

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI – EPUSP PSI 3212- LABORATÓRIO DE CIRCUITOS ELÉTRICOS

Guia Experimental e Roteiro para Relatório

Versão para simulação - Turma 1 (sexta-manhã) 2020

Resposta em Frequência de Circuitos RC e RLC

Elaboração: Profs. Walter Jaimes Salcedo e Marcio Lobo, Revisão: Elisabete Galeazzo e Leopoldo Yoshioka Edição 2020

No. USP	N	lome	Nota	Bancada
Data:	Turmas:	Profs:		

GUIA EXPERIMENTAL E RELATÓRIO

Objetivos: Saber analisar a resposta em frequência de quadrupolos constituídos por circuitos passivos RC e RLC, utilizando métodos de simulação computacional.

Lista de materiais

- Osciloscópio digital (modelo DSO-X 2002A, Agilent)
- Gerador de funções
- Multímetro digital portátil Tektronix TX3
- Medidor RLC
- Resistores: 1 kΩ e 10 kΩ
- Capacitor: 100 nF
 Indutor: ~3,0 mH
 Planilha Eletrônica
 Software de cálculo

Obs: Esta experiência será feita através da simulação dos circuitos elétricos propostos

Onde diz "meça" uma variável (com voltímetro, osciloscópio, etc.) entenda que você deve obter o valor dessa variável a partir das simulações e dos recursos que o programa de simulação fornecer!

Onde diz "dados experimentais" entenda que deve obter esses dados das simulações

1 RESPOSTA EM FREQUÊNCIA DE UM CIRCUITO RC:

1.1 Identificação e medição dos componentes passivos

Meça as resistências (R) e a capacitância (C) dos componentes da lista de materiais utilizando o multímetro portátil. Meça a indutância (L_s) e a resistência série do indutor (R_s) utilizando o medidor RLC na frequência de 1 kHz. Você pode também medir a capacitância (C_p) e resistência paralela parasitária (R_p) do capacitor com o medidor RLC na frequência de 1 kHz. (não é para fazer)

Tabela 1 - Valores dos componentes R, L e C

	Resistor 1	Resistor 2	Capacitor	Indutor (medido em 1kH:	
Valor	R (kΩ)	R (kΩ)	C _p (nF)	L _s (mH)	$R_{s}(\Omega)$
Nominal	1	10	100	3,0	8,0
Medido	-	1			

1.2 Determinação da resposta em frequência do circuito RC

Monte o circuito mostrado na Figura 1, com os valores nominais dos componentes iguais a $\mathbf{R} = \mathbf{1} \ \mathbf{k} \Omega$ e $\mathbf{C} = \mathbf{100} \ \mathbf{nF}$, respectivamente. Programe o gerador de funções para fornecer uma **onda senoidal** de amplitude de **10 Vpp**. Simule os valores eficazes de entrada (V_E) e saída (tensão no capacitor V_S) com o osciloscópio.

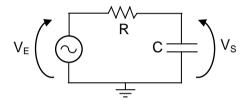


Figura 1- Circuito RC.

a) Apresente as fórmulas para calcular o módulo do ganho linear $|G(j\omega)|$ e a fase $\phi(j\omega)$ a partir dos parâmetros do circuito.

b) Apresente a fórmula para se obter $|G(j\omega)|$ (módulo do ganho linear) a partir das tensões simuladas.

c) Meça com o osciloscópio e anote na Tabela 2 os valores eficazes de ${f V}_{E}$ e de ${f V}_{S}$, como também a
defasagem entre esses sinais (ϕ_{VS} \rightarrow ϕ_{VE}), para os valores de frequência f escolhidas.

e) Indique o módulo do ganho |**G(f)**| e a defasagem φ utilizando-se os valores nominais dos componentes.

*Utilize a planilha eletrônica disponibilizada no Moodle para essa experiência para efetuar os cálculos, caso não tenha efetuado a preparação.

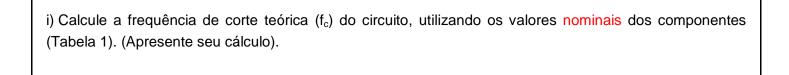

d) Calcule o módulo do ganho |G(f)| a partir das tensões simuladas.

Tabela 2 - Resposta em frequência de um circuito RC.

				Dados do item 1, <i>Preparação</i>		
Valores simulados			Cálculos a partir das tensões simuladas	Resultado dos cálculos teóricos a partir dos parâmetros do circuito		
f (Hz)	V_{E} (CA V_{RMS})	V _S (CA V _{RMS})	Fase $\theta_{s \to e}$ $\phi_{Vs,Ve}$ (°)	Ganho G(f)	G(f)	Fase φ
10						
100						
1 k						
1,5 k						
1,6 k						
10 k						

Evidentemente, os dois ganhos (a partir da tensão e a partir dos parâmetros do circuito) devem dar exatamente iguais.

f) Anexe os gráficos de:
i. Módulo do ganho G(f) (valores simulados);
ii. Defasagem (φ _{VS,VE}) em função da frequência f (valores simulados).
ii. Delasagem (ψ _{VS,VE}) em ranção da nequencia i (Valores simulados).
h) Determine a faive de naccadem ¹ e a frequência de corte (f.) a partir des curves cimulados. Indique es
h) Determine a <u>faixa de passagem</u> ¹ e a <u>frequência de corte</u> (f _c) a partir das curvas <u>simuladas</u> . <u>Indique-as</u> nos dois gráficos acima.
nos dois grancos acima.
Faixa de passagem é a faixa de frequências onde o ganho está dentro do intervalo de 3 dB em relação ao valor máximo
(patamar).

k) Quais seriam as possíveis aplicações para o circuito RC analisado neste experimento? Explique.

2 RESPOSTA EM FREQUÊNCIA DE UM CIRCUITO RLC PARALELO:

Monte o circuito da Figura 2, com $R = 10 \text{ k}\Omega$ e os componentes L e C fornecidos. Note que R_s e L_s estão representando o modelo do indutor real utilizado na montagem. Programe o gerador de funções para fornecer uma **onda senoidal** com amplitude de **10 Vpp**.

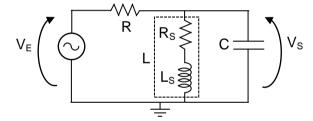


Figura 2- Circuito RLC.

2.1 Determinação de resposta em frequência do circuito RLC

- a) Indique o número das expressões da *Introdução Teórica* devem ser usadas para calcular $|G(j\omega)|$ e ϕ a partir dos parâmetros do circuito da Figura 2.
- b) Meça com o osciloscópio os valores eficazes das tensões de entrada e saída do circuito (V_E e V_S), bem como a defasagem entre esses dois sinais (φ_{VS,VE}) para as diferentes frequências, preenchendo a Tabela 3.

- c) Calcule o módulo do ganho |G(f)| a partir das tensões simuladas.
- d) Indique o módulo do ganho |G(f)| e a defasagem φ , calculados previamente através das <u>fórmulas</u> teóricas indicadas no item 2.1.a (efetuados na preparação do experimento ou utilize a planilha disponibilizada) utilizando-se os valores nominais dos componentes.

Tabela 3 – Resposta em frequência da de circuito RLC

				Dados do item 2	2, Preparação	
Valores simulados			Cálculos a partir das	Cálculos teóricos a partir dos		
			tensões medidas	parâmetros do circuito		
f (Hz)	V _E (CH1) (CA V _{RMS})	Vs (CH2) (CA V _{RMS})	Fase $\theta_{2 \to 1}$ $\phi_{VS,VE}(^{\circ})$	Ganho G(f)	G(f)	Fase φ
1,0 k						
3 k						
5 k						
8,9 k						
9,0 k						
9,1 k						
9,2 k						
9,3 k						
9,5 k						
10 k						
20 k						

Evidentemente, os dois ganhos (a partir da tensão e a partir dos parâmetros do circuito) devem dar exatamente iguais.

- e) Utilizando a planilha eletrônica, anexe os seguintes gráficos a partir dos dados simulados:
 - i. O gráfico de |G(f)|;
 - ii. O gráfico da fase ($\phi_{VS,VE}$) em função da frequência, f.