {u" (Go);0 e Q}, while (2.24) a

“softer” one {u" (Go); Go e Q};" and "superscripts have the

same meaning as defined earlier. The actual solution u"(0)

lies between these two. However, the force method in finite

element analyses has some well known drawbacks. Thus, a

question arises whether a lower bound on uac (GO) can be

obtained by employing the displacement approach solely?

To this end, we carry out ensemble averaging of (2.6) to

obtain

(E) = (S')g" (2.26)

which results in a uniform strain field and linear displace

ments on the boundary of each i-th finite element. Since the

surface tractions are now linear on the element boundary and

there is no randomness present, this can now be used in a

deterministic displacement formulation

N N N

8(I)=X. jgögqv- X. jíðudv- X. jišuds=
i = 1 V. i = 1 V, i = 1 S,

= 0

(2.27)

–l ,- -

providing wereplace g by g” = (S') '(g) and g by (£).

Of course the upper bound on u" (o) is obtained by either

averaging {u" (Go); GD = Q}, or, more simply employing

(2.22) above with an ensemble averaged form of (2.5)

(g) = (C#)g" (2.28)

Dually, one can set up a pair of lower/upper bound solutions

by using the averaged version of the complementary energy

principle of Section 2.3.2, but, in view of our observation at

the top of this Section, this would seem to be of less interest.

2.4 Example results

An approximate solution method in an SFE problem has

recently been implemented by Alzebdeh and Ostoja-Starze

wski (1993). With respect to Fig. 2, which shows a typical

realization B(GO) of B, the problem was formulated and run as

follows:

i) Out-of plane displacements u(x1, x2) of a matrix-inclusion

composite defined in Section 2.1 were studied. These were

governed by a Poisson equation with Dirichlet boundary con

ditions

0 du -

#C#6. GD) 5: = f u(x) = 0, x e 0B

(2.29)

where f is constant throughout B, and Ci are components and

realizations of two conductivity random tepsor fields (of sec

ond rank) of continuum approximations "8 or B: , where 6

corresponds to the mesh size.

ii) Generation, in a Monte Carlo sense, of a realization B(CD)

and calculation of the effective moduli C# and C# for each

square-shaped window (recall Fig.1 b).

iii) Using of thus obtained 'C' (a) of any given square as

'C' (a) for the two (isosceles right) triangular-shaped win

dows making up the square-shaped one, and calculating the

stiffer response using a triangular mesh. -

iv) Using of "C" (o) obtained in point ii) as "C" (o) for the

two triangular-shaped windows making up the square-shaped

one, and calculating the softer response using a triangular

mesh.

v) Repeating ii) - iv) a number of (say, twenty or fifty) times.

Fig. 3 gives results of the above solution method for three

mesh sizes - 6 = 4, 8, 20. Specifically, this figure shows the

£ble average.#lumes contained under the membrane -

V" (Go) and V (GO) versus increasing contrast, i.e. ratio

of inclusion stiffness C" to matrix stiffness C". In order to

nondimensionalize the problem, we took C" = 1. We see that,

for a fixed 6, both curves are decreasing monotonically and

diverging away from the homogenous medium case C = C"

= 1, with increasing C". In addition, for a fixed contrast, we

see that the two responses (bounds) get closer with increasing

ö, and have a tendency to converge to a unique value as

6 — co, which corresponds to the deterministic case, recall

(2.8). This limit, however, can only be thought of in an

approximate sense (a finite element is finite !). In fact, in sit

uations where a resolution of local stresses is desired, we

would use rather small elements - i.e. small 6 - and obtain

two quite different bounds on the response, accompanied by

significant fluctuations. Fu # discussion and results on the

strength of fluctuations in V e (Go) and V n (Go) are given

in (Alzebdeh and Ostoja-Starzewski, 1993).

3. PLASTIC MEDIA PROBLEMS

3.1 Random medium model

The basic concepts introduced in Section 2.1 - i.e. those of a

random medium B of domain D defined on Q and the x1, x2

plane, a window of scale 6, and a random continuum approx

imation B5 - may be applied to materials having a different

constitutive response than the elastic one. Specifically, in

view of the availability of an effective solution method for

rigid-plastic materials - that is, the method of slip-lines - we

focus on materials describable by the yield function

(Gu-o:)**40% - 4k: (3.1)

in which kS is a random field, parametrized by x and y, that

describes effective plastic limit of the microstructure accord

ing to the chosen resolution 6. A micromechanical basis for

determination of kS is discussed in Section 3.2 below. At this

stage we assume that the statistics of k8 and, in particular, its

average (k8) and the autocorrelation distance re are known.

It is interesting to observe that (3.1) may be viewed as a

special kind of a yield condition obtained from that of a par
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{U0} = [(K)]"{F}

{U} =-[(K)]"[K’(o)]{U0}

{U2} = -[(K)]"[K’(o)]{U}

(4.4)

N eries me

This method, advanced by Shinozuka & Yamazaki (1988), is

based on a Neumann series for the inverse of a random oper

ator [K (0)], which takes the following form

[K (o)] = (1-P(O) +P*(o) –P'(o) +...) [.(K)]"

-1 *

P (GO) = [ (K K" (G)(0) = [(K)]T' [K’ (Go)] (4.5)

The method was introduced as an avenue for a speedier way

of solving the stochastic problem by a Monte Carlo simula

tion. To that end also a Cholesky decomposition of [K (GO) |

is implemented.

Weigthed integral method

In contradistinction to the above two methods, this one

focuses on the determination of the random stiffness matrix

[K(0)]. The idea, in the setting of an elastic plate problem

(Deodatis et al, 1991), is to start with a locally isotropic ran

dom field of, say, Young's modulus (recall eq (4.1) and the

discussion following it) and assign it to all the finite elements

according to

(f(x, 0)) = 0

(4.6)

'E(x, 0) = *(E)[1+'f(x, 0)]

Next, all the elements of [K (GD)] are calculated as

- - T - -

'KOI = [['B' ('col ('Blav

- .." i i (4.7)

= ["Kol +'X0(a) [A'Ko]

where ['Kol and [A'Ko] are deterministic matrices, while

'Xo (GO) is a random variable given as

Xo(0) = |f(x, o) d'A

'A

(4.8)

From a micromechanics standpoint this approach gives a

Voigt-type estimate for the effective stiffness of the i-th finite

element; also, compare (4.7-8) with (2.20).

Spectral method

It is well known that in a representation of a random function

by a Fourier series, the coefficients of the expansion become,

in general, correlated. In order to retain the uncorrelatedness

while obtaining the desired orthogonality of random coeffi

cients, a Karhunen-Loève expansion (see e.g. Yaglom, 1962)

is introduced. This idea has been employed by Ghanem &

Spanos (1991) to represent the spatial variability of random

field of Young's modulus such as in (4.6). However, this

method is not limited to weak fluctuations and avoids the

inconsistencies between various other methods involved in

the inversion of the random stiffness matrix [K (Go) J. Also,

it is designed to do away with the problem of dealing with a

large number of random variates resulting from a pointwise

representation of the random field [E (x, 0)].

While this method is elegant - recasting of the original

problem in terms of a denumerable set of uncorrelated random

variables - it has also suffered from a lack of good input from

micromechanics. Additionally, its claim of being able to deal

consistently with strong noise in material properties has to be

qualified - this is discussed in Section 4.1.2 below.

4.1.2 Conclusions

The foregoing very brief review of the SFE methods leads to

two principal conclusions:

i) a necessity of a correct link to micromechanics in setting up

of the continuum random fields (Ostoja-Starzewski, 1993a)

and of the random stiffness matrix [K (G))],

ii) a need for a careful interpretation of the variational princi

ples as a basis for SFE,

Thus, although an assumption such as (4.1) is generally incor

rect, it follows that the classical SFE methodologies are ame

nable to possible modifications to incorporate the

micromechanical input of the type described in Section 2.2.

More precisely, once a continuum random field specification

of a given material is found, an existing approach - such as

perturbation, Neumann series, Karhunen-Loève series - may

be applied to determine the upper and lower bounds on

response according to the stochastic variational formulation

given in Section 2.3.

Presence of a strong noise in material properties requires

particular attention. A valuable paradigm in the situation of

strong microscale material variability is provided by studies

in the deterministic homogenization theory, see e.g. (Sanchez

Palencia and Zaoui, 1987; Hollister and Kikuchi, 1992).

Thus, it appears that a stochastic extension of homogenization

theory should provide the most adequate formulation of finite

elements for random materials.

4.2 Plasticity problems

It appears that the subject of plasticity of randomly inho

mogeneous media was first considered in the seminal work of

Olszak et al (1962). While, similar to the situation in elastic

ity, most of the research efforts have been on finding the effec

tive macroscopic plastic response (see e.g. Zaoui, 1987), very

little attention has been given to random meso-continuum

modelling.

The major work we have to mention here is that due to Nor

dgren (1992). The focus there has been on an original sto

chastic formulation of lower-bound and upper-bound

theorems and a corresponding application to the loading of a

wedge. The random continuum model involves a three

parameter yield function

f = a + bi + cli- (4.9)
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The linear relationship between per and £cr, Eq. (14), is

shown in Fig. 5 for different values of Y.

Figure 6 illustrates the relationship between £cr and u

for different values of the parameter Y, whereas, Fig. 7

shows how £cr and Y are related.
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The relationship between 5 and p for y= 2 and u = 4

and different values of the parameter ß is illustrated by the

curves presented in Fig. 8.
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Figure 9 shows how 6 and 5 are related for y= 2, u = 4

and different values of 6.
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The influence of 6 on the equilibrium paths is shown

in Fig. 10 for y=2 and u = 4.
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Figure 15 shows the relationship between 6 and 4 for y

= 4, u = 5, 6 = 10 and 60 = 0°, 3° and 5°. The

relationship between and p for the same parameters of

Fig. 15 is shown in Fig. 16.

FIG. 16 versus p

The results shown in Figs 4-16 illustrate how the

changes of the support conditions in terms of a rotational

spring's stiffness dependent on the linear displacement

influence the equilibrium paths and also how the different

parameters involved are related. Of special illustrative

effect are the equilibrium paths of Fig. 13 where the effect

of C(4) is clearly observed. Figure 13 should be interpretd

as follows: had the system started with a constant stiffness

C(i) = Cf then the equilibrium path would be the higher

value one; since it started with C(£) = Ci, it only reaches

the same equilibrium path when = 1, which can be

clearly observed.

The model presents equilibrium paths which are all

stable: the primary path corresponding to 6 = 0 with 60 =

0, the scondary path corresponding to 6 × 0 with 60 = 0

and the imperfect path corresponding to 60 * 0. This can

be proved from the second derivatives of the total potential

energy functional, V.

Having discussed different aspects of the equilibrium

paths of the model, what follows is the study of the

characteristic curves which illustrate the vibration

characteristics of the model.

VIBRATION CHARACTERISTICS

The vibration characteristics of the model are presented in

terms of the characteristics curves which relate the applied

load, P, and the square of the corresponding natural

frequency of vibration a).

Characteristics curves

The natural frequency of vibration corresponding to a given

load level is determined by the procedure described in Souza

(1987b). It consists of perturbing the equilibrium

configuration and investingating the motion around such

an equilibrium configuration. In order to investigate the

lateral motion a small perturbation is introduced,

represented by the angle p shown in Fig. 17, keeping the

load level constant. Therefore, the total potential energy

functional V becomes a function of (6 + p ). Such a

procedure allows the determination of the natural frequency

of vibration as a function of the applied compressive load.

FIG. 17 The perturbed configuration

The equation of motion is obtained from the Euler

Lagrange equation (Souza, 1987b)

d of 10% =0

a 35 00 (16)

where T is obtained the kinetic energy given by

T=1 1 0°

; : * (17)

I" being the generalized moment of inertial and 0.dot is

the angular velocity. It can be expressed as

% + o” = 0 (18)

where terms of of 0(?) and higher are neglected and p is

the natural frequency of vibration corresponding to the

applied load level P. Before continuing, let us introduce

the natural frequency of vibration function, f, defined as

follows:

I (19)

The relationship between the applied load level, p, and

the square of the corresponding natural frequency of

vibration function, f, depends on the range of , and can be

summarized as follows:

i) 0 < ... < 1

f*= 1 - "(, ; )(9. 6) + (8-coso)p

26 (20)
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O I O

A=|-M-"(K+N) —M-"(D+G) M-"F" | . (6)

F 0 0

The dimensions are related by n = 2f + p.

In the following we are interested in the stability behav

ior of the equilibrium point x = 0 and thus of the system

of Eq.(4). For this, first we have to define”stability” with

respect to differential-algebraic systems and secondly to

look for suitable criteria checking stability.

STABILITY

For regular dynamical systems the notation ”stability” is

well defined (even if there is not only one definition of

stability but a great number of definitions related to dif

ferent requirements of applications) and a related stabil

ity theory is well established (Hahn, 1967). For example,

remember only the notion of stability in the sense of Lya

punov, asymptotic stability, absolute stability, and the

well-known stability theory of Lyapunov.

Compared with the large amount of research related

to stability problems of regular systems almost nothing

has been investigated with respect to the stability behav

ior of singular systems. First general attempts have been

presented by Bajić (1986, 1987, 1988a, 1988b), Bajić and

Milić (1987), Bajić et al (1989), Griepentrog and März

(1986), Dolezal (1987), Hill and Mareels (1990), März

(1991). Additionally in case of linear time-invariant sin

gular systems of Eq. (4) stability has been defined by the

eigenvalues of the matrix pencil (AE – A).

One essential difficulty of a suitable stability definition

is the problem in which (sub-) space stability has to be

defined. Avoiding impulse solutions of Eq. (4), initial con

ditions x(to) = x0 must be consistent with the algebraic

constraint equations. By the algebraic constraints non

impulsive solutions belong to a consistent manifold M

which is a subspace of the generalized state space. Re

stricting the stability problem to the consistent manifold

M, stability of an equilibrium point x = 0 of Eq. (4) can

be defined in the sense of Lyapunov restricting the per

turbed motion to the consistent manifold M. Similarly

asymptotic stability is defined with respect to M.

This stability definition is useful no doubt and it cor

responds exactly to the stability definition of the related

regular system if the algebraic constraints are used to

eliminate redundant coordinates ending in a regular set

of ordinary differential equations. But this elimination

procedure requires an exact description of the dynami

cal system and an exact elimination algorithm. If on the

contrary there are some uncertain parameters in Eq. (4)

the above mentioned stability definition is unsatisfactory.

The consistent manifold M is not certainly defined, and

therefore the stability behavior of an uncertain system

cannot be covered by this stability definition. Looking

for robust stability a different definition is required.

Besides of the efforts of the group of Bajić (1986 etc.)

actually there is no general stability theory available even

confining ourselves to the definition of stability in the

sense of Lyapunov restricted to M. It may be expected

that the method of Lyapunov functions for the stability

problem of motions with respect to a part of the variables

will be a helpful tool for further general stability investi

gations, see for example Oziraner and Rumiantsev (1972)

or Müller (1982).

Contrary to the missing general theory in the special

case of linear time-invariant singular systems of Eq. (4)

the stability behavior can be discussed in more detail as

it is shown in the next sections.

LINEAR, TIME-INVARIANT DESCRIPTOR.

SYSTEMS

Looking for the stability of the linear descriptor system

(4) we use the stability definition of control theory (Dai,

1989):

Lemma: System (4) is called asymptotically stable iff all

finite eigenvalues Ai, i = 1,..., n.1, of the matrix pencil

(AE - A) have negative real parts.

This definition assumes the existence of certain finite

eigenvalues Ai, i = 1,..., n.1, of the matrix pencil (AE-A),

that is the vanishing of the characteristic polynomial

p(A) = det(AE – A) (7)

for some isolated values Ai. That includes the require

ments of quadratic matrices E, A and additionally of

p(A) # 0. (8)

These two requirements define a regular matrix pencil

(AE – A); otherwise the pencil is called singular. There

fore, the above stability definition is meaningful only for

regular pencils; in case of singular pencils a stability def

inition does not exist. In the following regular matrix

pencils are assumed in Eq. (4). Mechanical systems de

scribed by Eqs (1) and (2) always define a regular matrix

pencil via Eqs (5–6).

It is well-known in matrix theory that a regular matrix

pencil (AE - A) is strictly equivalent to the Kronecker

canonical form (Dai, 1989), that is there exist two regular

matrices

R.

R=|#| S = [Si S2 | (9)

such that

- Il 0 - A1 O

Res=[' S.] Ras-['. #| (10)

where the identity matrices II, I2 are of dimen." n2

with n1 +m2 = n and the n2 x n2 matrix Nk
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[A]{q}+{b}=0 (2)

By partitioning the vector {q} in a (p-ma) component

vector {q|} and a ma component vector {qa}, Eq. (2) takes

the form

[A., Ag]{ä, äa}+{b}=0 (3)

If [Ad] is a non singular matrix, it is possible to solve Eq.(3)

with respect to {qa}

{ág) =[C]{q, \{d} (4)

and to introduce a pa dimension parameter vector {u},

pa=p-ma, defined by

{u}=[U]{á,}+(u,} (5)

which represents the independent parameter vector of the

system, to be determined by integration of the equations of

motion.

Linear and angular velocities of each link and body are

functions of u according to

{v}=[V.]{u}+{v,} (6)

{o}=[0,1{u}+{o} (7)

in which the columns of [V] are the partial linear

velocities.

In the case of open chains, with 1 degree of freedom

rotational or translational joints, anchored to a main body,

like the Shuttle or the Space Station, the total number of

degrees of freedom is the joints number N, and the joint

displacements can suitably be assumed as lagrangian

coordinates. If the chain is not anchored, the configuration

of one body must be defined with respect to a known

reference frame, by introducing Euler angles and the

coordinates of one point, that is 6 new degrees of freedom,

the matrix [U] takes the diagonal form

[U]=[[E.] [Ed];1] (8)

[Eu] being the coordinate transformation matrix and [Ed]

the Euler angles derivatives transformation matrix.

Internal constraints of closed loop chains can be taken

into account by assuming the same linear and rotational

velocities for the two parts of broken joints; their general

compact form is of the type of Eq. (2) that represents a

generic non holonomic constrain

In order to describe the k

a pair of adjacent links of

the position and oriental

‘onships between

cessary to know

s and bodies as

function of lagrangian coordinates. To this aim a reference

frame must be assigned to each link: the coordinate

transformation between two adjacent links is

{x-1}=[A-L]{x} (9)

where [A-1, l is the transformation matrix that can be

computed through the Denavit-Hartenberg parameters. If

{xi} is homogeneus and its fourth coordinate is taken

always with unit value, we have

cS, -s31co, ss, so, a, c.9)

sS, c.9, co., -c.9, so, a.s.S.,
A- : - l I f n t l n 10

[Ai-lil 0 Soft co, d; (10)

0 0 0 l

8, a, a and d being the Denavit-Hartenberg parameters

(Paul 1981).

The absolute position of the end effector is

{xo}=[T]{xx} (11)

where {xy} is its local position and

[T]= [AoilAl2] [AN-IN] (12)

In the case of a floating arm

{xo}=[T]{xy}=[A][T]{xx} (13)

[A] being the transformation matrix between the first

reference frame and the anchored one.

Linear and angular velocities depend only on the

derivatives of [A-1, and [A] and the highly non linear

kinematic equations allow to compute positions and

velocities when q and q are known by

x = f; ({q})

If the inverse kinematics is required, as it frequently

happens for controlled dynamics, {q} and {q} must be

determined as a function of {x}. In this case

(14)

{q}=[J] '{x}

where [J] is the Jacobian of Eq.(14).

Since it is generally almost impossible to obtain an

analytical solution, in the following a numerical procedure,

(15)
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based on Newton-Raphson technique, is proposed

(Teukolsky et al 1986), according to which Eq.(14) becomes

{x}=[J], Aq}+F({qo)) (16)

being {q0 } supposed to be close to its actual value. If

Jacobian matrix is not singular, A{q}, and consequently

{q}, can be evaluated and the procedure iterated till

convergence.

DYNAMICS

As already said, the dynamic equations are derived by

Maggi's method, with the advantage that only the internal

forces driving the joints must be taken into account. No role

is played by the reaction forces, related to the constraints,

and by non-working forces. Besides, as stated by Kane, who

is nowadays recognized as the developer of the equations

themselves (Borri et al 1986), they are particularly suitable

for implementation.

To this aim, the equations of motion of an N masses

system, obtained from D'Alembert principle

{F}=m, (a)=0 j=1,....N (17)

is projected on the partial linear velocities, giving

{E}{E}=0 (18)

where

N

T

{E}=#|E} (19)
j=1

are the generalized active forces and

* N T

{E}=-###" (a.) (20)

j=1

are the generalized inertia forces.

For a fixed constrained rigid body we have

{a}=[o][W]+[a]"[##") (21)

{a}=[...]{5}{4}"[#|u} (22)

and

{R}--###"(£).)--.'UM'.).).

Pa Pa atW,}, .

*}^{#").s=1 t=1

Pa Pa 6(os),

*[1(#4). Allel aw

It is remarked that {E} linearly depends from {u} in

Eq(23).

By a suitable rearrangement, the equations of motion can

be given the compact form

(24)[M]{u}={f}+{t}

[M] being a positive definite matrix

M.-: "Y") to YU) (c.) as

and {f} is the part of {F} representing the forces due to the

motion, like Coriolis, centrifugal, etc., and {t} the

generalized active force vector. A similar, even if much

more complex system, can be obtained for flexible bodies

(Galli 1991), but due to the large computer memory

requirements only lumped deformable elements at the joints

have been modelled.

IMPLEMENTATION AND RESULTS

The equations have been automatically derived by

MACSYMA and subsequently solved numerically. As a

first step a double tether system was tested, proving a very

good agreement with theoretical results.

As a second step, an implementation has been carried out

for the 3 d.o.f. Stanford and Puma manipulators, whose

equations are known (Levi and Hemati 1986, Passera 1990),

by Lagrangian derivation. Numerical solutions, compared

with the results obtained by DADS, a general purpose

computer program for the dynamic analysis of multybodies,

evidenced an excellent agreement and a significant time

saving, due to the appropriate formulation and to the

symbolic manipulation of the equations of motion.

The most important conclusion from the operational

point of view is that translational joints highly reduce the

equation complexity with respect to rotation joints, due to

the simpler Denavit-Hartenberg matrices. Anyway, even in

the case of rigid link manipulators, the memory requirement

is dramatically large, as proved by the fl element of Puma

equations that covers more than 190 program rows.
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CONTROL STRATEGIES

In the specific case of a space manipulator, the control

system is devoted to solve tracking problems, that means to

assure that the end effector describes a prescribed trajectory

typical of a pick and place maneuver in presence of known

obstacles.

The choice has been a multybody system without

redundancies, so that only a finite number of configurations

turns out to be compatible with each end effector position.

In this case the joints space control is the simplest one in

that it is possible to find, by inverse kinematics, the joint

displacements corresponding to the desired end effector

positions. To this aim the trajectories are suitably checked

as time functions and the corresponding joint positions are

acquired by the procedure previously recalled. The inverse

dynamic problem strongly asks for a symbolic

manipulation, allowing at the same time accurate modelling

and real time simulations.

The control problem finds its main difficulty in the not

completely known physical characteristics of manipulators,

as it frequently happens when they are devoted to

transportation and manipulation of target objects. To avoid

design errors coming from this insufficient knowledge,

adaptive control strategies are suitable (Galli 1991).

ADAPTIVE CONTROL

In order to find the control law of model reference adaptive

P.D. control system, utilizing a feed-forward and a feed

back loop (Craig 1988), the error vector

{e}={qa)–{q} (26)

and a suitable evolution of the generalized velocities

{:}-£)-(k,]{e}{K}{e} (27)

are introduced. In the above equations d refers to the desired

values and [Kp], [Kal are positive definite matrices.

By inverse dynamics control { r}, responsible of the

desired motion, can be evaluated when physical parameters

are known, by the equation of motion

to-#"(*): "(0.9) (28)

in which my and ny are physical parameters, while f and g

depend on geometric parameters.

The correlation between the coordinate error vector {x}

{x} = (29)

and the parameter vector {qp} is

{x}=[4]{x}+[B][M]"[W]{q}

where [MT is the estimated mass matrix. If [Kp] and [Kal

are diagonal, [A] and [B] are also diagonal, with

(30)

(31)

[B]=[0,1]" (32)

Lyapunov stability criterion assure that the system is

stable if parameter estimation satisfies the condition

{p}=[T][W]"[M]"{e}, (33)

being

{e} = {e}+[v]{e} (34)

the filtered vector.

The implementation of the proposed control strategy

requires the evaluation of [W], in the case of symbolic

manipulation. That is feasible when the equations of motion

are first order equations with respect to the parameters.

That implies a suitable choice of the parameters themselves

that not always is an obvious one. In this case Eq (28) can

be written in the form

[W]{PAR}={t} (35)

{PAR} being the vector of the physical parameters, from

which [W] can be obtained.

STANDARD CONTROL

Due to the complex implementation of adaptive control,

also a standard control strategy has been adopted.

The adopted control system is a double PID stage with a

faster internal loop on the joint speed and an outer slower

loop on positions. Passing band bounds must assure that no

excitation of structural frequencies of elements connected to

velocity and position sensors can occur (Paul 1981).

Attention must be paid also to possible instabilities due to

the coupling of the velocity and position loop, caused by

different changes in physical characteristics of the

manipulator.
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NUMERICAL SIMULATIONS

The designed adaptive control has been first tested on the

double tether system, by asking the end effector to perform a

circular trajectory with a mass estimation error of 80 per

CCInt.

Numerical results prove that controls are well behaving:

the parameter identification occurs in a few seconds and the

actual trajectory is the desired one, Figs 1-2.

1.2

1.0

as £

0.6

;
0.4

0.2

00

o 2 4 8 10 12 146

IIME (s)

Fig 1. Double tether system: mass identification.
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Fig 2. Adaptive double tether system: end effector trajectory.
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Comparison with non adaptive control implementation

making use of the same PD controller, Fig 3, enphasizes the

efficiency of the adaptive law.
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Fig 3. Non adaptive trajectory tracking.

Further simulations have been performed with the

Stanford Manipulator, the physical and geometrical

parameters of which are well known (Paul 1981).

Identification of the inertial parameters of the third body

has been carried out for a pick and place maneuver (Fig 4)

of a 3 kg mass (Fig 5).

Fig 4. Pick and place trajectory.
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i
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Fig 5. First coordinate behavior.

Figure 6 shows that the tracking error is quite small and

anyway largely reduced with respect to non adaptive

control.
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Fig 6. Tracking error with and without adaptivity.
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and Hruda developed the Component Mode Substitution

technique (Benfield and Hruda, 1971). Dowell has also

developed a technique where he incorporates the use of

Lagrange multipliers, in a systematic approach, to permit for

various system constraints (Dowell, 1972, 1979, 1980a and

b, 1983, 1984, Dowell and Klein, 1974). In general, these

methods tend to differ only in the selection of the various

component modes. In this paper Hurty’s Method is utilized.

For complete reference of this method see (Hurty, 1960;

Thomson, 1988; Meirovitch, 1980; Meirovitch and Hale,

1980).

THEORETICAL ANALYSIS USING COMPONENT

MODE SYNTHESIS

The various component mode techniques tend to differ, in

general, only in the selection of the component mode

functions, all of which can be determined by solving some

type of component eigenvalue problem. For further

reference one may look into Benfield and Hruda (1971),

Rubin (1975), and Craig and Bampton (1968). In this

investigation, we will be considering a slightly new

approach. The component mode techniques, as stated

earlier, were introduced to simplify the computation

problems associated with other methods, and still produce a

reliable approximation. With this premise in mind, we

suggest the use of simple polynomials as alternative mode

functions. Hurty has previously suggested this (Hurty,

1960), along with Meirovitch and Hale (1980).

The first criterion placed on these polynomials, is that

they qualify as admissible functions. In general, the

admissible functions mustbe selected such that displacements

and forces exist at the internal boundaries of the system.

The other criteria are that the admissible functions selected

form a complete set, and they should be linearly

independent. A reasonable check to see if the frequencies

converge will provide assurance that a given set of mode

functions forms a complete set. In considering the problem

associated with early truncation of the mode function set,

Macneal (1971) and Rubin (1975) proposed a technique to

include the effect of residual modes not retained

(Meirovitch, 1980; Meirovitch and Hale, 1980).

We will now consider a three link flexible system as

shown in Fig 1, and examine the undamped, free vibration

problem. We will denote Fig 1 as Configuration 1.

The equation of motion for an arbitrary substructure, is

given as

[M]{(t)} + [K.]{6(t)} = {0} (1)

where [M] and [K.] are the substructure mass and stiffness

matrices respectively, {{...(t)} is the time dependent

generalized coordinate, and the " represents the second

derivative with respect to time, [ ] ‘es a matrix and {}

represents a column vector). ' ict our analysis

Figure 1. Configuration 1

to motions of small amplitude so that the free vibrations in

longitudinal, transverse, and twisting motion are decoupled.

Also, we shall assume infinite axial rigidity of all three

members, which is later supported by experimentation. That

is, the system considered in Fig 1 has two adjustable joints

(top revolute joint at x = 0 and bottom revolute joint

between link 1 and the composite body formed by links 2

and 3). It should be noted that links 2 and 3 are rigidly

clamped together at x2 = L2, x, = L. The other joints are

locked in various configurations; hence a quasi-dynamic

analysis is presented here. In addition, we are only

concerned with vibration in the plane of the paper as shown

by Fig 1.

Next, we will choose the transverse displacement vector

for component 1 to be

*/ 2 */

w;(x,t) : I. G. + T

I I

JC n

+ + l 2

--|#|s. (2)

where č is taken to be a function of time although not

explicitly shown, and n is equal to the highest power of the

last spatial function. The displacement vector chosen for

component 1 satisfies all geometric and force conditions at

the external and internal boundaries of component 1,

whereby the interface of the components is designated the

internal boundary. These conditions are

G.
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w;(0) = 0, w;(0) = 0,

w/(0) =0, w;" (0) =0,

w,(L) #0, w;(L) +0.

w/(L) #0, w;" (L) #0

(3)

where the ' represents the derivative with respect to the

spatial coordinate. Note that shear forces and moments are

allowed at the interface.

We choose the displacement vectors for component 2

2%

w, x,t) - 1(x)4, + |#|- +

2

*2 4 + + *2 m

I. 5.3 - I. 5.

u,(x,t) = 1(x,

(4)

(5)
'm-2

where u(x,t) is the axial displacement of component 2, and

m is the highest power of the last spatial function. Here

again, these displacement vectors were chosen so that they

satisfy all geometric and force conditions at the boundaries

of component 2. These conditions are as follows:

w,(0)=0, w;(0)=0,

w;"(0)=0, w!" (0)=0,

w,(L)-0, w;(L)=0,

w"(L.)=0, w” (L.)=0 .

(6)

In Eqs (2), (4), and (5), rigid body translation and rigid body

rotation modes are represented by 1(x) and (x/L) respectively,

whereas the remaining functions represent deformation

modes. And similarly for component 3,

-

*,

w,(x,t) = 1(x).+3 + I. 5.+4

3.

+ * , 4 + + *3 m

I, 5. -- I, 9.

u,(x,t) = 1(x,)32.2 (8)

(7)

where these displacement vectors satisfy similar boundary

conditions as in Eq.(6).

Now we compute the generalized mass matrix for each

component which is derived as follows. Consider the

displacement vector for a given beam

w,(x,t) : XD ©(x)',(t) (9)

where () is the spatial function and N is the desired number

of mode functions. The velocity is

N. -

v(x) = X 4 (x)4() (10)
isl

and therefore the kinetic energy becomes

1 N. N. - -

T - # XX % [*@%)an (11)
2 : j=1

Or

l N N - -

T. - # XX m,53 (12)
i-1 j=1

where the generalized mass is defined to be

(13)

m, - f'(x)/x)an

and the integration is carried out over the entire system.

Therefore applying Eq. (13) to component 1 we obtain

L

m, = [PG)*(x)/x)4,

where p is the mass density per unit length of component 1.

For example, when n=3 in Eq.(2), we obtain

L

(14)

m, = [PA444,
0

L, 4.

*/ 1

| |: f |: 1-1

L,

m, = m, = [PA44.
0

L, x 1

I

= | p |-| dx, = |-| p L (16)

||#| ||".

L,

m, = [PA44.
0

L, 6

*/ 1

| |#| ||".

substituting in the appropriate values (Table 1)

1 1

5 6

[M] PiL, 1 : 1 (18)

G 7
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TABLE 1. BASIC DATA *

Component 1 Component 2 Component 3

(Box Beam) (Solid Beam) (Solid Beam)

Material Aluminum Aluminum Aluminum

E 68.95E+9 68.95E+9 68.95E+9

Volume 2768 2768 2768

Density

Base 0.0635 0.0335 0.0335

Height 0.018 0.009 0.009

Thickness 0.003175

Moment 9.13E-8 2.04E-9 2.04E-9

of Inertia

Area 5.64E-4 3.02E-4 3.02E-4

* All in S.I base units (Kg,m)

In like manner, the generalized mass matrices for component

2 and 3 are computed for m=6. Noting that there is no

coupling between the lateral and longitudinal displacements

we obtain,

1 l l l l 0
2 5 6 7

1 l l l l 0
2 3 6 7 8

| | | | | || 0

[M] = p,L, 5 6 9 10 11 (19)

' ' + + + 0
G 7 TO TI T2

+ 1 + + + 0

7 8 11 12 13

10 0 0 0 0 1

Changing subscripts 2 to 3, one obtains the definition for

[M]. We arrange matrices, [M]. [M], and [M], into the

system block diagonal matrix as

[M]

(20)
[M“] : [M]

[M]

We form the generalized stiffness matrix by expressing the

flexural potential energy for a- 'er-Bernoulli beam in

bending.

2

dw

U.- : |E|, |#|4,
2 dx

Substituting for w, as in Eq. (9), we get

(21)

s

1

". . ; XX % [**** (22)

1

* - XXX ki,' (23)

2 i j

where the generalized stiffness is defined to be

L.

k, :- | E. I.4,"t"dx, . (24)

O

Therefore, applying this Eq to component 1

L,

k, = E.I, [****,
0

L, E.I

- El +, las, - 4: (25)

0 L” L'

L, 2

k, = k, = E/I, | |:
0 Li

6x E

X + dx, #. (26)

Li Li

E.I

k, = 12+ (27)

Li

which results in

F

E.I. |4 6

[K) = + • (28)

L: L6 12

Similarly, for component 2 we arrive at

0 0 0 0 0 0

0 0 0 0 0 0

[K.] E.I, 0 0 28.8 40 51.43 0 (29)

” LT0 0 40 57.143 75 o|

0 0 51.43 75 100 0

|0 0 0 0 0 0

Again, changing subscripts 2 to 3, [K. is similarly defined

for component 3. Furthermore, assembling these matrices

into the block diagonal stiffness matrix we obtain Eq. (30).

Since we have formed the mass and stiffness matrix for

the decoupled system, the equations must be coupled by a

simple coordinate transformation. The transformation matrix
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[K,]

(30)

[K*] = [K.]

[K,]

[3] is a transformation from the dependent generalized

coordinate {{(t)}, into a set of independent generalized

coordinates {q(t)}

{(1)} = [B]{q(t)}.

This matrix, [B], is formed directly from the equations of

constraint for the system, which arise due to the force and

displacement compatibility requirements at the component

interfaces. These constraint equations may be written in

local generalized coordinates {{(t)}. Upon forming all the

constraint equations for each interface, we obtain a set of

linear constraint equations which can be written as

|A|{(t)} = {0}

where [A] is a (c x M) matrix of constant coefficients. Note

that c is the total number of constraint equations, and M is

the dimension of {{(t)}. Next, the matrix may be partitioned

as such

[A] = [A, A] (33)

where [A] is a square matrix of order (cx c). Furthermore,

Eq. (33) may now be written in the following form

[4]{(t)}, + [4]{q(t)} = {0}

where {q(t)} is a subset of {{(t)} which is chosen to include

the independent variables, and {{(t)}a is chosen to include

the dependent variables. This is achieved by choosing [A]

to be nonsingular. Next, Eq. (34) can be rewritten into the

following form

{(1)}, + =[A]'A, a(t)}.

Finally, the complete vector {{(t)} can be expressed in terms

of the independent subset {q(t)}, by supplying the identity

matrix where needed,

(31)

(32)

(34)

(35)

- [I]
{(t)} = #.|o - (36)

Therefore,

_ ] [I] (37)
[B] # |

which forms the coordinate transformation matrix [3] (Hurty,

1965).

Consider the case where the three link structure is in the

configuration shown in Fig 1. In general, the displacement

equations at the junction are

w(L) -j- u;(L) = 0

w(L) - u,(L) = 0 (38)

w;(L) = 0

w,(L) = 0 (39)

w/(L) - w (L.) = 0 (40)

w/(L) – w;(L) = 0 .

Equations (39) arise due to the assumption of infinite axial

rigidity. Equations (40) enforce that the component rotations

due to bending at the junction are equal. However, the links

are modeled as Euler-Bernoulli beams and therefore, in the

absence of shear deflection this rotation angle reduces to the

slope. The force equilibrium equation is

M(L) + M.(L) + M.(L) = 0 (41)

where M’s are the moments. This equation is further

simplified to

EI,w (L) + E.I.", (L) -- EJ, w;"(L) = 0 . (42)

In general, there would also be equations that would enforce

the shear and axial force at the junction, but again for our

assumptions these are neglected. These equations are now

evaluated and expressed in terms of {{(t)} as in Eq. (32),

where [A] is equal to the following constant matrix.

0 0 1 1 1 1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0 0 0

2 * 0 =1 + =3 −8 0 o 0 o 0 o 0

Li Li L. L. L. L.

21, \, f 61

#||##| 0 0 1 # # 6 o 0 | # # 0 | (43)
I, Li) (1,14 Li Li L; L; L. L.;

0 0 0 0 0 0 0 0 1 1 1 1 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 -1

2 * 0 0 0 0 0 00 =1 −8 =3 −8 0

La Li L., L., L., L,

Because there are 14 generalized coordinates and 7

constraints this means that there are 14-7=7 redundant

coordinates. The [A] matrix is now partitioned as indicated

Eq. (33). Let

G = 4, 312 - 4: G = 4, 31, - 4, (44)

G = 4, G. - are G. - 4,

where these are chosen to ensure that [A] is nonsingular.

Therefore, [A] is formed by taking the first four and last

three columns of [A], and [A2] is formed by taking columns

five through eleven of [A]. The transformation matrix [3]

can now be formed from Eq. (37), and is shown in the

APPENDIX.

[M] = [B]"[M* [B] and [k] = [B]" [K*][8]

Finally, the system matrices are formed by the

transformation defined below and are listed in the

APPENDIX. Once the system matrices have been

(45)



 

 



 



 

 





 



 





Coupled motion in the dynamic analysis

Of a three block structure

A Sinopoli
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A mathematical model is presented for the in-plane dynamic analysis of a structure composed

of three rigid blocks, simply supported on each other, in presence of dry friction. In order to

investigate the dynamics excited by a given ground motion, a Lagrangian formulation is

proposed, with displacements, velocities and reactive forces restricted in bounded fields, due to

the incompenetrability of the elements. Special attention is devoted to the modelling of the

impacts, and to the role of Coulomb friction during the smooth dynamics. Different failure

modes are obtained, characterized by a different participation factor of the degrees of freedom.

Regions of coupling between rocking and sliding-displacements can be identified, as a function

of the features of the excitation and of the friction coefficients. Survival domains decreasing

with time can be obtained. They seem to indicate that, in presence of an earthquake, excessive

relative displacements in the contact surfaces between the elements would be the most probable

cause of failure of such a structure.

INTRODUCTION

The dynamic analisys of structures made of rigid blocks has

been the object of many researches since the latter part of the

last century. The reason of such an interest was connected in

the past, to the possibility to estimate the peak acceleration

of an earthquake by observing the overturning of

monumental columns or tombstones; more recently, to the

necessity to evaluate the seismic stability and safety of

structures, ranging from nuclear plants, to elevated tanks, to

monumental buildings, like the Roman and Greek temples.

Particularly in Europe, the problem of mainteinance and

safety of the monumental patrimony has generated a

renewed interest, both theoretical and experimental, on this

argument.

In spite of the fact that monumental structures are made of

many blocks, very few papers tackled with the dynamic

analysis of multiblock systems. Certainly, this is due to the

complexity of the dynamic behaviour of such systems. In

part of "MECHANICS PAN-AMERICA 1993 edited by MRM Crespo da Silva and CEN Mazzilli

S185Appl Mech Rev vol 46, no 11, part 2, November 1993

fact, many efforts have been devoted exclusively to identify

a general stability criterion for the rocking response, induced

by a horizontal harmonic excitation on a single block on a

rigid ground (Housner 1963, Yim 1980, Spanos 1984, Hogan

1989, Sinopoli 1991). Therefore, not enough attention has

been devoted to the mechanical modelling of multiblock

StructureS.

The dynamic behaviour of a structure made of three rigid

blocks, simply supported on each other (i.e. a trilith: the

simplest scheme of a columnade belonging to a temple) and

excited by a sine wave ground motion, has been investigated

only by means of a single degree of freedom model (Allen,

Oppenheim et al., 1986).

However, the main purpose of a consistent mechanical

model is to identify the most relevant aspects of the

response, with minimum a-priori restrictions and to

recognize a "safe domain” for the given structure, i. e. a

domain in the in the load space, within which the structure

survives (tipically, in case of seismic excitations, the load

ASME Reprint No AMR134

© 1993 American Society of Mechanical"



 



 



 





 



 



 

 



 

 

 



S194 MECHANICS PAN-AMERICA 1993 Appl Mech Rev 1993 Supplement

both the failure modes, due to overturning and excessive

slidings, are expected for the coupling between the degrees

of freedom.

In effects, the slidings seem to be more important than the

rocking; but, the coupling unpredictable in terms of

dependence on the angular frequency, generates the coupled

FIG 12a. Maximum rotation and sliding for Ks=0.25.

peaks mentioned above so that relative displacements and

rotations must be considered as equally determinant in the

coupled motion for the collapse.

Such peaks recall the parametric resonance identified as a

feature of the response of a single degree of freedom model,

investigated by means of an analytical approach.

|
1

FIG 12c. Maximum rotation and sliding for Ks=0.5.

FIG 12d. Maximum rotation and sliding for Ks=0.75.

A 5-t-15 sl.

• 15-t-50 sl

D. 50- to 100 sl

t > 100 cv.

>

8 9 10 11 12 (a)

FIG 13. Survival domains for 6 - 0.6 and fix = 0.3.
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There, the character of the differential equations governing

the motion were determined by matching the equation

governing the motion of different mechanisms into a unique

equation, able to take into account the discontinuity

character of the dynamics (Sinopoli 1991).

But, in the present model, any analytical investigation is

not allowed. due to the large number of degrees of freedom

and the complexity of the differential equations

In Figs. 12a-d, the strong coupling between the rocking

and the sliding, for w larger than 3 rad/sec, can be observed

in detail, after a time span of 1000 sec.

From the considerations made until now, it follows that it

is difficult to give some criterion about the safety of the

structure, by analyzing the features of the motion. In fact, the

response of any degree of freedom is generally increasing

with the time.

Only one case has been found, for w = 6 rad/sec and Ks

= O.25, where the rotation of the right column seemed to

librate around the unstable static equilibrium configuration;

while, the other degrees of freedoms were oscillating with

amplitude slowly increasing with time. Therefore, the global

motion was unbounded in any case.

Probably, the most interesting result of this investigation

is the definition of a survival domain in the load plane

(w,Ks), where many and different regions can be identified,

characterized by different failure modes and by different

instant into when such a collapse occurs.

Then, it is possible to follow the evolution of the

boundaries of the safe region for the trilith with time; further,

it is evident that, for such a kind of structure, the probability

of failure is an increasing function of time, which reaches the

value one with the time increasing to infinity.

The role of dry friction coefficients

Given a time interval, the position and the global area of the

survival domain in the load plane depend on the geometry

and on the mass ratio of the system, and moreover, on the

contact law and on the performance of friction.

In fact, the main difference between the results of the

present study and the ones obtained with the simple rocking

model, is the loss of systematic trends of the dynamic

response with respect to the parameters of the excitation, due

to the presence of the slidings; therefore, it is expected that

the variations of the friction coefficient can modify the

features of the motion sensibly.

A further parametric investigation has then been

performed for different values of the friction coefficients and

of their ratio. Three cases will be presented here. The first,

case a) for for values of friction coefficients f, and ft,

respectively equal to 0.6and to 0.3; the second one: case b),

for values equal to O.6 and 0.6, and the third one: case c),

for values equal to 0.75 and O.25.

The variation of the survival domains for case c) can be

observed in Fig. 14 and compared with the similar one of

Fig. 13, for case a).

The areas corresponding to a long survival time have

disappeared, while the area of the regions where an early

collapse occrs are increased.

In order to understand the results obtained, let us observe

that the values of the friction coefficients for case c) implie a

decreased possibility to start the sliding during the smooth

dynamics. Therefore, it is expected that the value of the

maximum rotation increases with time until the first impact

occurs; at this instant, relative displacements between the

Ks

M

0,8

0,7 Ot-5 ov

0,6 • -s

0,5 A 5< t <15 cv.

0,4 A 5< t< 15 sl

* 15<t-50 sl

0,3

.D. 50-te 100 sl

0,2

0,1

O >

O 1 2 3 4 5 6 7 8 9 10 11 12 da)

FIG 14. Survival domains for 6 - 0.75 and k = 0.25.
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lintel and the columns can start as a consequence of the

shock.

However, the small value of the kinetic friction

coefficient does not allow the system to dissipate energy

enough, so that it is expected that the trilith collapses earlier

than in case a).

The comparison between the coupled responses, for the

three cases analyzed, is shown in Fig. 15 and 16, for a time

duration of five secondsGenerally, an increased value of the

static friction coefficient determines larger values for both

the maximum rotation and the relative displacement, except

for large values of K. (Ki = O.75).

On the contrary, the increase of the kinetic coefficient

determines reduced or equal values for both rotation and

sliding.

CONCLUSIONS

The dynamical behaviour of blocks structures, in particular

under an earthquake-type load, is a well developed field of

research, which has already given some significative results.

Much less developed appear the applications of these studies

to actual problems, by means of correct models able

3. 6. 9. 12, to

FIG 15a. Adimensionalized maximum rotation and sliding

for different values of friction ceefficients.

FIG 15b. Relative adimensionalized displacements for different

values of friction ceefficients.

FIG 15c. Adimensionalized maximum rotation and sliding

for different “ °riction ceefficients.

FIG 16a. Adimensionalized maximum rotation and sliding

for different values of friction ceefficients.

FIG 16b. Adimensionalized rotationss for different values of

friction Ceefficients.

FIG 16c. Adimensionalized maximum rotation and sliding

for different values of friction ceefficients.
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to simulate the actual behaviour.

Even in the few cases in which the importance of the

problem forced a systematic study parallel to the actual

works, like the restoration of the Parthenon, the dynamic

aspects have been somewhat undervalued, and the structural

analysis followed the quasi-static approach.

The present paper is an attempt towards filling this gap.

A model to investigate the coupled motion of a trilith with

the same geometric features of the columnade of the E3

Temple at Selinus (Sicily) has been proposed.

Special attention has been devoted to the modelling the

contact law and the impact problem. Some assumptions, due

both to the necessity to reduce the complexity of the study

and to still open problem, have been made.

A parametric investigation has been performed as a

function of the excitation parameters and of the mechanical

features of the system.

Collapse by overall excessive rotation is a rather

improbable failure mode under seismic loads; on the

contrary, both overturning and collapse due to excessive

sliding as a consequence of the coupled dynamics, seem to

be a mode of collapse, which requires only a time long

enough.

The effects of the variations for the values of the friction

coefficients have been analyzed.

Further, survival domains in the load plane have been

identified, the position and the area of which depend on the

duration of the time interval analyzed.
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are related by c, = y:R/(y – 1). Introducing an incompressible

pressure coefficient: Conc = (V3 - V*)/V', eq (1) then gives a

globally-valid expression for a relative temperature T = T/T.:

+++ - 1 ++M: cre. (3)

This equation gives the local relative temperature (and hence T)

in a compressible flow, once the local flowspeed V is known. The

local sonic speed is then given by: a = a. T.” In order to obtain

the local density and pressure, we first introduce the concept of a lo

cal relative stagnation pressure p, = p/p., where p is the local

stagnation pressure and p - the freestream stagnation pressure. The

local relative pressure p, and relative density 9, are then :

p = p/p- = p, T.” and 9, H 9/9. = p,/T, . (4)

For adiabatic, homentropic flows, p, is constant, i.e. pir = 1.0.

This applies everywhere if the FP approximation is used, but only

upstream of shocks if the Euler equation is used.

For the Euler equation, the computation of pressure and density

downstream of a shock, given the local flowspeed V, needs to take

account of thejumps across the shock and of the reduced stagnation

pressure p downstream of it. Let subscript 1 denote the local up

stream face of a shock, and 2 its local downstream face. The stagna

tion temperature is constant: rm = T2/T1 = 1.0. Thejumps in the

other flow properties are given by the so-called Rankine-Hugoniot

(R-H) relations. These can be expressed purely in terms of the local

shock-normal velocity V, entering the shock: V = W. W., with 9

the unit normal to the shock surface, oriented downstream. It is use

ful to introduce the local shock-entry normal Mach number: M.1=

V.1/a1, with an obtained from V= V, as above. The R-H normal

velocity ratio rv = V2/V-1 is given by:

rv = [1 + H+M: 1/(1 + H+) M'l. (5)

The other relevant steady-state R-H relations are then:

• Normal-velocity jump o, = V2 - V.1 = (ry - 1) W.1 .

* Density ratio ro = 92/91 = 1/ry.

• Pressure ratio r, = p,/p = [yM – H+]/[1+ H+]

• Stagnation pressure and density ratios r, = pa/pi and

rol = 9n/ou are both equal to (r,/r.')" -

To compute p and 9 at a point P further downstream of the

shock, eq (4) again applies, but now with the relative stagnation

pressure p, defined by the R-H stagnation pressure ratio: p., = , ,

this being computed at the shock on the same streamline on which P

lies (on the boundary S, V1 is thus the shock-entry velocity on S).

3.2 Field variables in an integral method

In addition to the local velocity vector V, it is convenient with an

integral method to define a flow in terms of the divergence and curl

of V, instead of using the thermodynamic variables. These func

tions are termed respectively the field source X = V. V andfield

vorticity T = V × V. For the Euler equation, we denote these func

tions by Xe and I*; they can be expressed everywhere purely in

terms of the flowspeed V and its derivatives, as we show below.

3.2.1 Field source in a steady, transonic “Euler” flow

For steady, adiabatic flows of an ideal fluid governed by the Euler

equation, conservation of stagnation enthalpy is expressed by (1).

The isentropic relation written as T/T p = (o/oup)", where

the subscript “up” relates to some point upstream, is valid every

where for a shock-free flow, or everywhere upstream of shocks in a

shocked flow; in these cases we can take the freestream T., g. as

the “upstream” values. For a transonic flow, this relation is also val

id along any one streamline downstream of a shock, but the values

T., o, on the downstream face of the shock for that streamline (see

below) then need to be taken as the “upstream” values for the down

stream part of the streamline. Thus for any streamline in a shock

free or shocked flow of a perfect gas we can readily obtain from (1):

y RT (o/or)'' = +(V:- - V'). (6)

Taking the streamwise derivative of (6) in any continuous region

of the flow (i.e. applying the operators. V where s is the local unit

vector of the velocity), and removing a factory-1, gives:

Q y-2 $.V 9 - #.

*(#) Qup = y.R.T. s. Wo/o

- * = – £.V1

: y RT ## - s.v., v. (7)

so that, introducing the local sonic speed a defined by a' = yjöT
- 1

= +(V:... – V*), we have:

102 - - # Wi"
G 5s " a? " (8)

The continuity equation for steady flow is V (ov) = 0, giving

V : V = – V. Vo/o = - (V/o) do/ös which, using (8) and

introducing the local Mach number M = V/a, becomes:

= v. v = Y : v1 v = }^2} = w 2%
X = V. V = # viv -# - M' , (9)

The field source relation X = M*óV/ös is valid in any non-dis

sipative part of a steady flow governed by the FPor Euler equation.

Note 7: The value of the steady-state Euler field source Xe can

also be derived from the steady-state (inviscid, non-dissipative)

momentum equation, which can be expressed in the form – VP/O =

v; V + Vx(VxW). Taking the scalar product of this equation

with the local velocity vector V = Vs gives - (V/o) dp/0s =

V. V; V*. Then, since p/o” is constant along a streamline upstream

of a shock and equal to a different constant downstream of the shock,

we have dp/ds = (yp/o)ôo/ös = a do/ös, giving X* =

- (V/o) 09/0s = W.V. V*/a’ = M’óV/0s, i.e. the expression

obtained in eq (9) from the (non-dissipative) equation expressing

conservation of stagnation enthalpy.

Note 8: The adiabatic (non-dissipative) shock normal-velocity

jump [oad, say] can be considered to result from traversing an

infinitely dense volume-source distribution X representing the shock

discontinuity: oad = V2 - V.1 = |X ds. Now, under the adiabatic

assumption we have from eq (1): a = +(V::... – V*); the

function M*6V/0s in (9) defining the Euler source can thus be seen

to be precisely the derivative w.r.t. s of a transcendental function F.

– –1 Vmax + V

Note 9: It then readily follows that the non-dissipative velocity

jump oad consistent with the non-dissipative Euler (or FP) equation

must be the solution, for a given entry value W.1, of the equation:

– Wmes Vmax + W.1 + o-d Vmax - V.

•.-#"(#### W.T.V. - (11)

(10)

Note 10: Equation (11) can be solved numerically, for any entry

speed V1, by using a calculus ofvariations approach or by the method

discussed in Sec 5.1; the resulting shockjump oad is not equal to the

R-H value o, = (ry - 1) W.1, and diverges significantly from it as

Vmax decreases (i.e. as the Mach number M. increases). [Example:

For M. = 0.5 corresponding to Vm. – 21 = 4.58, and a

shock-entry normal velocity of W.1 = 2.5 V. corresponding to

M.1 = 1.4555, the solution of (11) is oad = -1.42 V. while the R-H

jump is o, = -1.10 V. .] The reason for this discrepancy is that in the

interior of a real shock, the flow process is dissipative: the shockii

oad corresponding to the non-dissipative equation used in the
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region of the flow does not correspond to the R-H jump ov. If the

computed flow solution is to exhibit a realistic jump, the R-H value

o, = (ry - 1) V.1 corresponding to the computed local entry value

V.1 must be imposed extraneously. This is analogous to coercing an

inviscid flow to satisfy the physically observed Kutta condition by

extraneously supplying that model with the correct amount of

“vorticity” — the amount that would be produced by the (viscous)

Navier-Stokes equation under the same pressure field (see Note 6).

3.2.2 Field vorticity in a steady, transonic “Euler” flow

For notational simplicity, we confine our attention here to the 2-D

case. Upstream of shocks, the flow is irrotational, T=0, so the local

vorticity jump across ashock is the value of VX W = F = I,J on

the downstream face of the shock. Using Crocco's theorem and the

fact that the stagnation enthalpy is constant, it can be shown (Hunt

and Plybon, 1990) that the field vorticity at a point on the down

stream face of the shock is given by:

T. = (1 – M%)%io, (12)

where 361 is the streamline curvature at shockentry. Downstream of

such a shock, the flow generally remains rotational and, assuming

that dissipative processes are negligible everywhere outside shocks

(inviscid, adiabatic flow) the entropy remains constant along any

one streamline. The vorticity Is, however, varies along a streamline

in proportion to the local static pressure, p. Thus I./p = constant

= I./p2, or, using the relative pressure defined in (4), I* =

I,(pr/p.2) = T2(T./T2)”, where the relative temperatures T.

and T2 are evaluated from (3), purely in terms of the local

flowspeed V and the shock-exit speed V, on the same streamline.

4 NEW-GENERATION PANEL CODES FOR

STEADY, COMPRESSIBLE FLOWS

It was shown in Sec 3 that for an ideal gas flow governed by the

steady-state Euler equation, the divergence of the velocity—inter

preted as a local field source Xe—is given by (9). Expressions for

the curl of the velocity vector—interpreted as local field vortic

ity—for regions downstream of compression shocks, were given in

Sec 3.2.2. In recent years, a number of field-integral methods

(FIMs) have been developed for solving the full potential equation,

both for steady flows and for unsteady flows [e.g. Hu and Chu

(1990), Morino and Iemma (1993)]. In an FP approximation, the

field vorticity is ignored, and the field source X in (9) is considered

as a finite entity inducing a velocity perturbation. In all cases re

ported to date, the overall perturbation velocity has been evaluated

by performing afield integration over the region of space where Xe

has a finite value. This leads to a computational process with a large

operation count, comparable to that of conventional (differential)

CFD approaches. Like conventional CFD, FIMs have problems

with non-physical, “non-dissipative” shock jumps [see Note 10 at

the end of Sec 3.2.1]. They also suffer from the need to artificially

modify the equation to be solved—rendering it dissipative—in or

der to suppress the formation of expansion shocks which would

otherwise be just as likely to form as compression shocks in the ab

sence of dissipation. Such expansion shocks, while mathematically

valid, are not physically admissible in a dissipative (real) flow.

We now introduce a generalization of the full-potential FIM pro

cess to the complete steady-state Euler equation, and show how a

mathematical framework known as GENESIS enables the field in

tegrals for both source and vorticity "ansformed first into sur

face integrals, and then into a si" modification of the

boundary conditions for an r) pseudo-Laplace

problem. This sequence of li lved by the SAVER

algorithm described in Sec

4.1 The GENESIS identity for a stationary body

4.1.1 GENESIS for a field integral method (FIM)

GENESIS-GEneralized Nonlinear Extension of Surface Integral

Schemes—was first introduced in Hunt and Plybon (1990), and has

continued to develop [Hunt (1991a,b), Hunt and Adamson

(1992a,b,c)] towards a generalized methodology for the solution of

unsteady, nonlinear, multidisciplinary problems. We here outline its

basic principles for steady-state problems. First we introduce the

vector inverse-square operator defined in 3-D by K = F./4t re.

(in 2-D the operator becomes K = r./2t ri), where r is the line

vector drawn from a running point Q to a fixed point P, with both

points in a domain Q external to a body with boundary S (see

Fig.2). The outer boundary of Q is denoted by So.

F - | (ñ. F) K dS + | 6.5xx as
S S
+So +So

+ |v F. Rao |yx}xx an (13)42 Q

Fig 2. Running point Q in 2 : Fixed point P in 92.

For any arbitrary, continuous vector field F in 2, it can be

shown [Hunt, 1977] that the identity (13) in Fig 2 holds for any

point P in 92, or lying on the face of its boundary Sor So belonging

to £2. Ineq(13), the unit normal vector natarunning point Qon Sor

So points into Q, and the gradient operator Wis applied with respect

to the coordinates of the running point Q.

0 - (-i F. R as + |-ixFox KasS S

+ | (V.F.) K dø. * | (VxF.)xK do. (14)

9in. 9int

Fig 3. Running point Q in Qin, ; Fixed point P in 92.



Appl Mech Rev vol 46, no 11 part 2 Nov 1993 Hunt and Adamson: Knowledge-based shock modeling S203

We now consider the “fictitious” domain £2, in the interior of

the body, and hypothesize an arbitrary, continuous vector field F.

in 92nt (Fig 3). We let the running point Q now range over £2m and

its boundary S, but keep the fixed point P the same as above, i.e. Pis

still in 92, oron the face of its boundary Sor So belonging to 92. It can

be shown the identity (14) in Fig 3 now holds for the interior field

F. in 92nt, relative to the fixed point P(external to 92nt). In eq (14),

the unit normal nint pointing into the interior domain Qin at a run

ning point Q on S or So has been replaced by -n, (see Fig 3).

Suppose we first choose both vectors F in Q and F. in 92nt to be

identical to the uniform, “unperturbed” velocity W. . Adding (13)

and (14), with all field derivatives now zero, then gives:

W. - [a V. Kas + |axVoxx as - (15)

So _. 'So

Suppose we next keep F. = W. in Qin, as above, but now let

the field F in Q be equal to the overall velocity field V comprising

the sum of W. and the perturbation velocity W." induced by the

presence of the body boundary S. We assume here that the body is

stationary and that the normal velocity of the air at the boundary Sis

given by n : W = V.Bc. [For a solid body we will have W.Bc = 0,

and, in the general case, the total velocity field V in Q will be both

compressible and rotational.] Adding (13) and (14) now gives:

W = | (fi. V K ds + | (fix V): K ds

S +So S +$0

- |a. V.) K ds – |axy.)xx as
s s

+ |v V. K do + |v. V. Rao . (16)

Q Q

Note that V-W. at the outer boundary So, if that boundary is

sufficiently far removed from the body. Thus, using (15) and the

definition W = W. + W.", we obtain from (16):

W = W. + |a. W. R as + |ax% oxx as
s S

+ |v V. Rao + |v. V. Rao. (17)9 42

Writing the (solid-body) boundary condition on S as fi. W." =

– i. W. 4 Wing, and introducing afixed boundary source distribu

tion a = - n: V. + W.Bc, we finally obtain the GENESIS identity

for compressible, rotational flow over a stationary body:

Wren : |akas +
|ax%.oxx dS

S S

+ |v V. Rao | |v. W. Kao . (18)Q Q

If the total field V is incompressible and irrotational, (18) re

duces to the identity underlying the SAVER algorithm of Sec 2:

Wren = |g Kas + (19)|ax.): Kas -s s

• If the velocity field W is compressible but irrotational, (18) with

W x V = 0 forms the basis of a field integral method (FIM) for

the FP equation. In a FIM, the field source Xe is computed on

each field-mesh cell, using X* = M*0V/0s (see Sec 3.2.1.).

• For the transonic Euler equation, the field vorticity VxW in

(18), (see Sec 3.2.2), is zero upstream of shocks but not

downstream of shocks. This vorticity co-exists with the “full

potential” field source X to give a FIM for the Euler equation.

Note 11: If compression shocks are allowed to form spontaneously

during the iterations of the FIM, i.e. as a dense concentration of the

field source X, the shock will be smeared across some number of

cells of the field mesh, but even in the limit of zero cell size will not

have the R-H jump value (see Note 10 in Sec 3.2.1.).

Note 12: It is permissible within such a FIM to fit a compression

shock explicitly as a surface source distribution on the shock face,

with strength equal to the R-H velocity jump o, = (ry - 1) W.1 [see

Sec 3.1 J. We justify this (see Note 11) by hypothesizing that the

shock is contained in a “thin” but finite volume A, of thickness Öh,

say, and with a linear variation of F across that thickness, with slope

equal to ov/öh. The evaluation of the volume integrals for this shock

volume is performed separately from those for the smooth regions

outside the shock. In the limit as Öh -> 0 , the volume integral

| (V, V) K dA relating to the “Rankine-Hugoniot” volume source
A

distribution within the shock can be replaced exactly by the surface

integral k o, K dS, over the shock surface S.A. The contribution

from the volume integral l (VxW)xK d4 for the shock vorticity

vanishes if we assume that the velocity component tangential to the

shock is continuous across the shock. [The contribution from the

shock footprint, of width Öh on the body surface S, also vanishes.]

4.1.2 Transformation of field integrals to boundary form

With again o = Wisc — n : W., we can express (18) in the form:

Wren = Wr, 4. |akas + (20)|ax.): Kass S

where Wr is the nonlinear field-induced velocity perturbation:

War = |v V. Rao * |vXV. Kao . (21)

s2 Q

Suppose we are able to construct a field F such that throughout 92:

V. F = V. V and VX F = w x V . (22)

Then we will have, using (13):

War = |v F. Rao * | *****
Q Q

= F. - | (ñ. F) K ds - | (ñxF)x K ds : (23)

S+so s
+$0

If we choose to construct the field F such that F--0 sufficiently

quickly as the outer boundary So is approached, the contribution

from the boundary integrals over So will evaluate to zero at P. Sup

pose further that we introduce on the body boundary S the boundary

functions of and air defined by:

-

– n x F.

->

or = – i. F and air = (24)

We designate F an “equivalent vector field”, and or and air

“equivalent boundary source and vorticity distributions”: on theba

sis of (21) and (23) they are equivalent to the actual field functions

V. V and Vx V. For points P lying on S we can now write F. -

- orp n – aire x n . Thus (23) becomes:

VFP + Fe|o Kas + |** K ds

s S

|o Kast |** R as - ore n - aire Xh (25)

s S when P lies on S.

Thus thefield integrals defining the nonlinear field-induced per

turbation in (21) can be replaced by the surface integrals (plus local

contribution Fe] in (25). Putting (25) in (20) and rearranging gives:

W." – F = |o + or)Kds + |ax'. + air) x * 26)
s s
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or, finally, the equivalent pseudo-Laplace problem:

When = | Ras + |**as
s S

- |g Kas + |*** dS (27)

s s

where we have introduced the notation:

W: - V." – F

(pseudo-Laplace perturbation velocity)

o' = a + or = -ā- W. H. V. c + or (28)

(fixed, given or)

a = fix V." + G = fix V."

(to be determined by relaxation).

Equation (27), representing the compressible/rotational field

problem, is formally identical to the SAVER identity (19) represent

ing the linear “Laplace” (incompressible, irrotational) problem.

Thus, to summarize, in order to solve the nonlinear Euler equation:

• We construct a vector field F in 2, with F-0 sufficiently

quickly as the outer boundary So is approached, and such that

V. F = W. V and W x F = W x V throughout £2, these field

functions being defined for the nonlinear Euler equation, purely

from the computed V, as in Secs 3.2.1 and 3.2.2.

* The pseudo-Laplace problem (27), which is a transformation of

the general nonlinear form (18), is solved by first fixing the

surface source on S as o' = - n: V. + Vec + or [i.e. the

normal-velocity boundary condition for the pseudo-Laplace

problem is that of the physical problem augmented by the

boundary-condition increment or = - n: F ]. The surface

vorticity ai' is then obtained by SAVER, coercing ai' at each

iteration to be equal to the currently computed value fix Ven.

• At convergence, the nonlinear velocity field is given by W =

W. + W: + F , with W: the solution of the pseudo

Laplace problem (27); in particular, in the 2-D case the

tangential velocity at a point P on the boundary is given by:

WP = V P - a FP . (29)

* During the iteration, the unconverged values We are used to

update the Euler field source V. F = V. V and vorticity

Vx F = V × V defined by (9) and (12). These values are then

used to construct the next estimate of the vector field F in 92.

The overall cycle defined above is repeated to convergence.

* Three different ways of constructing F, either nominally

exactly or approximately, are outlined in Sec 5 below. Note that

a discontinuous F can be constructed such that no explicit

source-sheet representation of a shock is required: even this can

be represented fully by “equivalent” surface distributions on S.

* In the case of lifting configurations, the overall surface S

carrying the “equivalent” boundary source and vorticity

distributions also includes the vortical wake surface(s)

emanating from the body. These wakes may either be assumed

to be “rigid” (pre-defined location), or they may need to be

“relaxed” to their rolled-up, force-free position (Hunt, 1978).

5 CONSTRUCTION OF THE EQUIVALENT FIELD F

The construction of a vector field F whose divergence and curl

match those of the physical field, either approximately or nominally

exactly, is fundamental to GENESIS. In the case of an unbounded

domain Q with outer boundary So at infinity, it is convenient to

construct F such that F-0 sufficien" quickly as So is ap

proached; this extra condition is no a bounded domain

(internal flows). Only unbounded considered here.

Three distinct methods have been devised for the construction of the

equivalent vector field F.

The Semi-Analytic Method is outlined in Sec 5.1. This method

is approximate: it introduces a new field, called the semi-analytic

field, which is “close to” but different from the Euler field. The

Semi-Analytic Method reduces the flowfield problem to a set of lo

cal, multi-valued, algebraic equations with a clear distinction be

tween subsonic and supersonic local candidate solutions : this

enables compression shocks to be modeled as exact discontinuities,

and expansion shocks to be explicitly suppressed from the solution.

This method involves no field evaluations: all computations are per

formed on the body boundary. The error field (the difference be

tween the semi-analytic field and the Euler field), can be reduced or

eliminated by one of the other two methods described below.

The Uncurling Method evaluates the field functions Xe and I.

of Secs 3.2.1 and 3.2.2 on afield mesh covering the region of Q

where those functions are non-zero. “Uncurling” then reduces these

to an equivalent field vector F, and then to boundary source or and

vorticity air – no field integrals are evaluated. The Uncurling

Method, outlined in Sec 5.2, is nominally exact: the computed re

sult approaches the exact Euler solution as the field mesh is refined.

The Profile Method computes the exact Euler field values X.

and I* on the boundary S, but approximates their functional varia

tion along lines drawn outwards from S, using shape functions with

pre-defined profile shape. The equivalent field vector F is eva

luated on S as the solution of an ordinary (vector) differential equa

tion expressed on S. This solution is formed piecewise as the sum of

a particular integral and a complementary function, and is effected

through the use of combined marching and shooting techniques; this

forces continuity of F between the beginning and end of the march

ing range, but allows a shock to be treated anywhere in the range as

an exact discontinuity with the physical (R-H)jump condition. With

this method, all computations are performed on the body boundary.

Both the Profile Method and the Uncurling Method can be ap

plied either to solve the complete Euler field, or to eliminate the er

ror field arising from application of the Semi-Analytic Method.

5.1 The Semi-Analytic Method

The Semi-Analytic Method for the construction of the equivalent

field F was developed specifically to deal with the difficult prob

lems associated with shock waves and the mixed elliptic/hyperbolic

equation types arising in transonic flows. It is an approximate meth

od, generally requiring correction by the Uncurling Method of Sec

5.2 or the Profile Method of Sec 5.3. Numerous variants of the

Semi-Analytic Method are possible (Hunt and Adamson, 1992a),

all based on identifying a suitable perfect (vector) differentialfunc

tion.The variant described here isknown as the D-Field approxima

tion. We consider only the 2-D case in a cartesian x,z system with

unit vectors i, k ; the extension to 3-D is straightforward.

In the D-Field, the local flowspeed Vis replaced by itsx-compo

nent U = i. V, and its streamwise derivative is replaced by anx-de

rivative. The Euler source X = M*0V/ös is thus approximated by

the D-Field source X = M36L/0x, where Mo is the D-Mach

number defined by Mo = U/ap . Here, ap is the D-sonic speed de

fined by a = +(V::... – U”), approximating the Euler sonic

speed given earlier by a = +(V'. - V*). Moreover, the Euler

field vorticity I, is replaced in the D-Field by a spurious vorticity

I = I, j, defined by I = M30U/dz. The purpose of introduc

ing this spurious vorticity is to allow an equivalent vector field F, to

be constructed analytically as a perfect differential function.
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5.1.1 The perfect differential defining the D-Field

Consider the vector field function F, defined by:

F = F (U)i with F. (U) = X(U) + i. (30)

= —— /*me: t " –where A(U) - #|-- Vmax - U. ".

- 2 Vmax - U.
and A. = #|-- W.T. U.T + ". -

It is easy to show that 0F0/0U = 04/00 = M. , from which it

immediately follows that the divergence and curl of F, are respec

tively the functions Xo and I, defined above. It can also readily be

seen that Fo(U) -> 0 as U -> U. , i.e. on the outer boundary So.

For a solid body with local unit normal n = n, it n, k and tan

gent s =jxi = n.i-n, k, the vector velocity on smust satisfy

W = W s, so that U = n. V. From (24) and (30) we have a F =

-n. Fo. Finally, from (24) and the relation W: - V." – F in

(28), we deduce in the 2-D case that W = W - ar. Combining

these equations for U, V, and a F gives the following nonlinear

(transcendental) equation at a point on S:

U - n: F, (U) = U' (31)

where U" is defined by U" = n. V. . [This is not thex-component of

the pseudo-Laplace velocity V since the normal component V. in

the equivalent pseudo-Laplace problem is not in general zero.]

Equation (31), giving the value of the nonlinear velocity compo

nent U as an implicit function of the pseudo-Laplace quantity U' for

given values of n, and Vmax, is termed the D-equation. The generic

graph of the D-Equation for some point P is shown in Fig4. Only

the physically relevant part of this graph is shown—there are other,

non-physical branches corresponding to values of U greater than the

maximum possible value Vmax. We also consider here only positive

values of U, thus limiting the present discussion to attached flows

(this is not a necessary assumption). One of the key processes in the

* * * * * * * * * * *| Physical A • 'AAAAAAAAŻ

% w/v) for given values . Y % U = 0." (output) ,
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z where 2 t % A.A.A.A.
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Fig 4. Generic graph of the D-Equation.

GENESIS algorithm is solving (31) for U at each point on S, given

the current estimate of U". A method of solution is outlined in Sec

5.1.4, but first we need to address the problem of the existence or

“feasibility” of solutions of (31) at every point on the boundary.

We see from Fig 4 that a solution U of the D-Equation can exist

at a point P only for a pseudo-Laplace value U" which is less than a

local limit value U. . For given values n, and Vmax, it can easily be

shown that, at this limit value of U", the corresponding “D-critical”

value Ur of U [indicated by T on Fig4; see also Note 14 below] is

given by Ur = u Vmax, where u is a local geometric constant:

a = (1++ nā)". Inserting u = U, into (30) and (31)

gives the maximum feasible value (limit value) of U' at P as:

U = uV. - n: @.. + Ar) (32)

-

..]
It is convenient to consider the pseudo-Laplace tangential veloc

ity W. as the sum of the “Laplace” tangential velocity and a tangen

tial velocity increment associated with the nonlinearity of the

D-Field, as represented by the equivalent distributions or and air

defined in (24). We denote by V', the unperturbed Laplace solution

[i.e. the local tangential velocity obtained by SAVER with or = 0 in

(24)], and by V', the field-induced increment in the pseudo-La

place tangential velocity when the finite (“compressible”) value de

fined by (24) is used for or :

V." : V: - % (33)

Thus the x-component of the tangential velocity increment [i.e.

multiplying (33) by n, l is given by:

U# = U - U. .

where Ar(Vmax, n.) = +I"|

(34)

From the definition of the local limit value U in (32), it follows

that the local maximum-feasible increment in the pseudo-Laplace

solution, due to the boundary-condition increment or, is given by:

UFL = U - UA . (35)

Note 13: For a given “shape” of the distribution Fo evaluated on

S, the local increment U. in (34) is proportional at any point P to the

value of or = -n, Fo at that point: if we scale the entire distribution

FD (and thus or ) by a constant factor, rr say, the entire distribution

U will scale by that same factor. This follows from the linear nature

of the pseudo-Laplace field. Thus, given the values Fo and UF at a

particular point, we can write a proportionality relation at that point:

6U./6F = K = U./Fo . (36)

Note 14: The “D-critical” value Ur defined earlier as Ur = u Vmax,

with u = (1 ++T n: ) "...reduces for a horizontallocal boundary

(i.e. n = 1) to U = y/# W.; this is identical to the critical

speed for the Euler equation, at which the local Mach number has unit

value. This justifies the use of the term “D-critical.”

5.1.2 The exceedance parameter defining the flow state

It is now convenient to introduce the concept of a local exceedance

e', defined at a particular point by:

e' = U - UFL = U - U; . (37)

We denote by e. the maximum value of e' found on the body

boundary during a particular iteration [i.e. the most positive value

detected in the pseudo-Laplace computation: e1 = max(e')]. Sup

pose that this maximum is detected at a point P.

Except for P., there will be two relevant can'

U at each point P. These are a candidates

Blutions for

*n Out
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(marked as X in Fig 4) and a candidate supersonic solution U.up

(marked as Y). At Pr, these two candidate solutions will coincide

exactly, both being equal to the local D-sonic (D-critical) speed at

that point: the point T on Fig4 thus corresponds to a point of contin

uous transition between D-subsonic and D-supersonic states.

The value of the maximum exceedance et defines the global

state of the nonlinear flow. Three possibilities exist for the value of

the maximum exceedance: e1 = 0 [i.e. U" = U at one or more

points on S, implying the limit of global feasibility]; e < 0 [i.e.

U" < U, everywhere, implying global feasibility]; e > 0 [i.e.

U" > U at one or more points, implying global infeasibility].

* If ei = 0 when the subsonic candidate U.ut is taken at all

points, the flow is subsonic D-critical, sonic at P. We call the

unique freestream Mach number at which this condition occurs,

the “subsonic D-critical Mach number”, M:t. .

* If e = 0 when the supersonic candidate U.up is taken at all

points, the flow is supersonic D-critical, sonic at P. We call

the unique freestream Mach number at which this condition

occurs, the “supersonic D-critical Mach number”. M.:, .

* If e! = 0 when the solution has candidates of both types,

arranged quasi-physically, it is a feasible D-transonic flow.

* If e < 0 when U takes its subsonic candidate value at every

boundary point, the flow is fully D-subsonic.

* If e < 0 when U takes its supersonic candidate value at every

boundary point, the flow is fully D-supersonic.

* If e > 0 (i.e. U"> U at one or more points), the overall

flow is infeasible, and some adjustment is needed to the

underlying hypotheses: this is discussed in Sec 5.1.3.

Note 15: The physics of a real flow requires that a transition from

a subsonic state to a supersonic state be smooth (no expansion shock).

Note 16: A transition from a supersonic to a subsonic state will

usually (but not always) occur through a discontinuity. (There is the

possibility of a shock-free transonic flow.)

Note 17: The difference XY in Fig 4 between the D-subsonic and

D-supersonic candidate solutions at a point with horizontal surface

tangent (n3 = 1) is equal to the “adiabatic shock jump” obtained by

an alternative method in Note 10 in Sec 3.2.1.

Note 18: As discussed earlier, the Euler equation lacks the

dissipative mechanisms needed to suppress the formation of (non

physical) expansion shocks. The extraneous enforcement of

smoothness through a D-sonic point Pr – only for a subsonic-to

supersonic transition, and the logic governing the choice of candidate

(Sec 5.1 4), justify the use of the term “knowledge-based” for the

semi-analytic GENESIS approach described here.

5.1.3 Scaling of infeasible flows

As indicated in Sec 5.1.2, the entire pseudo-Laplace solution is

considered to be infeasible if for any boundary point the computed

field-induced increment U = n. V', exceeds its local maximum

feasible value Uk, , i.e. if e > 0. If this occurs, some adjustment

needs to be made to the parameters defining the pseudo-Laplace

problem; specifically, some adjustment to the boundary-condition

increment or = -n, Fo, and thus to Fo, is needed. The required

change in et [i.e. the reduction required in U at the maximum-ex

ceedance (D-sonic) point P, to make the pseudo-Laplace solution

“feasible”] is clearly equal to -e-. The determination of the corre

sponding adjustment needed for Fo is based on the “proportional

ity” relation (36) presented above. At P., (37) and (36) become:

6Ukr ** Ukr
and - - -

For6F

For a D-transonic solution (defined in Sec max fixed

r

e = Ukr – UFL = U - U. (38)

(i.e. prescribed M.), the only free parameters available are the un

known shock locations. We shall not considershock relaxation here,

except to note that a simple technique can be envisaged, determin

ing the sensitivity of ek to the shock location.

If, on the other hand, we are attempting to determine a D-critical

solution as defined in Sec 5.1.2, or a D-transonic solution with a

single, prescribed shock location, we can see from (30) that the only

parameter available to modify Fo, given the body geometry, is Vinax.

This is related uniquely to the freestream Mach number M. through

(2). Differentiating the first equation in (38) wr.t. Wmax, then using

the second equation, gives a sensitivity relation at Pr:

de: - 6For - 0U.

3W. T * 5V. 3W. (39)

Introducing the parameters (written here for U. = 1.):

= —— 2 =——
Zr H(K, + nā), Y. V: - 1

Vmax - 1 – 1/2

1 +

B.r = {n (: #) * Dr = B.r - ur,
A r

we can show from (30), (32) and (39) that the first and second deriv

atives of e1 w.r.t. Vmax are given by :

de; / 6V. = Xr (B. + Dr + War. Y.) - ur

and d’e; /öV::... = -2%r Y. .

This allows the required change in Vinax to drive e' -- 0 to beob

tained by a first- or second-order Newton-Raphson iteration cycle:

Vmax= Wmax + 6V., with ÖV., at each iteration defined by:

(41)

6V. = - mo (1 + momu). (42)

2nd order term

Here mo, and m, indicate ratios of et and the derivatives in (41):

e; 3’e; /öV:.
-- -- 43

n = 5:# and m =# 43)

This cycle is iterated until Vinas converges. At convergence, the

resulting scaled value of U at the maximum-exceedance point P.

will be precisely equal to the new, local limit value Uk, correspond

ing to the converged Vmax value. The entire U and V' distribu

tions, scaled in the same ratio, rr say, will then be “feasible”. The

new, “feasible” freestream Mach number is obtained from (2) as:

M. = (+6.-1))" (44)

To determine the scaling ratio rr, we insert the new Vinax into

(30) to obtain the “scaled” value of Fo at the point Pr. The ratio rr of

the new Fo to its previous value is then applied to (linearly) scale the

entire UK and V' distributions. Added to the (Laplace) U. dis

tribution, the scaled U. gives a globally feasible U" distribution.

The nonlinear D-equation (31) now needs to be re-solved for the

(subsonic or supersonic) value of U at each point, given this (scaled)

feasible distribution U" and the new Vinax (i.e. the new M. ).

5.1.4 Solution of the D-Equation at each boundary point

Given Vina, and a feasible estimate of the pseudo-Laplace U" dis

tribution (i.e. one which nowhere exceeds its local maximum feasi

ble value U.), we need to evaluate the subsonic candidate solution

Uub or the supersonic candidate solution U.up at every point on the

body boundary. These are distinct roots of the nonlinear (transcen

dental) D-equation (31) at each point, with Fo defined by (30).
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The choice of which root to select at each boundary point is a

knowledge-based decision. If the flow is fully D-subsonic, as de

fined in Sec 5.1.2, the subsonic root should always be taken. If the

flow is D-transonic, the supersonic root should be taken for points

lying downstream of a D-sonic (maximum-exceedance) point Pr

but upstream of a compression shock; all other points take the sub

sonic root. The choice of root at a particular point may vary as the

iteration proceeds and the location identified for P. varies.

GENESIS uses a 2nd-order Newton-Raphson scheme to solve

(31) for U-bor U.up at each point, given the pseudo-Laplace dis

tribution U". The initial estimate of U to start the iteration depends

on the local U' value, and is determined adaptively, as follows.

If U is close to its local limit value U [Fig 4 ), then U will be

close to its D-sonic value Ur = u Vna, ; a function of the form

U = Ur(1 +A) is therefore used to give an initial estimate of U.

Replacing U in (30) by this form and inserting in (31) allows a pow

er-series expansion about point T in Fig 4 to be developed, relating

A implicitly to aproximity parameter A" = e/Ur, where e' is the

exceedance parameter defined by (37). The assumption that A is

small allows the series to be inverted, giving A explicitly as a sim

ple function of A'. We take A > 0 to get Uup, otherwise A = 0.

If the proximity parameter A' is not small, the linear approxi

mant U = U - Upo is instead used as initial estimate, with the ori

gin shift Up, defined by U. = -ā- n: as shown in Fig 4.

Starting from this initial estimate, the Newton-Raphson iteration

is defined by U = U+60, with öU defined at each iteration by:

6U = — mo (1 + moimm) (45)

with now: 2nd order term

n; Fo – U + U' y – 1 U n, W.Y
= ~#–+– and m, , = –- || --': ) (46

1701 m1 1721 2 m i \ a, (46)

in which m = (n, U) /a: – 1 and a: = +(V:... – U”), with

Fo defined by (30) using the current estimate of U. The adaptive ini

tialization described above ensures that U., or U, at each point is

obtained to machine precision in two or three iterations, for a given

U’ distribution. At convergence, the nonlinear D-Field tangential

velocity is obtained from the pseudo-Laplace solution, using (29).

5.1.5 Example solution of the D-Field

A transonic solution of the D-Field for a non-lifting NACA0012 air

foil, obtained numerically by the GENESIS Semi-Analytic Method,

is shown in Fig 5 below. The figure also shows the subsonic D-criti

cal solution and the linear (Laplace) solution VA .

local M = 1.0

(M. - #2")

x (unit chord)

i l I

j 1.0

NACA0012, Q = 0, D-Field.

No correction for spurious vorticity

—1– 1– l —i.

Fig 5.

Note that no correction for the spurious vorticity I, =M30U/öz

implicitly present in the D-Field has been applied in Fig.5: without

correction, this solution can therefore not be interpreted as an accu

rate Euler solution. Generally, a correction needs to be incorporated

within the Semi-Analytic Method to annihilate the spurious vortic

ity. Two corrective methods are discussed in their own right in Secs

5.2 and 5.3, and then as part of a composite method in Sec 5.4.

D-transonic

t

t

* Lowlace (M. = 0)

t .

D-sonic location shock location

. x (unit chord)

1 | l l |

0.0 '*'I 1.0

Fig 6. Pseudo-Laplace solution V: for D-Field,

before application of the correction - a F

l l I l I

0.4 'XT

The pseudo-Laplace solution corresponding to Fig 5 is shown in

Fig 6. It can be seen from Fig 6 that the D-critical pseudo-Laplace

solution lies close to the actual Laplace solution V., and that even

the transonic pseudo-Laplace solution itself is relatively close. Most

of the difference between the nonlinear solutions in Fig 5 comes

from (29), i.e. the final application of the tangential correc

tion -aor . The small departure of the pseudo-Laplace solution

from the actual Laplace solution is responsible for the rapid conver

gence characteristics demonstrated by the GENESIS Semi-Analyt

ic Method. In fact, a relatively good result is obtained for D-Field in

the first iteration of the overall algorithm [i.e. starting with the La

place value U = n, VA for U in (30)], with complete convergence

generally in about three or four iterations. The results shown here

were obtained in about one second of CPU time on a 486 personal

computer, using a non-optimized pilot code written in ADA.

5.2 The Uncurling Method

“Uncurling” offers a nominally exact means of constructing an

equivalent field F, given the Euler values X and I of Secs 3.2.1

and 3.22 on afield mesh external to the body. The process is out

lined here for the 2-D case. We suppose that Xe and I* = Ie j are

known at each corner point X on the “active mesh” shown cross

shaded in Fig 7, and are numerically zero everywhere outside that

mesh (e.g. on the “passive” and “polar” meshes shown in the figure).

passive mesh

active mesh #. polar mesh

UPPER FIELD

LOWER FIELD

Fig 7. Active, passive and polar meshes used for

the (nominally-exact) Uncurling Method.

A genericcell of arbitrary shape is shown in Fig 8. The values of

Xe and Is are known at its four vertices. From these eight values,

bilinear approximations X(5, 8) and T(3,5) shown in (47) can be

derived for this cell, using local cartesian coordinates 5 and & mea

sured from corner A (e.g., a least-squares fit could be used]. These

bilinear functions will not generally match the 8 known corner val

ues precisely, as only 6 coefficients are available." - functions X
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Equations (54) possess a vector complementary-function F.

such that W. Fee = 0 and VXFer = 0 for any constants A, B :

Fer (0) = A cosač + B sin aff

Ferg(0) = Asinač – B cosač.

If a is non-integer (i.e p non-integer), For will be discontinuous

across 6 = 2n -> 0; the components of the discontinuity are:

are - F. Go-roo-san" -ad-comme,

AFCrs = Forg (2n)- Fcrg (0) =A sing 2n + B(1 - cosp27).

Suppose we now approximate the (known) functions ref>. (6)

and ref Tet (6) on panel j by quadratic representations:

(55)

ref>et = X0 +X16" +X26'”; ref Def = To + T16' +I, 6” (57)

with each coefficient constant on panel j, and with 6' measured

from its midpoint (positive clockwise). We next form a quadratic

vector particular integral Fr. = Frt, * + Fr15 6, defined by:

Frig(0)=F, + Fn6' 4 F,6”; Fr.(0)=F., + F-10' + F-16" (58)

We force Fr. to be an exact solution of (54) on panel j by insert.

ing (58) in (53) and matching the coefficients of r. v. Fr. and

retVX Fr1 on the reference circle with those in (57), to give :

F* = - T./a; F.1 = (2F, -X1)/a;

F* = -(F.1 + To)/a; F.2 = - X2/a ;

Fm = -(2F2 + T1)/a ; Fo = (Fm - Xo)/a.

We can now add to the particular-integral vector Fr. , locally on

panel j, the complementary function vector Frö), with the local

coefficients A, B in (55) chosen to make the resulting vector

Fet = Fr' + Fe, at entry to panel j equal to that at exit from panel

j-1 (unless a shock is present: see Note 22 below). This process is

repeated from the first to the last panel on the body, to form a vector

F. which is Co-continuous for 6 = 0 – 27 but discontinuous

across 6 = 2x -- 0. Finally, we globally add the discontinuous vec

tor F.(6) with global coefficients A,Bin (55) now chosen to force

AF, in (56) to exactly cancel this remaining discontinuity in F.I.

(59)

Note 22: Only a slight modification is required when shocks are

present. These are treated using an argument similar to that presented

in Note 20 for the Uncurling Method. Suppose a shock exists at the

junction of panels j-1 and j, with required velocity jump A.V.

Then, instead of selecting the local coefficients A, B in the additive

complementary function For(6) for panel j so as to make the vector

F.1 entering panel j continuous with that exiting panel j-1, as

above, we enforce a vector discontinuity AV between j-1 and j.

Note 23: The Profile Method can be improved by constructing n

vectors Fet, instead of only one. This enables n - 1 normal

derivatives of Xs and Is to be matched on S, as well as their values.

5.4 Composite GENESIS: Correction of semi-analytic fields

The Semi-Analytic Method of Sec 5.1 provides rapid solution of an

approximation of the Euler equation. The solution (e.g. the D-Field)

has three errors: the spurious vorticity I, differs significantly from

I*, the Euler vorticity; the field source X, differs somewhat from

Xs, and the shock jump differs somewhat from the R-H value, ov.

We can remove or significantly reduce these errors, by combining

this method with the Uncurling Method or the Profile Method.

The required Euler source X and vorticity I. can be expressed

as the sum of a semi-analytic field and a corrective field. Rather than

restrict ourselves to the particular case of the D-Field, we use here a

more general semi-analytic field F.A = FA(U) i [Huntand Plybon,

1990]. We use the symbol m to denote the pseudo-Mach number

U/c for this field, with c a general pseudo-sonic speed [Hunt and

Adamson (1992a) also define a C-Field, with c = a- = constant.]

Thus we have in this more general semi-analytic case:

Xs = m^óU/dx + Xcossand T = m^3U/öz + Icosa (60)

At a point P, where the velocity is W = V s with s = s., s, the

local streamline unit vector, let the streamline curvature be 3%, with

% > 0 when the local streamline is concave when viewed from the

body. It can be shown that XcoRR and Icons at P are given by:

(1–m’s?)2. – m”[C,DV, 4 s, (3GW, – #I.)]

(61)

2coss

(1-m’s?) I + m”[C,36V – S,(DV – #2.) I

where C2 = s! – s; , S2 = 2 s.s., and DV = d.V./ds is the local

velocity gradient evaluated in the direction s. The Euler values Xe,

Is, and thus the corrective fields 2coak, Icork in (61), can be eva

luated everywhere, as before, from the current estimate of W.

A corrective field vector Fo: equivalent to 2cosa , Icon" can

now be constructed, either nominally exactly (by the Uncurling

Method, Sec 5.2), or approximately (by the Profile Method, Sec

5.3). The composite equivalent vector F is then the sum of the

semi-analytic and corrective fields: F = FSA i + For . The (com

posite) equivalent boundary distributions are thus given by:

I.CORR

or = - n, FSA + OcoRR and alr = - n: FSA + alconk (62)

where OCORR = - n FcoRR and 0CORR = - s: Fross -

When the Semi-Analytic Method is based on the D-Field, i.e.

FSA = Fo [eq (30)], the procedure is almost exactly as in Sec 5.1,

with the exception that, given the currentestimate of the pseudo-La

place function U", the D-Equation (31) to be solved at each point for

Umb or U.up is now replaced by the composite D-Equation:

U - n: F, (U)+ U.ors = U" with U.ors = n.axons . (63)

Here we are still using the samedefinition of the pseudo-Laplace

function U" = n. V', but with W. [i.e. the pseudo-Laplace tangen

tial velocity] now computed by SAVER with the composite bound

ary condition (prescribed source) V. = or = -n, FSA + oconk.

This composite D-Equation can more conveniently be written:

U - n: Fo(U) = U" where U" = U - U&oss . (64)

The generic graph of (64) is identical to that in Fig4, but with U'

replaced by U". Thus it is now the maximum feasible value of U"

which is defined by the function on the rh.s. of (32). Hence the local

maximum-feasible value (limit) of the pseudo-Laplace function U",

again symbolized as U. , is defined for the composite D-Field by:

U. - AWas: - n? 0. + Ar) + UCons - (65)

The maximum feasible increment in the pseudo-Laplace func

tion U" due to the (composite) boundary-condition increment or,

again symbolized as Uku, still has the same symbolic form as (35),

but with U now defined by (65). The local exceedance parameter

for the composite field has the same form as (37).

The scaling process defined in Sec 5.1.3 for “infeasible” flows

[i.e. the adjustment of M. when, for at least one point on the bound

ary, U" exceeds its local maximum-feasible value U – now de

fined by (65)] is still fully applicable for the composite field, if the

function U£oRR in (63) and (65) is obtained using values established

at the previous iteration, and is regarded as frozen for the current it

eration. Once a (transonic) problem has been rendered feasible, the

point P, where the maximum exceedance e' = max(e')=0 occurs

is now the sonic point of the composite field, i.e. the Euler field.
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Inserting the (scaled) pseudo-Laplace function U" and the cur

rent estimate of UgoRR into the second equation in (64), gives a new

estimate of the (feasible) distribution U", which then allows the

(Euler) velocity field V to be updated (Sec 5.1 4). The value of U

for the composite field (i.e. for the Euler field) is obtained at every

point on the body boundary as the local subsonic or supersonic can

didate solution U., or U.up of (64); this is done exactly as described

in Sec 5.1.4, but with U" in (43) now replaced by U". At conver

gence, the tangential velocity in the composite (Euler) field is ob

tained from the pseudo-Laplace solution, using (29) with the

tangential velocity correction air now defined by (62).

6 SUMMARY

We have described the current status of the evolving GENESIS

methodology. The GENESIS semi-analytic method offers a totally

rational, boundary-only, nominally exact solution of a field approxi

mating the transonic Euler equation, with a precise treatment of

compression shocks and explicit suppression of expansion shocks.

Uncorrected 2-D transonic results have been presented for this

method, demonstrating its high speed and fidelity. Two corrective

methods were introduced for the annihilation of the error field re

sulting from this semi-analytic method: one of them is nominally

exact, and involves simple computations on a field mesh, the other is

itself approximate, but involves only boundary computations. A

proposed composite method embeds either of these corrective

methods within the iteration cycle of the semi-analytic method. This

offers the prospect of accurate, 2-D transonic Euler solutions for

lifting bodies, with physically correct shock treatment, in a few se

conds CPU time on a personal computer.

The extension to three-dimensions appears straightforward,

building upon the existing power, flexibility and ease of use of the

various 3-D panel codes available to the aerospace community.

GENESIS could merely modify the boundary conditions satisfied

by these existing codes, but significant advantage would be gained

if the SAVER methodology were used to replace their existing sin

gularity representations and solution algorithms. Theresulting code

would offer transonic 3-D Euler solutions for little more CPU time

than current linear computations, for the same configurations.

Extension to arbitrary, unsteady motions also appears achiev

able. The mathematical identity underlying GENESIS relates to an

arbitrary vector field, and can be applied equally validly to an

instantaneous snapshot of a time-varying vector velocity field. The

field source and vorticity terms, described here for only the steady

state case, would then also involve the evaluation of instantaneous

time derivatives of some of the thermodynamic variables.

It can very plausibly be conjectured that generalized boundary

integral schemes may in the relatively near future be addressing

compressible, rotational flow problems for three-dimensional mul

ti-body configurations, in the general fields ofunsteady aerodynam

ics and aero-acoustics. The way will then be open to general

multi-disciplinary simulations, either on conventional computer ar

chitectures, or on vector machines—for which integral methods are

particularly well suited (Hunt and Adamson, 1992c).

ACKNOWLEDGMENT The first author has engaged a number of

his colleagues in discussions relating to some of the innovative

concepts introduced in this paper, and would like to express particular

thanks to George Converse, Ron Plybon and Jim Keith at GE Aircraft

Engines, and to Carson Yates (NASA LaRC).

REFERENCES

Hunt B (1977), Relationships between volume, surface and line distributions

of vorticity, source and doublicity. BAC(MAD) Report Ae/384.

Hunt B (1978), The panel method for subsonic aerodynamic flows: a survey of

mathematical formulations and numerical models and an outline of the

new BAe scheme. Von Karman Institute Lecture Series 1978–4.

Raj P. Gray RB (1979), Computation ofthree-dimensional potentialflow using

surface vorticity distribution. JAircraft 16(3), 162–169.

Hunt B (1980a), The mathematical basis and numerical principles of the

boundary integral method for incompressible potential flow over 3D

aerodynamic configurations. In Numerical Methods in Applied Fluid

Dynamics, Hunt (ed), Academic Press, London, UK, 49–136.

Hunt B (1980b), Recent and anticipated advances in the panel method:The key

to generalised field calculations? Won Karman Institute Lecture Series

1980–5.

Hunt B (1982), The role of computational fluid dynamics in high-angle-of-at

tack aerodynamics. AGARD Lecture Series 121, 1982, 6.1–6.28

Hunt B, Plybon RC(1990), Generalization ofthe boundary integral method to

nonlinear problems of compressible fluid flow: The no-mesh alternative.

Part I: Maths; Part II: Physics. In Boundary Element Methods in Engi

neering, (Proc. ISBEM-89, East Hartford, USA, Oct 1989), BSAnnigeri,

KTseng (eds); Springer-Verlag, Berlin, Germany, 147–160.

Hu H, Chu Li-C(1990), Unsteady three-dimensional transonic flow computa

tions using field element method. In Boundary ElementMethods in Engi

neering, (Proc. ISBEM-89, East Hartford, USA, Oct 1989), BSAnnigeri,

KTseng (eds); Springer-Verlag, Berlin, Germany, 140–146.

Hunt B, (1991a), GENESIS: A mesh-free, knowledge-based, nonlinear BIM

for compressible, viscous flows over arbitrary bodies: Theoretical frame

work and basic physical principles. In Boundary Integral Methods:

Theory and Applications, (Proc. LABEM-90, Rome, Italy, Oct 1990), L

Morino, R Piva (eds); Springer-Verlag, Berlin, Germany, 241–250.

Hunt B, (1991b), Knowledge-based, nonlinear boundary-integral models of

compressible, viscous flows over arbitrary bodies: Taking CFD back to

basics. In Mechanics Pan-America 1991 (Proc. PACAM-2, Valparaiso,

Chile, Jan 1991). PA Kittl, DT Mook (eds). AMR 44(11) Part 2 (Nov

1991), S130—S142.

Hunt B, Adamson AP (1992a), Current status of the GENESIS methodology

for knowledge-based treatment of transonic flows, with emphasis on

shock fitting and non-dissipative suppression of expansion shocks. In

Boundary Element Methods: Fundamentals and Applications, (Proc.

IABEM-91, Kyoto, Japan, Oct 1991), S Kobayashi, N Nishimura (eds);

Springer-Verlag, Berlin, Germany, 111–120.

Hunt B, Adamson AP (1992b), Knowledge-based, mesh-free transonic flow

computations using GENESIS. IABEM-92, Boulder, Colorado, Aug.

3–6, 1992.

Hunt B, Adamson AP (1992c), Boundary-integral methods as the basis for a

unified, knowledge-based approach to multi-disciplinary, nonlinear, full

configuration modeling. Comp. Aerosci. Conf, NASA Ames, Aug.

18–20, 1992.

Morino L, lemma U (1993), Boundary integral equations and conservative

dissipation schemes for full potential transonic flows. To appear in Com

putational Mechanics in 1993. (Short form “BEM for transonic flows”

presented at IABEM-92 as above.)





 





S214 MECHANICS PAN-AMERICA 1993
Appl Mech Rev 1993 Supplement

Noticing that every () term is one order higher than the correspon

dent (), the above functional can be approximated asymptotically

by

6U =óe" (Ae + RTW)
(18

+6W*(Re + EW) )

which is exactly the same expression obtained for the first approx

imation without initial twist or curvature by Hodges et al. (1992).

Therefore,

W = —E-*Re (19)

which is O(s). Note here that in order to solve for the warping

in this manner, the six constraints defined by Eq. (10) were first

applied to W in the energy.

Now, substitute Eq (19) into the original energy density func

tional (Eq (17))

6U =öe"[A – R*E*R + A + 2C

– Re"E-*R – (E~"R)*R*

– RTE- R - (E~"R)TR

– (E*R)* Le – Le" (E~"R)

+ (E~"R)T(F. H. F.")(E~"R)

+ (E~"R)*(E)(E~"R) + Gr

– Me" (E~"R) – (E~"R)"Me

+ (E~"R)*E*(E~"R) + 2C."

– R." E- R - (E-1R)TR,

– (E~"R)* Le – L." (E~"R)

+ (E~"R)" (F. H. F.”)(E~"R)

+G' – Mk(E~"R)

– (E~"R)TM.

+ (E~"R)*E*(E~"R)]e

(20)

which directly leads us to the candidate for the first approximation

6U1 = 6e" (A – R*E*R)e (21)

The next step is to go to the second approximation with the

substitution

W = –E-*Re + V (22)

where V is the perturbation of the previous solution. It can be

shown that -

V = – E *[Lk + Rs – EE*R
23

– (F. H. F.")E*R]e (23)

which is O(#), i.e., one order higher than W. This leads us to

two important conclusions: (a) Eq.(21) is the first approximation of

Eq (16); and (b) all terms in the Eq (20) that include V are of order

(#)” or smaller relative to the leading terms. This means that they

can be neglected for the level of approximation sought here. We

note that W, T, and Z can now be calculated to first order in #.

Analogous to what was done above, the second approximation

can be written as

6U2 =6é" (A – RTE-*R) + C.

+ (E~"R)T(F - F.”)(E~"R)

– (E~"R) R. - R.'(E-'R)

+ (E~"R)"E(E~"R)]e

(24)

Therefore, for the second approximation, the strain energy density

can be written as

2U = e^Se (25)

where -

S=A – R*E*R + C#

E-1R)T(F. H. F.T)(E-1R+ ( )*(F. H. F. “)( ) (26)

– (E~"R)*R* – Re" (E~"R)

+ (E~"R)TE(E~"R)

from where one can easily see that the initial curvature and twist

do change the sectional stiffness matrix to first order in #.

Finally, we note that under certain circumstances S can be

reduced, as noted by Hodges et al. (1992). This matrix is 6 x 6

because of the presence of shear deformation. There are also trans

verse shear related effects associated with slenderness, which are

accounted for in higher asymptotical approximations. Thus, for

slender beams one may not need to use the full 6 x 6 form of S.

Minimization of S with respect to the transverse shear measures

2012 produces a 4 x 4 stiffness matrix denoted by S. This mini

mization is equivalent to undertaking the following operations on

the stiffness matrix: (1) invert the 6x6 matrix; (2) ignore the rows

and columns associated with transverse shear, leaving a 4 x 4 ma

trix; (3) invert this resulting 4 x 4 matrix yielding the “reduced”

stiffness matrix associated with extension, torsion, and two bend

ing measures. The result is an approximate strain energy per unit

length of the form

*-(#}'s(#)

Thus, the strain energy is in the same form as in classical theory

(which has no transverse shear deformation in the one-dimensional

energy). However, the appropriate coupling effects involving trans

verse shear, first noted by Rehfield et al. (1990), are present in

Eq (27); and the numerical values of the resultant elastic constants

can differ considerably from those of a “classical” theory, in which

shear deformation is set equal to zero at the outset. This reduction

is suitable for slender beams undergoing low-frequency (i.e., long

wavelength) vibration.

(27)

APPLICATIONS

A cross-sectional analysis computer code called VABS (Variational

Asymptotical Beam Sectional Analysis) has been developed based

upon the theoretical formulation presented herein. From it one gets

a reduced, asymptotically correct stiffness matrix and warping dis

placements for a general, nonhomogeneous, anisotropic beam cross

section. The discretization of the cross-sectional domain is made
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with the finite element technique. The element which has been de

veloped is four-noded, planar, and rectangular, with three degrees

of freedom per node. The algebraic operations at the element level,

including element quadrature, were carried out via symbolic ma

nipulation by using Mathematica (see Wolfram 1988).

VABS has been verified before for prismatic anisotropic beams

and its results agree very well with experimental data as shown by

Hodges et al. (1992). Here, the code is first verified for an isotropic

square cross section with dimensions 2.0 x 10-” m by 2.0 x 10-”

m. The material properties are assumed to be E = 26 MPa and

l/ = 0.3.

To present results for initially curved and twisted beams, we

examine the isotropic case for which closed-form solutions for the

Saint-Venant stiffnesses are known. For small to moderate initial

twist or curvature (small # ratio), there is no change in the diagonal

terms of the stiffness matrix (namely extension, twist and bending

stiffnesses) when compared to the prismatic ones. However, there is

extension-twist coupling due to initial twist and extension-bending

coupling due to initial curvature. These are given in closed form

by Berdichevsky and Staroselsky (1983)

Š14 =E(I22 + Iss–J) ki

Sis :- - (1 + v)EI22 k2

Sis 2- - (1 + v)EI33 k3

(28)

and are used as baseline values for the present results.

Some sample results are shown here for the sake of evaluating

the convergence of the finite element method for determining the

stiffness constants as a function of the mesh refinement. We show

the convergence only for coupling terms which arise from initial

twist and curvature. The error taken is defined as

SvABs - Sexact
Relative Error = (29)

Sexact

where Sexact is the exact stiffnesses for an isotropic beam.

1

0. 1

0.01
-T——" I lt

1 10 100 1000

# Elements

FIG 2. Convergence history of the extension-twist stiffness term

due to initial twist.

Fig 2 describes the convergence behavior of the extension-twist

coupling term for nonzero initial twist. Similarly, Fig 3 deals with

the extension-bending coupling term for nonzero initial curvature.

For these plots, Sexact in Eq. (29) is taken from Eq.(28). As one

can see from the results, the relative errors decrese linearly on a

logarithmic scale with respect to the number of elements. The

slope of the line indicates a relative error that is approximately

inversely proportional to the number of elements. The extension

twist coupling involves the torsional stiffness, which is less accurate

than the bending stiffness for the same number of elements in the

mesh. This is reflected in the larger error in the calculation of the

extension-twist coupling. However, the relative error for all the

terms is still smaller than 2% for 100 elements (a 10 x 10 mesh).

0.001

0.0001 T T

10 100 1000

# Elements

0 01

FIG 3. Convergence history of the extension-bending stiffness due

to initial curvature.

Now, let us consider two composite beams studied both exper

imentally and theoretically by Minguet (1989). The two layups for

these beams are defined as

(BT):

(ET):

[45°/0°]3,

[20°/–70°/ – 70°/20°]2a

where BT reflects the fact that the prismatic beam has bending

twist coupling and ET that the prismatic beam has extension-twist

coupling. The beams have thin rectangular cross sections of width

30.023 mm and of thickness 1.4712 mm and 19215 mm, respec

tively. The material used is AS4/3501-6 Graphite/Epoxy, the prop

erties of which are given in Table I.

TABLE I. Properties of AS4/3501-6 Graphite/Epoxy

(“L” direction is along the fibers and

“N” is normal to the laminate)

ELL = 142 GPa ETT = ENN = 9.80 GPa.

GLT = GLN = 6.00 GPa. GTN = 4.80 GPa

vLT = vLN = 0.3 l/TN = 0.34

The resulting stiffness constants are given in Tables II and III.

The first column contains the results for a prismatic beam from

NABSA (Nonhomogeneous Anisotropic Beam Section Analysis),
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which is based in Giavotto et al. (1983). The second column con

tains similar results from VABS. Notice that the stiffnesses for the

prismatic case are all very close to each other except the shear

stiffness constants. This is already expected considering the fact

that VABS ignores terms in the strain energy of first and higher

orders in # while NABSA treats the Saint-Venant flexure solution,

equivalent to retaining terms of second order in #. Based on the

study of the effects of these terms by Hodges et al. (1992) for

static behavior of certain composite beams, it is believed that these

differences will not make any noticeable differences in the results

for static and low-frequency dynamic analysis of composite beams.

Now consider the remaining three columns. These are results

from VABS for the coefficients of ki in the stiffness constants. To

get the stiffness coefficient for any given element of the stiffness

matrix, multiply the value of k, times the appropriate column, i.e.,

S = S" + k, SA (30)

where Š" is the stiffness contribution from the prismatic solution

and S^ is the one correspondent to the A VABSk, column.

TABLE II. Stiffness results (N, N m, and N m”) for (BT)

(1 extension; 2, 3 shear; 4 torsion; 5, 6 bending)

Š NABSA VABS A VABSk, A VABSk, A VABSk,

Sil 3.6097 x 106 3.6102 x 106 - - -

S12 –2.0706 x 10° –2.0840 x 10° - - -

$1. - - 9.8127 x 108 7.8316 x 10" 1.2842 x 102

S15 - - 3.5885 x 102 –6.3885 x 10" –6.6953 x 10"

Sis - - - - -1.7436 x 104

S22 4.1671 x 105 4.1938 x 109 - - -

$2. - - –8.7215 x 102 1.5205 x 102 2.5090 x 102

Sas - - 6.6052 x 102 –7.7677 x 101 –1.3465 x 10°

S26 - - - - –6.6630 x 10°

Sss 3.0613 x 104 2.1102 x 10° - - -

S34 - - - - 6.2392 x 102

Sas - - –1.3765 x 103 2.2591 x 102 –2.0692 x 101

$4. 3.5901 x 10-1 3.7020 x 10-1 - - -

Sas 9.9152 x 10-2 1.0483 x 10-1 - - -

Sas - - - - 3.2658 x 10"

S55 5.3149 x 10" 5.3493 x 10" - - -

See 2.6339 x 102 2.6342 x 102 - - -

TABLE III. Stiffness results (N, N m, and N m”) for (ET)

(1 extension; 2, 3 shear; 4 torsion; 5, 6 bending)

S NABSA VABS A VABSk, A VABSk, A VABSk,

Su 3.3740 x 10° 3.3780 x 106 3.3982 x 10° - -

S12 - - - 4.0044 x 10" -

Sis - - , - - 9.1980 x 102

S14 –9.7020 x 102 –9.7200 x 102 9.4172 x 108 - -

Sis - - - –9.7921 x 10" -

Sis - - - - –1.1972 x 10"

S22 5.8894 x 10° 7.6509 x 109 —1.4557 x 10° - -

S24 - - - –4.7823 x 10" -

Sas 4.1081 x 102 4.3770 x 102 8.84.35 x 100 - -

S33 4.4242 x 10" 2.5711 x 105 - - -

$34 - - - - 7.6086 x 10°

S36 7.0107 x 100 2.2868 x 10-” –2.5669 x 10° - -

S44 1.0547 x 100 1.6383 x 10" –5.0193 x 100 - -

S45 - - - 5.6113 x 10-2 -

Sas - - - - 2.8158 x 100

Šss 1.0796 x 100 1.0475 x 109 5.0080 x 10-1 - -

See 2.4279 x 10° 2.4367 x 102 3.9801 x 10" - -
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will not be correct in general. The section constants must include

the first-order correction terms due to initial curvature and twist.

Judging from the size of the errors from initial twist, it is noted

that second-order corrections to the stiffness may be needed for it.

CONCLUDING REMARKS

An asymptotically exact methodology, based on geometrically non

linear, three-dimensional elasticity, is presented for analysis of ini

tially curved and twisted, nonhomogeneous, anisotropic beams. The

analysis is subject only to the restrictions that the strain is small

relative to unity and that the maximum dimension of the cross sec

tion is small relative to a length parameter (thus, restrained warping

effects are not considered) and to the minimum radius of curvature

and/or twist. A two-dimensional functional is derived which en

ables the determination of sectional elastic constants, as well as re

lations between the beam (i.e., one-dimensional) displacement and

generalized strain measures and the three-dimensional displacement

and strain fields. The initial twist and curvature not only appear in

the equilibrium and kinematical equations, but they also influence

the sectional modeling, as shown in the final form of the stiffness

matrix. A cross-sectional analysis code called VABS (Variational

Asymptotical Beam Sectional Analysis) has been developed based

upon the theoretical formulation presented herein, from which one

gets an asymptotically correct stiffness matrix and warping dis

placements for a general, nonhomogeneous, anisotropic beam cross

section. Numerical results were obtained first for an isotropic beam,

which converge to the asymptotic closed-form solution for the stiff

nesses. Then, two laminated cases were analyzed, showing the in

fluence of the initial twist and curvature in the elastic constants.

It is concluded that for any general-purpose analysis of composite

beams, the effects of initial curvature and twist need to be included

in all aspects of the analysis. That is, one cannot simply use the

geometrically-exact equilibrium and kinematical equations for ini

tially curved and twisted beams with sectional constants calculated

from a prismatic beam.
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APPENDIX

The matrices used in Eq. (17) are defined as

A#(x"DX) A *(X"Dx (–12ks 4 rak)

Rè(B' Dx) Rê(B"Dx (–12ks 4 zsk))

E£(B'DB) E*(B'DB (–12ks + zaka)

E. :(B."DB.) E, #(B." DB. (–12ks + zaka)

R.á(B."DX) R, #(B."DX (–12ks +zsk.)

F #(B'DB.) F. #(B'DB. (–12ks + zaka)

c. *(X,*DX) C.#(X." DX (–12ks + zaka)

-

A.
G. :(X,*DX.) G. #(X." DX. (–12ks +zsko))

-

A
L'â(B'DX.) Leã(B'DX (–12ks 4 zsk)

M.A.(B."DX.) M. *(B." DX. (–12ks + zaka)

REFERENCES

Atulgan, A. R., and Hodges, D. H. (1991), “A Unified Nonlinear Analysis

for Nonhomogeneous, Anisotropic Beams with Closed Cross Sections,

AIAA Journal, 29, 1990 – 1999.

Atilgan, A. R., Hodges, D. H., Fulton, M. V., and Cesnik, C. E. S. (1991),

'Application of the Variational-Asymptotical Method to Static and Dy

namic Behavior of Elastic Beams, Proceedings of the 32nd Structures,

Structural Dynamics, and Materials Conference, Baltimore MD, 1078–

1093.

Bauchau, O. A., and Hong, C. H. (1988), “Nonlinear Composite Beam

Theory, Journal of Applied Mechanics, 55, 156 – 163.

Berdichevsky, V. L. (1981), ‘On the Energy of an Elastic Rod, PMM, 45,

No. 4, 518–529.

Berdichevsky, V. L., and Staroselsky, L.A. (1983),'On the Theory of Curvi

linear Timoshenko-type Rods, PMM, 47, 809 – 817.

Borri, M., Ghiringhelli, G. L., and Merline, T. (1992), ‘Linear Analysis of

Naturally Curved and Twisted Anisotropic Beams,' Composites Engi

neering, 2, 433–456.

Danielson, D. A., and Hodges, D. H. (1987), “Nonlinear Beam Kinematics

by Decomposition of the Rotation Tensor, Journal of Applied Mechan

ics, 54, 258 – 262.

Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G., Carmashi, V.,

Maffioli, G. C., and Massi, F. (1983), ‘Anisotropic Beam Theory and

Applications, Computers and Structures, 16, 403 – 413.

Hodges, D. H. (1990), ‘A Mixed Variational Formulation Based On Ex

act Intrinsic Equations for Dynamics of Moving Beams,' International

Journal of Solids and Structures, 26, 1253 – 1273.

Hodges, D. H., and Atulgan, A. R. (1991), “Asymptotical Modeling of Ini

tially Curved and Twisted Composite Rotor Blades, Proceedings of the

AHS International Technical Specialists' Meeting on Rotorcraft Basic

Research, Atlanta GA, 1.1 – 1.15.

Hodges, D. H., Atulgan, A. R., Cesnik, C. E. S., and Fulton, M. V. (1992),

‘On a Simplified Strain Energy Function for Geometrically Nonlinear

Behavior of Anisotropic Beams,' Composites Engineering, 2,513 – 526.



S22O MECHANICS PAN-AMERICA 1993 Appl Mech Rev 1993 Supplement

the 32nd Structures, Structural Dynamics, and Materials Conference,

Baltimore MD, 1037 – 1049.

Minguet, P. (1989), Static and Dynamic Behavior of Composite Heli

copter Rotor Blades Under Large Deflection, Ph.D. Dissertation, Mas

sachusetts Institute of Technology, Cambridge MA.

Rehfield, L. W., Atulgan, A. R., and Hodges, D. H. (1990), “Nonclassical

Behavior of Thin-Walled Composite Beams with Closed Cross Sections,'

Journal of the American Helicopter Society, 35, 42–50.

Washizu, K. (1964), 'Some Considerations on a Naturally Curved and

Twisted Slender Beam, Journal of Math and Physics, 43, 111 – 116.

Whitman, A. B., and Cohen, H. (1978), Constitutive Equations for Curved

and Twisted, Initially Stressed Elastic Rods, Acta Mechanica, 30, 237

– 257.

Wolfram, S. (1988), Mathematica, Addison-Wesley Publishing Company,

Reading MA.



Compressive strength and failure time

based on local buckling in viscoelastic composites

RA Schapery

Department ofAerospace Engineering and Engineering Mechanics

University of Texas, Austin TX 78712

The axial compressive strength and failure time of unidirectional, viscoelastic composites are investigated.

Effects of nonlinear shear behavior and fiber misalignment are emphasized because they are important

strength-limiting factors in those strongly anisotropic composites which fail by local buckling in the shear

mode of deformation. We first describe the basic buckling model and then, neglecting hereditary effects,

predict the compressive strengths of an untoughened and a rubber-toughened carbon/epoxy composite.

Next, using a nonlinear viscoelastic constitutive equation for shear behavior, failure time for constant load

and compressive strength for increasing load history are predicted by a numerical method. Additionally,

approximate analytical formulas are developed which enable one to easily estimate buckling response as

a function of initial fiber misalignment angle as well as loading and material parameters.

INTRODUCTION

Microbuckling appears to be the primary strength

limiting mechanism in modern, highly anisotropic com

posites (Fleck and Budiansky, 1990), such as carbon fiber

reinforced plastic. Over the past three decades, investiga

tors have used linear theory of varying degrees of complex

ity in studies of failure by fiber buckling (e.g. Rosen, 1965

and Waas, et al 1990). For the commonly used levels of

fiber volume fraction, the dominant deformation mode is

one in which the wave length is long compared to the fiber

diameter and is characterized locally by simple shearing

deformation. These linear analyses predict a strength

which is approximately or exactly equal to the principal

shear modulus G12. Measured strengths are commonly

one-third to one-fifth of this modulus. Kink bands are

observed in compression failed specimens and, as a result,

elastic and plastic buckling analyses of kink bands have

been made in an effort to resolve this discrepancy (e.g.

Fleck and Budiansky, 1990 and Budiansky, 1983). As

suming a state of local, simple shear deformation, Wis

nom (1990) and Schapery (1991) independently showed

that the combined effects of shear nonlinearity and re

alistic amounts of initial fiber misalignment are sufficient

to reduce the compressive strength from the linear theory.

value of G12 to observed levels. (In earlier work, Hahn

and Williams (1986), among others, also demonstrated

that these effects lead to a significant loss in strength.).

One may interpret the shear analysis as applying to

part of "MECHANICS PAN-AMERICA 1993 edited by MRM Crespo da Silva and CEN Mazzill
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a kink band which is normal to the fibers. Alternatively,

distributed shear buckling may trigger a local failure initi

ation event, which is followed by a kink band propagating

from the site of the initial event.

The strength model used here is based on the shear

stress-strain behavior of the composite, and thus it is

a modified version of Wisnom’s shear buckling model,

which uses an approximate micromechanical prediction of

shear behavior. Not only does it lead to realistic strength

predictions, but it also is sufficiently simple that nonlin

ear viscoelastic behavior is easily taken into account.

Finally, the reader is referred to a recent review of com

pressive strength of composites and kink band models

(Budiansky and Fleck, 1993). Also, see Slaughter et al

(1993) for a study of the effects of multiaxial loading and

creep of nonlinear viscous composites.

SHEAR BUCKLING MODEL

Figure 1 illustrates the shear deformation and tractions

acting on a local material element. The axial force/area,

o, in the right figure is decomposed into a traction ot

which acts in the instantaneous fiber direction, pt , and

a horizontal shear traction T. If pt | << 1, then

(1)T = a pt

ASME Reprint No A T-34

© 1993 American Society of Mechanic
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Equilibrium considerations imply the same shear traction

acts parallel to the fibers and that the traction normal

to the fibers, to the first order in pt, is zero. Prior to

application of a , the local fiber angle is po (assumed

small). The shear strain due to the loading is therefore

^ = @t – ø0. Combining these results we obtain

(2)

where T is, in general, a constitutive function of the shear

strain history y(t); we assume the fiber axial modulus

is so relatively high that the effect of a on this consti

tutive relation can be neglected. Wisnom (1990) used

T = Gm7/vm, where Gm is the (strain-dependent) se

cant shear modulus of the (resin) matrix and vn is the

matrix volume fraction; this result is based on a two

dimensional layer model in which fiber shear deformation

is neglected. We do not employ this idealization here.

Instead, we use the composite constitutive equation to

relate T and 0 , which at least implicitly accounts for

three-dimensional microstresses and fiber-shear effects.

a = T/(2) + po)

QUASI-ELASTIC STRENGTH

PREDICTION

Viscoelastic effects in structural composites under con

stant or monotonically increasing loading are often weak

enough to either neglect them or to account for them

simply through a time-dependent stress-strain equation.

This is the case for Hexcel's carbon/epoxy composite,

T2C145/F155, characterized by Mignery and Schapery

(1991); for simple shear,

(3)

where m = 0.05, q = 2.4, So and Sm are positive con

stants, and t is the time under load. In the linear range,

* = Sot + Smt"T" when T = TI

~nt inFIG 1. Representative compos"

compression and

- A

T < T1, the equation is similar, with q = 1. The

epoxy matrix (designated as F155) is toughened with rub

ber particles, and exhibits noticeable time-dependence,

as reflected in the t” factor. In contrast, Hercules’

carbon/epoxy composite, AS4/3502, characterized by

Schapery (1989), has an untoughened matrix (designated

as 3502); its time-dependence at room temperature is very

weak and is usually neglected. Figure 2 shows the shear

stress-strain curves for both composites, in which we use

the resin designation to identify the two composites; note

that t = 1 second and t = 1 year (extrapolated) curves

are shown for the F155 composite. (Although t varies

for each case, a constant value was used in drawing the

curves for F155 since m is so small.) The stress-strain

curve for the 3502 composite is from Schapery’s (1989)

data; it was not possible to fit the data with a power law

like that in Eq. (3).

Figure 3 illustrates behavior predicted by Eq.(2) for the

3502 composite. The axial stress is divided by the zero

strain shear modulus, G12(0), and thus linear strength

theory corresponds to an ordinate value of unity. The ax

ial compressive strength is the maximum stress on these

curves, and corresponds to the onset of failure by shear

buckling. Figure 4 shows how these maxima vary with the

initial fiber angle po. Although the stress-strain curves in

Fig.2 are quite different, the strengths in Fig 4 are remark

ably close. As mentioned previously, typically measured

strength > G12(0)/5, which implies to < 2" (cf. Fig 4);

also, if po - 0, then the strength is G12(0), which is

the result from linear theory. (For F155, G12(0) is time

dependent.) Although not shown here, when do & 2", the

shear strain at which the maximum stress is reached
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FIG 2. Stress vs strain for two composites.
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is less than 0.02 for both composites; this strain is well

below the ultimate strain in simple shear (cf. Fig 2).

Finally, it is readily shown that the maximum of Eq

(2) is given by amaz = 67/6) (65/6t)" where

T = T(Y,t), and thus the strength is equal to the tangent

modulus. The corresponding shear stress and strain may

be found analytically when Eq. (3) applies. Specifically,

using Eqs (2) and (3) along with the condition 60/6r = 0

yields

t = [4.0/Smt”(q – 1)]"/"

at the point a = omar. Then, using this shear stress,

(4)

Omar = {So + q(Smt”)"/"[do/(q - 1)(3-1)/2}-1 (5)

VISCOELASTIC MODEL

Constitutive equation

The shear stress-strain equation in the linear viscoelastic

range may be written in the form

t

S(t – t)#at
dT/ (6)

‘y -

0

providing that T = y = 0 for t < 0 and the material does

not age. The lower integration limit is 0", rather than

0, which allows for a stepwise applied stress at t = 0.

For a creep test, T = Tc H(t) (where Tc is a constant and

H(t) = 0 when t < 0 and H(t) = 1 when t > 0), then

Øo =. 05 DEG

Øo=1 . Ø DEG

... 2 -

Ø | l t 1

O . 21 . 22 . 23 , 24 . 25

SHERR STRRIN

FIG 3. Effect of initial angle po for

the 3502 composite.

with the help of the Dirac delta function Eq.(6) gives for

t > 0,

(7)

showing that S(t) is the linear viscoelastic creep compli

ance, since this compliance is defined as y/Tc.

‘y = S(t)Te

For the nonlinear range of behavior we shall use the

constitutive equation

t a df ,,,

‘Y = Sot + AS(t–t')#dt (8)
0- dt'

where So = S(0*) is the initial creep compliance and

AS(t) = S(t) — So is the transient component of the lin

ear viscoelastic creep compliance.

Also, f = f(t) is an odd function of shear stress. By

using S = So + AS in (6), it is seen that it is a spe

cial case of Eq.(8) if f(t) = t at sufficiently low stress

levels.Equation (8) was introduced by Leaderman (1943),

and has met with limited success over the years (Find

ley et al., 1976). For some materials, including some

fiber-reinforced plastics, both AS and f obey power laws.

Specifically, with p = tyt1,

AS = Sip” (9)

Also,

f = S2 | T |* Sgn(r) (10)

when | T | > T1 and f = t when | T | < T1, where

t1, S1, S2, m, q and T1 are positive constants; Sgn(T) is

Øo (DEG)

FIG 4. Effect of initial fiber angle po on strength.
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may be adequate for engineering applications, especially

for small m.

Finally, we mention that the overall axial strain is prac

tically independent of the amount of local shearing up to

failure, and thus is not a good indicator of impending

creep failure.

BUCKLING UNDER

INCREASING STRESS

The axial stress is taken as a power law in time for t > 0,

a = on (t/t1)" (33)

where on and n are positive constants. In terms of nor

malized variables in Eqs (16) and (17),

6 = k,t” (34)

where

kn = Soon(k:/km)"/" (35)

In order to simplify the solution to Eq. (15), it is help

ful to introduce another change in dependent variable.

Specifically, define a new time variable,

T = ki/"t (36)

Then

6 = T" (37)

and Eq (15) becomes

1 - 6. £1/q T - f midf ' –

5–7 * / (t T') #dT = 1 (38)

where

k2 - #"/" <- k1/k:(Soon)"/" (39)

Note that since n > 0 the lower integration limit may be

taken as 0 since the solution will be continuous at T = 0.

The solution f = f(T) to Eq. (38) is seen to depend on the

load rate-dependent dimensionless parameter, k2, as well

as the exponents m, n and q. The higher the loading rate,

as specified by increasing values of on, the smaller will be

k2, and thus, as expected, the effect of viscoelasticity will

decrease.

Quasi-elastic solution

For this case Eq. (38) becomes,

+"-k,T" = 1 (40)

or, in terms of normalized fiber angle using Eq. (19),

(1 – 6)d – k2T"q)"6" = 1

–

As in the creep case, the failure (initiation) time is ob

tained from the condition dT/dt = 0. The angle at failure

initiation po is the same as in Eq. (23), except now à de

pends on the failure time T. Denote the stress at failure

by 6a, and then substitute Eq (23) into (41) to obtain a

nonlinear algebraic equation for 62,

ão(1 + k26') = 1 (42)

where

1/q

p=m/an, k = alk/(3–1)" (43)

and Eq. (37) has been used to eliminate T in favor of 6.

In many cases p << 1; thus, as a first approximation

use 3% = 1, which yields

671 = 1/(1 + k3) (44)

A better approximation may be obtained by examining

the behavior of 69 for small values of p and for the cases

in which k3 is very large and very small. We obtain

6a 2- 6', (45)

where 1

- k3p \

a=(1++) (46)

This result has been found to agree with numerical so

lutions to Eq.(42) to within 3% for all cases of practical

interest which were studied; for all p, k3 > 0, a maximum

error of only 10% was found.

An equation for p = p(ó) prior to failure may be ob

tained by using Eq. (37) to express (41) entirely in terms

of p and ó,

394-(m/n)

o–k,+2' = (1-3)"1 – 6 (47)

Numerical solution

A numerical method similar to that used for the creep

problem was used to solve Eq. (38). As before, it is help

ful to use the quasi-elastic solution to provide the very

short time response. However, in order that the short

time quasi-elastic solution approach the exact solution as

T - 0, it is found necessary to modify the constant k2.

Specifically, replace k2 in Eqs (40) and (41) by

k% = I, k2 (48)

where k2 is given by Eq. (39) and, with r = nq,

I, = T(r-1)T(m + 1)/T(r + m + 1) (49)
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in which T(v) is the Gamma function of x. When

m << 1 or r << 1, then I, c. 1.

Figures 7 and 8 provide results for m = 0.05 and

m = 0.5, respectively, using q = 2.4; the value of k2 = 10

was used to emphasize viscoelastic effects. The Maxwell

model solution (m = 1) was found numerically, and is

shown for comparison. Viscoelastic in the figures refers

to the numerical solution to Eq. (38). The horizontal axis

is the axial stress ratio 6/64 = g/on, where on is the

quasi-elastic failure stress. The k%, Eq. (48), was used in

place of k2 to predict all quasi-elastic solutions from Eqs

(41) and (42). It is observed in these figures that the

quasi-elastic solution for m = 0.05 and m = 0.5 is close

to the numerical solution of Eq. (38) for most of the time,

when m = 0.05, the quasi-elastic strength is very close to

the viscoelastic strength.

CONCLUDING REMARKS

The importance of the effect of initial fiber angle and

shear nonlinearity on strength has been shown. In a pre

vious study (Schapery, 1991) linear theory was used to

predict the growth of the fiber angle under cyclic load

ing. One may combine the present and earlier analyses

to predict the influence of low-level cyclic loading on the

residual compressive strength (Schapery, 1993); specifi

cally, the initial fiber angle in the present nonlinear anal

ysis would be taken as the residual fiber angle following

cyclic loading.
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FIG 7. Fiber angle ratio bydo vs axial stress ratio a/a,

We have not accounted for the spacewise distribution of

initial fiber angles, the free surfaces, and resulting nonuni

form stress and strain distributions. However, it is be

lieved that the primary factors which influence compres

sive strength are contained in the simple shear model. Ini

tial fiber angles have been reported to range from about

1/3 to 3 degrees (Wisnom, 1990 and Yurgartis, 1987), de

pending on the composite, which through the present the

ory is consistent with the range of experimental strengths.

What is needed at this time in order to check the theory

and develop a more detailed, realistic model is experimen

tal work which combines knowledge of initial fiber angle

distributions, shear stress-strain behavior and compres

sive strengths, all on one or more composites. Exper

imental studies, in which changes in shear strain-strain

behavior due to temperature, loading history, etc., are

correlated with compressive strength would also be use

ful in assessing the model.
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Thus equation (3) gives an estimate of the variation at

the (n+1)" step of the iteration in term of the

variation at the n" step. Repeatedly applying

equation (3) results in

6xn+1 : DFn+DFn-1*DFn-2+•-*DF1(6x1) (5)

Equation (5) represents the variation at the (n+1)"

step in terms of the initial variation 6x1. To avoid

divergence of the vector norms, due to repeated

application of the Jacobian matricees, it is more

convenient to express equation (5) as

6xn+1 - DFn[DF,-1 •- ---DF1(6x1)] (6)

In equation (6), the latest Jacobian is applied to the

current set of vectors. To avoid divergence of the

variations, due to stretching of orbits, a Gram-Schmidt

orthonormalization procedure is applied at each step to

accomplish two things:

(i) estimate the local growth rate of the vectors

(ii) replace the vectors with a renormalized set as

described in the previous section.

The vector with a largest growth rate is always

renormalized and used as the first replacement vector.

It should be noted that the growth rate of the local

basis vectors is governed by the absolute values of the

eigenvalues at each iteration. Denote the eigenvalues of

[DF]n at the n" iteration by

A1(n), A2(n), •- , An(n). (7)

For non-degenerate cases, the magnitude of each

eigenvalue can be expressed as

A1(n) = exp(Aloe, (n)) (8)

so that

Xize, (n) = log Ai(n) (9)

represents the local convergence (or divergence) rate.

The Lyapunov exponents are computed as a long

time average, consequently the global behavior of the

mapping is determined by the eigenvalues of the

product Jacobian

[JP) > [DFn][DF, -1]-[DF1] (10)

as n - oo. Thus the Lyapunov exponents for mappings

such as (1) are defined as

A = limn-co (1/n) XX=1 log A,(k) (11)

In order to apply the above to continuous dynamical

systems, the flow must be discretized. That is, the

governing equations must be integrated forward, for

arbitrary initial conditions, to a specified time in order

to construct a time-advance mapping. The procedure

is outlined as follows.

An initial value problem defined by a system of

differential equations

k = X(x,t), x(0) = x0

is integrated from the initial condition x2. Denote this

solution as x(t,xo). Since the initial condition, x0, is

arbitrary, a sequence of points is defined inductively as

(13)Xn+1 = F(xn)

in which

xn+1 = x(h;xn) (14)

At each step, the initial point x0 in (12) is replaced by

the current state vector xn. That is, xn+1 is obtained

by advancing the solution of (12) over a time At = h,

from an initial point xn.

Since most differential

integrated analytically, the

must be constructed with the aid of numerical

integration schemes. The drawback of using a

numerical routine such as Runge-Kutta, is that an

explicit form of the time-advance mapping (13) is not

obtained.

The standard method of estimating local divergence

(or convergence) rates entails the comparison of the

time-evolution of two trajectories at neighboring points

(Wolf et al., 1985). The neighboring trajectories are

tracked by solving the associated variational equation

equations cannot be

time-advance mapping

# (5x) = [..] 5x

6x(0) = 6x0 (15)

simultaneously with the original differential equation

(12). The variational equations (15) are obtained by

applying the variational operator to equation (12).

Although equation (15) is linear, the coupled

system is now twice the order of the original system

(12). This makes the numerical integration more

tedious. Essentially, the differential equations along

with the coupled set of local variational equations must

be numerically integrated over small displacements in

the phase space. The local divergence (or convergence)

are determined by analyzing the evolution of the

variations öx.
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A more attractive approach is to construct an

approximate, yet explicit, form of the time-advance

map

Xn+1 = F(xn) (16)

The objective is to develop an explicit mapping with no

worse of an error than a corresponding numerical

integration scheme. Since errors are typically based on

Taylor series expansions, a truncated Taylor expansion

of the solution will not introduce any more errors than

numerical integration of the differential equations.

Series solutions to an initial value problem can be

conveniently and efficiently developed from the theory

of continuous transformation groups (Torok and

Advani, 1985). Briefly, the coefficients of the series

expansion can be computed from the associated

infinitesimal generator of the system of differential

equations. Specifically, given an initial value problem

#1 - X1(x1, X2, ..... * xn), x1(0) - #1

X2 = X2(x1, X2, ..... ? xn), x2(0) = x2

x = x*(x1, x2, ..., xm), xa(0)= x. (17)

the infinitesimal generator is defined as the operator

U = X1 6/6x1 + X2 6/6x2 + ...... + Xn 6/6xn (18)

in which the coefficients in (18) are given as the right

hand sides of equation (17). It can be shown that the

series representation of the solution x,' = x,(t) is given

by

x,' = x, +(Ux,)t +(U°x,)t°/2 +...+ (U*x,) t”/k!+...

in which the variable, xi, represents an arbitrary initial

value.

Thus, the explicit time-advance mapping is

developed as

(xi)n+1 = F((xi)n)

= x," (19)

That is,

(x)n+1 - x,"

= x, + (Ux,)h + (U”x,)h°/2 +... (20)

in which (x,)n is substituted for the initial condition x.

As an example, consider the problem

x = x*, x(0) = x.

y = xy, y(0) = y.

The infinitesimal generator associated with this system

of differential equations is given as the operator

U = x* 6/6x + xy 6/6y (22)

The powers of the operator U are computed

successively as

Ux = x* Uy = xy

U*x = 2x” U°y = 2x”y

U°x = 6x" U°y = 6x”y

(23)U*x = 24x” U*y = 24x"y

and the series representations of the solutions are

x = x+x’t+2x°t°/2+ 6x"t°/3' + 24x"t"/4!+.. (24)

y' = y+xyt+2x”yt°/2+6x”yt°/3!+24x"yt"/4+.. (25)

in which x and y are arbitrary initial conditions.

By inspection, the solutions (24) and (25) are found

to converge to

x = x/(1-xt) (26)

y = y/(1-xt) (27)

As mentioned above, the variables x and y in equations

(26) and (27) represent arbitrary initial conditions.

Hence substitution the initial conditions from equations

(21), results in the solutions

x(t) = x2/(1-xot) (28)

y(t) = yo/(1-xot) (29)

Furthermore, the time-advance solution for arbitrary h

is given by

x" = x•/(1-xch) (30)

y" = y2/(1-xch) (31)

Alternatively, since x0 and yo are abitrary, the time

advance mapping is explicitly deduced as

&n-1 = xn/(1-hzn) (32)

=yn/(1-hzn) (33)

ynamics of the system (12) are

sely, represented by the discrete

33). Thus point mapping

Elence the co

-
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techniques are applicable, eliminating the cumbersome

numerical tracking of trajectories.

Most nonlinear systems, however do not admit

solutions which are expressible in terms of elementary

functions as in (28) and (29). In such cases, a

truncated series representation is used to construct the

time-advance mapping. Using this discretized version

of the dynamics, equations (1) through (11) are used to

estimate the Lyapunov spectrum.

SUMMARY

A semi-discrete algorithm for the computation of

Lyapunov exponents associated with continuous

dynamical systems has been discussed. The proposed

method consists of developing formal power series

solutions based on Lie series expansions of the flow.

The truncated power series can be used to construct

forward advanced mappings, thereby converting a

continuous dynamical system to a discrete one.

Methods known to be reliable for discrete systems can

then be utilized, eliminating the necessity of integrating

the associated variational equations simultaneously

with the original equations of motion.

Table 1. illustrates the results obtained by applying

the proposed method to estimate the Lyapunov

spectrum of the Lorenz system (Wolf et al., 1985). The

complete spectrum of exponents of the Lorenz system is

approximately (2.16, 0.0, -32.4) bits per second. The

parameter h represents the time-advance used for the

forward advance mapping. The integer N represents

the number of time steps ( in thousands) used for the

averaging process. Excellent agreement is implied,

especially for smaller time steps. It appears that the

proposed algorithm is sensitive to the particular time

step used, but does not vary considerably with the

number of averaging steps.

TABLE 1. Estimated Lyapunov Spectrum of the

Lorenz System

E I: I al. I EL:M

5 2.2057 2.1600 2.1669 2.1622 2.6833

-0.0171 0.0031 -0.0104 –0.0295 -0.4543

-32.4842 -32.4433 -32.3526 -32.01.23 -31.0620

6 2.2051 2.1496 2.1779 2.105.5 2.6034

-0.0056 0.0104 -0.014.9 0.0232 -0.4076

-32.4951 -32.4402 -32.3590 -32.0095 -31.0351

7 2.2025 2.1668 2.1538 2.1252 2.5766

-0.0101 0.0056 -0.0000 0.0066 -0.4098

-32.4880 -32.4525 -32.3428 -32.0102 -31.0233

8 2.2129 2.1702 2.1543 2.1397 2.5789

-0.012.4 0.0026 -0.0048 -0.0062 -0.4055

-32.4960 -32.4529 -32.3452 -32.0104 -31.0332

9 2.2306 2.1640 2.1675 2.1418 2.5734

-0.0137 0.0111 -0.01.19 -0.008 -0.4018

-32.5124 -32.4552 -32.350.9 -32.0123 -31.0380

10 2.218.9 2.1675 2.1623 2.1363 2.5792

-0.0129 0.0054 -0.0054 -0.0008 -0.4150

-32.5016 -32.4531 -32.3528 -32.0144 -31.0383

15 2.2050 2.1731 2.1632 2.1346 2.5528

-0.0064 0.0018 -0.0030 0.0039 -0.4198

-32.4942 -32.4549 -32.3568 -32.0162 -31.0100
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A procedure for simulating aerodynamic/dynamic interactions is described.

The equations of motion of the flowing air and the lifting structure are in

tegrated numerically by an iterative technique based on Hamming's pred

ictor-corrector method. The solution provides the flowfield and the motion

of the lifting body simultaneously. The technique is modular and different

models of the flow and the structure can be incorporated by simply chang

ing subroutines. For the current examples of wingrock of highly swept delta

wings and flutter of very flexible, very high-aspect-ratio wings, the flow

fields are considered incompressible and modeled by vortex-lattice and

continuous vorticity-panel methods. These models are inherently nonlinear

and provide a force-free wake as part of the solution. It is shown that the

instabilities can be easily suppressed by means of actively controlled flaps.

INTRODUCTION

In this article we discuss one aspect of the problem

of modelling fluid-structure interactions, namely

the numerical simulation of the motion of a lifting

structure in a uniform, subsonic stream. We con

sider the spontaneous motion that develops as the

angle of attack of a highly swept delta wing

mounted on a free-to-roll sting in a uniform stream

is steadily increased; the phenomenon is known as

wing rock. Then we consider the spontaneous

motion that develops when the speed of a uniform

stream flowing past a thin, high-aspect-ratio, very

flexible wing increases while the angle of attack

decreases in such a way that the lift force remains

constant. Both spontaneous motions are manifes

tations of a loss of dynamic stability, and both are

forms of flutter. We refer to the former as rigid

body flutter and to the latter as aeroelastic flutter.

Wing rock can be a problem for a highly ma

neuverable military aircraft when it is performing

tactical, high-alpha maneuvers and even when it is

landing. Highly flexible, large-aspect-ratio wings

are often found on the high-altitude, long-endu

rance (HALE) aircraft now intended for atmospheric

monitoring and previously intended for observation

platforms to verify some of the provisions of the

strategic-arms-reduction treaty (START). Thus,

both phenomena occur well within the subsonic

flow regime. We consider the flow to be incom

pressible.

The simulations of such phenomena involve

equations of motion for both the lifting bodies and
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the flowing air. An apparent impasse develops: In

order to integrate the equations of motion of the

body, one must know the aerodynamic forces act

ing on the body; and in order to integrate the

equations of motion of the flowing air and subse

quently find the aerodynamic forces, one must

know the motion of the body (for the boundary

conditions on the flowfield). The difficulty can be

resolved by an iteration scheme; to obtain the pre

sent results, we developed an algorithm based on

Hamming's predictor-corrector method.

The remainder of the article is divided into five

sections: In the second section, we describe the

numerical model used to simulate the flowfield. In

the third section, we discuss the simulation of wing

rock and its suppression by feedback-controlled

flaperons. In the fourth section, we discuss aeroe

lastic flutter and its suppression by feedback-cont

rolled flaperons. Finally, in the last section, we

present some concluding remarks.

AERODYNAMIC MODEL

The flowfield is modelled by either the general un

steady vortex-lattice method or the general un

steady vorticity-panel method. The basis for the

methods is the definitions of incompressible flow,

Div v = 0 (where v is the velocity), and vorticity,

Q = Curl V. These two equations can be manipu

lated to provide v as a function of Q.

4 © 1993 American Society of Mechanical Engineers

ASME Reprint No AMR134
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- - fiG. Ox G-F)dró)

VG.0-3 ||+ (0
volume |re –rs.

where dr is the volume element at position r, in the

flowfield v is the velocity at position r, in the flow

field, and x denotes the vector product.

There are six characteristics of the velocity

given by Eq.(1) that are worth mentioning:

1. When the vorticity is confined to a straight line

segment, Eq. (1) reduces to the Biot–Savart

law.

2. The volume of the "flowfield", over which the

integration in Eq. (1) is carried out, includes

the interiors of solid objects in the actual flow.

3. The vorticity, d. may be zero in large parts of

the flowfield, and the velocity, v, is irrotational

there.

4. Vorticity any where in the flowfield generates

velocity everywhere.

5. The velocity, v, decays as the reciprocal of the

distance from the vorticity-containing regions.

6. Equation (1) is a purely kinematic relationship

and, consequently, is valid for "viscous" as

well as "inviscid" models of incompressible

flowfields.

In the actual flow over a wing, the vorticity in

the boundary layers on the upper and lower sur

faces and the vorticity in the wake generate a ve

locity field that disturbs the freestream to the extent

that the no-slip and no-penetration conditions are

satisfied. We consider thin wings and merge the

boundary layers on the upper and lower surfaces,

into a single vortex sheet, which is called a lifting

surface here. And we also consider the wake to

be a vortex sheet. Because the position of the

vortex sheet representing the wing is prescribed,

a pressure jump across the sheet exists. The sheet

representing the wake is allowed to deform freely

in such a way as to eliminate the pressure jump.

To facilitate the computations in one proce

dure, Konstadinopoulos et al. (1985), we represent

the lifting surface as a lattice of discrete vortex

lines, which divides the sheet into a system of

closed four-sided elements. Each discrete vortex

segment of a given element is a straight line. The

quadrilateral elements are not, in general, planar.

To satisfy the requirement of spatial conservation

of circulation, the circulations around the segments

along the four sides of a given element are equal.

The discrete vortex arrangement for a given ele

ment produces the same velocity field as a panel

of constant-strength doublets when the panel is

planar.

In the other procedure, Mracek et al. (1993)

and Mracek (1988), we represent the lifting surface

as a system of triangular panels over which the two

in-plane components of vorticity vary linearly. This

vorticity field is divergenceless. As a consequence

discrete vortex lines form along the edges of the

lifting surface.

To use either of the methods, one must specify

where separation occurs; usually this means that

one must specify the edges of the lifting surface

from which the wakes emanate. The rate at which

vorticity is shed into the wakes is determined by

forcing the pressures on the upper and lower sides

of the lifting surface to be equal along the edges

where the wakes are attached. After the vorticity

has been shed, it convects with the local fluid-par

ticle velocity and the circulation around a given

segment remains constant. The procedure gener

ates a wake in the force-free position for an inviscid

fluid as part of the solution. Hence, the wake is

modelled as a region of rotational, inviscid flow.

Two computed wakes are shown in Figs. 1 and 2.

Fig. 1. Computed steady-state wake for flow

past a unit-aspect-ratio delta wing at

20° angle of attack. (a) Top view, (b)

rear view, and (c) side view.
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c) Side View

>
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X

(d) wing with flaps d

Quantity Magnitude Units

p 1.2000 kg/m"

U 15.000 m/s

S 0.0321 m*

b 0.1500 m

Ax 0.5 x 10-4

!- 1.3 x 10-4 kg-m’

(e) Physical properties

A schematic drawing of the delta wing

used in the numerical simulation of

wing rock.

Fig. 3.

| Start the predictor corrector method

|

Predict and modify the state

Move the wing to the new position,

find the loads at the new position

Correct the state

Move the wing, find the loads

[ Final correction to state and loads

Flow-chart for the predictor-corrector

method.

Fig. 4.

To produce a simulation of an uncontrolled

response, we first fix 6 and exclude Eqs. (3)-(5); fix

the wing at p = 5° and allow a steady state to de

velop; and then the wing is released. When the

angle of attack is below 25 degrees approximately,

q oscillates and decays to zero. When the angle

of attack is greater than 25 degrees, p grows and

reaches a limit cycle. The results for 27.5 degrees

angle of attack are shown in Fig. 5. The amplitude

of the limit cycle is 29.6 degrees and its period is

0.3 sec; both agree well with the observations of

Levin and Katz (1982).

10

|
d

The uncontrolled response in roll for a

unit-aspect-ratio delta wing at 27.5° an

gle of attack.

Fig. 5.

Numerical Simulations of winn rock were first

obtained by Konstadinopoul- (1985) and
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Konstadinopoulos (1984). They were able to simu

late the experiments of Nguyen et al. (1983) and

Levin and Katz accurately. They also were able to

develop analytical expressions for the roll moment,

which enabled Nayfeh et al. (1989) and Elzebda et

al. (1989) to develop analytical models of wing rock.

Luo and Lan (1993), working independently, also

developed an analytical model.

To produce a simulation of a controlled re

sponse, we add Eqs. (3)-(5) to the system of

equations being solved. The controlled response

at 27.5 degrees angle of attack are shown in Fig.

6. After some trial and error, we chose K1 = 1. and

K2 = 20. The deflection of the port-side aileron is

shown in Fig. 7. The unstable motion is quickly

damped. The aileron deflection appears to decay,

but if the control is shut off d will begin to grow.

*

-e

*

*

# -

#

-*

**

*: •e * -o *Q

Time tehordab

Fig. 6. The controlled response in roll for a

unit-aspect-ratio delta wing at 27.5° an

gle of attack.

-10%

|
0.

*: 60 "Oo 150 200

Time (chords)

Fig. 7. Controlled aileron deflection as a func

tion of time.

FLUTTER

In this example we consider a high-as

very flexible, uniform wing, such as t

presented in Fig. 8. (The method car

wise variations of the properties.) H

chosen the elastic and inertial axes to be coinci

dent. All of the twist/bending coupling is produced

by the aerodynamic loads.

Fig. 8. A schematic of the high-aspect-ratio

rectangular wing.

The dimensionless equations of motion of the

wing are

# – Deb =q& (6a)

V + Dav" - D,(2v’v" + 10v'v"v" + 3v")

1 - 6b= q.0, -w-#q.0" (6b)

4 y *2

u(y,t) = -- v “dy (6c)

2 Jo

- El __Gu_ _pL#
where Db = mL#V2 , D = V*Jo , Qb = 2m '

- ple - gl-2 -

Q = 2Jo and W = V2 Here El is the flexural

stiffness, GJ is the torsional stiffness, p is the den

sity of the air, Le is a characteristic length, Jo is the

mass polar moment of inertia, V is the speed of the

freestream and m is the mass per unit of span. The

dimensionless aerodynamic loads, Q, and Q, are

functions of the current shape and motion of the

wing as well as the histories of these quantities.

The nonlinear terms Come from the Curvature.

The boundary conditions are

b(0t)=0 b (L,t)=0 (7a)

v(0t)=0 v (L,t)=0 (7b)

v (0.t)=0 v"(L,t)=0 (7c)

Now the goal is to solve Eqs. (6) and (7) as well

as those governing the flow for u,v, b, Q, and Q,

simultaneously. The first step is to discretize, or

convert, the partial-differential equations into a set

of ordinary-differential equations. To this end, we

represent v and d as expansions in terms of the

linear, free-vibration modes:
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M tream speed. The nonlinear terms in the bending

qb(y,t)= X. Cm(t)xm(y) (8a) equation were deleted for these results, so all

n= 1 nonlinear effects are from the aerodynamic model.

N

v0.0-X B (OV-0) (8b) 0.204 -

n = 1

0.202 -

For the present results, four flexural and three tor

sional modes are used. The modes (X, and Wm.) * 0.200 -

can be obtained analytically or numerically. The $

expansions are substituted into Eqs. (6) and * 0.198 -

Galerkin's procedure is applied to produce a set

of N + M second-order ordinary differential 0.196 -

equations (see Luton, 1991) governing the time-de

pendent coefficients. These equations are inte- 0.194 -

grated by the same algorithm used in the 0 2000 4000 6000 8000

simulation of wing rock. f

TO control the anticipated flutter, we add flaps Fig. 9. Wing-tip deflection as a function of time

near the wing tips, a feedback-control system, and -

- for the rectangular wing when the speed
a servo-mechanism to move the flaps. The control • - -

- in the freestream is 75 m/s and o is 2.4

law for the commanded flap deflection has the
- degrees.

form:

6 = Giv(0.95L, t) + G2ó(0.95L,t) (9) 0.204 -

and the actual flap deflection is given by 0.202 -

3 = G2(62–6) + G46 (10) s 0200
-f

where G1, G2, G3, and G4 are constants. The de- * 0.198 -

flection, 5, is limited to + 12 degrees and has zero

velocity at these extreme positions. The control 0.196 -

law and servo equation need not be linear nor have
- 0.194 –

constant coefficients.

0 2000 4000 6000 8000

In Figs. 9-11, the responses of the uncontrolled (#)

wing to an initial disturbance are shown for three 0.55 -

speeds near the flutter speed. The angles of attack

are adjusted so that the lift forces are the same.

In Fig. 9, the speed in the freestream is 75 m/s and

a is 2.4 degrees; the motion of the wing decays $

very slowly to the static equilibrium position. In < 0.45

this simulation, all damping is due to the aero- §

dynamic loads. Though the aerodynamic model is

'inviscid', there is still 'damping' as a result of the

transfer of energy from the wing to the flowing air.

In Fig. 11, the speed is 80 m/s and the response 0.35

grows slowly. The appearance of the torsional re

sponse is similar to that of the flexural response in

both cases. In Fig. 10, the speed is 77.5 m/s and

the response to the initial disturbance is a limit - - - - -

Fig. 10. (a) Wing-tip deflection and (b) wing-tip
cycle. Dong (1991) also found limit cycles near the

flutter speed in his two-dimensional simulations of

flutter. For a small range of speeds limit cycles

exist and their amplitudes increase with the frees

twist angle as functions of time for the

rectangular wing when the speed in the

freestream is 77.5 m/s.
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represents a constant forcing. This therefore calls for refor

mulation to remove the constant thermal forcing. The main

conclusion of this paper is that the uniform temperature,

temperature variation over the plate, and temperature gradi

ent across the plate can contribute additively to the mean

square displacement (Sec 7) and also to the normal stress

and strain (Sec 8). Yet, the thermal effects are felt most

strongly when the acoustic loading is weak.

2. LARGE-DISPLACEMENT PLATE EQUATIONS

Let us begin with the following strain-stress relations

* =# (o.-Po, )*T. &=#6,-Ho.)*T.

* =#o, (1)

where E is the modulus of elasticity, u Poisson's ratio, T

the local plate temperature, and of the thermal expansion

coefficient. In the absence of oT, Eq (1) is the usual

relationship of strain (ex, ey, exy) and stress (ox, cy, oxy).

For OC-0, raising T would result in increased strain, in

conformity with the physical notion of thermal expansion.

The inverse relation is

E

Ox= (1-12) ext ugy- (1+u)ar]

- E - E

*-T:#;". (1400T] oxy= (L.) *y

Since the sign for oT is negative, the stress may in fact

decrease as T is raised.

(2)

Following Bolotin (1963) we decompose T into

T(x,y,z) =T(x,y) + z0(x,y), (3)

where Toy-h'Toy2× is temperature averaged

over the plate thickness h, and 6(x,y) is the temperature

gradient across h. Note that only the linear temperature

variation in z is included in (3), according to the thin plate

theory. We now summarize the compatibility, transverse

displacement equation, and immovable edge and boundary

conditions (see, Lee (1992) for the detail). It is however

more convenient to measure x and y in units of a and b, the

respective sides of plate, so that x and y now range over [0,

1]. First, the compatibility condition is

2 2r/02w 02w\/02w

v°F + Ehob”T = EhB[# -# oy2 )] (4)

where 3=b/a and W*=p'o'/ox”:3°foy'. Note that the bihar

monic operator applies to Airy's stress function F, and the

transverse displacement w is governed by the von Karman

type of large-deflection plate equation, written in the fol

lowing symbolic form

R1 + R2 + R3 + R4 = 0, (5)

where

R-ol'*# -p, R2-Db"V"w, R=o(1+u)Db°W*e,

*-#######)]

Here, p is the cross-sectional mass density, & the damping

coefficient; p the external pressure, and D=Eh3/12(1-12)

the flexural rigidity. The£ is introduced to R1 for

viscous damping, but a more appropriate damping model

would be 3DV"ow/o) of Maekawa (1982). Eqs (4) and (5)
are essentially Eqs (4.131) and (4.132) of Bolotin (1963),

and also agree in form with Eqs (13.7.1) and (13.11.3) of

Boley and Weiner (1960).

The compatibility states force balances at the mid-plate.

Hence, it constrains the in-plane displacements u and v in x

and y axes, respectively. Let us assume a homogeneous

solution of V*G=0

G = P.b°y°/2 + Pya'x' 2 - Psyabxy. (6)

Here, the constants Px, Py, and Pxy representing the mem

brane stresses can be evaluated through the immovable

edge conditions (Mei, 1980)

#-0 and £)*-0 at x=0, 1

#-0 and |''}*-0 at y=0, 1 (7)

Note that the edge displacements are suppressed only in the

average sense. The integrands expressed in F and w are

given by Eq.(4.140) of Bolotin (1963)

*#)-####|*#).

#)-####|*#).

as given by Eq. (4.140) of Bolotin (1963). For the boundary

conditions, we first assume no transverse displacement

(8)

w(0,y)= w(1,y)= w(x,0)= w(x,1)= 0. (9)

For a simply-supported plate, the tangential components of

the bending moment being zero implies (Eq (12.4.2) of

Boley and Weiner, 1963)

# + ob’(1+u)0=0 at x=0, 1

2

# + ob"(1+u)0 = 0 at y=0, 1

Whereas, we have for a clamped plate:

2x=0 at x=0, 1 and #- at y=0, 1.

(10)

11

0x (11)

For an isotropic plate, the assumption that du/ox, ov/0y,

ow/ox, ... are constant across the plate leads to the follow

ing stress tensor

1 02F zE 202w .02w\ zEo.6

*"E5, Eö (8 0x2 *::) (1-p) '

c. = 1..?' --2E -(?: •us') - zEoß

* Thb23x2 b2(1-12) \Oy2 "" 3x2 / (1-u) '

c. ---8, 9°F. --B2E 2^* (12)
xy

hß2 0x0y b2(1+u) 0x8
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also given by Eqs (29-31) of Choi and Vaicaitis (1989).

Inserting Eq.(12) to (1) yields

_ _1 (02F 292F 202w

‘,-F#-F#)-# at
– 1 202F .02F) 02w

4-####): ot.

--(1:08.2°F. - 8.3%

***E:##5, #3: .

#£213, will be used for the stress/strain computation in

CC 5.

(13)

3. THE DERIVATION OF MODAL EQUATIONS

Since Pxy=0 for the immovable edge (7), we construct F

from homogeneous solution (6) and the particular solution

expanded in cosines

F=-P.b2y22-P-a2x2/2+Eh; 5 F . (14xD“y ya'x4/2 #. pacospita cosqry (14)

And, a similar expansion is introduced for T(Sunakawa and

Uemura, 1960)

T = t + # ©o CO CO - 15

T = to #3:...'" spTx cosqrty (15)

Note that the term for p=q=0 is excluded from Eqs (14-15).

To evaluate Fpq one must further assume an expansion for

W.

For a simply-supported plate, it is standard to expand w

in 'H'm(x)=sin(mtx) with the desired properties that they are

orthogonal and Pm(x)'Pn(y) is an eigenfunction of the

biharmonic operator, i.e., the Helmholtz problem. We there

fore adopt for a simply-supported plate

wmnWm(x)Vn(y), (16)w(x,y)= #-#

where Vm(x)=2\'m(x) are orthonormal. On the other hand,

q'm(x)=cos(m+1)"tx-cos(m-1)*(x have been used for the

clamped plate problems (e.g., Maekawa, 1982, and Paul,

1982). However, they lack the desired properties so that

the inertial and stiffness matrices become nondiagonal.

Although one can readily construct orthonormal bases from

q’m(x), as will be done shortly, the pm(x)4Pu(y) is not an

eigenfunction of the Helmholtz problem. Hence, a nondia

gonal stiffness matrix is still unavoidable.

Let us rewrite @m(x)=2Sm(x), where Sm(x)=sin(mtx)x

sintx, and construct the orthonormal pm from dom by the

Gram-Schmidt procedure (Luenberger, 1969). Since S1(x),

S3(x),... are even and S2(x), S4(x),... are odd, one finds

that pm(x) also split into the even p1=/8/3S1(x), p3=

W24/5S2(x)+/8/I5S1(x),... and odd components p2=2S2(x),

pa=/Tö73S4(x)+/473S2(x),... Summing up, we then have

*@-' (17)

where

A

-

WSB 0 0 0 0

0 2 0 0 0

8T5 0 W24/5 0 0

0 4/3 0 AD 16/3 0

*''': 0

6

0 WFA 0 W33 0

:
ami *

The expansion for a clamped plate has the form

way)=}_o #- "ma"(*.G). (18)

where pm are orthonormal.

Simply-Supported Plate: By inserting Eqs (14–16) into

(4) and collecting the coefficients for Fpq. we have

Fpq :#: +—"— * (19)
w2(p232+q2) (p23+q2/3)2

where Apq given in Appendix A consists of nine sums B1

B9 of Levy (1942). In parallel to (16), we also expand

x,y) - Coo oo (
(£)"#-o'- :) Wm(x)Vn(y). (20)

Now, introduce Eqs (14), (16) and (20) into (5) and sort out

the coefficients for wrs by the Galerkin procedure. Because

of the orthonormality, one can write down at once

02w ow

JJ'Riv.Gow,(y)dxdy= ph's +ph: - Prs,

JJ'R2V.(x)\,(y)dxdy=# (32r2+ s?)2 wis,

2

JJ'Raveov.g)dxdy= -at: (32r2 + s^)0s (21)

On the other hand, the integral for R4 is complicated due to

the product of F and w. After some algebra, we have

t?oEhto 2 + c2

b2(1-1) (32r2 + s^) was

*32Eh
+ 2b^(1-12) Kiwis

J'J'Raw's)ws(y)dxdy=

-1.83°o Eh
Bis(wmn,—#4–

4b2 (32p2+q2)

*B2Eh
A.

w-...-Pi—

)

(22)

where

Ki: {*m'w£an wi.”um wi.”via).m,n

The Brs is given in Appendix B. By equating the sum of

four integrals in Eqs (21-22) to zero, the modal equation is

obtained for wrs.

Clamped Plate: Inserting Eqs (14-15) and (18) into (4),

we obtain
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ra-=###: @
w2(p232+q2) (p23+q2/3)2

where Cra is given in Appendix C. Similar to (20) we let

x,y) - ©o Oo (

(#)-i..')--" "

Because of the orthonormality, one finds at once

02w ow

J.J'R"oddy-on' *ph: - Prs (25)

For the biharmonic term, we obtain

£owodway-'k. (26)

where

K--#£"

-##".#'s. Yuasai-nót"

+#'..."'" Ž") (i+D’)

*''' Yuasa." (i+D’).

Here, the notation f(I)=f(1)+f(-1) of Maekawa (1982) is

used to consolidate the shifted summands. Similarly, we

find

2

£otoday--*#*k, at

where

Oo / - 2

K3=-#'-." # "m: } Haid:06:0

1 * . . . .2

-$'."m#: XH-64") (i+I)”.

Finally, the integral for R4 can be put in the form

1 [1 - t?oEhto

J'exo'-'koko

- t2320-Eh D —a

#*P*G')

.###"kok."kok)

*B2Eh Cpq
- D * - 28

#*P**E: (*)

The Drs and K4 - K7 are given in Appendix D. Again, the

modal equations for a clamped plate are formed from the

four integrals in Eqs (25-28).

4. UNIFIED MODAL EQUATIONS

For unified representation we put the modal equations in a

dimensionless form by scaling the length by h, the time by

Y=(phb4/t"D)1/2, the force by (ph’/Y2), and the temperature

by T", to be defined shortly. Accordingly, the dimension

less mechanical variables are

t = th, Prs =(Y/ph?)prs, Wis =wis/h, (29)

and thermal variables are

To =to/T" * Tpq ={pq/T" , 9rs =h0s/T" - (30)

Simply-Supported Plate: The modal equation for Wrs

follows by equating the sum of four integrals (21-22) to

zero. For a simply-supported plate, the appropriate T" is the

critical buckling temperature T =t2h?(82+1)/12ob2(1+u),

at which the global thermal expansion cancels out the struc

tural stiffness for W11 (Wilcox and Clemmer, 1964, and

Schneider, 1974). Using the variables (29-30), the dimen

sionless modal equation becomes

W OW

#.# -Ps + (82.2+ s^*ws +68°Kiwis

(SP-1) (SP-2) (SP-3) (SP-4) (SP-5a)

A.
- -112 —Pi—y- 2 -s?

332(1-12)Brs(Wmn, (ßp2+q2EY' (32+1)(32r2+s2)ToWs

(SP-5b) (SP-6)

-(1-p)}{B+1)B.(w 'a
4 *”"(82p2+q2)

(SP-7)

- (8+1)(82r2+s2) Q. = 0

(SP-8)

We may interpret the terms labeled by SP (simply-support

ed plate) 1 - 8 as follows: SP-1 is the inertial term, SP-2

represents viscous damping, SP-3 is the external forcing,

SP-4 is the usual stiffness term, and SP-5a and 5b represent

the cubic stiffness. Note that SP-5a is the immovable edge

contribution, whereas SP-5b is derived from the product of

w and F. The thermal effects are embodied by the last three

terms. That is, SP-6 is the global thermal expansion owing

to uniform plate temperature, SP-7 is the local thermal ex

pansion by temperature variation over the plate, and SP-8

represents the thermal moment induced by temperature gra

dient across the plate thickness.

Clamped Plate: Using T =t2h’(B^+232/3+1)/3ob2(1+u)

x(8*1) for the clamped plate, the modal equation becomes

02W OW

#*# - Prs + [K2 (Wmn)]rs

(CP-1) (CP-2) (CP-3) (CP-4)

+68 (8°K.'"K.)K. "Qiks' 8°K)Ksh.

(CP-5a)

C

-382(1-12)D.(Winn,+-Pé–

*W*#)
(CP-5b)

4

- £atur, ['Kawim):Ks(W")],

(B^+1)

(CP-6)

-(1-1)}^(8*28°/3+1) D-Gw Tps
(82+1) Drs.( Inn” (32p2+q’ )

(CP-7)
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- (8*282/3+1) = 0

(CP-8)

(32)

The CP (clamped plate) 1-8 have the same meaning as SP

1-8.

The enumeration of (31) and (32) has been carried out by

Lee(1992) for the lowest order W11, W13, W31, and W33 to

provide a comparison with Levy's (1942) simply-supported

plate case and the clamped plate result of Paul (1982). Even

with only four Wrs, the modal equations have a bewildering

number of constant, linear, and cubic terms. Therefore, as a

check on the internal consistency, we construct the

Hamiltonian H(p,q), where p1=W11. p2=W13, p=W31,

p =W23, q=WII, q2-WI3 q,-W31, q =W33 from which

the equations for Wis have been recovered by

3 - 0H 3 – 0B

P-3: 1-3E.

for the simply-supported (Lee, 1986) and clamped (Lee,

1992) plates.

(33)

5. TEMPERATURE VARIATION AND GRADIENT

To proceed further, it is necessary to specify Tpa and 9rs in

Eqs (31-32).We split the averaged temperature into uniform

to and variation tv(x,y)

T = to + tv(x,y), (34)

as in (15). Hence, Eq.(3) has the form

T = to + tv(x,y) + Z9(x,y), (35)

where Z=z/h ranges over [1/2, -1/2]. Since to is assumed

nonzero, the magnitude of (ty, 9) will be measured by

multiples (8v, ög) of to

tv =&tofv(x,y), 9= 6; ofg(x,y). (36)

In words, (8vto,övto) is the magnitude of temperature (vari

ation, gradient) with the distribution (fy(x,y), fg(x,y)). Upon

inserting (36) into (35) we have the dimensionless form

T/T"= To + (8/To)f,(x,y) + (8gro)Zfg(x,y), (37)

where T’=(T: , T:) for the (simply-supported, clamped)

plate.

First, by comparing (37) with (15) we have

8.T.)f(x,y)=$ 5. T - 38(öv'To)fv(x,y) #. pacospitxcosqrty (38)

Let us examine a few examples. If f =sintxsinty we find

from (38) that

16övTo

-- *q-0)

" *p-dg-d

(39)

For the second example fy-sintx2sinty2, the sum in (38)

reduces to a finite sum (1/4)(1-cos2;(x)(1-cos2 ty). Hence,

T20=To2=-T22=-&T/4, Trq=0 (for other p, q). (40)

Now, for the temperature gradient we write in view of

(20) and (24)

(8gro)fg(x,y)= #- #.9mn"lm(x)nn(y), (41)

where mm=(\Vm, pm) for the (simply-supported, clamped)

plate. For simplicity we shall suppose fs=sin(xsinty for the

simply-supported plate and obtain

el1=&To/2, emn=0 (for other m, n) (42)

Whereas, fr=sin(x?sinny” gives rise to

el1=3&T./8, emn=0 (for other m, n) (43)

for a simple temperature gradient for the clamped plate.

Although it appears at first sight that 5, and & can be

chosen arbitrarily, this is not the case when the temperature

variation and gradient are nonuniform. Note that a nonuni

form 9 cannot exist unless ty is also nonuniform; i.e., 8v=0

implies &=0. What is then the maximum value of 5, de

noted by (85) wax, for a given & This cannot be answered

in general without knowing the f, and f, However, in the

case fu-fg, one may infer (55), ax=2öv Sunakawa and Ue

mura (1960) have used a parabolic distribution for fy and

fg, and prescribed (85) wax=(4/3)öv, for which the lower

plate temperature is half the upper plate temperature. In

view of the recent attempts (Kehoe and Synder, 1991; Ri

chards and Thompson, 1991) to generate various tempera

ture profiles over a panel by radiant heating, the sorts of fy

that we have discussed here are not unphysical. Yet, to the

best of our knowledge no attempt has yet been made to

either measure or control f, over a plate.

6. SINGLE-MODE EQUATION FORW11

Let us examine the simplest case of a single mode W11

when all others are suppressed. Under (40) and (42), the

simply-supported plate equation (31) gives

wirewirt"("T.I'd "...]wn"Bwl,

-IPu'a (8*1%,Tel-0. (44)

where e(p,B)=(3/4)[(1-12)(34+1)+2(34+1+2uß2)]. Under

(40) and (43) Eq.(32) similarly reduces to

W11 +%W11+

+ ##28'3+1}{1-T.[1+#1405,0-6'8")”)]wn

#aaßwil-IPu' (#28'3"D&T.J-0 (45)

where
d(a,p)=(38°4){(#8°42') (142)(49)[17(3**
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B’y844(B+8')”.(B48')^*(48:6'5"). The eight
terms in Eqs (31-32) are now regrouped into five. The first

two inertial and damping terms are retained intact. How

ever, the third term of Eq.(44, 45) is the combined stiffness

which subsumes the stiffness (SP-6, CP-4), global thermal

expansion (SP-6, CP-6), and local thermal expansion (SP-7,

CP-7). And, the fourth term represents the cubic stiffness

(SP-5, CP-5). Finally, the last term in Eq.(44, 45) is the

combined forcing of the external pressure (SP-3, CP-3) and

thermal moment (SP-8, CP-8).

Since Eqs (44) and (45) are similar, we present them in a

prototype form (q=W11 and f=P11)

q + 0.5% + oš(1-s)3 + kq = fo + f(t), (46)

Goo–(82+1), s–To[1+(1-1)öv/8], k=4e,

f =(B^+1)^3.T./24 for the simply-supported plate; and

o=16(84.232/3+1)/3, s–T.[1+(1-p)&(1+3*(82+1)*/6],

w=128d/9, fo= (B^+232/3+1)6. To/6 for the clamped plate.

Also, Y=Goo is introduced. Note that the combined stiffness

o:(1-s) is positive when the thermal loading is weak (s−1

for pre-buckling), whereas it becomes negative under a

strong thermal loading (s−1 for post-buckling).

Without damping and forcing, the Hamiltonian H=K+U

for Eq (46) has the kinetic energy K=p2/2 and potential

(strain) energy U=03(1-s)q°/2+kq'/4-fog. When fo=0 the

potential energy is even, U(q)=U(-q). Hence, fo has a very

significant effect of destroying the symmetry property of

Duffing oscillator as defined by Räty (1984). Fig 1(a)

shows the symmetric U of a simply-supported plate under

fo=0. Note that the single well potential develops a double

well as s−1. Although 6,To has been lumped into a para

meters, one must specify 6, and To for for For qualitative

discussions, we let &=ög=1 and express To in terms of s

T-s/[1+(140/8], T-s/[1+(1-p)(1+3*(B^+1)*)6], (47)

where

U

-r- 8 s= 0 1 2 3

Q

-1 é l

(a)

Fig 1. The potential energy U of a simply-supported plate under 8-1 and u-W0.i. (a)

Discrete increments of s =0, 1, 2, 3. (b) Single well potential developing a symmetric

double well.

for the simply-supported and clamped plates. In this way,

the three thermal terms can all be quantified by s. Shown in

Fig 2 are the potentials of Fig 1(a) being asymmetrized by

the temperature gradient. Note that an asymmetric U has

also been observed in an electrical power system model

(Nayfeh et al., 1990) and imperfect structural model (Souza

and Mook, 1991).

A. Thermally Buckled Modal Amplitude

The static problem of (46) is governed by

icQ3 + Co.(1-s)Q-fo =0. (48)

For fo=0 the two regimes of (48) are Q1=0 for s−1 and

Q2 =tow (s-1)/K, (49)

for s-1. Since (48) is nothing but 0U/0q=0, the Q1 and Q2

represent the trough of symmetric U, shown in Fig 1(b).

When foeO Eq.(48) again has two regimes. For scs" it has

only one real root

for the radicand is positive. In fact, the critical s” is deter

mined by the zero radicand

“-1-(##".

For s-s" the radicand is negative, so that the two real roots

representing the trough of asymmetric double well potential

(51)

arc

o, -(#)" cos' ''). -0.1) (2)

U

T 8 s= 0 1 2 3

+ 4

l q

-1 1

Fig 2. Asymmetrized potentials due to

fo=s/6(1+(1-u)/8] of the simn"-supported

plate under 8*' and u-W0.
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where coso-((f/2k}(o:s-1)/3x)')". In Fig 3 we com
pare the pairs (Q1, Q2) and (Q3, Q4) under the relation (47).

Note that the emergence of two roots (52) is quite sudden,

and Q3 and Q40 are joined smoothly at s=s*. As expected,

the (Q3, Q4) degenerate to (Q1, Q2) when fo=0.

B. Dynamic Considerations

The equilibrium Q3 is stable for ses" and becomes unstable

at s=s*. On the other hand, the stable equilibrium states are

given by Q4 for ses". The local dynamic can best be exa

mined by the change of variable q=Q+r in (46)

f +0.5 +[o:(1-s)+3xQ'ir '3xQr "c" =f(), (53)

by virtue of (48). Eq.(53) now describes oscillations about

the state Q. In fact, we have traded Eq.(46) with the right

hand side fo term with a pair of (48) and (53). Under fo=0,

we have Q1=0 for s−1, so that (48) and (53) reduce to the

original equation (46). And, for s-1 we have, since Q=Q2

r + Cooãr +20%(s-1)r + 3xQ2r2+ kr' = f(t). (54)

This therefore has led Schneider (1974) to conclude that the

natural frequency is increased by the W2 factor after thermal

buckling. Although (46) and (53) are equivalent, the latter

0.6

0.4 –

0.2 –

Q 0–

-0.2 –

Fig 3. The trough of potentia

roots of Eq.(48). The fo is rel

and Q2 are denoted by a brok

Simply-supported plate; (b) cl

rmined by the real

inder 8v=&s=1. Q1

1 by a solid line. (a)

system is better suited for a local analysis about the Q (Sec

7).

For the global analysis, one must deal directly with (46).

This equation, however, does not appear studied in its en

tirety, although there is no dearth of investigations pertain

ing to certain subsystems of it. Of course, the most notable

is when fo=0. Introducing f(t)=Mcosøt(where M and Q are

the forcing amplitude and frequency), (46) is has the well

known Duffing's equation

q + Cooga + Co.(1-s)3 + kq =Mcosot, (55)

with a hard (k=0) and soft (k=0) spring (Stoker, 1950). For

s−1 the equilibrium Q1=0 represents the trough of single

well potential in Fig 1(b). As spasses through unity, Q1 be

comes unstable and Q2 is now the stable equilibrium state.

Let us rewrite (55) for s−1

q + Oo33 - 0.3(s-1)3 + kq =Mcosøt. (56)

This is the so-called buckled beam equation of Holmes

(1979). The dynamics of Duffing and Holmes oscillators

have been investigated extensively (see, for instance, Hu

berman and Crutchfield (1979), Räty et al. (1984), and

Nayfeh and Sanchez (1989) for soft Duffing oscillator;

Novak and Frehlick (1982) for hard Duffing oscillator, and

Guckenheimer and Holmes (1983) for Holmes oscillator).

The general observation is that the development of chaos in

these oscillators can be ascribed to the symmetry breaking,

thereby engendering even modes consistent with the period

doubling scenario of Feigenbaum (Kalafati and Malakhov,

1983).

Under fo-0 Duffing's equation that Ueda (1981) has ori

ginally investigated is Eq (46) with f=McosQt, but s=1 so

that only the cubic stiffness term is present. On the other

hand, the systems of Nayfeh et al. (1990) and Souza and

Mook (1991) have a nonzero forcing term; however, their

cosine potential represents a nonlinear pendulum.

7. RANDOM DISPLACEMENT ESTIMATION

The combined forcing g=fo-f is a nonzero-mean Gaussian

process when f(t) is assumed zero-mean Gaussian. The

2

Z

|-

3|-|--|--
N/ | > ||

0

0 | 2

£n

Fig 4. Linear and nonlinear estimates of the maximum mean square

displacement under 3=1, u=0,1, &=0.04. The simply-supported plate

is denoted by a line with circles, and the clamped plate without circles.

-
-

-
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equivalent linearization technique was formulated (Cau

ghey, 1963) for a zero-mean Gaussian excitation, hence it

is necessary to reformulate the problem so that fo does not

appear in the forcing term. We shall first consider fo=0 in

Sec 7A and the general case fo'o will be presented in Sec

7B.

A. Acoustic Loading (g=f(t))

Pre-buckling (s−1): Let us denote by qlin the amplitude

of linearized Eq.(46) under fo=0. The mean square ampli

tude is given by Eq.(E3) of Appendix E

2 > -- 860
<div> = 2503(1-s) (57)

where * > is the statistical (time) average and gff(f) is the

power spectral density in frequency. Now, for (46) the

equivalent linearization technique yields

oš(1-s) 12x<q2 >
> = 1 14*qin’ -

-5R- | + o:(1-s) 1] (58)

as given by Eq (E9). For small x, (58) reduces to <q2>=

<q£ as expected, and <q'>-q#-in when k is large.

<q2

For the nonthermal (s=0) reference, we have evaluated

2

<div> and <q*> for B=1, W2=0.1, 5–0.04, and presented in

Fig 4 the maximum displacement

3 y:

|-> *

j
~ |

0

0 l 2 3 4 5

* (a)

3

A 2 ==#

s l 2.

| 1.
0–

Ém

(b)

Fig 5. Maximum mean square displacement of a pre-buckled plate

(s−1) under 3=1, u=0,1, &=0.04 (a) Simply-supported plate; (b)

clamped plate.

<(Wmax/h)^* = c-q#.” or c-q2-, (59)

where c=(4, 64/9) for the (simply-supported, clamped)

plate. In the figure, the straight lines originating from the

origin are linear input-output relations. However, the mean

square displacement (58) increases more gradually due to a

nonlinear saturation provided by the equivalent lineariza

tion. For a given gff, the simply-supported plate has a larger

mean displacement than the corresponding clamped plate,

as already noted by Mei (1980).

In the thermal case (s=0), the mean square displacement

increases with s, as evidenced by the three s–0, 0.5 and 0.9

in Fig 5. However, the net thermal contribution diminishes

as gff becomes large.This may be inferred from the limiting

form of (58), <q’==(gff'6%roo)1/2, as gif->~, which is

independent of s. In other words, the uniform temperature

and temperature variation will have no effect on the mean

square displacement when the acoustic loading is large.

Post-buckling (s−1): Denoting by rlin the amplitude of

linearized Eq.(54), we have in parallel to (57)

< > £ff

lin "Ago (s-I) (60)

The equivalent linearization procedure goes through just as

in the pre-buckled case, for the quadratic term in (54) has

no consequence under the Gaussian assumption. Hence,

4 |- 3

—T

3 == #

# D

2 ===
B

0

0 l 2 3 4 5

* (a)

6 s:

5 — ”

–T

–T

ax 4 —- —F*

s 3 == 1.5

E

~ – "

2 ==–

0 -

0 1 2 3 4 5

g

" (b)

Fig 6. Total mean square displacement of a post-bu 1)

under 3=1, u=/0.i. &=0.04 (a) Simply-supported p

plate.
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<> 2 ==
s

#

e|= -xx3

0

0 1 s 2 3

(a)

5

4 A.

# 3 2
->

#

+ . 24

(b)

Fig 7. Maximum mean square displacement under 3=1, u=0,1,

&=0.04, and gff=1. The cross-hatched triangle represents the squared

buckled plate amplitude. (a) Simply-supported plate; (b) clamped

plate.

Fig 8. The composite vie

5 and 6. (a) Simply-sur

re displacements of Figs

ped plate.

2

Goo(s-1) | 6x<r2 > |
<r2> = 1+-lin- - 1 |. 61

3K oš(s-1) (61)

And, the total mean square amplitude is given by

<q’s = Q#4's, (62)

since <r->=0.

Fig 6 shows that the total mean square displacement

increases greatly with s. However, the increase is largely

due to the contribution of Q2. To show this, we have pre

sented in Fig 7 the separate contributions of Q2 and <r2- at

gff=1. We see the squared Q2 increasing linearly with (s-1),

but <r’s actually falls off with s. This is again supported by

the asymptotic form of (61), <r2-2-1/s, as s—>>. Hence, the

mean square amplitude due to fluctuations is smaller in a

post-buckled state than in the pre-buckled. This has also

been borne out by the Monte Carlo simulation of Choi and

Vaicaitis (1989), in which the magnitude of stress fluctua

tions is considerably smaller whenever the stress time his

tory shifts to buckled states. The composite of Figs 5 and 6

is shown by the surface plot of total mean displacement in

Fig 8.

4

- 15

- 1

Džft.

*: 1 2 3 4 5

* (a)

4

T.:

—f"

3 –

|- —T'

==

1 4–

*: 1 2 3 4 5

" (b)

Fig 9. Total mean square displacement under the combined forcing.

Here, 3=1, u=0,1, 5=0.04, &v=óg=1. The range of To includes the

criticals" of (a) simply-supported plate and (b) clamped plate.
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B. Combined Acoustic and Thermal Loading (g=fo-f(t))

The analysis of Sec 7A is valid when there is no heat

flux through the plate thickness. This may occur, for inst

ance, when the temperature gradient vanishes due to one

side of the plate being insulated. Under a nonuniform heat

flux, the temperature gradient will be neither constant nor

linear over the plate. One must then retain fo as a nonzero

mean on which the Gaussian excitations are superposed.

Instead of (46), it is more appropriate to use the local dyna

mical equation (53). Denoting the combined linear stiffness

by ke=o03(1-s)+3KQ2, the mean square amplitude of linear

ized equation (53) is

<1% = gff

lin’" 25."

And, the equivalent linearization procedure yields

2

*-'[W": -1]

together with

(63)

(64)

<q’s = Q** <r’s. (65)

Eqs (63-65) are analogous to Eqs (60-62) of the post-buckl

ed case; however, Q is now given by Q3 and Q4.n.

Again, for simplicity we let 85-6-1. We then present in

Fig 9 the total mean square response computed by joining

Q3 and Q40 smoothly at s=s*. That Q>0 indicates that the

thermal moment induced by fo increases the mean square

displacement above the level of Fig 8. As in Fig 6, the

clamped plate responds more favorably to the temperature

gradient than a simply-supported plate (Fig 9).

1.2 1.2

8. RMS STRESS AND STRAIN

Let us put the normal stress (12) and strain (13) in

A. A

O 2R1.2 /O 21.2 (E

dimensionless form, ( ..)_*Ehé (#) * (:)-#(#)
cy) b \öy)'\e, £y

For the single-mode representation, we shall present the

stress and strain as a function x at y=1/2

Simply-Supported Plate

A (82+1)Tej (1406 f, cos2xx - }
- - 1 1- + Zö..sintx} +o--T:# *-T-l # gs

2

2Z(B^+1) ge; (8+u).#"[# +##, (66)

a (82+1)övTo [.. 1 1- }
Ex= 12(1+u) £-Ha":#">] +

+2Z32(sintx)q + (232 + ucos2;(x)4°/2, (67)

Clamped Plate:

A (B^+28°/3+1)Toj, (1+1)öM, cos2: - }
:-- +- 1- +Zö..sin’tx} -
*-T:YET"-Tl # gs

-_162-raz - # 582
3(1-12) [32cos2xx + usin’tz]q + 9 l16(1-12)#

cos2nx - - - cos2nx + costra, a2

28:8-1)* (8:48-1)* '4(48+8-1)*

A. #:
:- 2tx -£x 3(1+u)(32+1) Sin

- #(1+\cos to -#~~~}} -#cos2Roa
(82+1)

32/332 - 1 2Ro:(3,-ucosarot-'"* 5t 16 ++(3*ucos *)+(5(8° |ico 2(848-1)*

2TUK *... cos4: 1,82\l.2

(1-uß2)-–998+ (1-#)+—#5(#-uß }: . (69)

"E: # 243.31)*

(68)

ul-I-4

Eqs (63-66) have the symbolic

form

fo = Co+C1q +C23°, (70)
A A

where 42 represents (oxy, ex,y)

# and C's are the coefficients invol

ving x. Under the assumption of

zero-mean Gaussian, we obtain by

squaring and averaging

| <

<o?==C#C#2C-C2)<q'>+

+ 3c (~q >)". (71)

To be specific, we consider the

parameter values To=1.2, 8v=ög=

1, and gff=1. After computing the

extreme-fiber stress and strain (at

Z=1/2), we estimate the mean

square value by (71). To quantify0.4 0.4

0 0.2 0.4 0.6 0.8

X

1 0 0.2

Fig 10. RMS extreme-fiber stress and strain of a simply-supported plate under B=1, u=0.1,

5–0.04, and ga-1, o for To-3-89-0. for To-12, 8v=&s=0; 0 for To-1,2,5-1, &=0 - for

To =1.2, 8v=&g=1.

0.4 0.6 0.8
1 the thermal contributions, we have

X shown four plots in each of Figs

10 and 11. The first (open circle)

is the nonthermal case (To–&=52

=0); the second (asterisk) in

only the uniform temper.
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12, &=ös–0); the third (diamond)

involves both the uniform temper

ature and temperature variation

over the plate (To=12, &=1, 6–

0); and the last (solid circle) repre

sents the fully thermal case (To=

12, &=ös=1). Figs 10 and 11

show that the three thermal terms

contribute additively over the en

|
#

tire x. Moreover, the contribution

by the uniform temperature (aster

isk) is at least a half the total ther

mal contribution for both the nor f
mal stress and strain. The parame

ter values of the figures are meant

to be typical; however, a variant

may be noticed under a different

W| ||

0.6

\ || |

\|^\|

\
"RV

parameter choice. \ l

9. ASSESSMENT OF SINGLE- U

MODE DYNAMICS

TV
0.2 t0.2

0 0.2

The parameter reaches the critical

value s=1 when thermal expansion

is sufficient to induce buckling

under the immovable edge condi

tion. For a pre-buckled plate (s−1)

the thermal expansion brings about

increased mean square amplitude

over the nonthermal (s=0) level. However, the relative in

crease diminishes as the acoustic loading becomes large.

On the other hand, for a post-buckled plate (s−1) the total

mean square displacement is sum of the square of buckled

plate amplitude and mean square displacement due to the

acoustic excitation only. Note that the square of buckled

plate amplitude increases with (s-1), but the mean square

displacement due to fluctuations falls off by 1/s, as s

becomes large. Hence, the total mean square displacement

is dominated by the buckled plate amplitude in the high

temperature limit.

&v=ög=1.

It is important to point out that the temperature gradient

across the plate introduces a qualitative change in overall

dynamics. For a positive temperature gradient, there

appears another critical value s–s" by which the thermal

buckling is now characterized. Quantitatively, however,

the thermal loading brings about additive contributions of

the three thermal terms to the mean square amplitude as

well as the rms normal stress and strain.

At this juncture, one may ask: How good is the random

dynamics of a single-mode equation? Clearly, we cannot

answer this fully without a detailed investigation of multi

mode equations. In the nonthermal case, however, Mei and

Paul (1986) have shown that the single-mode analysis can

provide an adequate approximation when the external forc

ing is weak. In fact, this is a good news in that the thermal

effects show up most poignantly in the weak forcing range.

Hence, the peculiarities of themal effects might have

already been captured by the single-mode analysis present

ed here. In any event, because of the Hamiltonian equa

tions (33) of motion, it behooves us to investigate the

multimode systems by Fokker-Planck formulation (Heuer

et al., 1992).
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Fig 11. RMS extreme-fiber stress and strain of a clamped plate under 3=1, u=0.i. &=0.04, and

gf-1. o for To-āv=&s=0, for To-1.2, 8v=&g=0. 0 for To-1,2 &=1, 35-0, - for To-12,
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APPENDIX A: Apa
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APPENDIX E: Equivalent Linearization Technique

Let us begin with a damped linear oscillator

x + 3x + kx = f(t), (E1)

where 3 is the damping coefficient and k the stiffness. Assume

that f(t) is a stationary Gaussian with the power spectral density

$f(o), where o is the angular frequency. The mean square res

ponse is

<x2> =
rtf(k)

ßk
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where * > denotes an ensemble (or time) average. Note the

sign = is used because ©ff(0) is assumed constant over the nar

row resonance peaks at (see, Fig 5.3 of Lin, 1976). Re

write (E2) by using 4ff(0)=gg(f)/2", where f is frequency

gff

<x2> = (E3)

Here, the argument of gff is suppressed for a constant spectrum.

Now consider a damped Duffing oscillator

x + 3x + kx + yx3 = f(t), (E4)

where Y denotes the strenght of hard spring. Rather than solv

ing (E4) by perturbation, the aim is to replace it by a linear sys

tem of the form

x + 3x + kex + e = f(t). (E5)

By a judicious choice of the equivalent stiffness ke, one

attempts to capture the nonlinearity in a statistical sense. And,

attempts to capture the nonlinearity in a statistical sense. And,

the degree of failure is quantified by the error e=(-ketk)x+p.3.

In the equivalent linearization technique, ke is found by mini

mizing the mean square error, i.e., d.<e*/dke=0. When x is

zero-mean Gaussian, a simple expression follows

ke = k + 3\x2>. (E6)

By suppressing the error term, (E5) is linear so that

£ff
<x2> = * (E7)

23ke

in view of (E3). Inserting (E6) into (E7) and identifying <x$n

=gf/23k, we have (Caughey, 1963)

# (<x2>)2 + 2×2=-&#m- = 0, (E8)

the positive root is

<x2> = #| 1,1:ie -] (E9)
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The exact solution to this problem is

—e sin”(r)
u = 1 - e (26)

The Taylor series expansion of u(x, e) about e= 0

converges for all le| < oo, since u has no singularities in

the finite part of the complex e-plane. For this example,

u develops boundary layers at both a = 0 and a = T as e

becomes large.

Step one: Using the regular perturbation method we

find the up in Eq. (2) are given by u0(x) = 0 and

uj(x) = (–1)7" sin” (r)/j!, for j > 1.

Step two: Using the perturbation coordinate functions

{uj(x)} determined in step one, we can calculate Padé

approximations PIM, N) for various values of M and N.

In particular for M + N = 2, using Eqs (4) and (5), we

find

P[2,0(x, e) = e sin”(r) – e” sin"(r)/2, (27)

which is the second order perturbation solution, and

:-2

Pillgo==#! (28)

1 + (e/2) sin”(x)

We note that, for e > 0, the poles of P[1, 1] are all

complex and, hence, lie outside the interval D = [0, 1].

In particular, the poles which lie closest to D are at

a: = +i sinh"(V2/e) and x = Titi sinh"(V2/e), which

approach a = 0 and a = T, respectively, as e – +oo. In

Fig 4, we have plotted P(2,0) and P[1, 1], along with the

exact solution, for e = 10. The influence of the (complex)

poles of P[1, 1] in helping to simulate the steep slope of

the solution near the ends of the interval is evident in Fig

4.

– 1 1 1 1 1 l

Step three: We now use the form of the Padé approxi

mations determined in step two to define the hybrid ap

proximations

H|2,0] = 61 sin”(r) – 62 sin"(r)/2, (29)

and

61 sin”(x)

1 + (62/2) sin”(x)'

where the amplitudes 61 and 62 are determined from the

Galerkin conditions (7), which for this example become

H[1, 1] = (30)

|"(HIM.N. amo.)HTMN
0

+2e cos(2x)HIM, N] – 26 cos(2x)} uk da = 0, k = 1, 2.

(31)

When M = 2 and N = 0 Eqs (31) are linear and their

solution is

32e2
_ 16e (2 + e) -

1 | 32 + 16 e-3 e2.
– H-5, 32

32 + 16e + 3 e? (32)
2

When M = 1 and N = 1, Eqs (31) are nonlinear and

must be solved numerically. In Fig 4 we have also plotted

H|2,0) and H1, 1] for e = 10. As the figure illustrates,

the hybrid approximations are again more accurate than

the Padé approximations on which they are based. Us

ing Eqs (31), we can again show that the relations (19)

hold for this example as well. Also, it is straightforward

to use the procedure and formulas outlined above to

construct Padé and hybrid approximations to u(x, e) for

other (larger) values of M and N.

2 w w T

0 q. 1

FIG 3. The Padé approxim: hybrid ap

proximations H|4,0) and H act solution

(circles) for Ex 1 with e = 5'

FIG 4. The Padé approximations P|2,0) and P[1, 1], the

hybrid approximations H|2,0) and H1, 1], and the exact

solution (circles) for Ex 2 with e = 10.
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APPLICATIONS TO PARTIAL

DIFFERENTIAL EQUATIONS

In this section, we shall apply our method to two model

elliptic boundary value problems in two space dimensions.

Example 3: We consider the elliptic boundary value

problem

L(u,e) =V*u + ecos(r) sin(y)u, + e sin(r) cos(y)uy

–2 € sin(a) sin(y)u + 2 € sin(a) sin(y) = 0,

(33)

for (x, y) e D = {(x, y) : 0 < x < T, 0 < y < T),

with B(u, e) = u = 0 for (x, y) e OD. Here V* denotes

the usual (two dimensional) Laplacian operator. This

problem has the exact solution

u = 1 – e ‘ sin(r)sin(v), (34)

and hence its Taylor series expansion about € = 0 con

verges for all le| < oo. We also note that, as e – +oo,

u develops a boundary layer around the entire boundary

of D, and approaches the value of 1 at each point in the

interior of D. Figure 5 depicts a surface plot of the exact

solution for e = 10.

Step one: Using the regular perturbation method we

find u0 = 0 and

(–1)+1

u; = --sin” (r) sin” (y), for j > 1. (35)

Step two: Using the perturbation coordinate functions

in Eqs (35) we find

T 0

FIG 5. A surface plot of the exact solution, Eq. (34), for Ex

3 with e = 10. Note the rather steep boundary layer around

the entire boundary of D.

P|2,0) = e sin(x) sin(y) – (e”/2) sin”(x) sin”(y),

e sin(x) sin(y)

1 + (6/2) sin(x) sin(y)
P[1, 1] = (36)

We note that P[1, 1] has real poles for e > 2 where sin(r)

sin(y) = -2/e, and hence these poles lie outside of D

for all values of €5- 0. In Fig 6 we have plotted a cross

section of the approximate solutions P|2,0] and P1, 1],

along with the exact solution, at y = T/2 for 0 < x < T

for e = 10.

Step three: Using the form of the Padé approximants

above, we define

H|2,0) = 61 sin(r) sin(y) – (62/2) sin”(r) sin"(y),

61 sin(r) sin(y) (37)

"I'll = TIT'O'

where 61 and 62 are determined from the Galerkin condi

tions (7), which for this example become

T 77

/ / L(HIM, N), e) uk(x, y) da dy = 0, for k = 1, 2.
0 J0

(38)

For N = 2 and N = 0, these equations are linear and

yield the solutions

61 = 32e(6075 "+7632 t” e – 409600)/A,

62 = 800e”(243r" – 16384)/A,

A = 194400" — 13107200+ 244224 t”e

+ (2097.152 – 182257')e”.

(39)

0 w" H|2,0] |

_l l 1

0 <t T

FIG 6. The Padé approximations P|2,0) and P[1, 1],

the hybrid approximations H|2,0) and H(1, 1], and the

exact solution (circles) for Ex 3 along the cross section

y = T/2 with e = 10. Note the very “poor” quality of

the perturbation solution P|2,0], on which all of the other

(much better!) approximations are ultimately based
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From Eqs (38) and (39) it follows that 61 and 62 satisfy

the conditions (19) as e – 0. In Fig 6 we have also plotted

the approximate solutions H|2,0) and H|1, 1] at y = T/2

for 0 < a. < T. The improvement of the hybrid solutions

over the corresponding perturbation solutions is evident

from the figure.

Example 4: We consider the problem

L(u,e) = V*u + esin(r)cos(y)ur +2e sin(r) sin(y) = 0,

(40)

for (x, y) e D = {(x, y) : 0 < x < T, 0 < y < T), with

B(u, e) = u = 0 for (x, y) e 6D. Although there appears

to be no closed form solution for this problem, it is

straightforward to show that its solution u(x, y) exhibits a

number of interesting properties. The solution is positive

over the entire domain D for positive values of € and is

invariant under the 180° rotation a – T – a , y – T – y.

Since Eq (40) is also invariant under the transformation

e - -é, and u(x,y) → -u(x, T – y), we may focus our

attention on solutions for positive e. Figure 7 depicts a

surface plot of the “exact” solution, obtained by purely

numerical means, for e = 12. The solution has a regular

perturbation expansion about e = 0, which converges for

values of e with e| < e0 £6.7. (See Geer and Andersen,

1991a, where this equation was discussed in some detail.)

In addition, as e – +oo, the solution develops a number

of boundary layers over portions of 6D, but not over the

entire boundary.

Step one: Using the regular perturbation method,

FIG 7. A surface plot of the “exact” solution for Ex

3 obtained by purely numerical means for e = 12. Note

to form around portions of

'ar (x, y) = (0,0) and

rnal “rise" forming near

the boundary layers beg

the boundary of D.

(x, y) = (T, T), as

the diagonal at =

u1 = sin(x) sin(y),

u2 = (1/32) sin(2x) sin(2y),

1 (1 . - 1 . -

"3 - 125 {: sin(3a) sin(3y) + # sin(3*) sin(y)

-: sin(x) sin(3y) – sin(x)*} *

1 . - 7 . -

"4 - 1915.2 sin(4a) sin(4y) + 76800 sin(4x) sin(2y)

1 - - 1 - -

- T500 sin(2r) sin(4) - T550 sin(2r)".

Step two: Using Eqs (41) we find

P(2,0) = e sin(x) sin(y) + (e”/32) sin(2x) sin(2y),

e sin(x) sin(y)

1 – (e/8) cos(a)cos(y)
P[1, 1] = (42)

We note that the poles of P[1, 1] lie inside D for e > 8.

In Fig 8 we have plotted approximations to the diagonal

cross-section y = x of the solution at e = 12 using P|2,0],

P[1, 1], and the numerical solution.

Step three: Using the expressions in (42) we define

H|2,0] = 61 sin(x) sin(y) + (62/32) sin(2x) sin(2y),

61 sin(a) sin(y)

"" = III:U).
(43)

FIG 8. The Padé approximations P|2,0) and P[1, 1], the

hybrid approximations H|2,0) and H1, 1], and the exact

solution (circles) for Ex 4 along the diagonal cross section

a = y with e = 12.
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TC. < f, n > Tc:

Tl. Ti:

TDI(...) < or, e > Tp.)

FIG 1: Commutative Diagram for a Simple Body Model

Therefore, if (TC")* denotes the orthogonal complement

of (TC"), then we may write f: + fie (TC")+ n F., the

space of equilibrated force systems at the configuration

A.

The application of the principle of virtual power re

quires the notion of internal force system, which does

work when a body is deformed. A deformed state (or

deformation) of the body may be described by an equiva

lence class of configurations that differ by a (generalized)

rigid-body displacement. If Tè denotes the corresponding

equivalence relation, then the space of deformations is the

quotient set C/R. Quotient sets do not, in general, in

herit a manifold structure; it is also preferable not to work

with quotient sets but with manifolds where an appropri

ate physical interpretation is possible. Thus we postulate

the existence of a deformation manifold TP, modeled on a

Banach space, and an injection k : C/R → T such that

if j : C – C/R is the canonical surjection of C onto C/R,

then the mapping

l = k o j : C – D,

is differentiable in some appropriate sense.” Clearly, the

appropriate notion of differentiability must be determined

by the specific model being studied.

If Tl. : TC. – TD (*) denotes the derivative of l at

the configuration x and TDI(c) the image of TC. by Tl.

(by hypothesis a Banach space and in a sense the tangent

space to the deformation manifold D at l(k)), then the

commutative diagram in Figure 1 holds. Here « o, e >

denotes the duality pairing in TD. x TD: , and Tl: is

the adjoint mapping to Tlx, defined by

< Tl'o, n > = < or, Tl, n > Vn e TC.

The space TDI(c) is the deformation-rate space, and its

dual, TD.C.), the internal force-system space. The linear

mapping Tl. : TC. – TDI(*) is such that Kernel [TI.] =

Tc.

Finally, the principle of virtual power defines uniquely

(for the given choice of D) the internal force system”

*In general, more than one choic »ossible; witness

the many possible strain tensors in

*In the work of Germain (197:

negative of the one defined here

um mechanics.

e system is the

or compatible with the model being studied and asso

ciated with an equilibrated external force system f €

F. n (TC.)*. Thus

< or, Tl. n > = < Tl'o, n > = < f, n > V n e TC..

The space of internal force systems may consequently be

described by (TI.)"(F.)."

Finally, if t — kt is a motion and or the internal force

system acting at time t, the deformation power at time t

is defined by

P = < or, Tl. v. =>,

that is, the value of the internal virtual power at the

actual velocity field vi of the body.

COSSERAT SURFACE. BASIC DEFINITIONS

A Cosserat surface may be regarded as a smooth, com

pact and orientable two-dimensional manifold B, with

a smooth boundary and a vector-bundle structure asso

ciated with it. As previously indicated, the configura

tion manifold M is TR" (the tangent bundle of R”),

which may be identified with R" x R', so that a con

figuration k may be identified with the pair of mappings

(r: B – R", d: B – R”). Here r : B – R” is an embed

ding, and W = r(B) is the surface occupied by B in the

configuration k, while the mapping dor": M → TR#s)

defines a director at each point of W, d is called the di

rector field.

In order to apply the method of virtual power to

Cosserat surfaces it is necessary to provide an appropri

ate definition of rigid-body motions. This may be done

by temporarily identifying the Cosserat surface with a

shell, a three-dimensional simple body. Following this

reasoning, the Cosserat surface at a given configuration

K = (r., d) may be identified with the set

W. = {X e R*|X = r(p) + (d(p); p e B; G e [–#, #]},

while D(p) = |d(p) ||, the Euclidean norm of d(p), is

identified with the thickness of the shell at p € B. To

guarantee the uniqueness of the above representation, the

following restrictions are imposed for all p e B.

(i) d(p) & TWr(r),

(ii) D(p) < 2 x min (Ra (p), a = 1,2},

where TW, (v) C TR'r) is the tangent plane to W at r(p),

and Ra (p) (a = 1, 2) are the principal radii of curvature

of the embedded surface W at r(p).

"By hypothesis TC. is a Banach space, TC: a closed subspace

and Tl, a linear map from TC. onto TDI. C. TC./TC'; it follows

(Horvath, 1968) that Tl: ; TD. - (TCX)* is a bijection.
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We may now assert that two configurations k = (r., d)

and k" = (r", d") of a Cosserat surface B are equivalent

to within a rigid-body displacement if the respective sets

W. and W. are so equivalent in the classical sense, that

is, they are related to each other by a Euclidean mapping.

This assertion leads to

r"(p) 20 + v + Q(r(p) - ro),

d"(p) Q(d(p)),

for 20, v e R* and Q e SO(3) (the rotation group on R*,

that is, the set of proper orthogonal second-rank tensors).

In what follows we assume that the manifold B is dif

feomorphic to a subset of R* and may without loss of

generality be identified with such a subset. The configu

ration space under this assumption may be described by

mappings (r: B c R” – R", d: B c R” – R”). The

mapping r induces a parametrization of the reference sur

face W c R” following the coordinate lines (61,62) in R*.

Vectors tangent to the coordinate lines (convected coor

dinates) on M and forming a natural basis for the tangent

space, at each point of W, are given by

_ ör
T 30. for a = 1, 2.Clo (1)

It follows from hypothesis (i) that (a1, a2, d) form a basis

for TR's) at all pe B.

A physically meaningful force system in a Cosserat

surface is given by force and moment distributions on W,

together with boundary forces and moments along the

edge 6/W. Since the power of a force and a moment is, re

spectively, on a linear and an angular velocity, the natural

kinematic quantities in the Cosserat surface that may be

placed in duality with the aforementioned force system

are the velocity field of points in the reference surface,

contributing to the power of distributed and boundary

forces, and the director angular velocity field naturally

contributing to the power of distributed and boundary

moments.

COSSERAT SURFACE WITH INEXTENSIBLE

DIRECTORS

In a two-dimensional Cosserat continuum, the physically

meaningful moments form a two-dimensional fiber bundle

described by the bending and twisting moments. Suffi

cient kinematic structure to account for those components

is contained in the restricted theory of Cosserat surfaces

with inextensible directors, which is treated in the present

section. An extension that takes into account forces asso

ciated with changes in length of the directors is considered

in the next section.

Kinematics of the restricted Cosserat Surface

Configurations of the restricted Cosserat surface are given

by mappings

K. : B c R” – R*, k(p) = (r(p), d(p)),

where r : B c R” – R is an embedding. Without loss

of generality, it is moreover assumed that

D(p) = | d(p) || = 1,

for all pe B.”

If (61,62) defines a coordinate chart on R” then it

induces a parametrization on the surface r(B) = M C

R". The reference configuration is represented by ko =

(ro, do), with ro(B) = No.

The base vectors tangent to the coordinate lines on

A/ and Wo are respectively denoted by

r e TR',
60,

Glo

Aa

66,

and the components of the metric tensor by

ro e TR3,

dog

Aad

do aff,

Ao ‘As

(for additional details see Flugge (1970), Marsden and

Hughes (1983)).

As indicated in the previous section, at each point p €

AA, (a1, a2, a3), where a3 = d, form a local curvilinear

basis for TR'). The dual base vectors are defined by

a a' = 6: (Kronecker delta) for 1 < i, j < 3 and clearly

a’ = (a1 x a2)/a, with a = det(aij), aij = a, aj.

We assume the summation convention with repeated

greek indices representing summations of indices over 1,2

and repeated latin indices over 1,2,3.

Rigid-body motions t — k = (r., d) from a config

uration k = (r., d) are given by

r!(p) a 0 + c + Q1(r(p) - 20),

d" (p) Q, d(p),

where x0 is a fixed point in R*, t- c, and t- Q. map

I c R into R* and SO(3), respectively. If these mappings

are differentiable, then the velocity field at t e I in a

rigid-body motion is given by (r., d'), where

v + w x (r. (p) – 20 – c.),

w x d.

r!(p)

di (p)

*The assumption D(p) = 1 does not imply that the shell an

alyzed as a Cosserat surface has uniform thickness. It is merely

a statement that the thickness plays no role at all in the two

dimensional theory of inextensible directors
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Here v = c and w is the axial vector of Q,Q' , where

()" denotes the transpose operator.

If virtual velocity fields on B are denoted by 6k =

(ór, 6d), then rigid-body velocity fields or distributors

– that is, the elements of TC.(p) - are characterized by

(ór, 6d)(p) = (v + w x (r(p) – c), w x d(p)),

with c, v, we R”. Clearly,

6d. d = 0 for all (ór, 6d) e TC. (2)

If t — kt = (rt, di) is an arbitrary motion, then the

hypothesis of inextensible directors leads to the following

identities:

d; d. = 0, (3)

dila d = 0, (4)

dila d = -d,l. d. (5)

where () a denotes covariant differentiation along 62.

In what follows, the subscript t will be dropped from

kt = (rt, di) as well as from (rt, d) in order to sim

plify the writing. Decomposing the covariant derivative

of the director field with respect to the curvilinear basis

(a1, a2, a3), we define the quantities X', by

d|2 = A'.au + A*.d. (6)

Since do - d = 0, it follows that

A'. = -\%aus, (7)

and

da - A'.au,

where ào = au – (au d)d is the projection of au onto

the plane perpendicular to d.

Equations of motion

Following the method of virtual power, the basic equa

tions of motion are obtained from the fundamental axiom

of the method of virtual power,

< f: + fi, n >= 0 wn e TC.

We assume that the inertial force system consists of

forces and couples that are continuously distributed over

the reference surface W, with the forces representing the

classical inertia of the particles and the couples the rota

tory inertia of the directors. This assumption is consis

tent, to the first order, with the asymptotic expansion of

the shell as a three-dimensional simple body, and is also

adopted by Naghdi (1972) in his direct method. Such a

hypothesis leads to the following expression for the iner

tial force system:

<*>==/ " " +

where v = r is the velocity field of points in the reference

surface, w the angular velocity of the director field, p the

mass density per unit area and I a parameter determining

the contribution to the inertia of the director field. On

the basis of the above assumptions, the axiom may be

written as

< ***** = |A| r + m a d/V

+ / (N. 6, + M. 6d) d6/W
6A/

- // p(t, 6" + Iw 6d) d/V = 0
A/

Vn = (6r, 6d) e TC., (8)

where f, m are respectively the distributed external for

ces and moments on V. The boundary forces and mo–

ments N, M are implicitly dependent on the outward

' normal v, e TöN') c TW.G.) to the boundary

, l.e.

N = N(p, t, up), M = M(p, t, up).

Remark I: The moment M may be decomposed into:

M = (M. d) d 4 M,

where M = (1 – d & d)M and 1 is the identity on R*.

From (2) it follows that

M. 6d = M. 6d V(ór, 6d) e TC.

Moreover, the component (M. d) d of the boundary mo

ment is a reaction in the restricted Cosserat theory, since

its virtual power in an arbitrary virtual velocity field is

zero. Without loss of generality we assume that M.d = 0.

Finally we define

M = dx M (9)

and note that M = M x d.

If we assume a distributor of the form

ôr = c e R*, 6d = 0,

corresponding to a virtual rigid-body translation, then

from the arbitrariness of c it follows that

/*-*) aw 1/.N dô/V = 0.

Equation (10) expresses the balance of linear momentum

(Naghdi, 1972). If the vector fields in (10) are smooth

then it can be shown that N depends linearly on the

unit normal vp = vaa” to the boundary 6// (see Naghdi,

1972, pages 492-494) and finally that N may be decom

posed into

(10)

N(p, t, up) = N*wa. (11)
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Following the application of the divergence theorem for

surfaces,

N°vo d6W =/ N°|g d/V, (12)

6A/ A/

in Equation (10), we obtain the localized expression for

the conservation of linear momentum:

N°la + pf = pv. (13)

Similarly, a distributor of the form

ör = {2 x r, ôd = (2 x d,

with n e R", corresponding to a virtual rigid-body ro

tation, when substituted in (8) yields

/ Al-" (ax.): "-i" (axa) aw

+/ [N. (£2 x r) + M. (Q x d)] d6M = 0. (14)
6A/

Using the vector identity a (b x c) = b (cx a), recalling

that N = N°va, r,a = ao, and applying the divergence

theorem for surfaces, we obtain

| (rx N°)va d6//
6A/

- // (rx N°la + a., xN*) d/V.
A/

Equation (14) then reduces to

// trx [N". "G-5), a non-in) aw

+ / 2. - N aw= d x M d6/V.

A/ 6A/

From the balance of linear momentum (13) and the def

inition (9), the above equation leads to the balance of

moment of momentum,

| (d x p(m — Iw) + a2 x N°) dM
A/

+ M d6/V = 0.

6A/

Using similar arguments to those employed in Equa

tions (10)-(13), we conclude that

(15)

M = M”va, (16)

M d6M = // M°|.. dA/, (17)

6A/ A/

and finally

M"la + d x pm + as x N° = dx plw. (18)

Equations (13) and (18) are the classical equations of

motion for a Cosserat surface with inextensible directors

(Naghdi, 1972; Simo and Fox, 1987).

Internal virtual power

From (9), (11), (16) and the divergence theorem for sur

faces we obtain

| (N. 6r + M. 6d) d6//

6A/

- // (N°la .67 + N° 6"|2 + M°la x d. 6d
A/

+ M” x d g . 6d + M° x d. 6dla) d/W. (19)

Replacing (19) in (8), the virtual power of the external

and inertial force systems reduces to:

< f: + fi, n >

- // (N". "At-" " ' Mr. a. a

+ [M"|2 x d + p(m – Iw)]. 6d 4 N° 6"|2

+ M” x d. 6dla) dM. (20)

From the vector identity (ax b)x c = b(a c)-a(b.c) and

the balance of angular momentum (18) it follows that

[M"|2 + d x p(m – Iw) + as x N°]x d. 6d

= [M"la x d + p(m – Iw)]. 6d

+(N°. d)(6d. aa) – (N* - 6d)(a.a. d) = 0. (21)

Moreover, if we define

M° = M* x d (22)

then Remark I implies that M" = dx M" and

M° x dla . 6d

= (M”. 6d)(d. da) – (M° d|a)(d. 6d) = 0. (23)

Replacing (21), (22) and the balance of linear momentum

(13) in (20) yields

< f: + fi, n > = | N. r. M. a. d/V

+| (N°. d)(6d. aa) – (N* . 6d)(a.a. d) d/V

A/

=/ N° - 6"|2 + M*. 6d a d/V
A/

- || @.. N*): a sa d/V. (24)

Introduction of components

Decomposing the vector fields N° and M* with respect

to the curvilinear basis (a1, a2, a3), with a3 = d, we

define

N* = N”as + Q°d, (25)

M” = M*a, + M*d. (26)
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By hypothesis M*. d = 0, therefore

M* = —M*ase, (27)

and consequently M* = M*ās, where

ag = ag - (as - d)d. (28)

Remark II: Replacing M" = dx M° in the equa

tion of balance of moment of momentum (18) and on

taking the inner product of the above expression with d,

we obtain

(dja × M°) d+ (ao x N°) d = 0. (29)

Substituting (6), (25) and (26) in Equation (29) yields

M*A',as x as d+ N”as x as d

= (N* – A.M")a. x as d

(N* – A.M")a €283 = 0.

Therefore eag2(N* — A' M*) = 0, where eijk for (1 <

i, j, k < 3) denotes the permutation symbols.

Finally, if

N8%
# = (N* – A.M"), (30)

then Neff - (N.//)", where Neff - N#(a. & ag).

Neff will be referred to as the effective membrane stress

tensor and is related to the power of changes of length

and distortion on the reference surface W., measured by

the metric tensor aag (see Lemma 1).

Remark II motivates the definition of the following

deformation measures:

e = easa” & a”,

* = kosa” & a”, (31)

* = 7a a”,

where

&ad - #a. a6 - Ao ‘ A6),

kab = (dA aa - dola Aa),

72 = d aa - do Aa

and Aa, do are respectively the vector fields aa, d at the

reference configuration. The convected time derivatives

(a special case of Lie derivatives) of the aforementioned

deformation measures may be defined as follows (Marsden

and Hughes, 1983; Simo and Fox, 1987):

Eve = éasa” & a”,

Evk = kosa” & a”,

ACv% = 52 a”.

On the above Equations

* 1 , . -

€og – 5(as a6 + aa . ag),

#26 - (dle ao + d's - aa), (32)

52 = (d : aa + d.ãa).

Component form of the internal virtual

power

Lemma 1 The deformation power is given by:

/. (N:#25 + M”kes +Q://j2) d.V., (33)

where

Q:// = (Q” – x',M*). (34)

Proof: We obtain the deformation power by replacing

the virtual velocity field in the virtual power of the exter

nal and inertial force systems by the actual velocity field

of the motion. Replacing (ór, 6d) in Equation (24) by

(r., d) yields

| N. a. "M" a. d/V

+ /. (N°. d)(d. a...)–(N°. d)(a... d) d.V.

• Using (5), (6), (7) and (26) we find that

M° d|2 = M*as as a -M*as, as

M*kga - M”āg Cl3,a –M*a2,..., -á3

- M*ks. - M*A',as au

– M*A*,as as – M*a3,2 as. (35)

• From (25) and (35) we obtain

N° a + M*.dl3 = (N” – M*A') a... as

+M*ks. 4 (Q” – A',M") a... as

– M*A', a, , a3 – M*A*.a3 ã3.

From substituting (30), (32.a-b) and (34) in the

above equation it follows that

N° a 4 M*.dl3 =

+ Q://a2 a3 - M*A',a, - a3.

N#, : éas + Mof • kas

(36)

• Using (25) and (28) we obtain

(N° d)(d. a...) – (N*. d)(a... d)

:- [(N*ag3 + Q°)ao - a23(N” as + Q°a3)] - as

=[(N” – A.M*)-(N*-x:Me")

+ A.M" — A' M*]agaa.. + Q°ão ã3 (37)
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From (30) and (34), the right-hand side of the above

expression yields

{(N#,

+ (Q://+ A% M*)ä..} ã3.

On substituting N#, :- N#, , M* = —assM*

and A', = —asa.A., in (38), Equation (37) reduces

to

- N')+(A.M" — A' M*)]assa.

(38)

(N°. d) (d. a.)–(N°. d)(a... d)

(Q:// - a39). M*)äg ã3.

(Q://+ A.M") āa ã3.

Note that from (3) and (28) it follows that

(39)

âa ã3 = aa ã3.

• Adding expressions (36) and (39), we finally obtain

the deformation power per unit area

N°. a. + M° dla + (N°. d)(d. a.)

– (N”. d)(a... d)

N#25 + M*kes + Q://52 (40)

Integration of the right-hand side over the surface

proves the lemma.

If k is taken as the reference configuration and arbi

trary motions from this configuration are considered, then

the velocity fields generated by those motions at x € C

form the tangent bundle TC.. It follows that Equation

(33) represents the internal virtual power if the actual

deformation-rate components £26, kog, ja are replaced

by the virtual deformation rates 6éas, 6x26, 672.

Equations (13),(18) and appropriate constitutive rela

tions for #. Mod, #1 (and hence for N° and M”)

form a complete set of equations determining the mo

tion of the Cosserat surface with inextensible directors.

For elastic behavior, a strain energy function p(e., k, n),

whose dependence on the invariants of the reference sur

face is implicitly assumed (see Carroll and Naghdi, 1972,

for additional details), is postulated to describe the con

stitutive relation in the functional form:

6p ôp 6po/3 – o/3 – * = -

N: - ôeas , M*P = ôxas' 67., -

For additional considerations on constitutive relations,

see Naghdi (1972) and Niordson (1985).

COSSERAT SURFACE WITH DEFORMABLE

DIRECTORS

Equations of motion and deformation power

An extension of the Cosserat-surface model with inexten

sible directors to one with deformable directors will be

based on the following guidelines.

• The terms involving the force systems of the pre

ceding model have the same physical motivation

in their extension and therefore remain unchanged.

Moments as physically understood are conjugate to

angular velocity fields. A natural choice is given by

the changes in orientation of the director field. If

d = Da , with D* = d.d and d.d = 1, then such

changes in orientation are equivalently given by the

variations of the unit director field d. This inter

pretation is at variance with the adopted by Naghdi

(1972), as is seen in the next section.

• Changes in length of the directors are naturally as

sociated with a scalar field expressing in an appro

priate sense the pressure or squeezing forces applied

along the director field. Such contributions may be

conceived of as distributed on the surface as well as

along the boundary.

• The inertia functional is assumed to have the same

form as in the previous model but with additional

terms due to the variations of the length of the di

rector field.

In accordance with these guidelines, it may be as

sumed that the virtual power of the external and inertial

force systems is given by

< f: + fi, n > = // A r + m a+"D) d/V

+/ (N. 6, + M. 6d + P5D) d6A/
6A/

- /* * * * (pia' spa) d/V

Vn € TC. (41)

The virtual velocity fields for the extended theory are

conveniently denoted n = (6r, 6d, 6D).

Because of the similarity of the virtual-power expres

sion for the extended model with the one for the preceding

model, Equation (8), most of the developments of the pre

ceding section still hold if the director field is replaced,

where appropriate, by the unit director field d. Equa

tions (2)-(5) naturally hold for d and definitions (6)-(7)

expressing the covariant derivative of the unit director

field are still valid. Thus

dl, = X', a2 + A'.a3. (42)
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Clearly dla d = 0, and again

A'. = -\%aus, (43)

where by definition as = d.

To obtain the basic equations of motion we apply the

fundamental axiom of the method of virtual power. As

we shall see, one additional scalar equation is needed to

describe the evolution of the length of the directors. Even

though this equation is not obtained from the axiom, it

has a clear and physically intuitive derivation. This as

pect is indeed one of the great advantages of the method

of virtual power.

The application of the fundamental axiom to the ex

tended model leads to the linear-momentum equation,

N°la + pf = pi, (44)

and the moment-of-momentum equation,

M°le + d x pm + as x N° = dx plw, (45)

where by definition N = N°va, M = dx M = M°v,

(see Remark I and Equations (11), (16) and (22) for

the corresponding definitions in the restricted Cosserat

theory of inextensible directors). The derivations of the

above equations follow precisely the same steps as used in

the preceding model and therefore will not be repeated.

From Equations (44) and (45), the virtual power due to

the external and inertial force systems (41) reduces to

(see Equations (19-24))

< f: + fi, n > = /...IN• *.*M* a.

— (a., x N°) x d. 6d) dM

+ / p(p – Iw d)6D d/W

A/

+ / P6D d6A/ Wm € TC., (46)

6A/

where M* = M” x d and M* = dx M*.

Assuming, for the purpose of deriving the basic equa

tions of motion, that the Cosserat surface is in principle

not subjected to constraints, we apply the virtual velocity

field

6r = 0, 6d = 0 and 6D = 6D (constant),

corresponding to an uniform change in length of the di

rectors, to (46). With this virtual velocity field, the power

of the external and inertial force systems reduces to

P d6A/< f: + fi, n > = *{/.

+//p-in a w} Wr)

It follows from the principle of virtual p ls

external-cum-inertial force system ther ln

internal force system dual to changes in director length

(that is, a linear functional in 6D contributing to the

internal virtual power associated with a virtual velocity

field characterized by (6r,6d,5D)). We assume a priori

that this internal virtual power is given by

< or, Ta' > = // H6D d/V.

A/

Applying the principle of virtual power,

< or, Ta. => = < f: + ft., n > Vn € TC.,

to this particular virtual velocity field leads to

/..." d/V = w" dow +/AP-Iw a d/V,

and finally, under an appropriate smoothness hypothesis,

it follows that

(47)

(48)

P = P^va,

P°l2 + pp – H = plw d.

Moreover, applying Equations (47) and (48) to the ex

pression for the virtual power (46), we obtain

< f: + fi, n > = /...IN• *.*.*.*.

— (a., x N”) x d. 6d +P*6D., 4 HóD] d/V. (49)

Following the same developments as in Lemma 1, it

can be shown that the deformation power is given by

+P*č, 4 HA) d.V. (50)

The deformations &a and A are defined by

&a= Dla - Dola, & - Dla,

A = D – D0, A = D, (51)

where Do = |do||.

Equations (44), (45), (48) and appropriate constitu

tive relations for N#, M”, Q://, P° and H form a

complete set of equations determining the motion of the

Cosserat surface.

Note the appearance in Equation (48) of the inter

nal force H dual to changes in director length. In the

complete problem, H is constitutively determined by the

motion and therefore should not be regarded as an ad

ditional unknown scalar field. As we shall see, this term

is in a certain sense associated with the intrinsic direc

tor couple of Naghdi (1972) and the across-the-thickness

stress resultant of Simo and Fox (1987).

The proposed theory includes essentially the same ex

ternal and inertial force systems as the theory of Naghdi
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(1972). Consequently, according to the principle of vir

tual power, they may be considered equivalent. The ma

jor differences lie in the identification of the internal forces

and their corresponding constitutive relations.

Equation (48) does not follow directly from the direc

tor-momentum Equation of Naghdi (see Equation (56)).

This is not surprising, in view of the intervention of inter

nal forces in both equations and the natural differences

between the internal force H and the intrinsic director

couple of Naghdi. The similarities of the above model

with the one proposed by Naghdi is analyzed in the next

section.

NAGHDI’S COSSERAT SURFACE OF DE

FORMABLE DIRECTORS

Equations of motion and internal virtual power

Naghdi's equations for a Cosserat surface with deformable

directors may be obtained if the virtual power of the ex

ternal and inertial force systems is assumed a priori to

take the form

< f: + fi, n > = /* **m a dM

+ / (N. 6, 4-M". 6d) d6//

6A/

- /* r * in a d/V

Vn = (6r, 6d) e TC.. (52)

Denoting

m = (1 – d & d)m",

M." = (1 – d & d)M",

m = (m" . d)d + m”,

M = (M" . d) d 4 M",

and observing that 6d = 6D d + D6d, we may alterna

tively write Equation (52) as

< f: + fi, n > =

// A **m also: Dm. 6d] d//

+ | [N 6, + DM" . 6d + (M'. d)6D] d6//
6A/

- /* r * in a d/V

Vn = (ór, 6d) e TC.. (53)

Finally, with the definitions

m = Drn" M = DM."
... " 4

p = m”. d, P = M" . d, (54)

Equation (53) takes the same form as (41). Hence both

models account for basically the same inertial and exter

nal force systems. Note that the moment M" in Naghdi's

theory encompasses what in the present model are the dis

tinct notions of moment and pressure, duals respectively

to changes in director orientation and length.

Before invoking the fundamental axiom, we insert a

virtual velocity field n” such that ör = 0 and 6d = 6d."

(constant on the reference surface), into the expression

(52) for the virtual power of the external and inertial

force systems. By the same arguments as used in deriving

Equation (48), we assume that to this virtual velocity

field is associated the following internal virtual power:

< or, Tal. n." > = // H”. 6d d.V.

A/

Following the application of the principle of virtual power

to this particular virtual velocity field, we obtain

// H. d/V = | M" dow +/ "-i") d/W,

6A/

and, under an appropriate smoothness assumption,

M* = M**va,

M**|a + pm – H = plw.

(55)

(56)

Equation (56) describes the balance of director momen

tum. H" is variously called the intrinsic director couple

(Naghdi, 1972) or the across-the-thickness stress resultant

(Simo and Fox, 1987).

From the fundamental axiom, we obtain

(i) Balance of linear momentum

N°la + pf = pi, (57)

(ii) Balance of moment of momentum

(d x M**)|2 + d x pm” + ao x N° =

d x plw, (58)

where by definition N = N°va and M* = M**wa.

Substituting Equation (56) in (58) yields

d x H = -(dla x M” + a., x N°), (59)

and finally, replacing Equations (56) and (57) in (52), we

obtain

< f: + fi, n > =

// [N° 6"|2 + M”. 6d a +H". 6d] d/V. (60)

A/

Equations (56), (57) and appropriate constitutive re

lations for N°, M** and H" form a complete set of

equations determining the motion of the Cosserat sur

face. Equation (59) is regarded by Naghdi as a restric

tion on the admissible constitutive relations. Clearly, the

moment-of-momentums balance Eoration (58) is identi

cally satisfied.
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Relationship between the internal forces

The membrane stresses N° in both models are defined

identically. From definitions (54.c-d) it follows that

P* = M**. d,

M* = DM” = D(a XM”) x à, (61)

* Or - 1 or *ā-l Ao 2. a .

M” = EM"+P*d=5M"a, +P*d.

where äs = ap – (as . d)d. Equations (61) imply that

once constitutive relations for M* and P” are proposed

then constitutive Equations for M" may be obtained,

and vice versa.

Remark III: From Equations (61) and (31), the rela

tionship between M* and the generalized deformations

and internal forces of the proposed model may be readily

established. Since

M”, as = #M"a, as + P°aga

1

5M“(als - a3aa36) + P°aga,

it follows that

1

A + Do

- (Yu + Au do)(a + Ag . do)]

+P*(75 + As do),

M”. a6 = M”[(2eus + Aug)

(62)

where A2 and do are respectively the base vectors ao

and the unit director field d at the reference surface Mo.

In general, the same conclusions hold conversely. This

is clear from Equations (61) and the fact that whatever

generalized deformations are defined for a Cosserat sur

face, the current configuration is determined, from the

reference configuration, to within a Euclidean mapping.

The last remark implies that M”, as and d are deter

mined up to an orthogonal transformation, and clearly

constitutive equations for P” and M*” may be estab

lished from an appropriate constitutive equation for M"

or its components.

From Equation (59) and the decomposition H =

H' + (H" . d) d, where H = (dx H") x d, it follows

that

DH = -(d. x M") x d -(a., x N”) x d (63)

Clearly,

(d., x M”) x d

= [(D|ad + Dd|2).d|M"

– (M”. d)(D|ad + Dala)

D., M." – (M**. d) Dda,

and after substituting (61.a-b) in the above equation, we

obtain

(dla x M**) x d = #D.M." – DP°d|.

- (#D.M” – DP"A") ag. (64)

From Equation (39) it follows that

(as x N°) x d = -(Q', + A.M*)äs,

replacing (64) and (65) in (63) leads to

(65)

-_* 1 -

DH = (Q', - #DI.M”)as

+(DP* + M*)A'.as. (66)

The axial component H”, d may be obtained from

the internal virtual-power expression (60) and (62). Since

H'. 6d = DH". 6d +(H'. d)6D,

and

M”. 5d., = (M”. d)6D., + (M” d|2).5D

+ D.M.'” - 6d+DM” - 6dle

+ D(M”. d)d. 5d.,

= P*6D., + M”. 6d.

+ (#D.M." – DP"d|2). 6d

+ (M’”. d|2)6D,

where the identity d.6d. - –dle 6d was used, it follows

that

H'. 6d + M”. 6d. = M*. 5d., +P*6.D.,

+ (H" d+M’”. d|2).5D

+ (DH" + #D.M." – DP°d|2). 6d.

From Equations (63) and (64), clearly

(Dir + #D.M." - Dra.) 6d =

— (a., x N°) x d. 6d,

and finally,

H'. 6d + M”.6d. = M”. 5d., +P*6D.,

+ (H" d+ M” dia)6D – (a., x N°) x d. 6d.

If we define

H = H . d + M.” d|. (67)

then the internal virtual-power expression (60) reduces to

(49). Obviously,

H' d = H – #M" d|2, (68)
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the dynamic version of the fourth-order Marguerre equations

by the Galerkin method. An accurate solution described by a

linear combination of Bessel functions and modified Bessel

functions based on the free vibration modes of the unloaded

perfect cap is used to determine the non-linear pre-stress state

of the imperfect cap and to examine its linear and non-linear

vibration characteristics along the pre- and post-buckling

paths. Each term of the modal expansions satisfies all the

relevant boundary and continuity conditions.

Recently monographs on algorithms for simulating non

linear dynamical systems were written by Seydel (1988) and

Parker and Chua (1989). Also, software packages are available

for the analysis of non-linear differential equations, with

emphasis on chaotic behaviour(Parkerand Chua, 1989; Yorke,

1990). In order to study the non-linear behaviour of the cap,

routines, based on these references, were used to integrate

numerically the equations of motion and record time histories

of the response, phase portraits, Poincaré maps, stable and

unstable fixed points, Lyapunov exponents and bifurcation

diagrams. Results show that, for static load levels between the

upper and lower limit point loads, the shell may display jumps

due to the presence of competing potential wells and the

presence of non-linear resonance curves within each well.

Additionally, different physical situations are identified in

which period-doubling phenomenaand chaos can be observed.

BASIC EQUATIONS

The geometry of a uniformly loaded shallow sphericalcap with

clamped edge conditions is presented in Fig. 1, where R, a ,

H and h are the principal radius of curvature of the sphere, the

base radius of the cap, the rise of the mid-surface at the apex

and the shell thickness, respectively. The polar co-ordinate

system in the base plane is defined by r and 6, and the external

uniform pressure distributed over the surface of the shell is

denoted by q.

FIG 1. Shell geometry, displacements and co-ordinate

system

Within the frameworkofshallow shell theory (H/a < 0.25),

the tangential forces and displacements can be taken to be their

projectionsontothe base plane ofthe shell. The basic equations

governing large deformations, but small strains, of shallow

spherical caps were formulated by Marguerre (1939). In the

case of axisymmetric static deformations of a thin imperfect

cap, the governing equations may be expressed in the

non-dimensional form as

4

V"w, =A'o"V"f +Q:+

O.

#U.(..*.) (1.a)

V"f =–A'o"V"w,—

:{w.W,*+(w, W,”, ),...} (1 .b)

where 0,.. = 0/0x0, a= 12(1-v’) and A is a geometrical

parameter described by

%= o("a/WRh (2)

The non-dimensional radial co-ordinate x , the vertical

displacement w, , imperfection shape w, stress function f. ,

and load parameter Q are related to the corresponding physical

quantities by

–£ _W. *_W.
Jo — w =7 w=7

1.-: Q =# (3)

* Eh” qa

where q = 2E(h/R)'W3(1-v) is the classical buckling

pressure of a complete spherical shell, E is the Young's

modulus and v is the Poisson's ratio.

The static stress resultants, couples and non-linear

strain-displacement relations are given by

a’N, 1

Eh” *:/.

a’N, f

Eh” T'''”

12(1-v°)a’M. 1
—=-W

Eh" A. ,” "W,">

12(1-v’)a"Me V

-* +-w

Eh" M.

h (:I A 1 :
E, =~14, - w,W. H. W.,.

d d 2

*= a + (4)

" ***.xx

where u,(= U./h) is the non-dimensional displacement in the

radial direction.

The boundary conditions at the clamped edge x = 1 of the

shallow shell are

V

w, :- 0 W,”, : 0 l, *J.-->/. - 0 (5)

When a uniform static pressure is applied to the cap, it

yields a basic static geometrically non-linear state of dis

placements and stresses. To represent the basic static axi

symmetric response, the displacement w, and the stress

function f, are assumed in the form

w,(x) =# Woô,(x) (6.a)
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N

f(x)= 2.FoV,(x) (6.b)

where each separate generalized function

(),(x)=Jo(Kr)1706)I,(Kr)i **IX,”

Io(K)

| "#" (7.a)

- Ji(K)

vo-'82-'82):

*::: Ig(K) |
IX-l',(&), Kit'):

exactly satisfies the clamped boundary conditions at x=1 as

well as the continuity requirements of displacements and

stresses at the centre of the shell (x=0).

(7.b)

In equations (7.a) and (7.b) Jo and Ji are Bessel functions,

and Io, and I, modified Bessel functions of the first kind, and

K.(0.<Ki & K, < ...) are the roots of the equation

[Jo(K.)li(K.)+1.(K.).J.(K.)

XK X'+K:(1 =2–1 +

Pl A* 2

2J(K.)I,(K.)(1+v)=0 (8)

It might be observed that the generalised functions (7.a)

and (7.b) are also the linear vibration modes of an unloaded

clamped shallow spherical shell (Yasuda and Kushida, 1984).

To facilitate a convenient representation of axisymmetric

geometric imperfections of an arbitrarily specified shape and

consequently allow an efficient modal analysis ofthe imperfect

shell, a Fourier-Bessel series is used to describe the "general"

imperfection, w(x). This Fourier-Bessel series may be written

aS

A | N. n

so-w£*($**) (9)

where w, is the amplitude of the i' harmonic and 0.(x) is the

modal function given by (7.a). Note that {(),(x)} represents a

complete set of orthogonal functions in [0,1] (Yasuda and

Kushida, 1984).

For convenience, the expression between brackets in (9) is

written in such a way that its maximum value is always equal

to one. Consequently the magnitude and sign of the maximum

amplitude will be given by W.

Substituting expressions (6) and (9) into equations (1a)

and (1.b) and applying a Galerkin minimisation procedure one

obtains a set of 2N non-linear algebraic equations character

izing the static behaviour of the cap. The expressions (7.a) and

(7.b) are used as the weighting functions in this Galerkin

procedure. These non-linear equations are unfortunately too

long to be presented here; the interested reader will find them

in Gonçalves and Croll (1990). These algebraic non-linear

equations are solved by the Newton-Raphson method. The

solution procedure is implemented in such a way that, without

manual intervention, if convergence of the Newton-Raphson

scheme fails in one step, the programme returns to the previous

step and then chooses a new control parameter and modifies

the Jacobian matrix accordingly.

In the further analysis the dynamic behaviour of the cap

around the axisymmetric non-linear static state will be con

sidered. For this, a dynamic perturbation is superimposed on

the basic static state. In this case one has

W.(x,t)= w(x)+w,(x)+ w(x,t)

F,(x,t)=f(x)+f(x,t)

where w(x,t) denotes the incremental displacement compo

nent and f(x,t), the corresponding incremental stress function.

Using expressions (10) and the dimensionless parameters,

one obtains the following non-dimensional equation of motion

(10)

V"w +w...+cw... = \'o"V"f+

Ot A.

#U.6% + w, +w), 4. ...w..}..+

4A . .

#A sin(o) (11.a)

and the associated compatibility equation

V"f=-A’a "V"w-: {w, w,..+

[(w,x+w,...)w..],...} (11.b)

where t = th, c = }c/ph, Q =YC), Y=(oa"p/Eh”), p is the mass

density, t is time, () is the driving frequency and c is the

damping coefficient.

The incremental state is assumed in the separable form

wa,0-$W0% (12.a)

foo-#FOve) (12.b)

The substitution of expressions (12) into equations (11.a)

and (11.b), the use of the complete equations for the basic

non-linear static state, and the application of the Galerkin

method yields the required second-order ordinary differential

equations of motion. To study the non-linear behaviour of the

cap, these equations are reduced to a set of first order differ

ential equations which are numerically integrated using the

fourth-order Runge-Kutta method with double precision.

Alternatively, approximating in (12) the temporal func

tions W(t) and F(t) by

W(t)=W, cos(ot)+W. (13.a)

F(t)=Fi cos(Got)+F, (cos(ot))** F. (13.b)

substituting the resulting expressions in (11) and finally

applying the Galerkin-Urabe method (Urabe, 1965), one

obtains the required modal dynamic equations forthe imperfect

loaded cap. Neglecting non-linear terms in w and f a system

of homogeneous linear algebraic equations is obtained. The

solution ofthe resultingeigenvalue problem givesthe vibration

modesand the relationship between the load parameter and the

square of the corresponding natural frequencies " " solution

of the eigenvalue problem is obtained by wn of
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c = 1 Q = 12A =–0.279C

T

-1 W. 3

FIG 8. Large amplitude oscillations about all three

equilibria

In the Duffing equation with softening type elastic char

acteristics, chaotic behaviour was observed by various authors

at the region of the principal resonance. See, for example,

Thompson and Stewart (1987) and Szemplinska-Stupnicka

(1988). Taking c = 2 and A, =0.033, using the driving fre

quency parameter as a control parameter, and plotting the

projection of the phase curve onto the W. vs. Q, plane, one

obtains, as Q, is decreased from 12 to 9, two branches of a

resonance curve (see Fig. 9a). Other stable segments of the

curve can be obtained increasing Q, from 11 to 14, as shown

c
-

c=2A, =0.0334

#

inFig.9.b. Thesetwopicturesshow clearly the softeningnature

ofthe frequency-responsecurves and the sudden increases and

decreases in amplitude as the frequency is varied. This simple

numerical procedure reveals that, instead of a smooth response

as the oneobtained from smooth variational equations (Nayfeh

and Mook, 1979), the amplitude presents small fluctuations

near the place where the upper cyclic fold should be. These

fluctuations denote the region where flip bifurcations occur. A

plot of the position of the Poincaré displacement co-ordinate

W versus the bifurcation parameter Q, leads to the bifurcation

diagram depicted in Fig. 10. It confirms the existence of a

cascade of period-doubling bifurcations leading eventually to

chaos in a narrow zone of the frequency, just before the peak

resonant amplitude. The zone of chaotic motion ends very

sharply and is succeeded by a jump into the non-resonant,

small-amplitude branch of the resonance curve. The phase

portrait and the corresponding Poincaré section of a chaotic

trajectory are recorded for Q, = 10in Figs. 11 and 12,

respectively. The chaotic attractor exhibits the same simply

folded band structure observed by Thompson and Stewart

(1987) for other softening spring oscillators. This chaotic

response coexists with asmaller amplitude periodic limit cycle

at the same control parameter value and within the same well.

There is at least one more Stable Solution in the Second well.

Now the behaviour of the unbuckled cap will be con

sidered, when the amplitude of the forcing, A, is taken as a

bifurcation parameter. For small values of A, the motion may

be confined into the shallower well, but for larger values of A,

the motion can no longer be confined into this well and the

shell escapes, being trapped into the second, deeper well. With

the proper choice of damping and excitation frequency, just

before escape, the response goes through a cascade of period

doubling bifurcations culminating in a chaotic behaviour, as

illustrated by the bifurcation diagram shown in Fig. 13. Again

the chaotic zone ends very sharply and the response, after some

transients, jumps into the second well. This phenomenon is

usually called dynamic snap-through buckling.

c
-

C =2A, =0.0334

#

FIG9. Numerically obtained resonance curves within the primary potential well, showing softeningt.



 



 





Transformation of liposomes:

Mechanical behavior and stability

D Pamplona

Departamento de Engenharia Civil Pontificia Universidade Católica do Rio de Janeiro

Rua Marqués de São Vicente, 225, Gávea 224.53-900, Rio de Janeiro, RJ, Brazil

Liposomes are small artificial vesicles of lipid bilayer, wich enclose and are surrounded by water.

Morphological transformations in liposomes, starting from a spherical shape, due to changes in

the osmotic pressure, have been described in the literature. The first transformation is into a

circular biconcave form, afterwards the biconcave side view is maintained, while the front view

reveals transformations into elliptical or regular polygonal forms, usually triangular, square or

pentagonal. Finite elasticity and the theory of thin shells were used to analyse the behavior of the

liposomes under decreasing volume. The biological membrane was considered as a two

dimensional fluid layer, exhibiting solid properties to some extent, e.g., elasticity. The stability

of the liposmes was studied by using the method of elastic perturbation to obtain the critical

pressure for the biconcave transformation and the long liposome tubes. The transformations to

elliptical and regular polygonal forms were studied using the linear stability equations of

elasticity.
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INTRODUCTION

The mechanical properties and behavior of biological

membranes has been studied since 1930. In particular,

Evans and Skalak (1980) were engaged in the study of their

mechanics and thermodynamics, while Jenkins (1977) and

others studied the red blood cells and their equilibrium

configurations.

Hotani (1984) has managed to observe the morphological

behavior of the liposome by means of dark-field light

microscopy. He verified that the change in osmotic pressure

in initially spherical liposomes leads to a steady decrease of

interior volume. The first transformation is into a cirvular

biconcave shape, and then transformations through striking

polygonal forms occur, until the liposomes reach the stable

forms of thin filaments and small spheres.

In a previous paper Pamplona and Calladine (1993),

describe a constitutive law for the lipid bilayer explaining

part of "MECHANICS PAN-AMERICA 1993 edited by MRM Crespo da Silva and CEN Mazzilli *

S289Appl Mech Rev vol 46, no 11, part 2, November 1993

the axially symmetric transformations, which are consistent

with Hotani’s observed morphological transformations.

The principal aim of this work is to study the changes of

the liposomes in a variety of nonsymmetric configurations,

and through Donnell’s stability equations show that the

number of lobes around the circumference, in a form which

precedes the jump into two , three or four-armed

configurations, would depend on the surface-strain elasticity.

HOTANI’S ESSAYS

Hotani (1984) made small bilayer vesicles of phospholipids

with diameters between 7 and 8mm, which enclose and were

surrounded by water.

Using dark-field light microscopy, whose lamp heat

gradually evaporates the external water, he observed the

liposomes transformations. Those transformations are due

to the decrease in the interior volume of the vesicles. To

some extent he observed that the transformations were

reversible, when small amounts of water were added to the

microscope slide.

The phospholipids which constitute the observed

liposomes are molecules with a hydrophilic “head” which

seeks water and a hydrophobic “tail” which shuns water. In

an aqueous environment these hydrophobic effects drive the

molecules to construct, by self-assembly, spherical bilayers

of “heads”. In the space of 5 nm between layers of “heads”,

the “tails” can be free of the contact with the water, Fig 1.

*nrint No AMR134

© 1993 American Sr 'cal Engineers
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LiposOME

(cross secTION)

FIG 1 - Schematic representation of a liposome.

In Hotani’s tests the original spherical shape first

changed into a biconcave shape, after which the vesicle

began to undulate in the equator until it suddenly jumped to

a two, three, four or five pronged shape. As the reduction

of interior volume continues, some of the arms could shrink,

or eventually turn in a very long and thin tube, which could

break up into a number of small spherical vesicles, as can be

seen in Fig 2.

o’ O C o
W = W. * W. Q. *

& G 3 '' )

( ; A \
FIG 2 - Schematic of transformations of liposomes, Hotani (1984).

CONSTITUTIVE RELATIONS FOR THE

BILAYER

A constitutive equation for the liposome membrane was

extensively discussed by Pamplona and Calladine (1993). It

is taken here as suggested in their paper.

In order to write the equations, we must consider the

circumferential and meridional components of stretch A6. As

and the curvatures k6", ks". As observed by Hotani (1984),

if the area of the membrane is assumed to be constant,

As A6- 1 . (1)

We assume that the constitutive relation for the stresses

is

N = T“* c F (A) (2)

N = T-4 c F (A) (3)

in which N6" and Ns" are the circumferential and

meridional stresses, T" is closely related to the mean of Ns"

and N6", and C* is a constant that relates the stiffness

against the change of area under equal bi-axial loading.

The bending constitutive equation is assumed such that:

MG-Ms-B"[k+ k. (4)

where,

Ms" and M6" are the meridional and circumferential

bending moments and B* is the “bending stiffness”.

DIFFERENTIAL EQUATIONS OF THE

PROBLEMAND BOUNDARY CONDITIONS

For the axisymmetric deformations of a liposome with an

initial spherical shape of radius, a, the geometrical relations

obtained from Fig 3 are

r = sins (5)

z = 1 - coss (6)

d?= k

dS (7)

dR = cos 6

dS (8)

dZ= sin 6

dS (9)

By definition

As =dS and A2 = R = R

ds T sins

The variables R, Z, r, ks, k0 have been made

dimensionless dividing by the undeformed radius a. That is,

r = r*/a etc...

If, we consider the chain rule,

d0- d0 ds - d0 A,- d0- R - O - R
as as as as ds sins sins (10a)

Using Eq.(1), and (10a)

&= -1 = As= -R-.

dS X. sins (10b)

Considering the equilibrium equations taken directly from

Flugge (1962) or Calladine (1983), where the variables have

been made dimensionless by multiplying by a2/B (for

example Ns = Ns" 42/B), after some manipulation and

using the constitutive relations, we obtain
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Und shape (Spherical)

FIG 3 - Diagrams showing the meridians of a liposome.

Def shape (Biconcave)

-15 -IO

are satisfied.

SOLUTIONS OF THE EQUATIONS

The equations of the previous item where solved for several

different values of C, where

C=C a?

B'. (17)

(b)

FIG 4 - Plots of equilibrium paths.

AQ =[p-(T+ CF)K-(T+ CF)sin p/ R-Q cos p' R]

Q = AQ sens/R

(11)

AT=-CdFi/ds+[C(F - F) cos p/ R+ KQ]

T’= ATsen s/R (12)

F-I-Q+ sin cos / R K cos ?/ R sins/R (13)

* = cos psin s/R (14)

Z’’= sin p sin s/R (15)

4 = k sin s/R (16)

Equations (11) - (16) provide us with the 6 differential

equations with the 6 unknowns R, Z, p, k, Q and T.

Equations (14) - (16) are Eqs (7) - (9) rewritten.

The equations were solved by a standard Runge-Kutta

procedure of fourth order joined with a “shooting” method,

used with unknown starting values of Q’ and k at s = 0,

until the appropriate conditions at the equator namely,

*(i) ; "do (;)-0

Since C* and B* are constants of the biological material,

we will have a different C* for each different initial size of

the liposome. Some of these solutions are shown in Fig 4.

For every solution the meridional profile of the deformed

liposome was generated and Fig 4(b) shows a selection of

these cases with C= 0.

From observations of Fig 4(a), it is possible to notice

that for each C the liposome will maintain the initial

spherical form, K0 = 1, until a critical pressure, Pcr is

reached, when it can assume either the biconcave (prolate) or

the peanut (oblate) forms.

The C= 0 case, although it seems strange since a * 0

always, represents the case when the deformations are not

reversible anymore. It can be interpreted as the membrane

having zero in-plane surface stiffness.

STABILITY:

BIFURCATION

AXIALLY - SYMMETRIC

As seen in last section, the liposome bifurcates in a prolate

or oblate shape at a certain critical pressure.
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Performing a first-order perturbation, p"= 49-A0 sin # (rM.). + 2 |M4846 t To Má6 cos •] +

2s= s- A 0 sin2s, which involves a linearisation of the Eqs 14 ,6 r

(11) - (16), it is possible to obtain an analytical expression Ió

for the critical pressure, namely # Maoo - (Me *).

* - 2. •

Pcr (s. 3 c} (18) -(r.N. "N. sin ()-(rN#6). (rMA)-lon

what confirms the numerical result shown in Fig 5. (9) are determined by the shape that is been perturbed, as the

shell is not subjected to torsional loading, NO46 = 0.

Pcr

Changing the variables, by introducing Eqs (7) - (8) into

Eqs (19)-(21), gives

r?' ' ' ' (N-Ns) cos 4 - 0
-Per-s:#c 6S 66 (22)

r 2N2 + 2\,e 2 cost Ns6 = 0

OS 66 (23)

•NUMERICAL

# 2'-3', 22.2%.FIG 5 - Bifurcation pressures. as” 66óS 2 6 6?

An extensive discussion of these results and comparison 6M 6
with other works done by Helfrich (1976) an Jenkins (1977) cos p# .2e: q) : +

is given in Pamplona and Calladine (1993).

+ sin p K. M6 - sin p Ms Ks-Ns6 K. - No sin (p=

STABILITY: OTHER SHAPES N?

cos pN'b." r 2N, a , rN90%: N90%
6S 6SLobed figures 66 (24)

After obtaining the path for the first bifurcation, which is 1

when the spherical liposome buckles into a biconcave form,

it is possible to observe undulations in the outer W . A •

circumference of the deformed liposome. Eventually it NTC [" * + + (ve + u cos p+ w sin •)
formed, typically, a well-defined two-three-four or five lobed I4 r (25)

figure, Fig 6, and then rather suddenly, this figure would

jump into a two four or five - pronged shape. Ng= C |}(v. + u cos p + w sin d) + u (* #) (26)

C-Q wa-e')[...re: *.'

2 r r (27)

Af P: * *

C) O C O M.--Dw." #(' + W. cos •) (28)

FIG 6 - Further transformations after the biconcave shape, Hotani (1984) M6= - | '.(: + w(scos *) + *- (29)

To study the stability at this stage, we choose to perturb

the biconcave shape at several different external pressures. MS6= - D(1-u) *. W6e:
Donnell’s stability equations, obtained by the second 2 r " : (30)

variation of the potential energy, in accordance with the

Trefftz criterion, taken directly from Bruch and Almroth

(1975), were choosed due to their simplicity. These are C, D are the extensional and bending stiffness

parameters and u is the Poisson’s ratio. The quantities u, v

(IN)** "No." - "No cos *- '9) and w are the incremental quantities of the middle-surface

displacements components, u”, w” and w”, in the

(fNeo)." "No," " " Nto co- 0) meridional, circunferencial and transversal directions, namely
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u" = u" + u

w" = v0 + v. (31)

w" = w ł w .

The following increments, satisfying the boundary

conditions, where choosen:

u = A3 sin 24 sin n0

w = A2 sin p cos nó (32)

w-A1 sin” psin no

where n is the number of lobes in the equator.

To solve the differential problem, obtained when Eqs (25)

- (30) are introduced in Eqs.(22) - (24), the Galerkin method

was used. Since we are looking for non-vanishing values of

A1, A2 and A3, relations between the critical pressure p and

the number of buckling lobes, n, can be achieved, as can be

seen in Fig 7.

P

• N = 2 ... -5O

x N = 3 A.
• N = 4

x -4O
*

> --"

o • * 4 -

c=60–~~ ---" _2^ 3O

48 --* > r

36-- * -o- " - *

24- - - - " - * -2O

12- - - - -" - - T

C = 6---> 2- - -

-IO

T t T T T- Ko

-l.O -O.5 O.O O.5 I.O 1.5

FIG 7 - Critical pressures on the plots of equilibrium paths.

As expected when Donnell’s equations are used, for small

values of n the critical pressure obtained is higher then it

should be, as can be seem in Table 1, for the critical pressure

of the liposome buckling from the spherical to the biconcave

form.

Num:TE:I:C* Donnell

6 -12 -12 -15.00

12 -16 -16 - 19.00

24 -24 -24 -27.15

36 -32 -32 -36.30

48 -40 -40 -43.45

60 -48 –48 -51.75

TABLE 1 - Critical pressure for the spherical liposome.

Although it is clear that the critical pressures obtained in

this item are not the right ones, for the purpose of this work

and for the sake of simplicity we accept the results. Since it

was the intent to see if the number of lobes or undulations

around the circumference, in a form which preceds the jump

into a two, three or four-armed configurations, would depend

on the surface - strain elasticity via constant C it seems

reasonable to us, to affirm it based in this study. For, if the

value of Cwere to be confirmed effectively to zero, as in the

studies done by Sekimura and Hotani (1989), there would be

no feature on which the number of lobes could depend.

Long tubes

Performing a first-order perturbation, p"= 40+ q)= n/2 +

A4 sin 2nk / b, which involved the linearization of the

various equilibrium equations for a cylindrical shell it was

possible to observe that a long tube of liposome material,

e.g.

Me-M.- B(kot k)

would spontaneously bifurcate. For b equal to the inital

circumference of the tube, 27ta, as can be seen in Fig 8.

FIG 8 - Long tubes transformation.

In a subsequent paper we shall describe our studies on

elongated axi-symmetric configurations of liposomes.

CONCLUSIONS

It seams desirable to develop a “physical” understanding of

the shape-change of the vesicles made by lipid bilayers. In

our first paper (Pamplona and Calladine, 1993) it was

possible obtain a constitutive law for the lipid-bilayer and

explain the axially symmetric transformations. In this paper

it was possible to show that the number of lobes around the

circunference, which precede the jump would depend on the

surface-strain elasticity. It is concluded that if the surface

strain were not considered, as has been done by other

authors, the sphere would buckle in a prolate shape, not in a

biconcave as it actually does. There then would be no

feature on with the number of lobes would depend.

Although the cirtical pressures obtained throught

Donnell’s equations are higher then the correct ones, it

seems reasonable to affirm a connection between the inital

size of the liposome and the number of lobes of the

transformation.
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The aeroelastic stability of helicopter rotors in hovering flight has been investigated by a set of

generalized dynamic wake equations and hybrid equations of motion for an elastic blade

cantilevered in bending and having a torsional root spring to model pitch-link flexibility. The

generalized dynamic wake model employed is based on an induced flow distribution expanded in a

set of harmonic and radial shape functions, including undetermined time dependent coefficients as

aerodynamic states. The flow is described by a system of first-order, ordinary differential equations

in time, for which the pressure distribution at the rotor disk is expressed as a summation of the

discrete loadings on each blade, accounting simultaneously for a finite number of blades and

overall rotor effects. The present methodology leads to a standard eigenanalysis for the associated

dynamics, for which the partitioned coefficient matrices depend on the numerical solution of the

blade equilibrium and inflow steady-state equations. Numerical results for a two-bladed, stiff

inplane hingeless rotor with torsionally soft blades show the importance of unsteady, three

dimensional aerodynamics in predicting associated generalized aerodynamic force mode shapes.
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FIG 2. Generalized dynamic wake equations in the rotating system.

based on the experimental Reynolds number are introduced,

and when correction for recirculation in the test chamber is

accounted for.

The purpose of this paper is to explore in detail the impor

tance of unsteady three-dimensional aerodynamic effects in

aeroelastic stability of helicopter rotors in hovering flight.

With the present generalized dynamic wake model this task is

naturally accomplished, since the solution approach leads di

rectly to all eigenvalues and eigenvectors associated with a

given rotor operating condition. Knowing the eigenvector as

sociated with a given mode of interest, extraction of inflow

distribution, blade displacements, and generalized aerody

namic force mode shapes, for example, is straighforward.

GENERALIZED DYNAMIC WAKE EQUATIONS

IN THE ROTATING SYSTEM

The generalized dynamic wake equations formulated by Peters

and He (1987, 1989) are derived from the basic potential flow

conservation laws, where the spatial variation of pressure

across the rotor is related to the variation of velocity at the

disk (i.e., to the fluid flow momentum flux) and to the accel

eration of the fluid flow through linear matrix operators.

Particularized for hovering flight and written in the rotating

system, they are given as in Fig 2.

Such a set of first-order differential equations is based on a

nondimensional induced flow distribution at the rotor disk

expanded in a entire set of harmonic and radial shape func

tions, including undetermined time dependent coefficients as

aerodynamic states:

AG.% i) = X. *''') [a'6) cos(m) + b'() sin(m)] (1)

m,n

This induced flow representation not only offers a complete

description of the flow, which is suitable to incorporate

three-dimensional effects, but also handles higher harmonic

dynamics, by the truncation at any harmonic of interest.

Within the first and second terms on the left-hand-side of

Fig 2 one observes, respectively, the “apparent mass” and

“quasi-steady” operators. The former is obtained in closed

form and includes diagonal matrices as elements. In Fig 2,

for the cosine part m assumes values 0, 1,2,..., while for the

sine part m has values 1, 2, 3,... The pressure distribution at

the rotor disk, as seen on the right-hand-side of Fig 2, is

modeled as a summation of the discrete loading on each

blade, accounting simultaneously for a finite number of

blades and overall rotor effects. For instance, the cosine part

of the wake forcing functions has the form

(2)! #T. = +

TI m # 0
q = 1

prec 1- m a. *

a. [j*.0%)—###| cos(*)

* 1 0 p-Q R

Ls is the total wake-generating circulatory lift at the blade

section (Peters and Su, 1991; He, 1989, and de Andrade,

1992) which can be evaluated from a lift theory, and p. is the

air density (kg/m3). The Jo term arises from matching the

present inflow model with Theodorsen lift theory (Peters and

Su, 1991, and de Andrade, 1992). This is accomplished when

a particular chordwise pressure distribution, which results in

no induced flow on the airfoil due to bound vorticity, is ap

plied with the inflow distribution defined in Peters' and He's

model (1987, 1989). As discussed in Peters and Su (1991),

when one deals with slender (high aspect-ratio) blades, it is

reasonable to set Jo to unity. This is equivalent to a lifting

line approximation for the lift and induced drag, with the in

flow computed on the lifting-line. As a consequence, the

nondimensional pressure expansion coefficients at the right

hand side of Fig 2 have their expressions simplified consider

ably. The present research is based on the above assump

[1OnS.

THE HINGELESS ROTOR BLADE MODEL

AND THE BLADE EQUATIONS OF MOTION

Blade Configuration

The blade configuration adopted in this research is shown in

Fig 3. The parameters of interest in this study are precone,

Bec, the inclination of the pitch bearing with respect to the

plane of rotation (positive upwards); droop, Ba, the inclina

tion (positive downwards at zero pitch angle) of the blade

segment outboard of the pitch change bearing; and blade root

offset, e1, the distance between the center of rotation and the

root of the blade. The blade is cantilevered in bending, and

the kinematics of the pitch-link connection between the out

board segment of the blade and the swashplate c > system

is modeled by a torsional root spring.
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torsional root

spring

torque

offset

i

blade root

offset

top view

precone \

pitch-bearing

- - isside view axi

FIG 3. Rotor blade configuration.

The blade bending deflections v and w are defined parallel

to and fixed to the sectional principal axes at the root end of

the blade (along y and z axes), as sketched in Fig 4. This

means that the lead-lag (v) and flap (w) deflections are literal

inplane and out-of-plane displacements only at zero thrust

condition, because they direction is established chordwise af

ter the rigid body rotations, including collective pitch at the

root (60) and the pitch due to root spring deformation (qP(t)),

are taken. The axial deflection u and the blade elastic torsion

deformation p are also shown in Fig 4.

blade elastic

axis
60 + 4

FIG 4. Orientation of blade elastic displacements.

Blade Equations of Motion

The rotor is treated in isolation; no couplings with the he

licopter body degrees of freedom are accounted for. The blade

equations of motion are derived from Hamilton's Principle.

The cross section structural and inertial properties are as

sumed doubly symmetric with respect to the blade cross sec

tion principal axes and no strain energy from restrained tor

sional warping is considered. Furthermore, in this research,

mass axis, tension axis, and aerodynamic center offsets from

the elastic axis are all zero. The struct ' and inertial opera

tors are taken from Hodges and ". 4), and Hodges

(1976), respectively. The aero »r is based on

thin airfoil theory, in a way vs a time do

main analysis, with a three -induced flow

governed by the generalized dynamic inflow model in Fig 2,

according to the development presented in de Andrade (1992).

The airfoil lift curve slope and the profile drag coefficients are

assumed constant. The blade section is pivoted at an axis at

its quarter-chord point (i.e., the x axis normal to y” and z'

axes in Figs 5-6, it coincides with the blade elastic axis in

tersection at the airfoil and is also the airfoil aerodynamic

center in the context of thin airfoil theory). The deformed

blade section is pitching at an angular speed & about x axis,

as shown in those figures.

FIG 5. Unsteady motion of the blade section.

From Fig 5 it can be seen that the airfoil velocity compo

nents along the principal axes y' and z' (through the shear

center of the section) are UTi' and Up k', a is the instanta

neous angle of attack of the blade section and it is defined as

the angle between the chordline and the resultant velocity at

the cross section, U = UTj'+ Upk'. Also, the lift per unit of

length (circulatory, Lc, and noncirculatory, LNc) and pitching

moment per unit of length (circulatory and noncirculatory)

are expressed in terms of Ur, Up and ê. Since Ur, UP and ê

can be expressed in terms of the blade elastic displacements,

v, w, and p, the root pitch QP, and the inflow expansion coef

ficients a, and b., the generalized aerodynamic forces and

moments, Lu, L, Lw, M, and the integral over the blade

length of the moment due to the root spring, Me, are ex

pressed in terms of blade displacements and inflow expansion

coefficients as well.

FIG 6. Orientation of aerodynamic loads.

In the derivation of the blade equations a ordering scheme

is employed, based on a small parameter of the order of mag
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nitude of the bending slopes. Resulting equations are

simplified by integration of the variational equation for the

blade radial displacement to obtain the blade tension and by

an expression of tension and radial displacements in terms of

remaining blade displacements and torsional root spring de

formation. In summary, a set of nonlinear hybrid equations

of motion, consisting of one integro-partial differential equa

tion for the root pitch, and three integro-partial differential

equations each for flapwise and chordwise bending and elastic

torsion, is obtained.

Concerning the airloads-inflow coupling, three points

should be mentioned: 1) under the assumptions of the thin

airfoil theory (U = U.), and up to the second order, the

wake-generating circulatory lift is taken as the circulatory

part of Lw in this research (rigorously, one should take the

circulatory lift normal to the rotor disk, along the induced

flow direction, for all operational conditions; 2) a lifting-line

approximation is taken by setting Jo to unity in the nondi

mensional pressure expansion coefficients (Fig.2 and Eq.(2));

and 3) under thin airfoil theory, the lifting-line is placed at

the blade quarter-chord, which, typically, has a constant az

imuthal coordinate for a rectangular blade. Since %, the az

imuthal position of the q-th blade, is defined at the blade

midchord for the compatibilization with Theodorsen's lift

theory (Peters and Su, 1991, and de Andrade, 1992), it would,

rigorously, be a function of the radial coordinate r. However,

numerical results from Peters and Su (1991) show that this

skewing (yawing) has a negligible effect on the inflow com

putation.

COUPLING INFLOW AND BLADE EQUATIONS

OF MOTION - SOLUTION APPROACH

The first step towards solution is to simplify the blade non

linear hybrid equations by the assumption of uniform mass

and stiffness, and to obtain nonlinear ordinary differential

equations in time by applying Galerkin's method. Before

that, the blade nondimensional displacements in lead-lag, flap

(both nondimensional on (R - e1)), and torsion are expanded,

respectively, as:

V-$ IV. AVG)1% G,
i = 1

M

w =X [Wo +AW, (i)]''' (=) (3)

w -

? =X [to +A p (t) 16, (x)
i = 1

Each expansion assumes small unsteady perturbation about

steady equilibrium condition; the variables with “zero” in

dices are equilibrium generalized coordinates, and the ones

with “delta” are perturbation coordinates. Modified orthogonal

Duncan polynomials are taken as mode shapes ('Pi(x) for

lead-lag and flap bending and 6 (x) for torsion).

The pitch angle due to the root spring is expanded about

the equilibrium condition as p = to +4 p(), with no depen

dence on the blade spanwise coordinate. Also, the inflow ex

pansion coefficients are split into steady-state and perturba

tion part as:

a; (5=3: " : () and b. (5-5. 5, Ó (4)

Modal Equilibrium Equations

The steady-state part of the inflow equations can be expressed

in the following short-hand notation:

[Bo][Vo] -[K] (a:) } = 1.{: }o
(5.) 2 U (#")[k]. [B][V]

Since at steady-state the “antisymmetric” part of the pres

Sure (...") is zero, the second row partition in Eq. (4) can be

solved for the 5's as:

(5')=-IVJ'Ibu' (k' (#) (6)

for m = 0, Q, 20, 30, ...

Then, substituting back in the first “row”, a system of S

nonlinear algebraic equations is obtained (S is the number of

inflow steady-state expansion coefficients taken), that can be

represented in the following form:

a = a (V, W, 40, to, a.) (7)

As observed in the above representation, the a's are nonlinear

related to all blade equilibrium generalized coordinates, and to

the a's themselves. This is a consequence of the use of the

nonlinear version of the inflow equations (Peters and

HaQuang, 1988), which defines the momentum theory flow

parameters as function of the steady, uniform inflow as:

v: -2V-2/53. (8)

(n,m) + (1,0)

0 –0

V = VT = W3 ai;

Also, the steady-state lift, within the involves nonlinear

relation between flap and lead-lag.

In the blade equations, by substituting only the equilib

rium and steady-state quantities and dropping out all time

derivative terms, a set of (3N + 1) nonlinear equations for

(öVoi,öWol,6dpoi, andödbo) is established.

Collecting altogether blade and inflow steady-state equa

tions, a set of ((3N + 1) + S) nonlinear algebraic equations in

terms of the equilibrium parts of the blade generalized coordi

nates and the inflow steady-state expansion coefficients?’s is

obtained.
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FIG 7. Linearized perturbation equations in state-variable form.

Eigenproblem for the Perturbation Variables

The perturbation equations are obtained by substituting the

equilibrium (steady-state) and perturbation quantities, sub

tracting off the equilibrium (steady-state) equations, and dis

carding all nonlinear products of dynamic perturbation quanti

ties. The coupled linearized perturbation equations can be set

into a state-variable form as given in Fig 7. In that equation,

the second row partition comes from the blade perturbation

equations and the third row partition is from the unsteady in

flow perturbation equations. At the right-hand-side of the

equation, one can observe the stability matrix; its elements

are constant partitioned coefficient matrices which depend on

the solution of the equilibrium/steady-state equations (these

matrices are defined in de Andrade (1992)). The column vector

(AZ) contains the perturbation modal generalized coordinates

from all blades. They are coupled through the inflow pressure

functions, Eq. (2), that involve summations over all the

blades. The stability of small motions about the equilibrium

operating condition is determined by the eigenvalues of the

stability matrix. It is interesting to observe that by removing

last partitioned row and partitioned column of the equations

within Fig 7, one basically recovers the same stability prob

lem obtained by Hodges and Ormiston (1976) in the 70's un

der a quasi-steady aerodynamic model.

Eigenproblem Solution Approach

To solve for the eigenproblem, a “harmonic-assumed ap

proach” is adopted (de Andrade, 1992). Under this solution

scheme, one takes advantage of multiblade coordinate trans

formation, and the equations of motion are written for a refer

ence blade, with the blade modes of vibration (collective, dif

ferential, cyclic) assumed beforehand, by keeping selected

harmonic numbers in the inflow expansion. This means that

the effects of all blades are accounted automatically as the se

lected harmonic numbers in the inflow expansion are varied.

Taking, for example, a 2-bladed rotor, to obtain the dy

namics associated with the collect” * “

harmonic numbers are selected w

(p in the following expressions

even only”

w expansion

T

#. |t. (#). }, { 2.5:1. | (9)

b.

and the vector of blade States takes the form

T

(Az) = |AVātava, AWitAW2.4%it402,* (10)

2 2 2 2

j = 1, 2, 3, ..., N.

Similarly, to obtain the dynamics of the differential (cyclic)

mode, one assumes “odd only” harmonic numbers,

#.
and the vector of blade states takes the form

T

|t = ". }. { ... [..."). ]] (11)

T

{AZ} :- * 5 AVP. AWii : AWA, A@il 5 402,* (12)

j = 1, 2, 3,..., N.

For a Q-bladed rotor, under the same solution method, the

harmonic number varies as

collective mode: m = j Q

differential mode: m = Q/2 + j Q (Q even) (13)

p-th cyclic mode: m = | p + j Q |

j = 0, 1, 2, 3, ...

RESULTS AND DISCUSSION

The rotor configuration and operational conditions for which

the results are obtained in this research come from Sharpe's

(1986) experimental investigations (a two-bladed, untwisted,

stiff inplane, torsionally soft hingeless model rotor, includ

ing a blade root offset, tested at a nominal speed of 1,000

RPM). The hub was designed to allow variation in precone,

blade droop, pitch control stiffness and blade pitch angle.

Results from the present approach are denoted by GDWM

(Generalized Dynamic Wake Model) in the following plots.
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Values assumed for the harmonic numbers (m) are shown in

the legends, where “(E)” means that “even only” harmonic

numbers are taken within the inflow expansion. The total

number of spatial modes (inflow states) in the inflow expan

sion is chosen as 15, 45, 66, and 91, leading to 6, 15, 21,

and 28 expansion coefficients (S), respectively, in the steady

state (equilibrium) analysis. Such inflow expansion selec

tions come from a mathematically consistent hierarchy pre

sented in He (1989). The convergence of the present method

ology is investigated in detail by de Andrade (1992) and de

Andrade and Peters (1992). In this paper we present results

for aerodynamic force mode shapes including steady-state and

dynamics. All results include 5 mode shapes for each of elas

tic torsion, flap bending, and lead-lag bending deflections.

Also, the aerodynamic loads to be presented in this section

have been normalized by twice the product of the dynamic

pressure at the blade tip and the blade length. It is important

to mention that the theoretical approaches from which the

numerical results are compared herein have the same struc

tural, inertial, and airloads models (the first from Hodges and

Dowell, 1974, and the last two from Hodges, 1976), so the

differences are basically due to the differences in the inflow.

Numerical results for steady-state (equilibrium)

The effects of the present approach on general steady-state

blade deflections and steady-state aerodynamic load mode

shapes are presented in Fig 1-3. Results from the present

methodology are correlated with two-dimensional, momen

tum/blade-element counterparts, which include uniform in

flow distribution.

First, in Fig 8, one observes steady-state inflow distribu

tions for rotor configurations including soft pitch flexures,

zero precone and droop, for the blades at 60 = 8°. The uniform

momentum theory takes the inflow at the 3/4 blade span. It

predicts too large induced flow at the root sections and to

small values at the tip sections. The generalized dynamic

- - - - 2-D, M/BE unif infl

- GDWM, m=0-4 (E), S=6

—GDWM, m=0–8 (E), S-15

—GDWM, m=0-10 (E), S=21

-GDWM, m=0-12 (E), S=28
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inflow methodology shows nonuniform inflow distributions,

and, as the number of expansion coefficients increases, the

inflow begins to climb near the blade tip, meaning that they

are converging to the Prandtl “exact” tip correction.

Basically, this nonuniformity and implicit three-dimensional

characteristics are the major ingredients responsible for the

partial capture of the tip relief on both steady-state induced

drag and lift distribution to be shown. On the other hand,

since this finite-state inflow model is based on a cylindrical,

undistorted wake, no upwash due tip-vortex is captured, what

would happen if prescribed or free-wake models were used.
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FIG 8. Spanwise steady-state inflow

SOFT PITCH FLEXURE, 6.- 6,=0°, 60 = 8°

Figure 9 (a) show correlations for the steady-state induced

drag. The finite-state results start capturing the three-dimen

sional tip-relief effects as the number of expansion coeffi

cients increases, and show a maximum loading at 92% of the
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FIG 9. Spanwise distributions of steady-state aerodynamic loads

SOFT PITCH FLEXURE, 6.- 6,-0°, 60 = 8°, (a) INDUCED DRAG; (b) LIFT
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FIG 10. Bending equilibrium deflections at the blade tip (m) in terms of the collective pitch angle (degrees)

SOFT PITCH FLEXURE, 6. = 6, =0°, (a) LEAD-LAG; (b) FLAP

blade length and quickly decreasing load towards the tip.

Regarding the two-dimensional uniform momentum/blade-el

ement results, too much induced drag is obtained at both the

blade root and tip sections, which is basically responsible for

different sectional bending moments leading to higher lead

lag equilibrium deflections, specially near the blade tip, as

shown in Fig 10 (a).

Correlations for steady-state lift distributions are presented

in Fig 9 (b). Here, the two-dimensional, uniform momen

tum/blade-element theory predicts too little lift at the root

sections and too much lift at the tip sections. The GDWM

results for lift have basically the same trend a those shown

for the steady-state induced drag, showing more evident drop

near the tip due to three-dimensional tip relief. The differ

ences between the two approaches are ultimately responsible

for the differences shown in the flap equilibrium deflections

at the blade tip as shown in Fig 10(b).

Figure 10 shows correlations for blade bending tip deflec

tions in lead-lag and flap in terms of the collective pitch an

gle. Remarkable differences are observed in the lead-lag de

flections from the two theoretical approaches as seen in Fig

10(a). It is observed that a zero thrust the blade is lagging in

the rotor plane, due to the profile drag. As the thrust gets

higher, the blade assumes positive chordwise displacements

(the transition occurs at 6° of collective pitch as predicted by

the two-dimensional aerodynamics, and at 7° by the finite

state formulation). As commented before, such differences are

essentially due to the differences in the induced drag predic

tions (shown in Fig 9 (a)), since Toaches have the

same profile drag (the same co rag coefficient

is assumed). Similarly, consi Is are obtained

for the flap equilibrium de ade tip, as ob

served in Fig 10 (b), which are basically due to the differ

ences in the lift distribution between the respective ap

proaches (Fig 9 (b)). Interpreting the bending equilibrium

displacements results just shown, for instance, the values of

lead-lag and flap at the blade tip at 60 = 12° and computing

the inplane displacement, one finds that the blade tip is lag

ging 0.0052 m and is above the rotor disk about 0.048m.

As detailed in de Andrade (1992), relative small differences

between the two approaches are obtained for the torsion equi

librium deflections at the blade tip. The role of the pitch

flexure in the steady-state results was investigated as well.

Aerodynamic loads and blade equilibrium deflections remain

practically the same as the stiffness of the pitch flexure is

largely varied.

Numerical results for dynamics (eigenanalysis)

The dynamics results from the present approach to be shown

in this paper are obtained directly from an eigenanalysis.

Recall that, with the finite-state wake model eigenvector in

formation contains not only information on structural deflec

tions and velocities, but also contains information on the in

flow oscillations. Thus, one can construct the in-phase (real)

and out-of-phase (imaginary) lift associated with any given

mode. Here we are concerned with the generalized aerody

namic mode shapes which can be obtained directly from the

eigenvectors associated with a given rotor operating condi

tion. For this research, the rotor mode of interest is defined as

the one with frequency nearest the fundamental lead-lag fre

quency of the rotating blade, which is known for being

lightly damped (all results here are for the rotor mode with

frequency around 1.5/rev). Unfortunately, no experimental

data involving blade displacements or aerodynamic forces are
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FIG 11. Spanwise distribution of chordwise generalized

aerodynamic force (drag due to chordwise mode) - real part

soft pitch flexure, 60 = 4°; 6... = 64+ 0°, diff vs. coll

available at this point, so the correlations to be presented

here include GDWM and quasi-steady two-dimensional aero

dynamic techniques.

First, correlations are presented for eigenvectors associated

with the “rotor mode of interest” at 60 = 4°. With respect to

the chordwise generalized aerodynamic force, the real part

(which is the dominant contribution – the imaginary part is

very small) is shown in Fig 11. GDWM results for the rotor

differential and collective modes of vibration are presented

along with the quasi-steady two-dimensional counterparts.

First, we notice that the quasi-steady loads are even qualita

tively correct due to assumption of uniform inflow and the

neglect of unsteady induced inflow. Finite-state inflow

chordwise generalized aerodynamic forces show a drop of

about 50% with respect to the quasi-steady two-dimensional

prediction. Due to the predominance of the first lead-lag at

low values of collective pitch, a great part of that represents

chordwise damping loss. This confirms the differences ob

served for the lead-lag damping between the two approaches

(de Andrade and Peters, 1992 and 1993). Regarding the circu

latory lift mode shapes, in Fig 12 the real part (in-phase) is

presented (both real and imaginary parts have the same order

of magnitude, due to close dependence on perturbational flap,

for which real and imaginary parts have the same order of

magnitude (de Andrade, 1992)). The higher level of circula

tory lift associated with the differential mode (in comparison

with the collective circulatory lift) is a direct consequence of

the lower inflow resultant from this mode when compared to

the inflow associated with the collective mode of vibration.

Also, one observes a severe drop in the values for the incre

mental collective and differential circulatory lifts (which are

the corresponding perturbation wake-generating circulatory

lift, Ls, in Eq.(2)) compared with the quasi-steady two-di

mensional aerodynamic perturbational lift.

As the thrust increases, strong structural couplings are pre

sent. Figures 13 and 14 show generalized aerodynamic mode
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FIG 12. Spanwise distribution of circulatory lift (lift due

to chordwise mode) - real part; 6... = 64= 0°

soft pitch flexure; 60 = 4°, differential vs. collective

shapes for chordwise force and circulatory lift, respectively,

for 60 = 8°. Here the chordwise load goes along the real and

imaginary part of the circulatory lift (flapwise loads) and

coupled flap-lag-torsion motions to define the blade damping.

The differences between generalized wake loads and the quasi

steady loads seen in Figs 13 and 14 account for the 50% im

provement in damping as pointed out in de Andrade, 1992,

and de Andrade and Peters (1992, 1993).
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FIG 13. Spanwise distribution of chordwise generalized

aerodynamic force - real part; 6... = Ba=0°

soft pitch flexure; 60 = 8°, differential vs. collective

CONCLUSIONS

This research investigates the stability of helicopter rotors

in hovering flight through a coupled set of generalized dy

namic inflow equations and hybrid equations of motion for an

elastic blade cantilevered in bending and having a torsional
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FIG 14. Spanwise distribution of circulatory lift - differential vs. collective

soft pitch flexure, 60 = 8°; 6... = 64= 0°, (a) real part; (b) imaginary part

root spring to model pitch-link flexibility. The present ap

proach leads to a standard eigenanalysis for the dynamic part

of the problem, for which the coefficient matrices depend on

the numerical solution of blade equilibrium and inflow

steady-states. Results presented in this paper are for a two

bladed, untwisted stiff inplane hingeless small scale (model)

rotor with torsionally soft blades, including blade root offset,

precone. They confirm the importance of three-dimensional,

unsteady aerodynamics for aeroelastic investigations. The ma

jor conclusions associated with this application of the gener

alized dynamic wake model can be summarized as: 1) numeri

cal results show that three-dimensional tip relief effects

within the nonuniform steady-state inflow are significant to

predict steady-state aerodynamic loads and blade deflections,

and 2) eigenvector analysis correlations reinforced qualitative

and quantitative shortcomings associated with quasi-steady

two-dimensional aerodynamic theory for aeroelastic applica

tions in hover.

The treatment of the aeroelastic stability through an eigen

analysis as formulated in this work is specially convenient

when helicopter integrated dynamics are involved. The elimi

nation of time-marching and moving block analyses, present

current state-of-the-art approaches to the same problem, with

essentially no essential loss of accuracy for the obtained re

sults, constitutes the primary contributions of the present

methodology. The efficiency of this makes rotor optimiza

tion with aeroelastic stability a practical endeavor.
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half of the beam is shown. Segment AB lies on

the line al – a 1 normal to the deflection line of

teh beam. Line segments AB" and C'D lie on

a line a2 – a2 parallel to the y axis. Obviously,

when the beam is not deflected, the lines a 1 – a

and a2 — a 2 coinside. Segments AB" and C’D lie

on the same line a2 – a2 if the constraining layer

does not stretch and if deflections are small. It

follows from AABB' in Fig. 2 that

m = (hi/2)w' (1)

where y' = tan / BAB' = sin/BAB' for small

deflections. Similarly, from ACC'D, we have

n = -(h9/2)y' (2)

It is seen, therefore, that the angle of shear /y in

the viscoelastic layer is

* = y' + (m – n)/2 (3)

or, after substitution,

(4)* = ay'

where

a = 1 + (hi + ha)/2h2 (5)

A convention is used that y is positive in the

counter-clockwise direction if measured from the

line a1 – a 1. Therefore, the shear S acting on the

surface of core per unit length of the beam and,

in the opposite direction, on the surface of the

constraining layer, is

in units of force per units of length. Here b is the

width of the beam.

In our case, the bending moment M in an ar

bitrary cross-section consists of two parts

M = M., + MI (7)

where M., is due to the stiffness of the beam

6°y
Mo = -EI627 (8)

while M1 is due to shear S in the viscoelastic lay

ers, see Fig. 3. Since the constraining layers are

thin compared to the core, th •e of inclu

sion of the bending stiffne ustraining

layers is very small. New Eq. (8),

Fig. 2. Geometry of bending (fourth order eq.).

the stiffness EI of the layered beam is taken as

a combination of the stiffnesses of the core and

of the constraining layers:

EI : El II + 2E313 (9)

It is assumed that the viscoelastic layers do not

contribute to the stiffness of the beam.

To establish the equation of motion for the

beam consider Fig. 3. Equating to zero moments

about point O we receive

Shidz - Vdz + dMe = 0

from which follows the relation for shear V

dM.,

* + his (11)
da:

On the other hand, from the Newton's second law

the motion of the element in vertical direction is

(pdx)y= dV (12)

where p = (pi hi-2p2.h.2+2p3.h3)b and p, are mass

densities of the materials of appropriate layers.

Dividing by dz yields

(10)

V =

(13)

Differentiating V from Eq. (11) and substituting

in Eq. (13) results in

py = V'
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py - M' + h1S'

the equation of motion

EIy" – abhi Gy" + pi = 0 (15)

- , M. : dM,

Fig. 3. Free body diagram for beam element.

or, in a simpler form,

IV // P ..

- – if = 0 16
$/ cGy" + EI* (16)

where bh

aOn 1

- 17

* = EF (17)

Assume that that the solution to Eq. (16) may

be presented in the form

y(x,t) = w(x)e" (18)

where w is complex. Substituting this into Eq.

(16) results in

w" — cow" + (w/wo)"w = 0 (19)

where

w, = (EI/p)" (20)

Applying the Laplace transform

w(p)= / w(t)e"d: (21)

to Eq. (19), we receive after simple transforma

tion

(14)

Substituting in Eq. (14) Mo from Eq. (8) and S

from Eq. (6) with y from Eq. (4) we arrive at

(alp” + op’ + o-'p + ai)

(22)

L(p) 1
tly --
p p" — rp” + s”

where r = cG, s = w/wo, and

a1 = w(0), a2 = w(0)

a3 =w"(0) – cQw(0), a 1 = w”(0) – ców'(0)

(23)

Writing the denominator in Eq. (22) in the form

p" — rp” + s^ = (p” – u”)(p" – v°) (24)

we may observe that the appropriate inverse

Laplace transforms are

"{x+:

u” cos uz – v" cos va.

- —#–E–-v2 = Li (25)

2

-1 p

"{#=}

- *: -*: = L2 (26)

tl” – ty

L-1 p

t" – u”)(p” – w)
ch ua — ch vac

- –H–H– = L3 (27)

-1 1

L {--"

v sh ua – u sh va:

- –E–F–-v2 - L4 (28)

Therefore,

w(x) - ai Li + o2L2 + o:3L3 + a 1L.; (29)

The boundary conditions are determined from

the energy approach. Utilizing the left-hand side

of Eq. (19) calculate the integral

l -

I = / [w!" – cQw' + (w/w.)°w.]w,dx (30)
0

where w, and w; are functions of x only, and sub

scripts i and j denote node numbers. Integrating

Eq. (30) repeatedly by parts, the following result
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is obtained:

I -

I = / [w'' – cQw' + (w/w.)’wil.wide

+[w"w, – ww' + w;w'

///

J - ww')', (31)

The boundary conditions are received when the

expression in brackets in Eq. (31) is equal to zero

both for z = 0 and for x = 1. Observe first that

wk(0) = wi(0) = 0, (k = i, j) are consistent with

customary boundary conditions for a cantilever

beam. Rearrange now the terms in brackets in

Eq. (31) to arrive at the form

– cQ(w'w,

f/ / // /

(w" – cQw)w, – (w'" – cQw')w, – ww' + w;w.

(32)

This expression is zero when

w"(1)–cGw'(l) = 0 and w'(l) = 0, (k = i, j)

(33)

The first of these conditions is not intuitively ob

vious. A complete set of boundary conditions is

then:

w = 0 and w' = 0 for z = 0 (34)

and

w" – cQFw' = 0 and w” = 0 for z = l (35)

SIXTH ORDER DIFFERENTIAL

EQUATION OF MOTION

The results of the previous Section will lead to

the derivation of a more accurate description of

free vibrations of a beam. We will now assume

that the extension and contraction of the con

straining layers is not neglected.

Inasmuch as the angle of shear is y = ay' Eq.

(15) is rewritten in the form

EIy" – bhi G3' + py = 0 (36)

Because of the shear force exerted by the vis

coelastic layers on the constraining layers, there

exists a longitudinal deformation in the con

straining layers in the form 'sion and con

traction. This deformatic magnitude

of the angle of shear. It olute value

of the shear angle is a n the abso

lute value of y. As shown in Fig. 4, the resulting

angle of shear is for a given moment of time t

u(x)

h2

where u(x) is the longitudinal displacement of

the constraining layer on the positive side of the

y-axis. Observe that u(x) in the situation shown

in Fig. 4 is negative. This is consistent with

the assumed convention for the sign of the angle;

clock-wise direction of 6 in Fig. 4 indicates a

negative angle. Submitting y + 6 in place of Y in

Eq. (36) yields

(37)* + 6 = ay' =

- d -

EIy" – Whig ( t ) + bi =0 (38)

h1/2

Fig. 4. Geometry of bending (sixth order eq.).

Introducing the value of y + 6 from Eq. (37)

results in

EIy" – bhi G(ay" + u'/h) + py = 0

The relation between the shear stress r in the vis

coelastic layer and the strain in the constraining

layer at a position z is

(39)

I

E.H.” – / ra: (40)ir

in this relation the sign of r is the same as the
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sign of u’. Differentiating Eq. (40) gives -g g Eq. (40) g solution fo the six-order equation are obtained

Eahau" = —T(z) (41) by the variational approach (see [8])

On the other hand, the relation between r and y(0) = 0

Ty + 6 is y'(0) = 0

= –G 6 42
-

Combining E o * ) lts i (42) [y' + ay" + ay', -1 = 0

ombining Eqs. an results in
- /

8 [y" + aly".- = 0

E3hau - G(y + 6) = 0 (43) y"(0) = 0

Differentiating Eq. (39) with respect to x and y"(1) = 0 (50)

substituting u" from Eq. (43) gives

EIy" – bhi Gay" LENGTH CHANGES IN

THE CONSTRAINING LAYERS

'- "M i. 2: –
+ R.E." + h2 )] + py' = 0. (44) We present here a simple analysis in order to as

Differentiating Eq. (44) with respect to x and ** the magnitude of stretching and contraction

of the constraining layers.
substituting

w" __EI ..." – ay" + /2 .. 45 Observe that the longitudinal displacement in

h2 E.G." ay E.G." (45) the constraining layer at any cross-section a is

which is obtained from Eq. (39), yields the sixth r 1 l

order differential equation of motion u(x) = / E3A3 / T(z)bd4.d4 (51)

"I – G 1 IV where r(x) is shear stress at the surface of the

$/ (c + )y - - - -

h2.h3 E3 constraining layer due to shear force in the vis

G coelsatic layer. With r = YG and y = ay', this

+ ##" - +5 = 0 (46) equation yields
EI h2.h3 E3 EI

This is the equation of motion in which the effect aG l /. d
- - 52of the longitudinal deformation of constraining u(x) h3 E3 |y(l)a. () y(£)dć] (52)

l - - -ayers is included On the other hand, the displacement due to shear

Assuming that is Yh2 = ay'h2, and the ratio of u and yh2 is

therefore

twt

y(x,t) = y(x)e " * - 6 20-£y(0* (*)

we may present the equation of motion in the Th? h2.h3 E3 y'(z)

form

w" + "y" + ay"+ any = 0 (48) NUMERICALANALysis

where

__G pa” The resultant sixth order differential equation is

ClO = hahaB, EI linear with constant coefficients. Such an equa

pa” tion admits exponential solutions. Subsequently,

a2 = -- a general solution of the stated boundary value
EI - • - - - •

problem is a linear combination of six complex

a 1 = –G(c + T-I-E-) (49) valued exponential functions. Working through

h2.h3 E3 this approach leads to a rather complicated char

- acteristic equation for the frequency parameter,

The six boundary conditions required for the see [8].
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Again we turn to the Laplace transform

method. From the transformed Eq. (46) follows:

L{y(p)}

– p'y"(0) + ply" (0) + ay"(0) + y'(0)

p” + a p" + a2p* + ao

The right-hand side of this equation is in the form

Ap" + Bp + C

p” + a p" + a2p* + ao

(54)

(55)

By means of partial fractions we can write

Ap" + Bp + C

(p” – 12)(p” – m2)(p3 – n”)

_ dip + dz , dap + d , d;p + do

- p? – 12 p? – m2 p? – n2 (56)

It follows that

y"(0)l” + y'' (0) + a ty"(0)
di - (l” – m”)(l” – n”) (57)

W . 0)

a =—"—

* - I(FImE)(EIF) (58)

y"(0)m” + y" (0) + ay"(0)
da =

3 (m” – l?)(m” – n” (59)

I

0

4. – "()" ty." (0) + ay"(0)
(n” – l?)(n? – m?)

3/ (62)

- n(n” – 12)(n” – m?)

CASE STUDY

Investigation to determine the effect of varying

the damping of factor n on the system response

was conducted. Some results are presented here,

and more detailed analysis is contained in [8].

Five different values of n were selected: 0.06,

0.24, 0.36, 0.54, and 0.96. The thickness of the

elastic core of the beam was taken as one inch and

the thicknesses of the viscoelastic layers and the

constraining layers were taken tenth inch

and one-hundreth inch, resp e length

of the beam was taken as 2 tic core

was considered steel. The material

was considered rubber w; x modu

Appl Mech Rev 1993 Supplement

lus stated below together with other values:

c = 42.112 x 10"1/lb, E = 30 x 10°lb/in”;

p/b = 7.4562 x 10"lb sec’/in"; Q = 1;

G' = 48.35(1 + in);

EI/b = 2.5 x 10°lbin;

wo = [E(1 + in).I/p]"/";

w; = Q[E(1 + in)1/p]"/?

Mathematica software was used to compute the

various dynamic parameters, such as natural fre

quency. Graphical outputs depicting the real and

the imaginary parts of the response functions

were obtained. As the damping factor increased,

the time for the response to be damped out was

significantly reduced.

The parameters l, m, and n, the undamped

natural frequency wo, and the damped natural

frequency of the system w;, were computed for

each value of the damping factor. Given the sys

tem's natural circular frequency and the param

eters l, m, and n, the response of the system has

been computed.

The reduction of time for the damping out of

the system with the increase of the value of the

damping factor is clear from the figures provided.

For example, the absolute value of the amplitude

of both the real and the imaginary curves shown

for n = 0.06 is greater than 0.5 after 45 seconds.

For n = 0.36 this is less than 0.5 after only 13

seconds, and for n = 0.96 this is less than 0.25

after only 9 seconds. Some results are shown in

Figs. 5-8.

The thickness of the viscoelastic layers does

not significantly affect the damping. However,

its value appears in the eigenfunctions.
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technique can be used as a supplement to other test pro

cedures.

INDUCED WAVE PROPAGATION METHOD

Vanderveldt and Gilheany (1970) are probably among

the first researchers who have studied the propagation of

a longitudinal pulse in wire ropes subjected to axial

loads with the goal of generating a failure detection

method.

Kwun and Burkhardt (1988 and 1990) have developed

a nondestructive evaluation method based on the analysis

of wave motion in a rope. The technique involves:

1. applying a transverse, impulsive force to a cable

2. detecting the resulting motion of the propagat

ing impulse wave

3. analyzing the detected signal.

Their approach allows for the measurement of tension

in the rope and detection of defects such as broken

strands and damage caused by corrosion. They empha

size the fact that the propagation motion of the impulse

wave, although generally following the well known

classical description of the wave motion on a flexible

string, is rather complicated (Kwun and Burkhardt,

1992).

This complicated behavior is caused, mainly, by wave

dispersion.

The governing partial differential equation, in the

case of small amplitude transverse vibrations and when a

stiff string is considered, is:

âu? du" âu?

-:--B-T = m-:- 1

dx 0x ôt (1)

where

u (x, t): transverse displacement

tension in the string

tr" E/4 (flexural rigidity of the string)

Young's modulus

radius of the string

: ptr? (mass per unit length of the string)

density.

Since the stiffness term is present, a wave will propagate

at a speed which is a function of its frequency. The dis

persion relation is:

2 2 11/2

*--++ (#) , no. (2)

2B 2B B

where:

k: wavenumber

00: angular wave frequency.

|

1/2

When Go-> 0, the phase velocity V= (0/k -> |:

which is the phase velocity in a flexible string. If the

frequency is very high, V approaches ("Er”f?/p)"

which is the phase velocity in a circular bar of radius r.

The dispersive effect is greater with increasing radius in

view of the fact that the stiffness is proportional to the

fourth power of the radius.

In the case of wire rope each strand and wire can bend

individually. Hence, the stiffness of a rope having radius

r is smaller than the stiffness of a rod having the same

radius (Kwun and Burkhardt, 1992). These authors have

shown that the dispersion relation determined experi

mentally agrees well with the theoretical one derived for

a stiff string when proper adjustment is made in the

bending stiffness for the rope and which takes into ac

count the relative ease of movement between the indi

vidual wires or strands.

THE ELECTROMAGNETIC (EM)

INSPECTION METHOD

Two approaches have been developed:

• localized fault inspection (LF)

* loss of metallic cross sectional inspection (LMA).

The first practical LF instruments (developed early in

the 30's) used DC magnetization of the rope. They

measure the magnetic flux leakage surrounding the rope

and saturate magnetically a section of the steel rope in

the longitudinal direction by strong permanent or electric

magnets. In the case of a broken wire or core, corrosion

or abrasion, the magnetic flux is distorted and leaks from

the rope. Sense coils or Hall generators, close to the

rope, sense the leakage of flux. these transducers sense

only changes of the magnetic flux.

The LMA AC instruments were developed early in

the present century (Wait, 1979).

They are based on AC magnetization of the rope

which serves as a ferrous core of a coil or transformer. A

variation of the cross sectional area of the rope is tran

duced into a change of the impedance of the system and

in turn, this change is a measure of the alteration of the

cross sectional area. the modern rope evaluation equip

ment by the electromagnetic approach allows for a si

multaneous LMA/LF determination.

Extremely thorough studies on the EM method are

available in the open literature (Weischedel, 1985,

1991). In the case of mooring ropes in-situ inspection is

now possible since a waterproof sensor head has been re

cently developed (Bavins, 1988)

Clearly the EM inspection method is not applicable in

the case of cables made out of synthetic materials.

THEACOUSTICEMISSION (AE) METHOD

Acoustic emission is defined as the high frequency stress

waves generated by the rapid release of strain energy

that occurs within a solid. Sources of acoustic emission

are: initiation and propagation of cracks, twin lip,
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General solution of the generalized micropolar thermoelastic equations has been obtained for

arbitrary distribution of the body couples, body forces, and heat sources in an infinite body.

Short time solutions have been obtained for the cases of impulsive body force and heat source

acting at a point. Numerical values of the short time solutions have been displayed graphically.

INTRODUCTION

In recent years the so-called “second sound” effect in

solids has been given increasing attention. This effect

arises from the possible transport of heat by a wave

propagation process rather than diffusion. Lord and

Shulman (1967), Green and Lindsay (1972), Lebon

(1982), developed various generalized theories of ther

moelasticity based on different approaches to thermody

namics. Boschi and Iesan (1972), Dost and Tabarrok

(1978), Chandrasekharaiah (1986) derived various gen

eralized theories of micropolar thermoelasticity. Owing

to the newness of these theories, only few problems have

been studied by Dhaliwal and Sherief (1981), Sherief

(1986; 1992), Ignaczak and Mrowka-Matejewska (1989),

Oncu and Moodie (1992) and Wang and Dhaliwal

(1993).

In this paper, we study the problem of determining the

displacements, rotations, and temperature in an infinite

micropolar thermoelastic medium under the action of

time dependent body forces, body couples, and heat

sources. In section 2, we summarize the basic equations

of the generalized micropolar thermoelasticity derived

by Chandrasekharaiah (1986). In section 3, we derive the

general solution of these equations by using the Fourier

Laplace transforms for any arbitrary distribution of body

forces, body couples, and heat sources in an infinite

medium. In sections 4 and 5, respectively, we derive so

lutions for an impulsively applied point body force and

heat source. Exact inversions have been obtained in the

space domain and Laplace inversions have been obtained

only for small time approximations.

PRELIMINARIES

Consider a homogeneous isotropic elastic solid

occupying an infinite space. The governing equations of

generalized micropolar thermoelasticity are giver

part of MECHANICS PAN-AMERICA 1993 edited by M
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-T"

Chandrasekharaiah (1986) [we have changed the nota

tions of variables in order to compare our results with

that for coupled theory derived by Shanker and Dhaliwal

(1975)] as

(A + u - o)uji + (u + a)üji

+2aciawi, -v6, + pX = pu, (2.1)

(y + e)wii + (3 + y- e)wiji

+2acau, - 4ow, + JY =Jw, (2.2)1]

k6, = 6 + to + n.(u, + tus)-Q-to, (2.3)

where

= the components of the displacement vector

= the temperature deviation above the initial

temperature 6.

the components the microrotation vector

the components of body force

the components of body couple

the strength of internal heat source

the coefficient of heat conduction

= mass density

= the relaxation time

= the rotational inertia

= pv6./C.

= the specific heat at constant deformation

= the unit anti-symmetric tensor

:

W.

C

G

e

ijk

and M., u, v, G, B, Y, and e are material constants.

In above equations, the notation of Cartesian tensor is

employed, superposed dots denote the time derivatives

and a comma followed by the idex i denotes the partial

derivative with respect to xi.

The basic equations (2.1)-2.3) may be rewritten in

vector form as

ASME Reprint No AMR134

© 1993 American Society of Mechanical Engineers

and CEN Mazzilli
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(A + 2y)VV u-(u + o-)W x V

+20 V x w - v\70+ pX=pû, (2.4)

(3 + 2y)VV w -(y 4 e)VxW x w

+2O.V x u - 4ow + JY= Jw, (2.5)

kV20" 6 + t + m.(Wü + tWü) - Q - to. (2.6)

THE GENERAL SOLUTION

OFTHE BASIC EQUATIONS

In this section we shall find the displacement vector

u(x1, x2, x2, t), microrotation vector w(x1, x2, x2, t), and

temperature field 6(x1, x2, x, t), in an infinite thermoe

lastic body under the action of time dependent body

forces X, body couples Y, and heat sources Q, ie, we

shall find the solution of equations given by (2.4)-(2.6)

for -oo ~ x1, x2, x < 0, t > 0, under prescribed body

forces, body couples and heat sources, with the initial

conditions

u(x1, x2, x2, 0) = u(x1, x2, x2, 0) = 0,

0(x1, x2, x, 0) = 0 (zi, x, x, 0)=0,

w(x1, x2, x2, 0) = w(x1, x2, x2, 0) = 0,

and the regularity conditions

u-> 0, w -> 0, 6 – 0 as (x1, x2, x3) — too.

To solve the equations (2.4)-(2.6), we shall first re

duce them to a simpler form by decomposing the vectors

u, w, X and Y into their potential and solenoidal parts,

ie.

u = Vq + V x \P, div"Y = 0, (3.1)

w = WX + V x H, divh = 0, (3.2)

X = Wu + V x y, divvy = 0, (3.3)

Y= W4 + Vx m, divn = 0. (3.4)

Substitution of equations (3.1)-(3.4) into the basic equa

tions (2.4)-(2.6), yields

D - 20. + 0. :- - - Sl

ED-ov'G'). -ebo-jvo as

(*, *, + 4a2V*)Y = 2a:JV x n - pe.v, (3.6)

(*, *, + 4a2V*)H = 2apV x v -Jean, (3.7)

9, 2 + Jó = 0, (3.8)

6 6

[* D -ov' (, + *#)0

- 6 6 Q
= -on-V2+-(1 + v-)o - in -

env'('' ''). - 'o. (3.9)

where

- 1 6 6 -

D = W2 - #(l + *#). CD1 - mov/k,

62 62

* = 0 +2 ov'-p:. * = (a+ cov’-p'",

62

°, : (3 + 2y)V2 - 40. -J#r.

--6 ov-a-'

To solve these wave equations, we introduce the

Laplace transform f(x1, x2, x2, p) of the function f(x1,

x2, x, t) by the relation

f(x, *2, *3, p)

-| f(x1, x2, x, t) exp(-pt)dt, Re(p) > 0, (3.10)
0

and also the Fourier-Laplace transform f (#1, #2, #3 p) of

the function f(x1, x2, x, t) by the relation

f(£1,3,3,p)

- Go"| of (x1, x2, x, p)exp(ix,&#do (3.11)

where do = dx1dx2dx3 and Q is the x1, x2, x2, - space

Application of (3.10) and (3.11) to equations (3.5)

(3.9) yields the following system of algebraic equations

[(#” + B?)(#” + q)+ ogā’ló

-+(3** and --4-6 3.12# q) 0 #9. (3.12)

[(5 + Bj)(3 +2s + Bj)-r's #1%

= ###". * #(;" +2s + £), (3.13)

4 2

[(5 + Bj)(3 +2s + Bj)-r's';*]H,

s” - . 1 -

: -:*.*.* + £)n, (3.14)
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(8” + B#): =# $, (3.15)

3

(5 + Bj)(3 + q)+ ogč’lā

-+n.kqū +(3** B')ó, (3.16)
ci p

where

p *

c; = &##, c = ++,

– P.

6, =#| 6, = #,

g’ t 4a/2, 6, = 2A, - C3 * * - c.'

k __”. – 1

w = x+: , = x +7 d = #(1 + F).

* - 2a s" = 22

- RE; , - JC;

and 5 = 5: +5; +5:

Taking the Fourier-Laplace transform of (3.1)-(3.4),

we find that

ü = -ić, p-*** (3.17)

* = -ič-ičje, B., (3.18)

X --#9-###". (3.19)

#--à-à'. (3.20)

Substituting for (p, V., X, H. from equations

(3.17)-(3.20) into equations (3.12)-(3.15) and taking into

account the relation

*ijk"kmn * 6.9, - bimon

along with the conditions divy = 0, divn=0, where 8, is

the Kronecker delta function, we obtain

- v98 i - 2 - * c 2.

ui - i-Q - ####" + #,

pcipA1 cíA1 cíA.

-£e + 2s + 6):

c?A %)", (3.21)
4-2

- - - * c 2 -

w, = -#3+# 9.
c:(#24-6) c3A2

*** , an: (3.22)
- #(: + 6%)", -

cíA2

--

where

= (#’ + 6)(3* + q) + was’

~ (8” - A:)(#” - A}), (3.23)

A1

A, = (# 4 6)(3 + 2s + 6) – f's"&"

= (£ – u%)(6* – u%), (3.24)

and xi.2 and u:.2 are the roots of the equations A1(S2) =

0, A2(8°) = 0, respectively. From equation (3.16), we

obtain

a *q → ~ : q z_2 . 22. A
6 = - • -:" + PA1 (š +Bí)Q (3.25)

From equation (3.19) and (3.20), we find that

w = #. &X. wi = - # *** (3.26)

% = #: &Y. n = - # *** (3.27)

Substituting from equations (3.26) and (3.27) into equa

tions (3.21), (3.22) and (3.25), we obtain

* -# 1 +4### ... *

1 r -

* - - -éijké Yk

pcipA1 c?A 16° c{A,

& + 2s + 6: .. -

2 {#x, - #34), (3.28)

c?A26*

- 1 - s" i -

wi = —#–&#kY. --&iéiikX

-£"- i.”

#e3-6%
:: * ~* (3.29)

. (3 + 6)g . m. kq ... ;
~ —Ex- Q + 2 ičk^k.

l cíA1 (3.30)

The above system of equations (3.28)-(3.30) give rise

to the general solution for the determination of dis

placement, microrotation, and temperature field for any

given body forces, body couples, and heat sources ap

plied in the infinite medium by first inverting the Fourier

transform and then inverting the Laplace transform.

If we let v -> 0, then q = p/k and the equations

(3.28)-(3.30) reduce to the corresponding ones derived

by Shanker and Dhaliwal (1975) for the coupled theory.

If we let o -> 0, then equations (3.28) and (3.29) give

rise to the following solution for generalized thermoe

lasticity

u; = .*. & #4£i{k^k

pC ipA. c?A l &:

+ #xi – £1813,

c;(£ 4 6):”
(3.31)
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. (3 + 6)g . m. k q . X

* = —x- # *. (3.32)
C 14, 1

which agree with the previous results obtained by Wang

and Dhaliwal (1993), where dimensionless variables

have been used.

THE EFFECT OFAN IMPULSIVELY

APPLIED BODY FORCE

In this section we consider the case when a body force is

applied impulsively at the origin of an infinite elastic

space. For such a body force we may write

1

A = #6(z)6(y)6(z) t 0, 0, , Y = 0, = 0
p 6(t).{0, 0, F) * " " (4:1)

where Ö() is the Dirac delta function, F is a constant,

and, for the sake of convenience, we have written (x, y,

2) for (x1, x2, x2).

The Fourier-Laplace transform of equation (4.1) gives

X = —#7–0, 0, 1], , Y = 0, Q =

£" " ) * " " (42)

Substitution from equation (4.2) into equations (3.28)

(3.30) yields

- = —£- #4
u(£1,62,639) E: c?A 18°

{* + 2s” + 6:

-~. | 1's 32 (4.3)

- _ _F # + q
u:($1,62,63,p)=E: c{A : :"

£” + 2 s” + 6:

-###". (4.4)

- – —£–(#—t as
us($1,62,&p) =E:#

& + 2 s”+ 6 & + 2s"+ 6:
+

-

£).
c:A; c?A26 ° (4.5)

w(£36, p) - -:- t£2,

(27)*/*pc3A, (4.6)

w,(£3.6 p) - # #3,

(27)* *pc3A2 (4.7)

w;(&#363 p) - 0, (4.8)

% m. kFq -

(£1,62,63,p)= (2)T.A." (4.9)

On inverting the Fourier transform with respect to $1,

82, and 83, in equations (4.3)-(4.9), we obtain

- ; F 6 / 1 1

u(x,y,z,p) - E: "p #. - #).

u;(z,y,z,p) - E: #, - #)

- F [.6 / 1 1

us(x,y,z,p)= (2T)###. - #) + #|

*

- S” F 6

wi(z,w,2,p) - (27)*pc: #4.

2

- *F 6w2(x,y,z, p) - - S #o

(21)*pc: *

w;(z,y,z,p) = 0,

- m. kFq 6

0(x,y,z, p) - - (27)*pc: #'s.

l

where

CD

(8” + q)é,

H = f_ff +exp(-(£
- * *(8 – A :)(: - A:) 1

+ £29 + £32)}dć1d62d63,

(# 4-2s + 6):

I = JJJ ##ex
-up {*(£ – u?) (£ - u%)

+ £29 + £32)}dćidéodés,

£’ + 2s + 6;
I. =

3 /// (** - u?)(3? – u:)

+ £29 + £32)}dćidéodés,

... if m=
-e

£” – u%)(3? – u%)

+ £29 + £32)}dćdé2d£3,

p{-i(£1z

p{-i(£1z

xp{-i(£1z

- JJJ #######
–e

& — A')(3 – A:)

+ £y + £2)}dédédés.

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(421)
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Using polar coordinates

$1 = ricos91, #2 = risinò1, x = rcos02, y = Ysinò,

we have found that -

_ T 00 —i£32 (‘a’ (‘27

1 - J. "If

(#4-r'+q)exp{-irircos (61–6,)}

ridrid 6,683.

(#r?)(#4-ri—A:)(# + r? -A$) (4.22)

Evaluating the 61 integration, we get

I1 = 2.J."r".(r)arf"
-op

(# + r + q)£exp(-ić, Ždé,

(# + r )(# + r - A$)(# + r? – A:) (423)

where J. (2) is the Bessel function of the first kind and of

order n. Evaluating #3 integration we find that

- T

I1 =*I'-4"
1

2

2

2 –

#~€14.7%
1/2

A?(A?—A3) }

T(A: – q) r?–A? 1/2 J.

£44649".)", a29
Using the known integral (Watson, 1958; p 514), we find

that

I = -24'. Lz|r

1 A#,A#/7 (2.4 r")”

A + q " I (ix)". . !/

3

A + q r, 12! (i.)” 1

+ —l- K/4\,(***")
\;=\#7 (FIT)", "r"

(4.25)

where K. [Z] is the modified Bessel function of the third

kind and of order n. Replacing x1,2 by u1,2 and by 2s" +

8: in equation (4.25), we find that

*k

I. = -2"|| T(3/2) 12|r

2 uju:/7 (24-r”)”

2 . o.” 22 , \*/2
H3+2s +6%ry |z| (iuz) !/

###,Kyju,(*)"].HIEL: (FIFT. "I"

wit?'" |z| (in)”

###"If(uí-u%

(4.26)

Adopting the above procedure, we find that

I, = (2x)'''(u)" (#

* * * Kyju,G'+*)". )

---
---
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3 t

1,---'em" . "" ' "
Ali-pu?

– (u)"(* + F)" K/iu,(* + P')

(4.28)

Replacing u1,2 by A1,2 in equation (4.28), we find that

27 3/2 ... - 1 -1 - 1

Is = -#(e) /(2 + r.)"/. K/4\{* + r.) /2

— (a)"(* + 2)". K/4\,(* + r)'/|

(4.29)

It is a formidable task to find the inverse Laplace

transform of the equations (4.25)-(4.29). For this reason

we have resorted to the case of small time approxima

tions. First, we note that

2A%2 = -# + £(1+u)(1+rp)

+ |####|NG-T) - ##"G"),

(4.30)

2 – 1 l 2 —r"Ys"

24, = -(#4 # * (2+)"

+ (### 1 (2+)" - "Gle: . 2.):

(4.31)

Expanding the above equations binomially and retaining

only the necessary terms, we obtain

M = -ali - m1pi, M = -azi-m2pi, (4.32)

|11 = n2pi, Pll = n2pi, (4.33)

where

y2(1 T T.

m1,2 =# + k + R"

* (###"-""
(4.34)

* = 1 - # 1 (#4 ####"

- l # * 'w) – 4t

2/(c')/(#+ i + #): *]...,

- 1/

* - #########" - (-k)|'']".

(4.36)
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Substituting for A1, A2, u1, and u2 from equations

(4.32) and (4.33) into equations (4.25)-(4.29) and ex

panding the right hand sides of these equations in inverse

powers of p by making use of the relation (Watson,

1958):

*) = (+)/ e # 4:#=

£9-G#"e', 'E' or,

we obtain the following expressions for I (i = 1, 2, 3, 4,

5):

It s*{#e*: + *#)

| zle-(altmip)R ll

+ R3 "TE"

+ 1:le(*: + *#)
. R.

* I'le" ...)
R 2

(4.38)

- 0.2, Lzle-nipRth 1 1

I2 = *#e "(*# + dā')

zle-nipR 11

#e":

#e"' - ''

z|2-nopR 11

#e" '}}
(4.39)

I,-2R #". (4.40)

2n” |: -n. Rp 1 *]:
I =−r £e "-j-e " * (4.41)
4 ni - n: R R T

2x” |: -n Rp 1 *]:
I== -e 1 * --e * * (4.42)

s":1R" "R" JF

where R = (x2 + y + z*)” and

– ". mik _ " - m2 k

" " E. 2-m’) ' r2 = *-m?)."

1(m3-mi) km,(m?-m:)

(4.43)

s1 =

(1-alk)m(m3-mi) — (T-mik) [a,(m3-mi) + 2m (m2a2-mial)]

km;(m? - m3).”

(4.44)

S2 =

(1—a,k)m,(m?—m:) — (T-mok) [a,(m?—m:) + 2m,(mar-m2a2)]

km (m; - mi)”

(4.45)

b 1 - nic: 1 - nic?

-- b. =—
1 * *

c{n(n2-n1) cín,(n-n.)

(4.46)

a = —#– –––.

n{(n-n1) n:(n-n.)

(4.47)

Substituting the above values II, I2, Is, I, and Is into

equations (4.10)-(4.16), we find that

- 4 1 -—a,R2-m.R.

u(z,y,z,t)# =#me Ike-mikp

c{R

+ (airl + m1s + $)e-*e" #

2sim 1 + airi

+ (als; +—FR

3r

+ 1 )e-are-mRF #.
miR’ p

+ £e "e"

+ (a r + m2s2 + #9e "e" #

2s2m 2 + a2T2

+ (a2s2 + —FR

3
+ T2 )e-aise-miRP # - |z|#"e"

m,R’ p c:R”

+ (nd, #)e":

+ #4. + 35/(nR)]e "" # + #"e"?

e-n,Rp 1
3

+ (n2d, + #%) p

+ #4 + 2\,("R)e"#.

(4.48)

I,(x,y,z, p=# (x,y,z p) (449)
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- 4 1 - 2-a,R2-m.R.
u;(z,y,z,P)# = #me afte-mikp

l

1 —a,R2-m Rp 1
+ (airl + m1s + 3#r)e 1“e "1 *:

2sim 1 + air,

+ [0,S, +(als, —F.R—

3r

1 )e-are-mRp #
m,R’

+

+ #"e"e"."

+ (azr, H m2s2 + $9e "e" #

2s2m 2 + azr2

+ (a7s, +—FR

3r

+ 2 )e-a:Re-m:Rp # - |z|#"e"
m,R’ p c:R’

1, \e-miRp 1
+ (n1d + 3#)e 1 p

+ #4 + 2\,("Role"#.
- 3 —n.Rp 1

+ #"e n:Rp + (n2d, +: 2ftp p

- 1

+ #4, + 3,/(n,R)]e." #

1 - 12-n Rp 4.
+ # #e i-r, (4.50)

*

- - 1
W(zyżp):# Q:*e n2Rp -

c;(n?—n:)R’ p

1 -- -

+ £e n2Rp # – nie miRp 1

p

1 -—n,Rp 1

- ie." #!. (4.51)

W, (x,y,z, p) :-#weys." (4.52)

W,(x,y,z,p)= 0, (4.53)

- 4T Z —m,Rp 1
6 # R–77. 1Rp 1.(z,y:P)# c:(mi-m:)R’ | le p

1 -- -

+ £e "R" # - me":
p

– 1a-m:Rp # -

Re p?]. (4.54)

From equations (4.48)-(4.54), aplace

transform with respect top (Erd tain

Appl Mech Rev 1993 Supplement

u(zyz,0+ £, #me "Aems)
l

+ (air + m1s + 3#r)e "H(t-mR)

2sim 1 + air,

+ (0, S, +(als, —F.R—

3r

++)e"*A(t-mR)
m,R’

+ #me "At-mR)

+ (aar, + m2s2 + 3#r.)e":"H(t-m,R)

232m 2 + air, 3 r2

+ (a7s, + -TR-4 )

m,R”

x *AG-mR) -#"

+ (nd, #3: )H(*n.")

+ #4 + 3/("R)4(“n R)

+ £4'-'A) + (*, + #)H(-n;R)

+ #4, # 3,/("R)4("R). (4.55)

u2(x,y,z,t) = ui(y,x,z,t), (4.56)

u,(:y:z,0+ : #me "Aems)
ci

+ (airl + m1s + 3#r)e"*H(-mR)

2sim 1 + air,

* (*, + =#–
3 r1

-a,R lm-e-a-R

+ -:)e "A(t—m,R) + #m,e"**(*-m-Rm,R’ 1 ) R"2 ( 2R)

—a.R.

+ (azr; + m2s2 + 3#r.)e **H(t—m,R)

2s,m2 + ayr,

+ (a2s, 4- -TR

3 r

+ → le" (em.")
m,R”

-#* + (nd # 3')H(**)

+ #4 + 35/(nR')4(+n,R)

+ #,A#,R) + (n.d. 4 #)H(-n;R)

+ #4 + 3,/("R)4(**)

+ # #(-n;R), (4.57)

w(zyz,0+ =:*

+ #4(“n R) – n,H(t—n,R) – #4("R).

(4.58)
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w2(x,y,z,t) = -wi (y,x,z,t), (4.59)

w; (x,y,z,t) = 0, (4.60)

4T Z

6(z,w,z,t)# 2 —#–|m|H(t—m,R)7. : 1**\" "1

+ #A(“m,R) – m:H(t—m,R)

1

- #4(em,R) (4.61)

where

A(t—a) :- 0 for 0 < t < Q,

t – a for t > a,

(4.62)

H(t) is the Heaviside step function and 8(t) is the Dirac

delta function.

From equations (4.55)-(4.61), we note that the dis

placement components have four inifinite discontinuities

at t = m, R, t = m, R, t = n R and t = n, R, due to the

presence of Dirac delta functions. The microrotation

components wi and wz have only two finite discontinui

ties at t = n R and t = n R, with the respective jumps of

the magnitudes

F s” F s'

A T0—#= n, and 4To 712,

* c (n:—ni)R’ * c (ni-n3)R’

where = y for wi and & = x for wz. The third microro

tation component w; vanishes identically when the ap

plied body force is in the z-direction. The temperature

field has only two finite discontinuities at t = m, R and t

= m2R, with jumps of magnitudes

F 7. zmi F 7.2m2

* :)R’ 47 &ng-mi)R’

respectively. These jumps diminish with the increase of

the distance of the disturbance from the origin.

THE EFFECT OF IMPULSIVELY

APPLIED HEAT SOURCE

Consider when a heat source of constant strength S is

applied impulsively at the origin. Then we may take

Q(x,y,z,t) = Sö(z)6(y)6(z)6(t), X = 0, Y = 0 (5.1)

In our transform notation this can be written as

- S 5. – v –
Q(£1,&#39) :- (2):7: A = 0, Y = 0. (5.2)

Substituting from equation (5.2) in equations (3.28)

(3.30), we find that

(unu, us) ·-E. #(#).

(5.3)

*--à-#"
* = .57, -a- (5.4)

w;(&#26, p) 2: 0, i = 1, 2, 3. (5.5)

Inverting the Fourier transform with respect to #1, #2 and

#3 in the above equations, we obtain

- - —v.S- 6 6

(upuzu.)
-

###,
(2x)"pcip (5.6)

=+ 1,0(x,y,z,p) (2T) *p 6 (5.7)

where Is is defined in equation (4.29) and

£2 + g?

I. = —exp(-i

, - IfE.T.:*

+ £29 + £32)}dédé2d63. (5.8)

Integrating equation (5.8), we obtain

A#6; (a)". .

1. – 2: |:=#/."

x:16 (a.)"
- K. 1 (i.A.R)|.

#: RTI'/'" (5.9)

It may be noticed that this is a spherically symmetric

case and we will find the radial displacement uR instead

ofu, u, and us. From equation (5.6), we see that

- - 6

i.(R) =+£,
R (2): ... " (5.10)

Using equation (4.42), we find that
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- 4"pk = –1 —n Rp

u,(Rip)# - #me
ci

- me".” + (1, 4 pe"" #

the-n2Rp 1

– (n + #)e p

le-miRp 1 - 1 *}
+ £e "" ; – #e "#. (5.11)

Expanding the right hand terms of equation (5.9) in

the ascending powers of : and retaining only the neces

sary terms, we obtain

1 1 +m,p)R.2'0, + h; + h;£)e." ip)

Is =

R

+ (l, + # + #e (e." | (5.12)

where

1 - mic?

h =—,

c{(m: – m?) (5.13)

h aimic:(mi-m:) + (a 1 mi-a.m.)(1-mici)

2 c?(m? - m?)" *

(5.14)

h a;(m?—m!)ci + (a?–d?)(1-mici)

3 -

c:(m: – mi)”

4(aimi-arm2)h,

+ 2 2 *

m; – mi (5.15)

1 - mic:

l, =— ,

1 c{(m? – m?) (5.16)

l, a.m.c:(m3-mi) + (a: mo-aim)(1-mic:)

c{(m? - m?)"

(5.17)

a;(m3-mi)c: + (a;-a')(1—m:c?)

c{(m: – m?)”

4(a.m.-aimi)l,

+—.

2 2

mi-m;

(5.18)

Substituting from equation (5.12) into equation (5.7), we

find that

MR, p}{# = #!" + h) + rh,

+ (h, + Th;): + h: e-afte-miRp

+ #!" + li + Tl,

l 1 l -- -

+ (l, + Tl,)+ a:Re-m:Rp(4 + rj + #]e e - (5.19)

On inverting the Laplace transform in equations (5.11)

and (5.19), we obtain the displacement and temperature

field for the case of impulsively applied heat source as

4Tok

u,(R,+)# : #("A")
1

- Tn,6(t–n,R) + (n + #)H(-n;R)

– (n + #)H(-n,R)

+ #4(t-mR)- #A(*R). (5.20)

AR, ): = [*(*m'.)

+ (h, + Th.)6(t—m,R) + (h, + Th;)H(t—m,R)

+ h;4(“ms)#e-*

+ [*(*m.") + (l, + Tl)8(t—m,R)

+ (l, + r.)H(t—m,R) + #4(em,R)#e".

(5.21)

From equations (5.20) and (5.21), we note that the

radial displacement us and temperature field 6 have two

infinite discontinuities each at t = n, R, t = n, R and t =

miR, t = m,R respectively while in this case the microro

tation vector is identically equal to zero.
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Fig 1. Numerical values of Ur=#, x 10" vs ratz =

0.01 for the case of impulsively applied body force.
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Fig 3. Numerical values of Wr =#w, /S* vs r at z =

0.01 for the case of impulsively applied body force.
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Fig 5. Numerical values of Ur = uR vs R for the case

of impulsively applied heat source.
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Fig 2. Numerical values of Uz =#, x 10" vs ratz =

0.01 for the case of impulsively applied body force.
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Fig 6. Numerical values of T =#6 x 10-3 vs R for the

case of impulsively applied heat source.
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G-G, \" o 2 o'L

©(o) = o

# o < oL (13)

and Kies-Kittl:

.#| o L < c, s. o's

- O. - O

q(o) = 'o 0s a s GL (14)

oo a > Gs

Equation 10 coincides with that one previously

obtained by Kittl and Camilo [4]. It is equivalent to

the one obtained by Oh and Finnie [3] solely when p(

o) = (G/oo)" where oo and m are real numbers

greater than zero.

THE UNCERTAINTY PRINCIPLES OF

PROBABILISTIC STRENGTH OF MATERIALS

In Probabilistic Strength of Materials [2], when 4(c)

has the expression given by formula (3), the following

relationships are well known:

Co -1/m

Ao = J (3-5) +do :-*:
0

+G+)-f(t+)" (16)

By means of simple transformations it is obtained:

= \" As \"

M: =V. K. M# =V.K. (17)
0 0

where K1 and K2 are constant. Hence, it may be

guessed that the following relationships would be

valid:

V - V

**-*. * w"-k. (18)

where p(o) is the specific risk of fracture function of

Weibull without any definite analytical form and with

the unique condition that it is positive. and A4 are

the mean value and the dispersion of p(o),

respectively.

The relations defined in equation 18 would

constitute the uncertainty principle of probabilistic

strength of materials. This principle, for the case of

uniform stress field, was already enunciated pre

viously [5,6]. In the following paragraphs it will be

intended to extend this principle to the case of

variable stress field.

The formulas (18) can be easily proved. In accord

with equation 2 the function of frequency is:

aR(vo) –:* (19)

0
do V0

The mean value of p is calculated as follows:

$=|*:::"0 V0 V0

Od (20)

='.jæd:= Yo,
V 0 w

Calculating Ö' it is obtained:

*=|*#")+ (g)do
0 V0 V0

(21)

-(?) fees-(#).

and finally the dispersion of () is determined as

follows:

*-*-*-*)-(+)-(?) ,
A =WA'=''.

w

So the relationships guessed (18) give now exactly:

$

V V

V-1 : *w-l (23)
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where () has no any analytical prefixed form. In the

case when the function of cumulative probability of

fracture or yielding has the following expression:

F(V, G.) = 1-*-**) (24)

0

where K is a constant, it is easy to see that the

expressions of equation 18 are transformed in the

following ones:

V

- V V

q)- = K ; Ad)- = K. (25)

Vo 0

When the stress-field space is variable the space

can be divided by means of isotensional surfaces [2]

and the cumulative probability of fracture or yielding

is given by the following expression:

F(o) = 1*:* (26)

0 0

Adopting as a new variable

0 < 8(a) = J $(X)dV(X,o)(x, (27)

0

+

Vo

where dV(X,0) depends upon the geometry of the

material subjected to the variable stress field. Hence

the functions of cumulative probability and frequency

can be expressed in a simplified manner:

F(#) = 1–E* 4F = F. (28)

dë

Hence, with a great simplicity the mean value and the

mean square dispersion of ē can be obtained:

Therefore, the dispersion of ê is:

As=WF-5 = V2 - 1 = 1. (30)

So if in a variable stress field & is adopted as the

independent variable then the uncertainty relation

ships have a particular simple form. Therefore, upper

limits can be obtained for the equations 27 and the

first of equations 29 and also a limit for the equation

30

*:1-####!' (31)

The relationships (Eq 31) are true relationships of

uncertainty because the first relation shows that for

the place of fracture or yielding to be exactly located

then V-->0, since $V2 W, according to the second

relation, the stress will increase indefinitely,

6--> co, then the piece will not break or will not

yield and o-->00. However, according to the last

relationship, 1 = (V/V0)A4, Ab-->co and then the

uncertainty in the determination of the stress at which

the failure occurs becomes indefinitely great.

Therefore, there is a contradiction and it can be seen

that the problem of the exact determination of the

place and the stress wherever the fracture occurs has

an impossible solution. It can be remembered that ©(o

) is a crescent and monotonous function [1]. These

considerations can also be made from the equations 23

corresponding to uniform stress field taking a small

portion of a variable stress field where the same can

be considered as uniform.

For the special case when the function of Weibull

takes the potential form (c) = (G/oo)" the constants

K1 and K2 can be calculated in an exact and simple

form and the relations of uncertainty are valid for the

body subjected to a variable stress field as a whole.

Hence, with &(o) defined into the stress-field space,

the following expression into the real space [2] is

obtained:

4(a)KV

Vo *

(32)

where r is the position vector and f is a function

obtained from the elasticity theory. Thus,

=+ - *(c) -

*[*. V. |row.

5=jø(c)3"#4. (33)

0

therefore
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Vo o

OO (34)

-*-f::$a'-'.

0

and finally

V - 1 1 1

V K o' 1 f am

0 #j*[f(r) v £jrow
V

V

(35)

Likewise it is obtained:

#-A-K-K, (36)

Vo

It can be seen without any difficulty that the

volume is proportional to the dispersion in the

position. The function of frequency of the position can

be expressed in the following manner:

f(r)=\; r eV; f(r) = 0 r -vijñow- 1.

V

(37)

The mean value and the dispersion are calculated in

the following form:

F-joov

X-F-F-janow-f (38)
V

A-WAF

In the case of a volume included into a parallelepiped

of coordinates (b1-alb2-a2b3-a2) and considering a

system of cartesian coordinates (x,y,z) the calculations

give the following results:

-j-j. | xdz _*, **

- d '' (b. –a)(b. -a,)(b. -a,) T 12

b

|*|| (b. –:# -a,) :- (b. #.

a,

Ax”

Ax = (b. -a) / 2-/3.

(39)

Analogous results are obtained for y, z, Ay, AZ. Thus:

(b-a)(b.-a,)(b, -a,) V

AxAyAz = - , (40y 24NG 24 J3 (40)

Therefore, the equation A&W = 1 is transformed into:

V

AxAyAzAq) = 24.6#- (41)

and for the case of a global rectangular body:

V.K.

AxAyAzAq =#. (42)

As to the local probability of fracture, the

dispersion of the number of fractures n1 starting in

volume V1 is obtained through the following group of

relationships, as it is well-known from the elemental

theory of Statistics:

V

n = N+

*-E-N' (43)

VAn 1 1

+= - -

n TV | v. J7

This group of relationships (43) represents the second

principle of uncertainty of Probabilistic Strength of

Materials. None of the two principles of uncertainty,

relationships (31) and (43), depends on constants of

the material.

APPLICATIONS TO SEISMOLOGY

An immediate application to Seismology can be made

wherein probabilistic [7] or implicitly probabilistic [8]

models have been introduced. The Seismic

phenomenon is equivalent to a brittle fracture by a
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