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Chapter 1Elements of Group Theory
1.1 The 
on
ept of groupThe idea of groups is one that has evolved from some very intuitive 
on
eptswe have a
quired in our attempts of understanding Nature. One of these isthe 
on
ept of mathemati
al stru
ture. A set of elements 
an have a variety ofdegrees of stru
ture. The set of the letters of the alphabet has some stru
turein it. They are ordered as A < B < C::: < Z. Although this order is�
titious, sin
e it is a 
onven
tion, it endows the set with a stru
ture thatis very useful. Indeed, the relation between the letters 
an be extended towords su
h that a telephone dire
tory 
an be written in an \ordered way".The set of natural numbers possesses a higher mathemati
al stru
ture. Inaddition of being \naturally" ordered we 
an perform operations on it. We
an do binary operations like adding or multiplying two elements and alsounary operations like taking the square root of an element (in this 
ase theresult is not always in the set). The existen
e of an operation endows the setwith a mathemati
al stru
ture. In the 
ase when this operation 
loses withinthe set, i.e. the 
omposition of two elements is again an element of the set, theendowed stru
ture has very ni
e properties. Let us 
onsider some examples.Example 1.1 The set of integer numbers (positive and negative) is 
losed un-der the operations of addition, subtration and multipli
ation, but is not 
losedunder, division. The set of natural numbers, on the other hand is not 
losedunder subtra
tion and division but does 
lose under addition and multipli
a-tion.Example 1.2 Consider the set of all human beings living and dead and de�nea binary operation as follows: for any two persons take the latest 
ommon5



6 CHAPTER 1. ELEMENTS OF GROUP THEORYforefather. For the 
ase of two brothers this would be their father; for two
ousins their 
ommon grandfather; for a mother and his son, the mother'sfather, et
. This set is 
losed or not under su
h operation depending, of 
ourse,on how we understand everything has started.Example 1.3 Take a re
tangular box and imagine three mutually orthogonalaxis, x, y and z, passing through the 
enter of the box and ea
h of them beingorthogonal to two sides of the box. Consider the set of three rotations:x � a half turn about the x-axisy � a half turn about the y-axisz � a half turn about the z-axisand let the operation on this set be the 
omposition of rotations. So if weperform y and then x we get z, z then y we get x, and x then z we get y.However if we perform x then y and then z we get that the box gets ba
k toits original position. Therefore the set is not 
losed. If we add to the set theoperation (identity) I \leaves the box as it is", then we get a 
losed set ofrotations.For a set to be 
onsidered a group it has to have, in addition of a binaryoperation and 
losure, some other spe
ial stru
tures. We now start dis
ussingthem by giving the formal de�nition of a group.De�nition 1.1 An abstra
t group G is a set of elements furnished with a
omposition law (or produ
t) de�ned for every pair of elements of G and thatsatis�es:a) If g1 and g2 are elements of G, then the produ
t g1g2 is also an elementof G. (
losure property)b) The 
omposition law is asso
iative, that is (g1g2)g3 = g1(g2g3) for everyg1; g2 and g3 2 G.
) There exists an unique element e in G , 
alled identity element su
h thateg = ge = g for every g 2 G.d) For every element g of G, there exists an unique inverse element, denotedg�1 , su
h that g�1g = gg�1 = e.There are some redundan
ies in these de�nition, and the axioms 
) and d)
ould, in fa
t, be repla
ed by the weaker ones:
0) There exists an element e in G, 
alled left identity su
h that eg = g forevery g 2 G.



1.1. THE CONCEPT OF GROUP 7d0) For every element g of G, there exists a left inverse, denoted g�1 , su
hthat g�1g = e.These weaker axioms 
0) and d0) together with the asso
iativity propertyimply 
) and d). The proof is as follows:Let g2 be a left inverse of g1, i.e. (g2g1 = e), and g3 be a left inverse of g2,i.e. (g3g2 = e). Then we have, sin
e e is a left identity, thate = eeg2g1 = (g2g1)e sin
e g2g1 = eg3(g2g1) = g3((g2g1)e) multiplying both sides by g3(g3g2)g1 = (g3g2)g1e using asso
iativityeg1 = eg1e sin
e g3g2 = eg1 = g1e using the fa
t e is a left identity:Therefore e is also a right identity. We now want to show that a left inverse isalso a right inverse. Sin
e we know that e is both a left and right identity wehave: eg2 = g2e(g2g1)g2 = g2e sin
e g2 is a left inverse of g1g3((g2g1)g2) = g3(g2e) multiplying by g3 where g3g2 = e(g3g2)(g1g2) = (g3g2)e using asso
iativity:e(g1g2) = ee sin
e g3g2 = e:g1g2 = e sin
e e is identity:Therefore g2 is also a right inverse of g1 . Let us show the uniqueness of theidentity and the inverses.Any right and left identity is unique independently of the fa
t of the produ
tbeing asso
iative or not. Suppose there exist two identities e and e0 su
h thatge = eg = e0g = ge0 = g for any g 2 G. Then for g = e we have ee0 = e andfor g = e0 we have ee0 = e0 . Therefore e = e0 and the identity is unique.Suppose that g has two right inverses g1 and g2 su
h that gg1 = gg2 = eand suppose g3 is a left inverse of g, i.e. g3g = e . Then g3(gg1) = g3(gg2) andusing asso
iativity we get (g3g)g1 = (g3g)g2 and so eg1 = eg2 and then g1 = g2. Therefore the right inverse is unique. A similar argument 
an be used toshow the uniqueness of the left inverse. Now if g3 and g1 are respe
tively theleft and right inverses of g, we have g3g = e = gg1 and then using asso
iativitywe get (g3g)g1 = eg1 = g1 = g3(gg1) = g3e = g3. So the left and right inversesare the the same.We are very used to the fa
t that the inverse of the produ
t of two elements(of a group, for instan
e) is the produ
t of their inverses in the reversed order,i.e., the inverse of g1g2 is g�12 g�11 . However this result is true for produ
ts (or
omposition laws) whi
h are asso
iative. It may not be true for non asso
iative



8 CHAPTER 1. ELEMENTS OF GROUP THEORYprodu
ts.Example 1.4 The subtra
tion of real numbers is not an asso
iative operation,sin
e (x�y)�z 6= x�(y�z) , for x; y and z being real numbers. This operationpossesses a right unity element, namely zero, but does not possess left unitysin
e, x�0 = x but 0�x 6= x . The left and right inverses of x are equal and arex itself, sin
e x�x = 0 . Now the inverse of (x�y) is not (y�1�x�1) = (y�x). Sin
e (x�y)� (y�x) = 2(x�y) 6= 0 . This is an ilustration of the fa
t thatfor a non asso
iative operation, the inverse of x� y is not ne
essarily y�1 �x�1. The de�nition of abstra
t group given above is not the only possible one.There is an alternative de�nition that does not require inverse and identity.We 
ould de�ne a group as follows:De�nition 1.2 (alternative) Take the de�nition of group given above andrepla
e axioms 
) and d) by: \For any given elements g1; g2 2 G there exists aunique g satisfying g1g = g2 and also a unique g0 satisfying g0g1 = g2 ".This de�nition is equivalent to the previous one sin
e it implies that, givenany two elements g1 and g2 there must exist unique elements eL1 and eL2 in Gsu
h that eL1 g1 = g1 and eL2 g2 = g2 . But it also implies that there exists aunique g su
h that g1g = g2. Therefore, using asso
iativity, we get(eL1 g1)g = g1g = g2 = eL1 (g1g) = eL1 g2 (1.1)From the uniquiness of eL2 we 
on
lude that eL1 = eL2 .Thus this alternativede�nition implies the existen
e of a unique left identity element eL. On theother hand it also implies that for every g 2 G there exist an unique g�1L su
hthat g�1L g = eL . Consequently axioms 
') and d') follows from the alternativeaxiom above.Example 1.5 The set of real numbers is a group under addition but it is notunder multipli
ation, division, and subtra
tion. The last two operations arenot asso
iative and the element zero has no inverse under multipli
ation. Thenatural numbers under addition are not a group sin
e there are no inverseelements.Example 1.6 The set of all nonsingular n � n matri
es is a group undermatrix produ
t. The set of p � q matri
es is a group under matrix addition.



1.1. THE CONCEPT OF GROUP 9Example 1.7 The set of rotations of a box dis
ussed in example 1.3 is a groupunder 
omposition of rotations when the identity operation I is added to theset. In fa
t the set of all rotations of a body in 3 dimensions (or in any numberof dimensions) is a group under the 
omposition of rotations. This is 
alledthe rotation group and is denoted SO(3).Example 1.8 The set of all human beings living and dead with the operationde�ned in example 1.2 is not a group. There are no unity and inverse elementsand the operation is not asso
iativeExample 1.9 Consider the permutations of n elements whi
h we shall repre-sent graphi
ally. In the 
ase of three elements, for instan
e, the graph shownin �gure 1.1 means the element 1 repla
es 3, 2 repla
es 1 and 3 repla
es 2. We
an 
ompose permutations as shown in �g. 1.2. The set of all permutationsof n elements forms a group under the 
omposition of permutations. This is
alled the symmetri
 group of degree n, and it is generally denoted by Sn .The number of elements of this group is n!, sin
e this is the number of distintpermutations of n elements.
������������2 3 11 2 3

Figure 1.1: A permutation of three obje
ts
����AAAA���
��������� = ��������

Figure 1.2: A 
omposition of permutations



10 CHAPTER 1. ELEMENTS OF GROUP THEORYExample 1.10 The N th roots of the unity form a group under multipli
ation.These roots are exp(i2�m=N) with m=0,1,2..., N-1. The identity elements is1(m = 0) and the inverse of exp(i2�m=N) is exp(i2�(N�m)=N) . This groupis 
alled the 
y
li
 group of order N and is denoted by ZN .We say two elements, g1 and g2 , of a group 
ommute with ea
h other if theirprodu
t is independent of the order, i.e., if g1g2 = g2g1 .If all elements of agiven group 
ommute with one another then we say that this group is abelian.The real numbers under addition or multipli
ation (without zero) form anabelian group. The 
y
li
 groups Zn (see example 1.10 ) are abelian for anyn. The symmetri
 group Sn (see example 1.9 ) is not abelian for n > 2, but itis abelian for n = 2 .Let us 
onsider some groups of order two, i.e., with two elements. The elements0 and 1 form a group under addition modulo 2. We have0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 0 (1.2)The elements 1 and �1 also form a group, but under multipli
ation. We have1:1 = �1:(�1) = 1; 1:(�1) = (�1):1 = �1 (1.3)The symmetri
 group of degree 2, S2 , (see example 1.9 ) has two elements asshown in �g. 1.3.
����AAAAe = a =

Figure 1.3: The elements of S2They satisfy e:e = e; e:a = a:e = a; a:a = e (1.4)These three examples of groups are in fa
t di�erent realizations of the sameabstra
t group. If we make the identi�
ations as shown in �g. 1.4 we see thatthe stru
ture of these groups are the same. We say that these groups areisomorphi
.



1.1. THE CONCEPT OF GROUP 11
1 � -1 �0 � 1 �

����AAAAFigure 1.4: IsomorphismDe�nition 1.3 Two groups G and G0 are isomorphi
 if their elements 
anbe put into one-to-one 
orresponden
e whi
h is preserved under the 
omposi-tion laws of the groups. The mapping between these two groups is 
alled anisomorphism.If g1, g2 and g3 are elements of a group G satisfying g1g2 = g3 and if G isisomorphi
 to another group G0 , then the 
orresponding elements g01; g02 andg03 in G0 have to satisfy g01g02 = g03.There is the possibility of a group G being mapped into another group G0but not in a one-to-one manner, i.e. two or more elements ofG are mapped intojust one element of G0. If su
h mapping respe
ts the produ
t law of the groupswe say they are homomorphi
. The mapping is then 
alled a homomorphismbetween G and G0.Example 1.11 Consider the 
y
li
 groups Z6 with elements e, a, a2, ... a5and a6 = e, and Z2 with elements e0 and b (b2 = e0). The mapping � : Z6 ! Z2de�ned by �(e) = �(a2) = �(a4) = e0�(a) = �(a3) = �(a5) = b (1.5)is a homomorphism between Z6 and Z2.Analogously one 
an de�ne mappings of a given group G into itself, i.e.,for ea
h element g 2 G one asso
iates another element g0. The one-to-onemappings whi
h respe
t the produ
t law of G are 
alled automorphisms of G.In other words, an automorphism of G is an isomorphism of G onto itself.



12 CHAPTER 1. ELEMENTS OF GROUP THEORYDe�nition 1.4 A mapping � : G! G is said to be an automorphism of G ifit respe
ts the produ
t law in G, i.e., if gg0 = g00 then �(g)�(g0) = �(g00).Example 1.12 Consider again the 
y
li
 group Z6 and the mapping � : Z6 !Z6 de�ned by �(e) = e �(a) = a5 �(a2) = a4�(a3) = a3 �(a4) = a2 �(a5) = a (1.6)This is an automorphism of Z6.In fa
t the above example is just a parti
ular 
ase of the automorphism of anyabelian group where a given element is mapped into its inverse.Noti
e that if � and �0 are two automorphisms of a group G, then the
omposition of both ��0 is also an automorphism of G. Su
h 
ompositionis an asso
iative operation. In addition, sin
e automorphisms are one-to-onemappings, they are invertible. Therefore, if one 
onsiders the set of all auto-morphisms of a group G together with the identity mapping of G into G, onegets a group whi
h is 
alled the automorphism group of G.Any element of G gives rise to an automorphism. Indeed, de�ne the map-ping ��g : G! G ��g (g) � �g g �g�1 g; �g 2 G and �g �xed (1.7)Then ��g (gg0) = �g gg0 �g�1= �g g�g�1�gg0 �g�1= ��g (g)��g (g0) (1.8)and so it 
onstitutes an automorphism of G. That is 
alled an inner auto-morphism. The automorphism group that they generate is isomorphi
 to G,sin
e ��g1 (��g2 (g)) = �g1�g2 g �g�12 �g�11 = ��g1�g2 (g) (1.9)All automorphisms whi
h are not of su
h type are 
alled outer automorphisms.



1.2. SUBGROUPS 131.2 SubgroupsA subset H of a group G whi
h satis�es the group postulates under the same
omposition law used for G, is said to be a subgroup of G. The identity elementand the whole group G itself are subgroups of G. They are 
alled impropersubgroups. All other subgroups of a group G are 
alled proper subgroups. If His a subgroup of G, and K a subgroup of H then K is a subgroup of G.In order to �nd if a subset H of a group G is a subgroup we have to 
he
k onlytwo of the four group postulates. We have to 
hek if the produ
t of any twoelements of H is in H (
losure) and if the inverse of ea
h element of H is inH. The asso
iativity property is guaranteed sin
e the 
omposition law is thesame as the one used for G. As G has an identity element it follows from the
losure and inverse element properties of H that this identity element is alsoin H.Example 1.13 The real numbers form a group under addition.The integernumbers are a subset of the real numbers and also form a group under theaddition. Therefore the integers are a subgroup of the reals under addition.However the reals without zero also form a group under multipli
ation, but theintegers (with or without zero) do not. Consequently the integers are not asubgroup of the reals under multipli
ation.Example 1.14 Take G to be the group of all integers under addition, H1 tobe all even integers under addition, H2 all multiples of 22 = 4 under addition,H3 all multiples of 23 = 8 under addition and son on. Then we haveG : :::� 2; �1; 0; 1; 2:::H1 : :::� 4; �2; 0; 2; 4:::H2 : :::� 8; �4; 0; 4; 8:::H3 : :::� 16; �8; 0; 8; 16:::Hn : :::� 2:2n; �2n; 0; 2n; 2:2n:::We see that ea
h group is a subgroup of all groups above it, i.e.G � H1 � H2::: � Hn::: (1.10)Moreover there is a one to one 
orresponden
e between any two groups of thislist su
h that the 
omposition law is preserved. Therefore all these groups areisomorphi
 to one another G � H1 � H2::: � Hn::: (1.11)This shows that a group 
an be isomorphi
 to one of its proper subgroups. Thesame 
an not happen for �nite groups.



14 CHAPTER 1. ELEMENTS OF GROUP THEORYe = ......1 2 3 n-1 n1 2 3 n-1 n a = ......1 2 3 n-1 n!!!!!!AAAA AAAA AAAA AAAA !!n 1 2 n-2 n-1
a2 = ......1 2 3 n-1 n���������� �� ����n-1 n 1 n-3 n-2 an�1= ......1 2 3 n-1 n������������ ����aaaaaaaa2 3 4 n 1Figure 1.5: The 
y
li
 permutations of n obje
tsExample 1.15 The 
y
li
 group Zn , de�ned in example 1.10 , is a subgroup ofthe symmetri
 group Sn, de�ned in example 1.9 . In order to see this, 
onsiderthe elements of Sn 
orresponding to 
y
li
 permutations given in �gure1.5.These elements form a subgroup of Sn whi
h has the same stru
ture as thegroup formed by the nth roots of unity under ordinary multipli
ation of 
omplexnumbers, i.e., Zn.This example is a parti
ular 
ase of a general theorem in the theory of �nitegroups, whi
h we now state without proof. For the proof, see [HAM 62, 
hap1℄ or [BUD 72, 
hap 9℄.Theorem 1.1 (Cayley) Every group G of order n is isomorphi
 to a sub-group of the symmetri
 group Sn.De�nition 1.5 The order of a �nite group is the number of elements it has.Another important theorem about �nite groups is the following.Theorem 1.2 (Lagrange) The order of a subgroup of a �nite group is adivisor of the order of the group.Corollary 1.1 If the order of a �nite group is a prime number then it has noproper subgroups.



1.2. SUBGROUPS 15The proof involves the 
on
ept of 
osets and it is given in se
tion1.4. A�nite group of prime order is ne
essarily a 
y
li
 group and 
an be generatedfrom any of its elements other than the identity element.We say an element g of a group G is 
onjugate to an element g0 2 G if thereexists �g 2 G su
h that g = �gg0�g�1 (1.12)This 
on
ept of 
onjugate elements establishes an equivalen
e relation on thegroup. Indeed, g is 
onjugate to itself (just take �g = e), and if g is 
onjugate tog0, so is g0 
onjugate to g (sin
e g0 = �g�1g�g). In addition, if g is 
onjugate to g0and g0 to g00, i.e. g0 = ~gg00~g�1, then g is 
onjugate to g00, sin
e g = �g~gg00~g�1�g�1.One 
an use su
h equivalen
e relation to divide the group G into 
lasses.De�nition 1.6 The set of elements of a group G whi
h are 
onjugate to ea
hother 
onstitute a 
onjuga
y 
lass of G.Obviously di�erent 
onjuga
y 
lasses have no 
ommon elements. The indentityelement e 
onstitute a 
onjuga
y 
lass by itself in any group. Indeed, if g0 is
onjugate to the identity e, e = gg0g�1, then g0 = e.Given a subgroup H of a group G we 
an form the set of elements g�1Hgwhere g is any �xed element ofG andH stands for any element of the subgroupH. This set is also a subgroup of G and is said to be a 
onjugate subgroup ofH in G. In fa
t the 
onjugate subgroups of H are all isomorphi
 to H, sin
e ifh1; h2 2 H and h1h2 = h3 we have that h01 = g�1h1g and h02 = g�1h2g satisfyh01h02 = g�1h1gg�1h2g = g�1h1h2g = g�1h3g = h03 (1.13)Noti
e that the images of two di�erent elements of H, under 
onjugation byg 2 G, 
an not be the same. Be
ause if they were the same we would haveg�1h1g = g�1h2g ! g(g�1h1g)g�1 = h2 ! h1 = h2 (1.14)and that is a 
ontradi
tion.By 
hoosing various elements g 2 G we 
an form di�erent 
onjugate subgroupsof H in G. However it may happen that for all g 2 G we haveg�1Hg = H (1.15)This means that all 
onjugate subgroups of H in G are not only isomorphi
to H but are identi
al to H. In this 
ase we say that the subgroup H is aninvariant subgroup of G. This implies that, given an element h1 2 H we 
an�nd, for any element g 2 G, an element h2 2 H su
h thatg�1h1g = h2 ! h1g = gh2 (1.16)



16 CHAPTER 1. ELEMENTS OF GROUP THEORYWe 
an write this as gH = Hg (1.17)and say that the invariant subgroup H, taken as an entity, 
ommutes with allelements of G. The identity element and the group G itself are trivial examplesof invariant subgroups of G. Any subgroup of an abelian group is an invariantsubgroup.De�nition 1.7 We say a group G is simple if its only invariant subgroupsare the identity element and the group G itself. In other words, G is simple ifit has no invariant proper subgroups. We say G is semisimple if none of itsinvariant subgroups is abelian.Example 1.16 Consider the group of the non-singular real n � n matri
es,whi
h is generally denoted by GL(n). The matri
es of this group with unit de-terminant form a subgroup sin
e if detM = detN = 1 we have det(M:N) = 1and detM�1 = detM = 1. This subgroup of GL(n) is denoted by SL(n). Ifg 2 GL(n) and M 2 SL(n) we have that g�1Mg 2 SL(n) sin
e det(g�1Mg) =detM = 1 . Therefore SL(n) is an invariant subgroup of GL(n) and 
onse-quently the latter is not simple.De�nition 1.8 Given an element g of a group G we 
an form the set of allelements of G whi
h 
ommute with g, i.e., all x 2 G su
h that xg = gx. Thisset is 
alled the 
entralizer of g and it is a subgroup of G.In order to see it is a subgroup of G, take two elements x1 and x2 of the
entralizer of g, i.e., x1g = gx1 and x2g = gx2. Then it follows that (x1x2)g =x1(x2g) = x1(gx2) = g(x1x2). Therefore x1x2 is also in the 
entralizer. On theother hand,we have thatx�11 (x1g)x�11 = x�11 (gx1)x�11 ! gx�11 = x�11 g: (1.18)So the inverse of an element of the 
entralizer is also in the 
entralizer. There-fore the 
entralizer of an element g 2 G is a subgroup of G. Noti
e thatalthough all elements of the 
entralizer 
ommute with a given element g theydo not have to 
ommute among themselves and therefore it is not ne
essarilyan abelian subgroup of G.De�nition 1.9 The 
enter of a group G is the set of all elements of G whi
h
ommute with all elements of G.



1.3. DIRECT PRODUCTS 17We 
ould say that the 
enter of G is the interse
tion of the 
entralizers of allelements of G. The 
enter of a group G is a subgroup of G and it is abelian ,sin
e by de�nition its elements have to 
ommute with one another. In addition,it is an (abelian) invariant subgroup.Example 1.17 The set of all unitary n� n matri
es with unity determinantform a group, 
alled SU(n), under matrix multipli
aton. That is be
ause ifU1 and U2 are unitary (U y1 = U�11 and U y2 = U�12 ) then U3 � U1U2 is alsounitary. In addition the inverse of U is just U y and the identity is the unityn � n matrix. The 
enter of this group has n elements given by the matri
ese2�im=n1ln�n with m = 0; 1; 2:::(n� 1). They 
ertainly 
ommute with all n� nmatri
es. They belong to SU(n) be
ause they are unitary and have determinantone.1.3 Dire
t Produ
tsWe say a group G is the dire
t produ
t of its subgroups H1; H2:::Hn , denotedby G = H1 
H2 
H3:::
Hn , if1. the elements of di�erent subgroups 
ommute2. Every element g 2 G 
an be expressed in one and only one way asg = h1h2:::hn (1.19)where hi is an element of the subgroup Hi , i = 1; 2; :::; n .From these requirements it follows that the subgroupsHi have only the identitye in 
ommon. Be
ause if f 6= e is a 
ommon element toH2 andH5 say, then theelement g = h1fh3h4f�1h6:::hn 
ould be also written as g = h1f�1h3h4fh6:::hn. Every subgroup Hi is an invariant subgroup of G, be
ause if h0i 2 Hi theng�1h0ig = (h1h2:::hn)�1h0i(h1h2:::hn) = h�1i h0ihi 2 Hi (1.20)Example 1.18 Consider the 
y
li
 group Z6 with elements e, a, a2, a3, a4and a5 (and a6 = e ). It 
an be written as the dire
t produ
t of its subgroupsH1 = fe; a2; a4g and and H2 = fe; a3g sin
ee = ee; a = a4a3; a2 = a2e; a3 = ea3; a4 = a4e; a5 = a2a3 (1.21)Therefore we write Z6 = H1 
H2 (or Z6 = Z3 
 Z2 ).



18 CHAPTER 1. ELEMENTS OF GROUP THEORYGiven two groups G and G0 we 
an 
onstru
t another group by taking thedire
t produ
t of G and G0 as follows: the elements of G00 = G
G0 are formedby the pairs (g; g0) where g 2 G and g0 2 G0. The 
omposition law for G00 isde�ned by (g1; g01)(g2; g02) = (g1g2; g01g02) (1.22)where g1g2, (g01g02) is the produ
t of g1 by g2, (g01 by g02) a

ording to the
omposition law of G (G0). If e and e0 are respe
tively the identity elements ofG and G0, then the sets G
1 = f(g; e0) j g 2 Gg and 1
G0 = f(e; g0) j g0 2 G0gare subgroups of G00 = G 
 G0 and are isomorphi
 respe
tively to G and G0.Obviously G
 1 and 1
G0 are invariant subgroups of G00 = G
G0 .1.4 CosetsGiven a group G and a subgroup H of G we 
an divide the group G intodisjoint sets su
h that any two elements of a given set di�er by an element ofH multiplied from the right. That is, we 
onstru
t the setsgH � f all elements gh of G su
h that h is any element of H and g is a �xedelement of GgIf g = e the set eH is the subgroup H itself. All elements in a set gH are dif-ferent, be
ause if gh1 = gh2 then h1 = h2 . Therefore the numbers of elementsof a given set gH is the same as the number of elements of the subgroup H.Also an element of a set gH is not 
ontained by any other set g0H with g0 6= g. Be
ause if gh1 = g0h2 then g = g0h2h�11 and therefore g would be 
ontainedin g0H and 
onsequently gH � g0H1. Thus we have split the group G intodisjoint sets, ea
h with the same number of elements, and a given elementg 2 G belongs to one and only one of these sets.Proof of Lagrange's theorem(se
tion 1.2).From the 
onsiderations above we see that for a �nite group G of order m witha proper subgroup H of order n, we 
an writem = kn (1.23)where k is the number of disjoint sets gH.21Noti
e that two sets gH and g0H may 
oin
ide for g0 6= g. However, in that 
ase g andg0 di�er by an element of H , i.e. g0 = gh.



1.4. COSETS 19The set of elements gH are 
alled left 
osets of H in G. They are 
ertainlynot subgroups of G sin
e they do not 
ontain the identity element, ex
ept forthe set eH = H.Analogously we 
ould have split G into sets Hg whi
h are formed by ele-ments of G whi
h di�er by an element of H multiplied from the left. The sameresults would be true for these sets. They are 
alled right 
osets of H in G.The set of left 
osets ofH inG is denoted by G=H and is 
alled the left 
osetspa
e. An element of G=H is a set of elements of G, namely gH. Analogouslythe set of right 
osets of H in G is denoted by H nG and it is 
alled the right
oset spa
e.If the subgroup H of G is an invariant subgroup then the left and right
osets are the same sin
e g�1Hg = H implies gH = Hg . In addition, the
oset spa
e G=H, for the 
ase in whi
h H is invariant, has the stru
ture of agroup and it is 
alled the fa
tor group or the quo
ient group. In order to showthis we 
onsider the produ
t of two elements of two di�erent 
osets. We getgh1g0h2 = gg0g0�1h1g0h2 = gg0h3h2 (1.24)where we have used the fa
t that H is invariant, and therefore there existsh3 2 H su
h that g0�1h1g0 = h3 . Thus we have obtained an element of athird 
oset, namely gg0H. If we had taken any other elements of the 
osetsgH and g0H, their produ
t would produ
e an element of the same 
oset gg0H.Consequently we 
an introdu
e, in a well de�ned way, the produ
t of elementsof the 
oset spa
e G=H, namelygHg0H � gg0H (1.25)The invariant subgroup H plays the role of the identity element sin
e(gH)H = H(gH) = gH (1.26)The inverse element is g�1H sin
eg�1HgH = g�1gH = H = gHg�1H (1.27)The asso
iativity is guaranteed by the asso
iativity of the 
omposition law ofthe group G. Therefore the 
oset spa
e G=H � H nG is a group in the 
asewhere H is an invariant subgroup. Noti
e that su
h group is not ne
essarily asubgroup of G or H.Example 1.19 The real numbers without the zero, R�0 , form a group undermultipli
ation. The positive real numbers, R+, 
lose under multipli
ation and



20 CHAPTER 1. ELEMENTS OF GROUP THEORYthe inverse of a positive real number x is also positive (1=x) . Therefore R+is a subgroup of R � 0 . In addition we have that the 
onjugation of a real xby another real y is equal to x , (y�1xy = x) . Therefore R+ is an invariantsubgroup of R � 0 . The 
oset spa
e (R � 0)=R+ has two elements, namelyR+ and R� (the negative real numbers). This 
oset spa
e is a group and itis isomorphi
 to the 
y
li
 group of order 2, Z2 (see example 1.10), sin
e itselements satisfy R+:R+ � R+ , R+:R� � R�, R�:R� � R+.Example 1.20 Any subgroup of an abelian group is an invariant subgroup.Example 1.21 Consider the 
y
li
 group Z6 with elements e, a, a2, ... a5and a6 = e and the subgroup Z2 with elements e and a3. Then the 
osets aregiven by 
0 = fe; a3g ; 
1 = fa; a4g ; 
2 = fa2; a5g (1.28)Sin
e Z2 is an invariant subgroup of Z6 the 
oset spa
e Z6=Z2 is a group.Following the de�nition of the produ
t law on the 
oset given above one easilysees it is isomorphi
 to Z3 sin
e
0:
0 = 
0 ; 
0:
1 = 
1 ; 
0:
2 = 
2
1:
1 = 
2 ; 
1:
2 = 
0 ; 
2:
2 = 
1 (1.29)If we now take the subgroup Z3 of Z6 with elements e, a2 and a4 we get the
osets d0 = fe; a2; a4g ; d1 = fa; a3; a5g (1.30)Again the 
oset spa
e Z6=Z3 is a group and it is isomorphi
 to Z2 sin
ed0:d0 = d0 ; d0:d1 = d1 ; d1:d1 = d0 (1.31)



1.5. REPRESENTATIONS 211.5 RepresentationsThe 
on
ept of abstra
t groups we have been dis
ussing plays an importantrole in Physi
s. However, its importan
e only appears when some quantitiesin the physi
al theory realize, in a 
on
entre way, the stru
ture of the abstra
tgroup. Here 
omes the 
on
ept of representation of an abstra
t group.Suppose we have a set of operators D1 , D2::: a
ting on a ve
tor spa
e VDi j vi =j v0i ; j vi; j v0i 2 V (1.32)We 
an de�ne the produ
t of these operators by the 
omposition of their a
tion,i.e., an operator D3 is the produ
t of two other operators D1 and D2 ifD1(D2 j vi) = D1 j v0i = D3 j vi (1.33)for all j vi 2 V . We then write D1:D2 = D3: (1.34)Suppose that these operators form a group under this produ
t law. We 
all itan operator group or group of transformations.If we 
an asso
iate to ea
h element g of an abstra
t group G an operator,whi
h we shall denote by D(g), su
h that the group stru
ture of G is preserved,i.e., if for g; g0 2 G we have D(g)D(g0) = D(gg0) (1.35)then we say that su
h set of operators is a representation of the abstra
t groupG in the representation spa
e V . In fa
t, the mapping between the operatorgroupD and the abstra
t groupG is a homomorphism. In addition to eq.(1.35)one also has that D(g�1) = D�1(g)D(e) = 1 (1.36)where 1 stands for the unit operator in D.De�nition 1.10 The dimension of the representation is the dimension of therepresentation spa
e.Noti
e that we 
an asso
iate the same operator to two or more elements ofG, but we 
an not do the 
onverse. In the 
ase where there is a one-to-one
orresponden
e between the elements of the abstra
t group and the set ofoperators, i.e., to one operator D there is only one element g asso
iated, wesay that we have a faithful representation .



22 CHAPTER 1. ELEMENTS OF GROUP THEORYExample 1.22 The unit matrix of any order is a trivial representation of anygroup. Indeed, if we asso
iate all elements of a given group to the operator 1we have that the relation 1:1 = 1 reprodu
es the 
omposition law of the groupg:g0 = g00. This is an example of an extremely non faithful representation.When the operators D are linear operators, i.e.,D(j vi+ j v0i) = D j vi+D j v0iD(a j vi) = aD j vi (1.37)with j vi; j v0i 2 V and a being a 
-number, we say they form a linear repre-sentation of G.Given a basis j vii (i = 1; 2:::n) of the ve
tor spa
e V (of dimension n)we 
an 
onstru
t the matrix representatives of the operators D of a givenrepresentation. The a
tion of an operator D on an element j vii of the basisprodu
es an element of the ve
tor spa
e whi
h 
an be written as a linear
ombination of the basis D j vii =j vjiDji (1.38)The 
oeÆ
ients Dji of this expansion 
onstitute the matrix representatives ofthe operator D. Indeed, we haveD0(D j vii) = D0 j vjiDji =j vkiD0kjDji =j vki(D0D)ki (1.39)So, we 
an now asso
iate to the matrix Dij, the element of the abstra
t groupthat is asso
iated to the operator D. We have then what is 
alled a matrixrepresentation of the abstra
t group. Noti
e that the matri
es in ea
h represen-tation have to be non singular be
ause of the existen
e of the inverse element.In addition the unit element e is always represented by the unit matrix, i.e.,Dij(e) = Æij.Example 1.23 In example 1.9 we have de�ned the group Sn . We 
an 
on-stru
t a representation for this group in terms of n � n matri
es as follows:take a ve
tor spa
e Vn and let j vii, i = 1; 2; :::n, be a basis of Vn. One 
ande�ne n! operators that a
ting on the basis permute them, reprodu
ing the n!permutations of n elements. Using (1.38) one then obtains the matri
es. Forinstan
e, in the 
ase of S3, 
onsider the matri
esD(a0) = 0B� 1 0 00 1 00 0 1 1CA ; D(a1) = 0B� 0 1 01 0 00 0 1 1CA ;



1.5. REPRESENTATIONS 23D(a2) = 0B� 1 0 00 0 10 1 0 1CA ; D(a3) = 0B� 0 0 10 1 01 0 0 1CA ;D(a4) = 0B� 0 1 00 0 11 0 0 1CA ; D(a5) = 0B� 0 0 11 0 00 1 0 1CA (1.40)where am, m = 0; 1; 2; 3; 4; 5, are the 6 elements of S3. One 
an 
he
k that thea
tion D(am) j vii =j vjiDji(am) (1.41)gives the 6 permutations of the three basis ve
tors j vii, i = 1; 2; 3, of V3.In addition the produ
t of these matri
es reprodu
es the 
omposition law ofpermutations in S3.By 
onsidering V3 as the spa
e of 
olumn ve
tors 3 � 1 , and taking the
anoni
al basisj v1i = 0B� 100 1CA ; j v2i = 0B� 010 1CA ; j v3i = 0B� 001 1CA (1.42)one 
an 
he
k that the matri
es given above play the role of the operatorspermuting the basis too Dij(am) j vkij =j vliiDlk(am) (1.43)In a non faithful representation of a group G, the set of elements whi
h aremapped on the unit operator 
onstitute an invariant subgroup of G. Indeed,if the representatives of the elements h and h0 of G are the unit operator, i.e.,D(h) = D(h0) = 1, then D(hh0) = D(h)D(h0) = 1. In addition one has thatD(h�1) = 1 sin
e D(h)D(h�1) = D(e) = 1 = 1D(h�1). So, su
h subset of Gis indeed a subgroup. To see it is invariant one uses eq.1.36 to getD(g�1hg) = D(g)�1D(h)D(g) = D�1(g)1D(g) = 1 (1.44)Denoting by H this invariant subgroup, we see that all elements in a given
oset gH of the 
oset spa
e G=H are mapped on the same matrix D(g) sin
eD(gh) = D(g)D(h) = D(g)1 = D(g) ; h 2 H (1.45)Therefore the representation D of G 
onstitute a faithful representation of thefa
tor group G=H.



24 CHAPTER 1. ELEMENTS OF GROUP THEORYTwo representations D and D0 of an abstra
t group G are said to be equiv-alent representations if there exists an operator C su
h thatD0(g) = CD(g)C�1 (1.46)with C being the same for every g 2 G. Su
h thing happens, for instan
e,when one 
hanges the basis of the representationj v0ii =j vji�ji (1.47)Then D(g) j v0ii � j v0jiD0ji(g)= j vkiDkl(g)�li= j vni�nj��1jkDkl(g)�li= j v0ji��1jkDkl(g)�li (1.48)Therefore the new matrix representatives areD0ji(g) = ��1jkDkl(g)�li (1.49)So, the matrix representatives 
hange as in (1.46) with C = ��1. Althoughthe stru
ture of the representation does not 
hange the matri
es look di�erent.As we have said before the operators of a given representation a
t on therepresentation spa
e V as a group of transformations. In the 
ase where asubspa
e of V is left invariant by all transformations, we say the representationis redu
ible . This implies that if a matrix representation is redu
ible then thereexists a basis where the matri
es 
an be written in the formD(g) =  A C0 B ! (1.50)where A, B and C are respe
tively m �m, n � n and m � n matri
es. Thedimension of the representation is m+ n. The subspa
e V1 of V generated bythe �rst m elements of the basis is left invariant, sin
e A C0 B ! v10 ! =  Av10 ! (1.51)i.e., V1 does not mix with the rest of V . The subspa
e V2 of V generated bythe last n elements of the basis is not invariant sin
e A C0 B ! 0v2 ! =  Cv2Bv2 ! (1.52)



1.5. REPRESENTATIONS 25When both subspa
es V1 and V2 are invariant we say the representation is
ompletely redu
ible. In this 
ase the matri
es take the formD(g) =  A 00 B ! (1.53)Lemma 1.1 (S
hur) Any matrix whi
h 
ommutes with all matri
es of a gi-ven irredu
ible representation of a group G must be a multiple of the unitmatrix.Proof Let A be a matrix that 
ommutes will all matri
es D(g) of a givenirredu
ible representation of G, i.e.AD(g) = D(g)A (1.54)for any g 2 G. Consider the eigenvalue equationA j vi = � j vi (1.55)where j vi is some ve
tor in the representation spa
e V . Noti
e that, if v is aneigenve
tor with eigenvalue �, then D(g) j vi has also eigenvalue � sin
eAD(g) j vi = D(g)A j vi = �D(g) j vi: (1.56)Therefore the subspa
e of V generated by all eigenve
tors of A with eigenvalue� is an invariant subspa
e of V . But if the representation is irredu
ible thatmeans this subspa
e is the zero ve
tor or is the entire V . In the �rst 
ase weget that A = 0, and in the se
ond we get that A has only one eigenvalue andtherefore A = �1. 2Corollary 1.2 Every irredu
ible representation of an abelian group is one di-mensional.Proof Sin
e the group is abelian any matrix has to 
ommute with all othermatri
es of the representation. A

ording to S
hur's lemma they have to beproportional to the identity matrix. So, any ve
tor of the representation spa
eV generates an invariant subspa
e. Therefore V has to be unidimensional ifthe representation is irredu
ible. 2De�nition 1.11 A representation D is said to be unitary if the matri
es Dijof the operators are unitary, i.e. Dy = D�1.An important result in the theory of �nite groups is the following theorem



26 CHAPTER 1. ELEMENTS OF GROUP THEORYTheorem 1.3 Any representation of a �nite group is equivalent to a unitaryrepresentationProof Let G be a �nite group of order N , and D be a representation of G ofdimension d. We introdu
e a hermitian matrix H (Hy = H) byH � 1N Xg2GDy(g)D(g) (1.57)For any g0 2 G Dy(g0)HD(g0) = 1N Xg2GDy(gg0)D(gg0) = H (1.58)by rede�ning the sum (remember that if g1g0 = g2g0 then g1 = g2). Sin
eH is hermitian it 
an be diagonalized by a unitary matrix, i.e. H 0 � U yHUis diagonal. For any non zero 
olunm ve
tor v (with 
omplex entries), thequantity vyHv = Xg2G j D(g)v j2 (1.59)is real and positive. But, introdu
ing v0 � U yvvyHv = v0yH 0v0= dXi=1H 0ii j v0i j2 (1.60)where v0i are the 
omponents of v0. Sin
e v0i are arbitrary we 
on
lude that ea
hentry H 0ii of H 0 is real and positive. We then de�ne a diagonal real matrix hwith entries hii = qH 0ii, i.e. H 0 = hh. ThereforeH = UH 0U y = UhhU y � SS (1.61)where we have de�ned S = UhU y. Noti
e that S is hermitian, sin
e h is realand diagonal.De�ning the representation of G given by the matri
esD0(g) � SD(g)S�1 (1.62)we then get from eq. (1.58)�S�1D0(g)S�y (SS) �S�1D0(g)S� = SS (1.63)



1.5. REPRESENTATIONS 27and so D0y(g)D0(g) = 1l (1.64)Therefore the representation D(g) is equivalent to the unitary representationD0(g).This result, as we will dis
uss later, is also true for 
ompa
t Lie groups.2De�nition 1.12 Given two representations D and D0 of a given group G, one
an 
onstru
t what is 
alled the tensor produ
t representation of D and D0.Denoting by j vii, i = 1; 2; : : :dimD, and j v0li, l = 1; 2; : : :dimD0, the basis ofD and D0 respe
tively, one 
onstru
ts the basis of D 
D0 asj wili =j vii
 j v0li (1.65)The operators representing the group elements a
t asD
 (g) j wili = D (g)
D0 (g) j wili = D (g) j vii 
D0 (g) j v0li (1.66)The dimension of the representation D 
D0 is the produ
t of the dimensionsof D and D0, i.e. dimD 
D0 = dimD dimD0.The matri
es representing a given group element in two equivalent represen-tations may look quite di�erent one from the other. That means the matri
es
ontain a lot of redundant information. Mu
h of the relevant properties of arepresentation 
an be en
oded in the 
hara
ter.De�nition 1.13 In a given representation D of a group G we de�ne the 
har-a
ter �D(g) of a group element g 2 G as the tra
e of the matrix representingit, i.e. �D(g) � Tr(D(g)) = dimDXi=1 Dii(g) (1.67)Obviously, the 
hara
ters of a given group element in two equivalent represen-tations are the same, sin
e from (1.46)Tr(D0(g)) = Tr(CD(g)C�1) = Tr(D(g))! �D(g) = �D0(g) (1.68)Analogously, the elements of a given 
onjuga
y 
lass have the same 
hara
ter.Indeed, from de�nition 1.6, if two elements g0 and g00 are 
onjugate, g0 =gg00g�1, then in any representationD one has Tr(D(g0)) = Tr(D(g00)). Nothingprevents however, the elements of two di�erent 
onjuga
y 
lass of having thesame 
hara
ter in some parti
ular representation. In fa
t, this happens in therepresentation dis
ussed in example 1.22.



28 CHAPTER 1. ELEMENTS OF GROUP THEORYWe have seen that the identity element e of a group G is always representedby the unity matrix. Therefore the 
hara
ter of e gives the dimension of therepresentation �D(e) = dim D (1.69)We now state, without proof, some theorems 
on
erning 
hara
ters. Forthe proofs see, for instan
e, [COR 84℄.Theorem 1.4 Let D and D0 be two irredu
ible representations of a �nitegroup G and �D and �D0 the 
orresponding 
hara
ters. Then1N(G) Xg2G(�D(g))��D0(g) = ÆDD0 (1.70)where N(G) is the order of G, ÆDD0 = 1 if D and D0 are equivalent represen-tations and ÆDD0 = 0 otherwise.Theorem 1.5 A su�
ient 
onditions for two representations of a �nite groupG to be equivalent is the equality of their 
hara
ter systems.Theorem 1.6 The number of times nD that an irredu
ible representation Dappears in a given redu
ible representation D0 of a �nite group G is given bynD = 1N(G) Xg2G�D0(g)(�D(g))� (1.71)where �D and �D0 are the 
hara
ters of D and D0 respe
tively, and N(G) isthe order of G.Theorem 1.7 A ne
essary and su�
ient 
ondition for a representation D ofa �nite group G to be irredu
ible is1N(G) Xg2G j �D(g) j2= 1 (1.72)where �D are the 
hara
ters of D and N(G) the order of G.All these four theorems are also true for 
ompa
t Lie groups (see de�nitionin 
hapter 2) with the repla
ement of the sum 1N(G) Pg2G by the invariantintegration RGDg on the group manifold.Chara
ters are also used to prove theorems about the number of inequiva-lent irredu
ible representations of a �nite group.



1.5. REPRESENTATIONS 29Theorem 1.8 The sum of the squares of the dimensions of the inequivalentirredu
ible representations of a �nite group G is equal to the order of G.Theorem 1.9 The number of inequivalent irredu
ible representations of a �-nite group G is equal to the number of 
onjuga
y 
lasses of G.For the proofs see [COR 84℄.De�nition 1.14 If all the matri
es of a representation are real the represen-tation is said to be real.Noti
e that if D is a matrix representation of a group G, then the matri
esD�(g), g 2 G, also 
onstitute a representation of G of the same dimension asD, sin
e D(g)D(g0) = D(gg0)! D�(g)D�(g0) = D�(gg0) (1.73)If D is equivalent to a real representation DR, then D is equivalent to D�. Thereason is that there exists a matrix C su
h thatDR(g) = CD(g)C�1 (1.74)and so DR(g) = C�D�(g)(C�)�1 (1.75)Therefore D�(g) = (C�1C�)�1D(g)C�1C� (1.76)andD is equivalent toD�. However the 
onverse is not always true, i.e. , ifD isequivalent to D� it does not means D is equivalent to a real representation. Sowe 
lassify the representations into three 
lasses regarding the relation betweenD and D�.De�nition 1.15 1. If D is equivalent to a real representation it is saidpotentially real.2. If D is equivalent to D� but not equivalent to a real representation it issaid pseudo real.3. If D is not equivalent to D� then it is said essentially 
omplex.Noti
e that if D is potentially real or pseudo real then its 
hara
ters are real.



30 CHAPTER 1. ELEMENTS OF GROUP THEORYExample 1.24 The rotation group on the plane, denoted SO(2), 
an be rep-resented by the matri
esR(�) =  
os � sin �� sin � 
os � ! (1.77)su
h that R(�) xy ! =  x 
os � + y sin ��x sin � + y 
os � ! (1.78)One 
an easily 
he
k that R(�)R(') = R(� + '). This group is abelian anda

ording to 
orollary 1.2 su
h representation is redu
ible. Indeed, one getsMR(�)M�1 =  e�i� 00 ei� ! (1.79)where M =  1 ii 1 ! (1.80)The ve
tors of the representation spa
e are then transformed asM  xy ! =  x + iyix + y ! (1.81)The 
hara
ters of these equivalent representations are�(�) = 2 
os � (1.82)Example 1.25 In example 1.23 we have dis
ussed a 3-dimensional matrixrepresentation of S3. From the de�nition 1.13 one 
an easily evaluate the
hara
ters in su
h representation�D(a0) = 3�D(a1) = �D(a2) = �D(a3) = 1�D(a4) = �D(a5) = 0 (1.83)Therefore 16 5Xi=0 j �D(ai) j2= 2 (1.84)



1.5. REPRESENTATIONS 31From theorem 1.7 one sees that su
h 3-dimensional representation is not irre-du
ible. Indeed, the one dimensional subspa
e generated by the ve
torj w3i = 1p3 0B� 111 1CA (1.85)is an invariant subspa
e. The basis of the orthogonal 
omplement of su
hsubspa
e 
an be taken asj w1i = 1p2 0B� 1�10 1CA ; j w2i = 1p6 0B� 11�2 1CA (1.86)Su
h a basis is related to the 
anoni
al basis de�ned in (1.42) byj wii =j vji�ji (1.87)where i; j = 1; 2; 3 and � = 0BB� 1p2 1p6 1p3�1p2 1p6 1p30 �2p6 1p3 1CCA (1.88)A

ording to (1.49) the matrix representatives of the elements of S3 
hange asD0(am) = ��1D(am)� (1.89)where m = 0; 1; 2; 3; 4; 5 and ��1 = �>. One 
an easily 
he
k thatD0(am) =  D00(am) 00 1 ! (1.90)where D00(am) is a 2-dimensional representation of S3 given byD00(a0) =  1 00 1 ! ; D00(a1) =  �1 00 1 ! ;D00(a2) =  12 p32p32 �12 ! ; D00(a3) =  12 �p32�p32 �12 ! ;D00(a4) =  �12 p32�p32 �12 ! ; D00(a5) =  �12 �p32p32 �12 ! (1.91)



32 CHAPTER 1. ELEMENTS OF GROUP THEORYThe 
hara
ters in the representation D00 are given by�D00(a0) = 2�D00(a1) = �D00(a2) = �D00(a3) = 0�D00(a4) = �D00(a5) = �1 (1.92)Therefore 16 5Xi=0 j �D00(ai) j2= 1 (1.93)A

ording to theorem 1.7 the representation D00 is irredu
ible. Consequentelythe 3-dimensional representation D de�ned in (1.40) is 
ompletely redu
ible.It de
omposes into the irredu
ible 2-dimensional representation D00 and the1-dimensional representation given by 1.



Chapter 2Lie Groups and Lie Algebras
2.1 Lie groupsSo far we have been looking at groups as set of elements satisfying 
ertainpostulates. However we 
an take a more geometri
al point of view and lookat the elements of a group as being points of a spa
e. The groups Sn and Zn ,dis
ussed in examples 1.9 and 1.10, have a �nite number of elements and there-fore their 
orresponding spa
es are dis
rete spa
es. Groups like these ones are
alled �nite dis
rete groups. The group formed by the integer numbers underaddition is also dis
rete but has an in�nite number of elements. It 
onstitutesa one dimensional regular latti
e. These type of groups are 
alled in�nite dis-
rete groups. The interesting geometri
al properties of groups appear whentheir elements 
orrespond to the points of a 
ontinuous spa
e. We have thenwhat is 
alled a 
ontinuous group. The real numbers under addition 
onstitutea 
ontinuous group sin
e its elements 
an be seen as the points of an in�niteline. The group of rotations on a two dimensional plane is also a 
ontinuousgroup. Its elements 
an be parametrized by an angle varying from O to 2� andtherefore they de�ne a spa
e whi
h is a 
ir
le. In this sense the real numbersunder addition 
onstitute a non 
ompa
t group and the rotations on the planea 
ompa
t group.Given a group G we 
an parametrize its elements by a set of parameters x1, x2, ... xn . If the group is 
ontinuous these parameters are 
ontinuous and
an be taken to be real parameters. The elements of the group 
an then bedenoted as g = g(x1; x2:::xn). A set of 
ontinuous parameters x1, x2, ... xn issaid to be essential if one 
an not �nd a set of 
ontinuous parameters y1, y2,... ym , with m < n, whi
h suÆ
es to label the elements of the group. When33



34 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASwe take the produ
t of two elements of a groupg(x)g(x0) = g(x00) (2.1)the parameters of the resulting element is a fun
tion of the parameters of theother two elements. x00 = F (x; x0) (2.2)Analogously the parameters of the inverse element of a given g 2 G is afun
tion of the parameters of g and vi
e-versa. Ifg(x)g(x0) = e = g(x0)g(x) (2.3)then x0 = f(x) (2.4)If the elements of a group G form a topologi
al spa
e and if the fun
tionsF (x; x0) and f(x) are 
ontinuous fun
tions of its arguments then we say thatG is a topologi
al group. Noti
e that in a topologi
al group we have to havesome 
ompatibility between the algebrai
 and the topologi
al stru
tures.When the elements of a group G 
onstitute a manifold and when the fun
-tions F (x; x0) and f(x), dis
ussed above, possess derivatives of all orders withrespe
t to its arguments, i.e., are analyti
 fun
tions, we say the group G is aLie group . This de�nition 
an be given in a formal way.De�nition 2.1 A Lie group is an analyti
 manifold whi
h is also a groupsu
h that the analyti
 stru
ture is 
ompatible with the group stru
ture, i.e. theoperation G�G! G is an analyti
 mapping.For more details about the geometri
al 
on
epts involved here see [HEL 78,CBW 82, ALD 86, FLA 63℄.Example 2.1 The real numbers under addition 
onstitute a Lie group. In-deed, we 
an use a real variable x to parametrize the group elements. Thereforefor two elements with parameters x and x0 the fun
tion in (2.2) is given byx00 = F (x; x0) = x + x0 (2.5)The fun
tion given in (2.4) is justf(x) = �x (2.6)These two fun
tions are obviously analyti
 fun
tions of the parameters.



2.2. LIE ALGEBRAS 35Example 2.2 The group of rotations on the plane, dis
ussed in example 1.24,is a Lie group. In fa
t the groups of rotations on IRn , denoted by SO(n), areLie groups. These are the groups of orthogonal n�n real matri
es O with unitdeterminant (O>O = 1l, detO = 1)Example 2.3 The groups GL(n) and SL(n) dis
ussed in example 1.16 areLie groups, as well as the group SU(n) dis
ussed in example 1.17Example 2.4 The groups Sn and Zn dis
ussed in examples 1.9 and 1.10 arenot Lie groups.2.2 Lie AlgebrasThe fa
t that Lie groups are di�erentiable manifolds has very important 
on-sequen
es. Manifolds are lo
ally Eu
lidean spa
es. Using the di�erentiablestru
ture we 
an approximate the neighbourhood of any point of a Lie groupG by an Eu
lidean spa
e whi
h is the tangent spa
e to the Lie group at thatparti
ular point. This approximation is some sort of lo
al linearization of theLie group and it is the approa
h we are going to use in our study of the alge-brai
 stru
ture of Lie groups. Obviously this approa
h does not tell us mu
habout the global properties of the Lie groups.Let us begin by making some 
omments about tangent planes and tangentve
tors. A 
onvenient way of des
ribing tangent ve
tors is through linearoperators a
ting on fun
tions. Consider a di�erentiable 
urve on a manifoldM and let the 
oordinates xi , i = 1; 2; :::dimM , of its points be parametrizedby a 
ontinuous variable t varying, let us say, from �1 to 1. Let f be anydi�erentiable fun
tion de�ned on a neighbourhood of the point p of the 
urve
orresponding to t = 0. The ve
tor Vp tangent to the 
urve at the point p isde�ned by Vp(f) = dxi(t)dt jt=0 �f�xi (2.7)Sin
e the fun
tion f is arbitrary the tangent ve
tor is independent of it. Theve
tor Vp is a tangent ve
tor to M at the point p.The tangent ve
tors at p to all di�erentiable 
urves passing through p formthe tangent spa
e TpM of the manifold M at the point p. This spa
e is ave
tor spa
e sin
e the sum of tangent ve
tors is again a tangent ve
tor and themulipli
ation of a tangent ve
tor by a s
alar (real or 
omplex number) is alsoa tangent ve
tor.



36 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASGiven a set of lo
al 
oordinates xi , i = 1; 2; :::dimM in a neighbourhoodof a point p of M we have that the operators ��xi are linearly independent and
onstitute a basis for the tangent spa
e TpM . Then, any tangent ve
tor Vp onTpM 
an be written as a linear 
ombination of this basisVp = V ip ��xi (2.8)Now suppose that we vary the point p along a di�erentiable 
urve. As wedo that we obtain ve
tors tangent to the 
urve at ea
h of its points. Thesetangent ve
tors are 
ontinuously and di�erentiably related. If we 
hoose atangent ve
tor on TpM for ea
h point p of the manifold M su
h that this setof ve
tors are di�erentiably related in the manner des
ribed above we obtainwhat is 
alled a ve
tor �eld . Given a set of lo
al 
oordinates on M we 
anwrite a ve
tor �eld V , in that 
oordinate neighbourhood, in terms of the basis��xi , and its 
omponents V i are di�erentiable fun
tions of these 
oordinates.V = V i(x) ��xi (2.9)Given two ve
tor �elds V and W in a 
oordinate neighbourhood we 
anevaluate their 
omposite a
tion on a fun
tion f . We haveW (V f) =W j �V i�xj �f�xi +W jV i �2f�xj�xi (2.10)Due to the se
ond term on the r.h.s of (2.10) the operator WV is not a ve
tor�eld and therefore the ordinary 
omposition of ve
tor �elds is not a ve
tor�eld. However if we take the 
ommutator of the linear operators V and W weget [V;W ℄ =  V i�W j�xi �W i�V j�xi ! ��xj (2.11)and this is again a ve
tor �eld. So, the set of ve
tor �elds 
lose under theoperation of 
ommutation and they form what is 
alled a Lie algebra.De�nition 2.2 A Lie algebra G is a ve
tor spa
e over a �eld k with a bilinear
omposition law (x; y) ! [x; y℄[x; ay + bz℄ = a[x; y℄ + b[x; z℄ (2.12)with x, y, z 2 L and a, b 2 k, and su
h that



2.2. LIE ALGEBRAS 371. [x; x℄ = 02. [x; [y; z℄℄ + [z; [x; y℄℄ + [y; [z; x℄℄ = 0; (Ja
obi identity)Noti
e that (2.12) implies that [x; y℄ = �[y; x℄, sin
e[x+ y; x+ y℄ = 0= [x; y℄ + [y; x℄ (2.13)De�nition 2.3 A �eld is a set k together with two operations(a; b)! a+ b (2.14)and (a; b)! ab (2.15)
alled respe
tively addition and multipli
ation su
h that1. k is an abelian group under addition2. k without the identity element of addition is an abelian group under mul-tipli
ation3. multipli
ation is distributive with respe
t to addition, i.e.a (b+ 
) = ab + a
(a+ b) 
 = a
 + b
The real and 
omplex numbers are �elds.



38 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS2.3 The Lie algebra of a Lie groupWe have seen that ve
tor �elds on a manifold form a Lie algebra. We nowwant to show that the Lie algebra of some spe
ial ve
tor �elds on a Lie groupis related to its group stru
ture.If we take a �xed element g of a Lie group G and multiply it from the leftby every element of G, we obtain a transformation of G onto G whi
h is 
alledleft translation on G by g. In a similar way we 
an de�ne right translationson G. Under a left translation by g, an element g0, whi
h is parametrized bythe 
oordinates x0i (i = 1; 2; ::: dim G), is mapped into the element g00 = gg0,and the parameters x00i of g00 are analyti
 fun
tions of x0i . This mapping ofG onto G indu
es a mapping between the tangent spa
es of G as follows: letV be a ve
tor �eld on G whi
h 
orresponds to the tangent ve
tors Vg0 and Vg00on the tangent spa
es to G at g0 and g00 respe
tively. Let f be an arbitraryfun
tion of the parameters x00i of g00. We de�ne a tangent ve
tor Wg00 on Tg00G(the tangent plane to G at g00) byWg00f � Vg0(f Æ x00) = V ig0 ��x0i f(x00) = V ig0 �x00j�x0i �f�x00j (2.16)This de�nes a mapping between the tangent spa
es of G sin
e, given Vg0 inTg0G, we have asso
iated a tangent ve
tor Wg00 in Tg00G. The ve
tor Wg00 doesnot have ne
essarily to 
oin
ide with the value of the ve
tor �eld V at Tg00G,namely Vg00 . However, when that happens we say that the ve
tor �eld V is aleft invariant ve
tor �eld on G, sin
e that transformation was indu
ed by lefttranslations on G.The 
ommutator of two left invariant ve
tor �elds, V and �V , is again a leftinvariant ve
tor �eld. To 
he
k this 
onsider the 
ommutator of this ve
tor�elds at group element g0. A

ording to (2.11)~Vg0 � [Vg0 ; �Vg0 ℄ = 0�V ig0 � �V jg0�x0i � �V ig0 �V jg0�x0i 1A ��x0j (2.17)Sin
e V and �V are left invariant, at the group element g00 = gg0 we have,a

ording to (2.16), that~Vg00 � [Vg00 ; �Vg00 ℄= 0�V ig00 � �V jg00�x00i � �V ig00 �V jg00�x00i 1A ��x00j



2.3. THE LIE ALGEBRA OF A LIE GROUP 39=  V kg0 �x00i�x0k ��x00i  �V lg0 �x00j�x0l !� �V kg0 �x00i�x0k ��x00i  V lg0 �x00j�x0l !! ��x00j= 0�V ig0 � �V jg0�x0i � �V ig0 �V jg0�x0i 1A �x00k�x0j ��x0k= ~V jg0 �x00k�x0j ��x0k (2.18)So, ~V is also left invariant. Therefore the set of left invariant ve
tor �elds forma Lie algebra. They 
onstitute in fa
t a Lie subalgebra of the Lie algebra ofall ve
tor �elds on G.De�nition 2.4 A ve
tor subspa
e H of a Lie algebra G is said to be a Liesubalgebraindexsubalgebra ! de�nition of G if it 
loses under the Lie bra
ket,i.e. [H ; H℄ � H (2.19)and if H itself is a Lie algebra.One should noti
e that a left invariant ve
tor �eld is 
ompletely determinedby its value at any parti
ular point of G. In parti
ular it is determined by itsvalue at the group identity e . An important 
onsequen
e of this is that theLie algebra of the left invariant ve
tor �elds at any point of G is 
ompletelydetermined by the Lie algebra of these �elds at the identity element of G.De�nition 2.5 The Lie algebra of the left invariant ve
tor �elds on a Liegroup is the Lie algebra of this Lie group.Noti
e that the Lie algebra of a Lie group G is a subalgebra of the Lie algebraof all ve
tor �elds on G. The Lie algebra of right invariant ve
tor �elds isisomorphi
 to the Lie algebra of left invariant ve
tor �elds. Therefore thede�nition above 
ould also be given in terms of right invariant ve
tor �elds.For any Lie group G it is always possible to �nd a number of linearlyindependent left-invariant ve
tor �elds whi
h is equal to the dimension of G.These ve
tor �elds, whi
h we shall denote by Ta (a = 1; 2; :::dim G), 
onstitutea basis of the tangent plane to G at any parti
ular point, and they satisfy[Ta ; Tb℄ = if 
abT
 (2.20)If we move from one point of G to another, this relation remains un
hanged,and therefore the quantities f 
ab are point independent. For this reason theyare 
alled the stru
ture 
onstants of the Lie algebra of G. Later we will see that



40 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASthese 
onstants 
ontain all the information about the Lie algebra of G. Sin
ethe relation above is point independent we are going to �x the tangent planeto G at the identity element, TeG, as the ve
tor spa
e of the Lie algebra of G.We 
ould have de�ned right invariant ve
tor �elds in a similar way. Their Liealgebra is isomorphi
 to the Lie algebra of the left-invariant �elds.A one parameter subgroup of a Lie group G is a di�erentiable 
urve, i.e., adi�erentiable mapping from the real numbers onto G, t! g(t) su
h thatg(t)g(s) = g(t+ s)g(0) = e (2.21)If we take a �xed element g0 of G, we obtain that the mapping t! g0g(t) is adi�erentiable 
urve on G. However this 
urve is not a one parameter subgroup,sin
e g0g(t)g0g(s) 6= g0g(t + s). If we let g0 to vary over G we obtain a familyof 
urves whi
h 
ompletely 
overs G. There are several 
urves of this familypassing through at a given point of G. However, one 
an show (see [AUM 77℄)that all 
urves of the family passing through a point have the same tangentve
tor at that point. Therefore the family of 
urves g0g(t) 
an be used to de�nea ve
tor �eld on G. One 
an also show that this is a left-invariant ve
tor �eld.Consequently to ea
h one parameter subgroup of G we have asso
iated a leftinvariant ve
tor �eld.If T is the tangent ve
tor at the identity element to a di�erentiable 
urveg(t) whi
h is a one parameter subgroup, then it is possible to show thatg(t) = exp(tT ) (2.22)This means that the straight line on the tangent plane to G at the identityelement, TeG, is mapped onto the one parameter subgroup of G, g(t). This is
alled the exponential mapping of the Lie algebra of G (TeG) onto G. In fa
t,it is possible to prove that in general, the exponential mapping is an analyti
mapping of TeG onto G and that it maps a neighbourhood of the zero elementof TeG in a one to one manner onto a neighbourhood of the identity elementof G. In several 
ases this mapping 
an be extended globally on G.For more details about the exponential mapping and other geometri
al
on
epts involved here see [HEL 78, ALD 86, CBW 82, AUM 77℄.



2.4. BASIC NOTIONS ON LIE ALGEBRAS 412.4 Basi
 notions on Lie algebrasIn the last se
tion we have seen that the Lie algebra, G ,of a Lie group Gpossesses a basis Ta , a = 1; 2; ::: dim G (= dim G, satisfying[Ta ; Tb℄ = if 
abT
 (2.23)where the quantities f 
ab are 
alled the stru
ture 
onstants of the algebra. Wehave introdu
ed the imaginary unity i on the r.h.s of (2.23) be
ause if thegenerators Ta are hermitian, T ya = Ta , then the stru
ture 
onstants are real.Noti
e that f 
ab = f 
ba . From the de�nition of Lie algebra given in se
tion 2.2we have that the generators Ta satisfy the Ja
obi identity[Ta; [Tb; T
℄℄ + [T
; [Ta; Tb℄℄ + [Tb; [T
; Ta℄℄ = 0 (2.24)and 
onsequently the stru
ture 
onstants have to satisfyf eadf db
 + f e
df dab + f ebdf d
a = 0 (2.25)with sum over repeated indi
es. We have also seen that the elements g of G
lose to the identity element 
an be written, using the exponential mapping,as g = exp (i�aTa) (2.26)where �a are the parameters of the Lie group. Under 
ertain 
ir
unstan
es thisrelation is also true for elements quite away from the identity element (whi
h
orresponds to �a = 0).If we 
onjugate elements of the Lie algebra by elements of the Lie groupwe obtain elements of the Lie algebra again. Indeed, if L and T are elementsof the algebra one getsexp (L)T exp (�L) = T + [L; T ℄ + 12! [L; [L; T ℄℄ + 13! [L; [L; [L; T ℄℄℄ + ::: (2.27)In order to prove that relation 
onsider que quantityf (�) � exp (�L)T exp (��L) (2.28)then f 0 = exp (�L) [L ; T ℄ exp (��L)f 00 = exp (�L) [L ; [L ; T ℄ ℄ exp (��L): : : = : : :f (n) = exp (�L) [L ; : : : [L ; [L ; T ℄ ℄ ℄ exp (��L) (2.29)



42 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASThen using Taylor expansion around � = 0 one getsf (�) = 1Xn=0 �nn! adnLT (2.30)where we have denoted adLT � [L ; T ℄. Taking � = 1 one gets (2.27).The r.h.s. of (2.27) is and element of the algebra, and therefore the 
onju-gation gTg�1 de�nes a transformation on the algebra. In addition if g00 = g0gwe see that the 
omposition of the transformations asso
iated to g0 and g givethe transformation asso
iated to g00. Consequently, a

ording to the 
on
eptsdis
ussed in se
tion 1.5, these transformations de�ne a representation of thegroup G on a representation spa
e whi
h is the Lie algebra of G. Su
h repre-sentation is 
alled the adjoint representation of the Lie group G . The matri
esd(g) representing the elements g 2 G in this representation are given bygTag�1 = Tbdba(g) (2.31)One 
an easily 
he
k that the n � n matri
es dba(g) , n = dim G, form arepresentation of G, sin
e if we take the element g1g2 we getg1g2Ta(g1g2)�1 = Tbdba(g1g2)= g1(g2Tag�12 )g�11= g1T
g�11 d
a(g2)= Tbdb
(g1)d
a(g2) (2.32)Sin
e the generators Ta are linearly independent we haved(g1g2) = d(g1)d(g2) (2.33)From the de�ntion (2.31) we see that the dimension of the adjoint representa-tion d(g) of G is equal to the dimension of G. It is a real representation in thesense that the entries of the matri
es d(g) are real.Noti
e that the 
onjugation de�nes a mapping of the Lie algebra G intoitself whi
h respe
ts the 
ommutation relations. De�ning � : G ! G�(T ) � gTg�1 (2.34)for a �xed g 2 G and any T 2 G, one has[�(T ); �(T 0)℄ = [gTg�1; gT 0g�1℄= g[T; T 0℄g�1= �([T; T 0℄) (2.35)Su
h mapping is 
alled an automorphism of the Lie algebra.



2.4. BASIC NOTIONS ON LIE ALGEBRAS 43De�nition 2.6 A mapping � of a Lie algebra G into itself is an automorphismif it preserves the Lie bra
ket of the algebra, i.e.[�(T ); �(T 0)℄ = �([T; T 0℄) (2.36)for any T; T 0 2 G.The mapping (2.34) in parti
ular, is 
alled an inner automorphism. All otherautomorphism whi
h are not 
onjugations are 
alled outer automorphism.If g is an element of G in�nitesimally 
lose to the identity, its parametersin (2.26) are very small and we 
an writeg = 1 + i"aTa (2.37)with "a in�nitesimally small. From (2.31) we have(1 + i"aTa)Tb(1� i"
T
) = T
d
b(1 + i"aTa)= T
(Æ
b + i"ad
b(Ta))= Tb + i"a[Ta; Tb℄= Tb � "af 
abT
 (2.38)Sin
e the in�nitesimal parameters are arbitrary we getd
b(Ta) = if 
ab (2.39)Therefore in the adjoint representation the matri
es representing the genera-tors are given by the stru
ture 
onstants of the algebra. This de�nes a matrixrepresentation of the Lie algebra. In fa
t, whenever one has a matrix repre-sentation of a Lie group one gets, through the exponential mapping, a matrixrepresentation of the 
orresponding Lie algebra.The 
on
ept of representation of a Lie algebra is basi
ally the same as theone we dis
ussed in se
tion 1.5 for the 
ase of groups. The representationtheory of Lie algebras will be dis
ussed in more details later, but here we givethe formal de�nition.De�nition 2.7 If one 
an asso
iate to every element T of a Lie algebra G an� n matrix D(t) su
h that1. D(T + T 0) = D(T ) +D(T 0)2. D(aT ) = aD(T )



44 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS3. D([T; T 0℄) = [D(T ); D(T 0)℄for T; T 0 2 G and a being a 
-number. Then we say that the matri
es D de�nea n-dimensional matrix representation of G.Noti
e that given an element T of a Lie algebra G, one 
an de�ne a trans-formation in G as T : G ! G 0 = [T ; G ℄ (2.40)Using the Ja
obi identity one 
an easily verify that the 
ommutator of the 
om-position of two of su
h transformations reprodu
es the Lie bra
ket operationon G, i.e. [T ; [T 0 ; G ℄ ℄� [T 0 ; [T ; G ℄ ℄ = [ [T ; T 0 ℄ ; G ℄ (2.41)Therefore su
h transformations de�ne a representation of G on G, whi
h is
alled the adjoint representation of G. Obviously, it has the same dimensionas G. Introdu
ing the 
oee�
ients dba(T ) as[T ; Ta ℄ � Tbdba(T ) (2.42)where Ta's 
onstitute a basis for G, one then gets (2.41)[T ; [T 0 ; Ta ℄ ℄� [T 0 ; [T ; Ta ℄ ℄ = T
 d
b(T )dba(T 0)� T
 d
b(T 0)dba(T )= [ [T ; T 0 ℄ ; Ta ℄= T
 d
a([T ; T 0 ℄) (2.43)and so [ d(T ) ; d(T 0) ℄ = d([T ; T 0 ℄) (2.44)Therefore, the matri
es de�ned in (2.42) 
onstitute a matrix representation ofG, whi
h is the adjoint representation G. Using (2.23) and (2.42) one gets thatd
b(Ta) is indeed equal to if 
ab, as obtained in (2.39).Noti
e that if G has an invariant subalgebra H, i.e. [G ; H ℄ � H, then from(2.41) one observes that the ve
tor spa
e of H de�nes a representation of G,whi
h is in fa
t an invariant subspa
e of the adjoint representation. Therefore,for non-simple Lie algebras, the adjoint representation is not irredu
ible.In a given �nite dimensional representation D of a Lie algebra we de�nethe quantity �D(T; T 0) � Tr (D(T )D(T 0)) (2.45)whi
h is symmetri
 and bilinear1. �D(T; T 0) = �D(T 0; T )



2.4. BASIC NOTIONS ON LIE ALGEBRAS 452. �D(T; xT 0 + yT 00) = x�D(T; T 0) + y�D(T; T 00)It satis�es �D([T; T 0℄; T 00) + �D(T; [T 00; T 0℄ = 0 (2.46)sin
e using the 
y
li
 property of the tra
eTr([D(T ); D(T 0)℄D(T 00)) = Tr(D(T )[D(T 0); D(T 00)℄) (2.47)Eq. (2.46) is an invarian
e property of �D(T; T 0). Indeed from (2.45) we seethat �D(T; T 0) = �D(gTg�1; gT 0g�1) (2.48)and taking g to be of the form (2.37) we obtain (2.46) as the �rst order ap-proximation in " of (2.48). So �D is a symmetri
 rank two tensor invariantunder the adjoint representation.The quantity �D(T; T 0) is 
alled an invariant bilinear tra
e form for the Liealgebra G. In the adjoint representation it is 
alled the Killing form. From(2.39) and (2.45) we have that the Killing form is given by�ab � �(Ta; Tb) � Tr(d(Ta)d(Tb)) = �f da
f 
bd (2.49)De�nition 2.8 A Lie algebra is said to be abelian if all its elements 
ommutewith one another.In this 
ase all the stru
ture 
onstants vanish and 
onsequently the Killingform is zero. However there might exist some representation D of an abelianalgebra for whi
h the bilinear form (2.45) is not zero.De�nition 2.9 A subalgebra H of G is said to be a invariant subalgebra (orideal) if [H;G℄ � H (2.50)From (2.27) we see the Lie algebra of an invariant subgroup of a group G isan invariant subalgebra of the Lie algebra of G.De�nition 2.10 We say a Lie algebra G is simple if it has no invariant subal-gebras, ex
ept zero and itself, and it is semisimple if it has no invariant abeliansubalgebras.Theorem 2.1 (Cartan) A Lie algebra G is semisimple if and only if itsKilling form is non degenerated, i.e.det j Tr(d(Ta)d(Tb)) j6= 0: (2.51)



46 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASor in other words, there is no T 2 G su
h thatTr(d(T )d(T 0)) = 0 (2.52)for every T 0 2 G.For the proof see 
hap. III of [JAC 79℄ or se
. 6 of appendix E of [COR 84℄.De�nition 2.11 We say a semisimple Lie algebra is 
ompa
t if its Killingform is positive de�nite.The Lie algebra of a 
ompa
t semisimple Lie group is a 
ompa
t semisimpleLie algebra. By 
hoosing a suitable basis Ta we 
an put the Killing form of a
ompa
t semisimple Lie algebra in the form .�ab = Æab (2.53)Let us de�ne the quantity fab
 � f dab�d
 (2.54)From (2.49) we havefab
 = f dabTr(d(Td)d(T
)) = �iT r(d([Ta; Tb℄T
)) (2.55)Using the 
y
li
 property of the tra
e one sees that fab
 is antisymmetri
 withrespe
t to all its three indi
es. Noti
e that, in general, fab
 is not a stru
ture
onstant.For a 
ompa
t semisimple Lie algebra we have from (2.53) that f 
ab = fab
, and therefore the 
ommutation relations (2.23) 
an be written as[Ta; Tb℄ = ifab
T
 (2.56)Therefore the stru
ture 
onstants of a 
ompa
t semisimple Lie algebra 
an beput in a 
ompletely antisymmetri
 form.2.5 su(2) and sl(2): Lie algebra prototypesAs we have seen the group SU(2) is de�ned as the group of 2 � 2 
omplexunitary matri
es with unity determinant. If an element of su
h group is writtenas g = exp iT , then the matrix T has to be hemitian and tra
eless. Therefore



2.5. SU(2) AND SL(2): LIE ALGEBRA PROTOTYPES 47the basis of the algebra su(2) of this group 
an be taken to be (half of) thePauli matri
es (Ti � 12�i)T1 = 12  0 11 0 ! ; T2 = 12  0 �ii 0 ! ; T3 = 12  1 00 �1 ! (2.57)They satisfy the following 
ommutation relations[Ti ; Tj℄ = i�ijkTk (2.58)The matri
es (2.57) de�ne what is 
alled the spinor (2-dimensional) represen-tation of the algebra su(2).From (2.39) we obtain the adjoint representation (3-dimensional) of su(2)dij(Tk) = i�kji = i�ikj (2.59)and so d(T1) = i0B� 0 0 00 0 �10 1 0 1CA ; d(T2) = i0B� 0 0 10 0 0�1 0 0 1CA ;d(T3) = i0B� 0 �1 01 0 00 0 0 1CA (2.60)One 
an easily 
he
k that they satisfy (2.58).As we have seen the group of rotations in three dimensions SO(3) is de�nedas the group of 3�3 real orthogonal matri
es. Its elements 
lose to the identity
an be written as g = exp iT , and therefore the Lie algebra so(3) of this groupis given by 3�3 pure imaginary, antisymmetri
 and tra
eless matri
es. But thematri
es (2.60) 
onstitute a basis for su
h algebra. Thefore the Lie algebrassu(2) and so(3) are isomorphi
, although the Lie groups SU(2) and SO(3) arejust homomorphi
 (in fa
t SO(3) � SU(2)=Z2).The Killing form of this algebra, a

ording to (2.49), is given by�ij = Tr(d(TiTj)) = 2Æij (2.61)So, it is non degenerate. This is in agreement with theorem 2.1, sin
e thisalgebra is simple. A

ording to the de�nition 2.11 this is a 
ompa
t algebra.The tra
e form (2.45) in the spinor representation is given by�sij = Tr(D(TiTj)) = 12Æij (2.62)



48 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASSo, it is proportional to the Killing form, �s = 14�. This is a parti
ular exampleof a general theorem we will prove later: the tra
e form in any representationof a simple Lie algebra is proportional to the Killing form.Noti
e that the matri
es in these representations dis
ussed above are her-mitian and therefore the matri
es representing the elements of the group areunitary (g = exp iT ). In fa
t this is a result whi
h 
onstitute a generalizationof theorem 1.3 to the 
ase of 
ompa
t Lie groups: any �nite dimensional rep-resentation of a 
ompa
t Lie group is equivalent to a unitary representation.Sin
e the generators are hermitian we 
an always 
hoose one of them to bediagonal. Traditionally one takes T3 to be diagonal and de�nes (in the spinorrep. T3 is already diagonal) T� = T1 � iT2 (2.63)Noti
e that formally, these are not elements of the algebra su(2) sin
e we havetaken 
omplex linear 
ombination of the generators. These are elements of the
omplex algebra denoted by A1.Using (2.58) one �nds [T3; T�℄ = �T�[T+; T�℄ = 2T3 (2.64)Therefore the generators of A1 are written as eigenve
tors of T3 . The eigen-values �1 are 
alled the roots of su(2). We will show later that all Lie algebras
an be put in a similar form. In any representation one 
an 
he
k that theoperator C = T 21 + T 22 + T 23 (2.65)
ommutes with all generators of su(2). It is 
alled the quadra
ti
 Casimiroperator. The basis of the representation spa
e 
an always be 
hosen to beeigenstates of the operators T3 and C simultaneously. These states 
an belabelled by the spin j and the weight mT3 j j;mi = m j j;mi (2.66)The operators T� raise and lower the eigenvalue of T3 sin
e using (2.64)T3T� j j;mi = ([T3; T�℄ + T�T3) j j;mi= (m� 1)T� j j;mi (2.67)We are interested in �nite representations and therefore there 
an only existsa �nite number of eigenvalues m in a given representation. Consequently there



2.5. SU(2) AND SL(2): LIE ALGEBRA PROTOTYPES 49must exist a state whi
h possess the highest eigenvalue of T3 whi
h we denotej T+ j j; ji = 0 (2.68)The other states of the representation are obtained from j j; ji by applying T�su

essively on it. Again, sin
e the representation is �nite there must exist apositive integer l su
h that (T�)l+1 j j; ji = 0 (2.69)Using (2.63) one 
an write the Casimir operator (2.65) asC = T 23 + 12 (T+T� + T�T+) (2.70)So, using (2.64), (2.66) and (2.68)C j j; ji = �T 23 + 12[T+; T�℄ + T�T+� j j; ji= j (j + 1) j j; ji (2.71)Sin
e C 
ommutes with all generators of the algebra, any state of the repre-sentation is an eigenstate of C with the same eigenvalueC j j;mi = j (j + 1) j j;mi (2.72)where j j;mi = (T�)n j j; ji for m = j � n and n � l. From S
hur's lemma(see lemma1.1), in a irredu
ible representation, the Casimir operator has to beproportional to the unity matrix and soC = j(j + 1)1l (2.73)Using (2.70) one 
an write T+T� = C � T 23 + T3 (2.74)Therefore applying T+ on both sides of (2.69)T+T�(T�)l j j; ji = 0= �j(j + 1)� (j � l)2 + (j � l)� j j; ji (2.75)Sin
e, by assumption the state (T�)l j j; ji does exist, one must havej(j + 1)� (j � l)2 + (j � l) = (2j � l)(l + 1) = 0 (2.76)Sin
e l is a positive integer, the only possible solution is l = 2j. Therefore we
on
lude that



50 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS1. The lowest eigenvalue of T3 is �j2. The eigenvalues of T3 
an only be integers or half integers and in a givenrepresentation they vary from j to �j in integral steps.The group SL(2), as de�ned in example 1.16, is the group of 2�2 real ma-tri
es with unity determinant. If one writes the elements 
lose to the identityas g = expL (without the i fa
tor), then L is a real tra
eless 2� 2 matrix. Sothe basis of the algebra sl(2) 
an be taken asL1 = 12  0 11 0 ! ; L2 = 12  0 1�1 0 ! ; L3 = 12  1 00 �1 ! (2.77)This de�nes a 2-dimensional representation of sl(2) whi
h di�er from the spinorrepresentation of su(2), given in (2.57), by a fa
tor i in L2. One 
an 
he
k thethey satisfy [L1; L2℄ = �L3; [L1; L3℄ = �L2; [L2; L3℄ = �L1 (2.78)From these 
ommutation relations one 
an obtain the adjoint representationof sl(2), using (2.39)d(L1) = 0B� 0 0 00 0 �10 �1 0 1CA ; d(L2) = 0B� 0 0 �10 0 01 0 0 1CA ;d(L3) = 0B� 0 1 01 0 00 0 0 1CA (2.79)A

ording to (2.49), the Killing form of sl(2) is given by�ij = Tr(d(LiLj)) = 20B� 1 0 00 �1 00 0 1 1CA (2.80)sl(2) is a simple algebra and we see that its Killing form is indeed non-degenerate (see theorem 2.1). From de�nition 2.11 we 
on
lude sl(2) is anon-
ompa
t Lie algebra.The tra
e form (2.45) in the 2-dimensional representation (2.77) of sl(2) is�2�dimij = Tr(LiLj) = 12 0B� 1 0 00 �1 00 0 1 1CA (2.81)



2.5. SU(2) AND SL(2): LIE ALGEBRA PROTOTYPES 51Similarly to the 
ase of su(2), this tra
e form is proportional to the Killingform, �2�dim = 14�.The operators L� � L1 � L2 (2.82)a

ording to (2.78), satisfy 
ommutation relations identi
al to (2.64)[L3; L�℄ = �L�; [L+; L�℄ = 2L3 (2.83)The quadrati
 Casimir operator of sl(2) isC = L21 � L22 + L23 = L23 + 12 (L+L� + L�L+) (2.84)The analysis we did for su(2), from eqs. (2.66) to (2.76), applies also to sl(2)and the 
on
lusions are the same, i.e. , in a �nite dimensional representation ofsl(2) with highest eigenvalue j of L3 the lowest eigenvalue is �j. In additionthe eigenvalues of L3 
an only be integers or half integers varying from jto �j in integral steps. The striking di�eren
e however, is that the �niterepresentations of sl(2) (where these results hold) are not unitary. On the
ontrary, the �nite dimensional representations of su(2) are all equivalent tounitary representations. Indeed, the exponentiation of the matri
es (2.57) and(2.60) (with the i fa
tor) provide unitary matri
es while the exponentiation of(2.77) and (2.79) do not. All unitary representations of sl(2) are ne
essarilyin�nite dimensional. In fa
t this is true for any non 
ompa
t Lie algebra.The stru
tures dis
ussed in this se
tion for the 
ases of su(2) and sl(2) arein fa
t the basi
 stru
tures underlying all simple Lie algebras. The rest of this
ourse will be dedi
ated to this study.



52 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS2.6 The stru
ture of semisimple Lie algebrasWe now start the study of the features whi
h are 
ommon to all semisimpleLie algebras. These features are in fa
t a generalization of the properties ofthe algebra of angular momentum dis
ussed in se
tion 2.5. We will be mainlyinterested in 
ompa
t semisimple algebras although several results also applyto the 
ase of non-
ompa
t Lie algebras.Theorem 2.2 Given a subalgebra H of a 
ompa
t semisimple Lie algebra Gwe 
an write G = H + P (2.85)where [H;P℄ � P (2.86)where P is the orthogonal 
omplement of H in G w.r.t. a tra
e form in a givenrepresentation, i.e. Tr(PH) = 0 (2.87)Proof P does not 
ontain any element of H and 
ontains all elements of Gwhi
h are not in H. Using the 
y
li
 property of the tra
eTr(H[H;P℄) = Tr([H;H℄P) = Tr(HP) = 0 (2.88)Therefore [H;P℄ � P: (2.89)2 This theorem does not apply to non 
ompa
t algebras be
ause the tra
eform does not provide an Eu
lidean type metri
, i.e. there 
an exist null ve
torswhi
h are orthogonal to themselves. As an example 
onsider sl(2).Example 2.5 Consider the subalgebra H of sl(2) generated by (L1 +L2) (seese
tion 2.5). Its 
omplement P is generated by (L1 � L2) and L3. Howeverthis is not an orthogonal 
omplement sin
e, using (2.80)Tr((L1 + L2)(L1 � L2)) = 4 (2.90)In addition (L1 � L2) are null ve
tors, sin
eTr(L1 + L2)2 = Tr(L1 � L2)2 = 0 (2.91)



2.6. THE STRUCTURE OF SEMISIMPLE LIE ALGEBRAS 53Using (2.78) one 
an 
he
k (2.86) is not satis�ed. Indeed[L1 + L2; L1 � L2℄ = 2L3[L1 + L2; L3℄ = �(L1 + L2) (2.92)So [H;P℄ � H + P (2.93)Noti
e P is a subalgebra too[L3; L1 � L2℄ = �(L1 � L2) (2.94)Theorem 2.3 A 
ompa
t semisimple Lie algebra is a dire
t sum of simplealgebras that 
ommute among themselves.Proof If G is not simple then it has an invariant subalgebra H su
h that[H;G℄ � H (2.95)But from theorem 2.2 we have that[H;P℄ � P (2.96)and therefore, sin
e P \H = 0, we must have[H;P℄ = 0 (2.97)But P, in this 
ase, is a subalgebra sin
eTr([P;P℄H) = Tr(P[P;H℄) = 0 (2.98)and from theorem 2.2 again [P;P℄ � P (2.99)If P and H are not simple we repeat the pro
ess. 2Theorem 2.4 For a simple Lie algebra the invariant bilinear tra
e form de-�ned in eq. (2.45) is the same in all representations up to an overall 
onstant.Consequentely they are all proportional to the Killing form.



54 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASProof Using the de�nition (2.31) of the adjoint representation and the invari-an
e property (2.48) of �D(T; T 0) we have�D(Ta; Tb) = Tr(D(gTag�1gTbg�1))= Tr(D(T
d
a(g)Tdddb(g)))= (d>) 
a(g)�D(T
; Td)ddb(g)= (d>�Dd)ab (2.100)Therefore �D is an invariant tensor under the adjoint representation. This istrue for any representation D, in parti
ular the adjoint itself. So, the Killingform de�ned in (2.49) also satis�es (2.100). From theorem 2.1 we have thatfor a semisimple Lie algebra, det� 6= 0 and therefore � has an inverse. Thenmultiplying both sides of (2.100) by ��1 and using the fa
t that ��1 = (d>�d)�1we get ��1�D = (d>�d)�1(d>�Dd) = d�1��1�Dd (2.101)and so d(g)��1�D = ��1�Dd(g) (2.102)For a simple Lie algebra the adjoint representation is irredu
ible. Thereforeusing S
hur's lemma (see lemma 1.1) we get��1�D = �1l! �D = �� (2.103)So, the theorem is proven. 2The 
onstant � is representation dependent and is 
alled the Dynkin indexof the representation D.We will now show that it is possible to �nd a set of 
ommuting generatorssu
h that all other generators are written as eigenstates of them (under the
ommutator). These 
ommuting generators are the generalization of T3 insu(2) and they generate what is 
alled the Cartan subalgebra.De�nition 2.12 For a semisimple Lie algebra G, the Cartan subalgebra isthe maximal set of 
ommuting elements of G whi
h 
an be diagonalized simul-taneously.The formal de�nition of the Cartan subalgebra of a Lie algebra (semisimple ornot) is a little bit more sophisti
ated and involves two 
on
epts whi
h we nowdis
uss. The normalizer of a subalgebra K of G is de�ned by the setN(K) � fx 2 G j [x;K℄ � Kg (2.104)
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obi identity we have[[x; x0℄;K℄ � K (2.105)with x; x0 2 N(K). Therefore the normalizer N(K) is a subalgebra of G and Kis an invariant subalgebra of N(K). So we 
an say that the normalizer of K inG is the largest subalgebra of G whi
h 
ontains K as an invariant subalgebra.Consider the sequen
e of subspa
es of GG0 = G; G1 = [G;G℄; G2 = [G;G1℄; ::: Gi = [G;Gi�1℄ (2.106)We have that G0 � G1 � G2 � ::: � Gi and ea
h Gi is a invariant subalgebraof G. We say G is a nilpotent algebra if Gn = 0 for some n. Nilpotent algebrasare not semisimple.Similarly we 
an de�ne the derived seriesG(0) = G; G(1) = [G;G℄; G(2) = [G(1);G(1)℄; ::: G(i) = [G(i�1);G(i�1)℄ (2.107)If G(n) = 0 for some n then we say G is a solvable algebra . All nilpotentalgebras are solvable, but the 
onverse is not true.De�nition 2.13 A Cartan subalgebra of a Lie algebra G is a nilpotent subal-gebra whi
h is equal to its normalizer in G.Lemma 2.1 If G is semisimple then a Cartan subalgebra of G is a maximalabelian subalgebra of G su
h that its generators 
an be diagonalized simultane-ously.De�nition 2.14 The dimension of the Cartan subalgebra of G is the rank ofG.Noti
e that if H1 , H2 ... Hr are the generators of the Cartan subalgebra theng�1H1g , g�1H2g ... g�1Hrg (g 2 G) generates an abelian subalgebra of Gwith the same dimension as that one generated by Hi, i = 1; 2; :::r. This isalso a Cartan subalgebra. Therefore there are an in�nite number of Cartansubalgebras in G and they are all related by 
onjugation by elements of thegroup G whi
h algebra is G.By 
hoosing suitable linear 
ombinations one 
an make the basis of theCartan subalgebra to be orthonormal with respe
t to the Killing form of G,i.e.1 Tr(HiHj) = Æij (2.108)1As we have shown, up to an overall 
onstant, the tra
e form of a simple Lie algebrais the same in all representations. We will simplify the notation from now on, and writeTr(TT 0) instead of �D(T; T 0). We shall spe
ify the representation where the tra
e is beingevaluated only when that is relevant.



56 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASwith i; j = 1; 2; ::: rank G. From the de�nition of Cartan subalgebra we seethat these generators 
an be diagonalized simultaneously.We now want to 
onstru
t the generalization of the operators T� = T1+iT2of su(2), dis
ussed in se
tion 2.5, for the 
ase of any 
ompa
t semisimple Liealgebra. They are 
alled step operators and their number is dim G - rank G.A

ording to theorem 2.2 they 
onstitute the orthogonal 
omplement of theCartan subalgebra and thereforeTr(HiTm) = 0 (2.109)with i = 1; 2::: rank G, m = 1; 2::: (dim G - rank G). In addition, sin
e a
ompa
t semisimple Lie algebra is an Eu
lidean spa
e we 
an make the basisTm orthonormal, i.e. Tr(TmTn) = Æmn (2.110)Again from theorem 2.2 we have that the 
ommutator of an element of theCartan subalgebra with Tm is an element of the subspa
e generated by the basisTm . Then, sin
e the algebra is 
ompa
t we 
an put its stru
ture 
onstants ina 
ompletely antisymmetri
 form, and write[Hi; Tm℄ = ifimnTn (2.111)or [Hi; Tm℄ = (hi)mnTn (2.112)where we have de�ned the matri
es(hi)mn = ifimn (2.113)of dimension (dim G - rank G) and whi
h are hermitian(hi)ymn = (hi)�nm = �ifinm = ifimn = (hi)mn (2.114)Therefore we 
an �nd a unitary transformation that diagonalizes the matri
eshi without a�e
ting the Cartan subalgebra generators Hi .Tm ! UmnTn(hi)mn ! (UhiU y)mn (2.115)with U y = U�1. We shall denote by E� the new basis of the subspa
e orthog-onal to the Cartan subalgebra. The indi
es stand for the eigenvalues of the



2.6. THE STRUCTURE OF SEMISIMPLE LIE ALGEBRAS 57matrix hi (or of the generators Hi ). The 
ommutation relations (2.112) 
annow be written as [Hi; E�℄ = �iE� (2.116)The eigenvalues �i are the 
omponents of a ve
tor of dimension rank G andthey are 
alled the roots of the algebra G . The generators E� are 
alled stepoperators and they are 
omplex linear 
ombinations of the hermitian generatorsTm. Noti
e that the roots � are real sin
e they are the eigenvalues of thehermitian matri
es hi.From (2.113) we see that the matri
es hi are antisymmetri
, and their o�diagonal elements are purely imaginary. Sohyi = hi; h�i = �hi (2.117)Therefore if v is an eigenstate of the matrix hi then sin
e the eigenvalue �i isreal we have hiv = �iv (2.118)and then h�i v� = �hiv� = �iv� (2.119)Consenquently if � is a root its negative (�� ) is also a root. Thus the rootsalways o

ur in pairs.We have shown that we 
an de
ompose a 
ompa
t semisimple algebra L asG = H +X� G� (2.120)where H is generated by the 
ommuting generators Hi and 
onstitute theCartan subalgebra of G. The subspa
e G� is generated by the step operatorsE�. This is 
alled the root spa
e de
omposition of G.In addition one 
an showthat for a semisimple Lie algebradim G� = 1; for any root � (2.121)and 
onsequently the roots are not degenerated. So, there are not two step op-erators E� and E 0� 
orresponding to the same root �. Therefore for a semisim-ple Lie algebra one hasdim G - rank G = P� dim G� = number of roots = even numberUsing the Ja
obi identity and the 
ommutation relations (2.116) we have thatif � and � are roots then[Hi; [E�; E�℄℄ = �[E�; [E�; Hi℄℄� [E�; [Hi; E�℄℄= (�i + �i) [E�; E�℄ (2.122)
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e the algebra is 
losed under the 
ommutator we have that [E�; E�℄ mustbe an element of the algebra. We have then three possibilities1. � + � is a root of the algebra and then [E�; E�℄ � E�+�2. � + � is not a root and then [E�; E�℄ = 03. � + � = 0 and 
onsequently [E�; E�℄ must be an element of the Cartansubalgebra sin
e it 
ommutes with all Hi .Sin
e in a semisimple Lie algebra the roots are not degenerated (see (2.121)),we 
on
lude from (2.122) that 2� is never a root.We then see that the knowlegde of the roots of the algebra provides allthe information about the 
ommutation relations and 
onsequently about thestru
ture of the algebra. From what we have learned so far, we 
an write the
ommutation relations of a semisimple Lie algebra G as[Hi; Hj℄ = 0 (2.123)[Hi; E�℄ = �iE� (2.124)[E�; E�℄ = 8><>: N��E�+� if � + � is a rootH� if � + � = 00 otherwise (2.125)where H� � 2�:H=�2, i; j = 1; 2; ::: rank G (see dis
ussion leading to (2.129)and (2.130)). The stru
ture 
onstants N�� will be determined later. The basisfHi; E�g is 
alled the Weyl-Cartan basis of a semisimple Lie algebra.Using the 
y
li
 property of the tra
e (2.47) (or equivalently, the invarian
eproperty (2.46)) we get that, in a given representationTr([Hi; E�℄E�) = Tr(E�[E�; Hi℄) (2.126)and so (�i + �i)Tr(E�E�) = 0 (2.127)The step operators are orthogonal unless they have equal and opposite roots.In parti
ular E� is orthogonal to itself. If it was orthogonal to all others, theKilling form would have vanishing determinant and the algebra would not besemisimple. Therefore for semisimple algebras if � is a root then �� must alsobe a root, and Tr(E�E��) 6= 0. The value of Tr(E�E��) is 
onne
ted to thestru
ture 
onstant of the se
ond relation in (2.125). We know that [E�; E��℄must be an element of the Cartan subalgebra. Therefore we write[E�; E��℄ = xiHi (2.128)



2.6. THE STRUCTURE OF SEMISIMPLE LIE ALGEBRAS 59Using (2.108) and the 
y
li
 property of the tra
e we getTr(xiHiHj) = xj= Tr([E�; E��℄Hj)= Tr([Hj; E�℄E��)= �jTr(E�E��) (2.129)Consequently [E�; E��℄ must be proportional to �:H. Normalizing the stepoperators su
h that Tr(E�E��) = 2�2 (2.130)we obtain the se
ond relation in (2.125).Again using the invarian
e property (2.46) we have thatTr([Hi; E�℄Hj) = Tr([Hj; Hi℄E�) (2.131)and so �iTr(HjE�) = 0 (2.132)Sin
e by assumption � is a root and therefore di�erent from zero we getTr(HiE�) = 0 (2.133)From the above results and (2.108) we see that we 
an normalize the Cartansubalgebra generators Hi and the step operator E� su
h that the Killing formbe
omes Tr(HiHj) = Æij ; i; j = 1; 2; :::rank GTr(HiE�) = 0Tr(E�E�) = 2�2 Æ�+�;0 (2.134)This is the usual normalization of the Weyl-Cartan basis.Noti
e that linear 
ombinations (E� � E��) diagonalizes the Killing form(2.134). However, by taking real linear 
ombinations of Hi, (E� + E��) andi(E��E��) one obtains a 
ompa
t algebra sin
e the eigenvalues of the Killingform are all of the same sign. On the hand, if one takes real linear 
ombinationsof Hi, (E� + E��) and (E� � E��) one obtains a non 
ompa
t algebra.Example 2.6 In se
tion 2.5 we have dis
ussed the algebra of the group SU(2).In that 
ase the Cartan subalgebra is generated by T3 only. The step operatorsare T+ and T� 
orresponding to the roots +1 and �1 respe
tively . So the rankof SU(2) is one. We 
an represent these roots by the diagram 2.1



60 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS

-� ���Figure 2.1: The root diagram of A1 (su(2),so(3) or sl(2))



2.7. THE ALGEBRA SU(3) 612.7 The algebra su(3)In example 1.17 we de�ned the groups SU(N). We now dis
uss in more detailthe algebra of the group SU(3). As we have seen this is de�ned as the groupof all 3� 3 unitary matri
es with unity determinant. If we write an element ofthis group as g = exp (iT ) we see that T has to be hermitian in order g to beunitary. In addition using the fa
t that det(expA) = exp (TrA) we see thatTrT = 0 in order to detg = 1. So the Lie algebra of SU(3) is generated by3� 3 hermitian and tra
eless matri
es. Its dimension is 2:32� 32� 1 = 8. TheCartan subalgebra is generated by the diagonal matri
es. Sin
e they have to betra
eless we have only two linearly independent diagonal matri
es. Thereforethe rank of SU(3) is two, and 
onsequently it has six roots. The usual basis ofthe algebra su(3) is given by the Gell-Mann matri
es whi
h are a generalizitionof the Pauli matri
es�1 = 0B� 0 1 01 0 00 0 0 1CA ; �2 = 0B� 0 �i 0i 0 00 0 0 1CA ;�3 = 0B� 1 0 00 �1 00 0 0 1CA ; �4 = 0B� 0 0 10 0 01 0 0 1CA ;�5 = 0B� 0 0 �i0 0 0i 0 0 1CA ; �6 = 0B� 0 0 00 0 10 1 0 1CA ;�7 = 0B� 0 0 00 0 �i0 i 0 1CA ; �8 = 1p3 0B� 1 0 00 1 00 0 �2 1CA (2.135)The tra
e form in su
h matrix representation is given byTr(�i�j) = 2Æij (2.136)with i; j = 1; 2; :::8. The algebra su(3) is simple and therefore a

ording totheorem 2.4 the Killing form is proportinal to (2.136). Therefore, a

ording tothe de�nition 2.11 we see su(3) is a 
ompa
t algebra.The matri
es (2.135) satisfy the 
ommutation relations[�i; �j℄ = ifijk�k (2.137)where the stru
ture 
onstants fijk are 
ompletly antisymmetri
 (see (2.56))and are given in table 2.1. The diagonal matri
es �3 and �8 are the generators



62 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASi j k fijk1 2 3 21 4 7 11 5 6 -12 4 6 12 5 7 13 4 5 13 6 7 -14 5 8 p36 7 8 p3Table 2.1: Stru
ture 
onstants of su(3)of the Cartan subalgebra. One 
an easily 
he
k that they satisfy the 
onditionsof the de�nition 2.13. We see that the remaining matri
es play the role of Tm in(2.112). Therefore we 
an 
onstru
t the step operators as linear 
ombinationof them. However, like the su(2) 
ase, these are 
omplex linear 
ombinationand the step operators are not really generators of su(3). Doing that, andnormalizing the generators 
onveniently, we obtain the Weyl-Cartan basis forfor su
h algebra H1 = 1p2�3 ; H2 = 1p2�8 ;E��1 = 12(�1 � i�2) ; E��2 = 12(�6 � i�7)E��3 = 12(�4 � i�5) (2.138)So they satisfy Tr(HiHj) = Æij ; Tr(E�mE��n) = Æmn (2.139)with i; j = 1; 2 and m;n = 1; 2; 3. One 
an 
he
k that in su
h basis the
ommutation relations read[H1; E��1℄ = �p2E��1 ; [H2; E��1 ℄ = 0 ;[H1; E��2℄ = �p22 E��2 ; [H2; E��2 ℄ = �s32E��2 ;[H1; E��3℄ = �p22 E��3 ; [H2; E��3 ℄ = �s32E��3 (2.140)



2.7. THE ALGEBRA SU(3) 63
-�������AAAAAAK� ������� AAAAAAU �1

�2 �3

Figure 2.2: The root diagram of A2 (SU(3) or SL(3))Therefore the roots of su(3) are�1 = (p2; 0) ; �2 = (�p22 ;s32) ; �3 = (p22 ;s32) (2.141)and the 
orresponding negative ones.Noti
e that all roots have the same lenght (�2 = 2) and the angle betweenany two of them is a multiple of �3 . The six roots of su(3) form a regulardiagram shown in �gure 2.2. This is 
alled the root diagram for su(3). Theroot diagram of a Lie algebra lives in an Eu
lidean spa
e of the same dimensionas the Cartan subalgebra, i.e., the rank of the algebra. The root diagram isvery useful in understanding the stru
ture of the algebra. For instan
e, from(2.125) and the diagram 2.2 one sees that[E�1 ; E�3 ℄ = [E�3 ; E�2 ℄ = [E�2 ; E��1 ℄ = 0[E��1 ; E��3 ℄ = [E��3 ; E��2 ℄ = [E��2 ; E�1 ℄ = 0 (2.142)and also [E�1 ; E��1 ℄ = p2H1[E�2 ; E��2 ℄ = �p22 H1 +s32H2[E�3 ; E��3 ℄ = p22 H1 +s32H2 (2.143)Whenever the sum of two roots is a root of the diagram we know, from (2.125),that the 
orresponding step operators do not 
ommute. One 
an 
he
k that



64 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASthe non vanishing 
ommutators between step operators are[E�1 ; E�2 ℄ = E�3 ; [E��1 ; E��2℄ = E��3 ;[E�1 ; E��3℄ = �E��2 ; [E��1 ; E�3 ℄ = E�2 ;[E�3 ; E��2 ℄ = E�1 ; [E��3 ; E�2 ℄ = �E��1 (2.144)We have seen that the algebra su(3) is generated by real linear 
ombinationof the Gell-Mann matri
es (2.135), or equivalently of the matri
es Hi, i = 1; 2,(E�m+E��m) and �i(E�m�E��m), m = 1; 2; 3. These are hermitian matri
es.If one takes real linear 
ombinations of Hi, (E�m + E��m) and (E�m � E��m)instead, one obtains the algebra sl(3) whi
h is not 
ompa
t. This is verysimilar to the relation between su(2) and sl(2) whi
h we saw in se
tion 2.5.This generalizes in fa
t, to all su(N) and sl(N).2.8 The Properties of rootsWe have seen that for a semisimple Lie algebra G, if � is a root then, �� isalso a root. This means that for ea
h step operator E� there exists a 
orre-sponding step operator E�. Together with H� = 2�:H=�2 they 
onstitute asl(2) subalgebra of G, sin
e from (2.124) and (2.125) one gets[H�; E��℄ = �2E��[E�; E��℄ = H� (2.145)This subalgebra is isomorphi
 to sl(2) sin
e H� plays the role of 2T3 , E�and E�� play the role of T+ and T� respe
tively (see se
tion 2.5). Thereforeto ea
h pair of roots � and �� we 
an 
onstru
t a sl(2) subalgebra. Thesesubalgebras, however, do not have to 
ommute among themselves.We have learned in se
tion 2.5 that T3 , the third 
omponent of the angularmomentum, has half integer eigenvalues, and 
onsenquently H� (� 2T3 ) musthave integer eigenvalues. From (2.124) we have[H�; E�℄ = 2�:��2 E� (2.146)Therefore if j mi is an eigenstate of H� with an integer eigenvalue m them thestate E� j mi has eigenvalue m + 2�:��2 sin
eH�E� j mi = (E�H� + [H�; E�℄) j mi=  m+ 2�:��2 !E� j mi (2.147)



2.8. THE PROPERTIES OF ROOTS 652�:��2 2�:��2 � �2�20 0 �2 undetermined1 1 �3 1�1 �1 2�3 11 2 �4 2�1 �2 3�4 21 3 �6 3�1 �3 5�6 3Table 2.2: The possible s
alar produ
ts, angles and ratios of squared lenghtfor the rootsThis implies that 2�:��2 = integer (2.148)for any roots � and �. This result is 
ru
ial in the study of the stru
ture ofsemisimple Lie algebras. In order to satisfy this 
ondition the roots must havesome very spe
ial properties. From S
hwartz inequality we get (The roots livein a Eu
lidean spa
e sin
e they inherit the s
alar produ
t from the Killing formof G restri
ted to the Cartan subalgebra by �:� � Tr(�:H�:H) = PrankGi=1 �i�i)�:� =j � jj � j 
os � �j � jj � j (2.149)where � is the angle between � and �. Consenquently2�:��2 2�:��2 = mn = 4(
os �)2 � 4 (2.150)where m and n are integers a

ording to (2.148), and so0 � mn � 4 (2.151)This 
ondition is very restri
tive and from it we get that the possible valuesof s
alar produ
ts, angles and ratio of squared lenghts between any two rootsare those given in table 2.2. For the 
ase of � being parallel or anti-parallelto � we have 
os � = �1 and 
onsequently mn = 4. In this 
ase the possiblevalues of m and n are1. 2�:��2 = �2 and 2�:��2 = �22. 2�:��2 = �1 and 2�:��2 = �4



66 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS3. 2�:��2 = �4 and 2�:��2 = �1In 
ase 1 we have that � = �, whi
h is trivial, or � = �� whi
h is a fa
t dis-
ussed earlier, i.e., to every root � there 
orresponds a root �� in a semisimpleLie algebra. In 
ase 2 we have � = �2� whi
h is impossible to o

ur in asemisimple Lie algebra. In (2.121) we have seen that dim G = 1 and thereforethere exist only one step operator 
orresponding to a root �. From (2.122) wesee that 2� or �2� 
an not be roots sin
e [E�; E�℄ = [E��; E��℄ = 0. The 
ase3 is similar to 2. Therefore in a semisimple Lie algebra the only roots whi
hare multiples of � are ��.Noti
e that there are only three possible values for the ratio of lenghtsof roots, namely 1, 2 and 3 (there are �ve if one 
onsiders the re
ipro
als 12and 13). However for a given simple Lie algebra, where there are no disjoint,mutually orthogonal set of roots, there 
an o

ur only two di�erent lenght ofroots. The reason is that if �, �, and 
 are roots of a simple Lie algebra and�2�2 = 2 and �2
2 = 3 then it follows that 
2�2 = 23 and this is not an allowed valuefor the ratio of two roots (see table 2.2).



2.9. THE WEYL GROUP 672.9 The Weyl groupIn the se
tion 2.8 we have shown that to ea
h pair of roots � and �� of asemisimple Lie algebra we 
an 
onstru
t a sl(2) (or su(2)) subalgebra generatedby the operators H� , E� and E�� (see eq. (2.145)). We now de�ne thehermitian operators: T1(�) = 12(E� + E��)T2(�) = 12i(E� � E��) (2.152)whi
h satisfy the 
ommutation relations[Hi; T1(�)℄ = i�iT2(�)[Hi; T2(�)℄ = �i�iT1(�)[T1(�); T2(�)℄ = i2H� (2.153)The operator T2(�) is the generator of rotations about the 2-axis, and a rota-tion by � is generated by the elementS� = exp(i�T2(�)) (2.154)Using (2.27) and (2.153) one 
an 
he
k thatS�(x:H)S�1� = x:H + x:�T1(�) sin� + x:��2 �:H(
os� � 1)= �xi � 2x:��2 �i�Hi= ��(x):H (2.155)where we have de�ned the operator ��, a
ting on the root spa
e, by��(x) � x� 2x:��2 � (2.156)This operator 
orresponds to a re
e
tion w.r.t the plane perpendi
ular to �.Indeed, if � is the angle between x and � then x:��2 � =j x j 
os � �j�j . Therefore��(x) is obtained from x by subtra
ting a ve
tor parallel (or anti-parallel)to � and with lenght twi
e the proje
tion of x in the dire
tion of �. Thesere
e
tions are 
alled Weyl re
e
tions on the root spa
e.



68 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASWe now want to show that if � and � are roots of a given Lie algebra G,then ��(�) is also a root. Let us introdu
e the operator~E� � S�E�S�1� (2.157)where E� is a step operator of the algebra and S� is de�ned in (2.154). Fromthe fa
t that (see (2.124)) [x:H;E�℄ = x:�E� (2.158)we get, using (2.155) thatS�[x:H;E�℄S�1� = [S�x:HS�1� ; S�E�S�1� ℄= [��(x):H; ~E�℄ (2.159)= x:�S�E�S�1� (2.160)= x:� ~E� (2.161)and so [��(x):H; ~E�℄ = x:� ~E� (2.162)However, if we perform a re
e
tion twi
e we get ba
k to where we started, i.e.,�2 = 1. Therefore denoting ��(x) by y we get that ��(y) = x, and then from(2.162) [y:H; ~E�℄ = ��(y):� ~E� (2.163)and so [Hi; ~E�℄ = ��(�)i ~E� (2.164)Therefore ~E�, de�ned in (2.157), is a step operator 
orresponding to the root��(�). Consequently if � and � are roots, ��(�) is ne
essarily a root (similarly��(�) ).Example 2.7 In se
tion 2.7 we have dis
ussed the algebra of the group SU(3).The root diagram with the planes perpendi
ular to the roots is given in �gure2.3. One 
an sees that the root diagram is invariant under Weyl re
e
tions.We have �1 : �1 $ ��1 �2 $ �3 ��2 $ ��3�2 : �1 $ �3 �2 $ ��2 ��1 $ ��3�3 : �1 $ ��2 �2 $ ��1 �3 $ ��3
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Figure 2.3: The planes orthogonal to the roots of A2 (SU(3) or SL(3))�1�2 : ( �1 ! �2 �2 ! ��3 �3 ! ��1��1 ! ��2 ��2 ! �3 ��3 ! �1�2�1 : ( �1 ! ��3 �2 ! �1 �3 ! ��2��1 ! �3 ��2 ! ��1 ��3 ! �2 (2.165)Noti
e that the 
omposition of Weyl re
e
tions is not ne
essarily a re
e
tionand that re
e
tions do not 
ommute. In this parti
ular 
ase the operation �2�1is a rotation by an angle of 2�3 and �1�2 is its inverse. The set of a Weylre
exions and the 
omposition of two or more of them form a group 
alledthe Weyl group. It leaves the root diagram of su(3) invariant. This group isisomorphi
 to S3 , and in fa
t the Weyl group of su(N) is SN , the group ofpermutations of N elements.De�nition 2.15 The Weyl group of a Lie algebra, or of its root system, isthe �nite dis
rete group generated by the Weyl re
e
tions.From the 
onsiderations above we see that the Weyl group leaves invariantthe root system. However it does not 
ontain all the symmetries of the rootsystem. The inversion �$ �� is 
ertainly a symmetry of the root system ofany semisimple Lie algebra but, in general, it is not an element of Weyl group.In the 
ase of su(3) dis
ussed in example 2.7 the inversion 
an not be writtenin terms of re
e
tions. In addition, the root diagram of su(3) is invarint underrotations of �3 , and this operation is not an element of the Weyl group of su(3).



70 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASAs we have seen the 
onjugation by the group element S� de�ned in (2.154)maps x:H into ��(x):H and E� intoE��(�). Therefore, su
h mapping imitates,in the algebra, the Weyl re
e
tions of the roots. A

ording to (2.34) this is aninner automorphism of the algebra. Consequently any transformation of theWeyl group 
an be elevated to an inner automorphism of the 
orrespondingalgebra. In fa
t, any symmetry of the root diagram 
an be used to 
onstru
t anautomorphism of the algebra. However those symmetries whi
h do not belongto the Weyl group give rise to outer automorphisms. We will see later thatthe mapping Hi ! �Hi, E� ! �E�� and E�� ! �E� is an automorphismof any semisimple Lie algebra. It is a 
onsequen
e of the invarian
e of the rootdiagram under the inversion �$ ��. It will be an inner (outer) automorphismif the inversion is (is not) an element of the Weyl group.We 
an summarize all the results about roots we have obtained so far inthe form of four postulates.De�nition 2.16 A set � of ve
tors in a Eu
lidean spa
e is the root systemor root diagram of a semisimple Lie algebra G if1. � does not 
ontain zero, spans an Eu
lidean spa
e of the same dimensionas the rank of the Lie algebra G and the number of elements of � is equalto dim G - rank G.2. If � 2 � then the only multiples of � in � are ��3. If �; � 2 �, then 2�:��2 is an integer4. If �; � 2 �, then ��(�) 2 �, i.e., the Weyl group leaves � invariant.Noti
e that if the root diagram de
omposes into two or more disjoint andmutually orthogonal subdiagrams then the 
orresponding Lie algebra is notsimple. Suppose the rank of the algebra is r and that the diagram de
omposesinto two orthogonal subdiagrams of dimensions m and n su
h that m+n = r.By taking basis vi (i = 1; 2:::m) and uk (k = 1; 2:::n) in ea
h subdiagram we 
ansplit the generators of the Cartan subalgebra into two subsets of the formHv �v:H and Hu = u:H. From (2.158) we see that the generatorsa Hv 
ommutewith all step operators 
orresponding to roots in the subdiagram generated byuk , and vi
e versa. In addition, sin
e the sum of a root of one subdiagramwith a root of the other is not a root, we 
on
lude that the 
orresponding stepoperators 
ommute. Therefore ea
h subdiagram 
orresponds to an invariantsubalgebra of the Lie algebra whi
h root diagram is their union.



2.10. WEYL CHAMBERS AND SIMPLE ROOTS 71-� 6?� �Figure 2.4: The root diagram of su(2)� su(2)-� ���Weyl 
hamber ���Figure 2.5: The Weyl 
hambers of A1 (su(2),so(3) or sl(2))Example 2.8 The root diagram shown in �gure 2.4 is made of two ortoghonaldiagrams. Sin
e ea
h one is the diagram of an su(2) algebra we 
on
lude, fromthe dis
ussion above, that it 
orresponds to the algebra su(2)�su(2). Rememberthat the ratio of the squared lenght of the ortoghonal roots are undetermined inthis 
ase (see table 2.2).2.10 Weyl Chambers and simple rootsThe hyperplanes perpendi
ular to the roots, de�ned in se
tion 2.9 partitionthe root spa
e into �nitely many regions. These 
onne
ted regions (withoutthe hyperplanes) are 
alled Weyl Chambers . Due to the regularity of the rootsystems all the Weyl 
hambers have the same form and are equivalent.Example 2.9 In the 
ase of su(2) (or so(3) and sl(2)) there are only twoWeyl 
hambers, ea
h one 
orresponding to a half line. These are shown in�gure 2.5. In the 
ase of su(3) there are 6 Weyl 
hambers. They are shown in�gure 2.6.Noti
e that under a Weyl re
e
tion, all points of a Weyl 
hamber are mappedinto the same Weyl 
hamber, and therefore the Weyl group takes one WeylChamber into another. In fa
t the Weyl group a
ts transitively on Weyl Cham-bers and its order is the number of Weyl Chambers. In general the number ofroots is bigger than the number of Weyl Chambers.Sin
e the Weyl Chambers are equivalent one to another, we will 
hoose oneof them and 
all it the Fundamental Weyl Chamber. Consider now a ve
torx inside this parti
ular 
hamber. The s
alar produ
t of x with any root � isalways di�erent from zero, sin
e if it was zero x would be on the hyperplane
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Figure 2.6: The Weyl 
hambers of A2 (SU(3) or SL(3))perpendi
ular to � and therefore not inside a Weyl 
hamber. As we move xwithin the 
hamber the sign of �:x does not 
hange, sin
e in order to 
hange�:x would have to vanish and therefore x would have to 
ross a hyperplane.Therefore the s
alar produ
t of a root with any ve
tor inside a Weyl Chamberhas a de�nite sign.De�nition 2.17 Let x be any ve
tor inside the Fundamental Weyl 
hamber.We say � is a positive root if �:x > 0 and a negative root if �:x < 0.De�nition 2.18 We say a positive root is a simple root if it 
an not be writtenas the sum of two positive roots.Example 2.10 In the 
ase of su(3), if we 
hoose the Fundamental Weyl
hamber to be the one shown in �gure 2.6, then the positive roots are �1, �2and �3. We see that �1 and �2 are simple, but �3 is not sin
e �3 = �1 + �2.Theorem 2.5 Let � and � be non proportional roots. Then1. if �:� > 0, �� � is a root2. if �:� < 0, � + � is a rootProof If �:� > 0 we see from table 2.2 that either 2�:��2 or 2�:��2 is equal to 1.Without loss of generality we 
an take 2�:��2 = 1. Therefore��(�) = � � 2�:��2 � = � � � (2.166)
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e of the root system under the Weyl group, ��� is alsoa root, as well as �� �. The proof for the 
ase �:� < 0 is similar. 2Theorem 2.6 Let � and � be distin
t simple roots. Then �� � is not a rootand �:� � 0.Proof Suppose �� � � 
 is a root. If 
 is positive we write � = 
 + �, and ifit is negative we write � = � + (�
). In both 
ases we get a 
ontradi
tion tothe fa
t � and � are simple. Therefore ��� 
an not be a root. From theorem2.5 we 
on
lude �:�
an not be positive. 2Theorem 2.7 Let �1, �2,... �r be the set of all simple roots of a semisimpleLie algebra G. Then r = rank G and ea
h root � of G 
an be written as� = rXa=1na�a (2.167)where na are integers, and they are positive or zero if � is a positive root andnegative or zero if � is a negative root.Proof Suppose the simple roots are linear dependent. Denote by xa and�ya the positive and negative 
oeÆ
ients, respe
tively, of a vanishing linear
ombination of the simple roots. Then writesXa=1 xa�a = rXb=s+1 yb�b � v (2.168)with ea
h �a being di�erent from ea
h �b. Thereforev2 =Xab xayb�a:�b � 0 (2.169)Sin
e v is a ve
tor on an Eu
lidean spa
e it follows that that the only possibilityis v2 = 0, and so v = 0. But this implies xa = yb = 0 and 
onsequently thesimple roots must be linear independent. Now let � be a positve root. If it isnot simple then � = � + 
 with � and 
 both positive. If � and/or 
 are notsimple we 
an write them as the sum of two positive roots. Noti
e that � 
annot appear in the expansion of � and/or 
 in terms of two positive roots, sin
eif x is a ve
tor of the Fundamental Weyl Chamber we have x:� = x:� + x:
.Sin
e they are all positive roots we have x:� > x:� and x:� > a:
. Therefore� or 
 
an not be written as �+ Æ with Æ a positive root. For the same reason� and 
 will not appear in the expansion of any further root appearing in
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ess. Thus, we 
an 
ontinue su
h pro
ess until � is written as a sumof simple roots, i.e. � = Pra=1 na�a with ea
h na being zero or a positiveinteger. Sin
e, for semisimple Lie algebras, the roots 
ome in pairs (� and��) it follows that the negative roots are written in terms of the simple rootsin the same way, with na being zero or negative integers. We then see thatthe set of simple roots span the root spa
e. Sin
e they are linear independent,they form a basis and 
onsequently r = rank G. 2



2.11. CARTAN MATRIX AND DYNKIN DIAGRAMS 752.11 Cartan matrix and Dynkin diagramsIn order to de�ne positive and negative roots and then simple roots we have
hosen one parti
ular Weyl Chamber to play a spe
ial role. This was 
alled theFundamental Weyl Chamber. However any Weyl Chamber 
an play su
h rolesin
e they are all equivalent. As we have seen the Weyl group transforms oneWeyl Chamber into another. In fa
t, one 
an show (see pag. 51 of [HUM 72℄)that there exists one and only one element of the Weyl group whi
h takes oneWeyl Chamber into any other.By 
hanging the 
hoi
e of the fundamental Weyl Chamber one 
hanges theset of simple roots. This implies that the 
hoi
es of simple roots are relatedby Weyl re
e
tions. From the �gure 2.6 we see that in the 
ase of SU(3)any of the pairs of roots (�1; �2), (�3;��1), (�2;��3), (��1;��2), (��3; �1),(��2; �3), 
ould be taken as the simple roots. The 
ommon features in thesepairs are the angle between the roots and the ratio of their lenghts. (in the
ase of SU(3) this is trivial sin
e all roots have the same length, but in other
ases it is not).Therefore the important information about the simple roots 
an be en
odedinto their s
alar produ
ts. For this reason we introdu
e an r � r matrix (r =rank G) as Kab � 2�a:�b�2b (2.170)(a; b = 1; 2; ::: rank G) whi
h is 
alled the Cartan matrix of the Lie algebra. Aswe will see it 
ontains all the relevant information about the stru
ture of thealgebra G. Let us see some of its properties:1. It provides the angle between any two simple roots sin
eKabKba = 4�a:�b�2b �a:�b�2a (2.171)with no summation on a or b, and so
os � = �12qKabKba (2.172)where � is the angle between �a and �b. We take the minus sign be
ause,a

ording to theorem 2.6, the simple roots always form obtuse angles.2. The Cartan matrix gives the ratio of the lenghts of any two simple rootssin
e KabKba = �2a�2b (2.173)



76 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS3. Kaa = 2. The diagonal elements do not give any information.4. From the properties of the roots dis
ussed in se
tion 2.8 we see thatKabKba = 4 (
os �)2 = 0; 1; 2; 3 (2.174)we do not get 4 be
ause we are taking a 6= b. But from theorem 2.6 wehave �a:�b � 0 and so the o� diagonal elements of the Cartan matrix
an take the values Kab = 0;�1;�2;�3 (2.175)with a 6= b. From the table 2.2 we see that if Kab = �2 or �3 then wene
essarily have Kba = �1.5. If �a and �b are orthogonal, obviously Kab = Kba = 0. At the end ofse
tion 2.9 we have shown that if the root diagram de
omponses intotwo or more mutually orthogonal subdiagrams then the 
orrespondingalgebra is not simple. As a 
onsequen
e of that if follows that the Cartanmatrix of a Lie algebra, whi
h is not simple, ne
essarily has a blo
k-diagonal form.6. The Cartan matrix is symmetri
 only when all roots have the samelenght.Example 2.11 The algebra of SO(3) or SU(2) has only one simple root andtherefore its Cartan matrix is trivial, i.e., K = 2.Example 2.12 The algebra of SO(4) is not simple. It is isomorphi
 to su(2)�su(2). Its root diagram is given in �gure 2.4. The simple roots are � and �(for instan
e) and the ratio of their lenght is not determined. The Cartanmatrix is K =  2 00 2 ! (2.176)Example 2.13 From �gure 2.6 we see that the Cartan matrix of A2 (su(3)or sl(3)) is K =  2 �1�1 2 ! (2.177)
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?�
������������I ������R������	 �1

�2 �3 �4aaaaaaaaaaaaaaaaaaa Weyl ChamberPPi
Figure 2.7: The root diagram and Fundamental Weyl 
hamber of so(5) (orsp(2))Example 2.14 The algebra of SO(5) has dimension 10 and rank 2. So ithas 8 roots. It root diagram is shown in �gure 2.7. The Fundamental WeylChamber is the shaded region. Noti
e that all roots lie on the hyperplanesperpendi
ular to the roots. The positive roots are �1, �2, �3 and �4 as shownon the diagram. All the others are negative. The simple roots are �1 and �2,and the ratio of their squared lenghts is 2. The angle between them is 3�4 . TheCartan matrix of so(5) is K =  2 �1�2 2 ! (2.178)Example 2.15 The last simple Lie algebra of rank 2 is the ex
eptional algebraG2 . Its root diagram is shown in �gure 2.8. It has 12 roots and thereforedimension 14. The Fundamental Weyl Chamber is the shaded region. Thepositive roots are the ones labelled from 1 to 6 on the diagram. The simpleroots are �1 and �2. The Cartan matrix is given byK =  2 �1�3 2 ! (2.179)We have seen that the relevant information 
ontained in the Cartan matrixis given by its o�-diagonal elements. We have also seen that if Kab 6= 0 thenone of Kab or Kba is ne
essarily equal to �1. Therefore the information of theo�-diagonal elements 
an be given by the positive integers KabKba (no sum in
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Figure 2.8: The root diagram and Fundamental Weyl Chamber of G2a and b). These integers 
an be en
oded in a diagram 
alled Dynkin diagramwhi
h is 
onstru
ted in the following way:1. Draw r points, ea
h 
orresponding to one of the r simple roots of thealgebra (r is the rank of the algebra).2. Join the point a to the point b by KabKba lines. Remember that thenumber of lines 
an be 0, 1, 2 or 3.3. If the number of lines joining the points a and b ex
eeds 1 put an arrowon the lines dire
ted towards the one whose 
orresponding simple roothas a shorter lenght than the other.When KabKba = 2 or 3 the 
orresponding simple roots, �a and �b , havedi�erent lenghts. In order to see this, remember that Kab or Kba is equal to�1. Taking Kab = �1, we have Kba = �KabKba = �2 or �3. But�2a�2b = KabKba = 1KabKba (2.180)and 
onsenquently �2b � �2a. So the number of lines joining two points in aDynkin diagram gives the ratio of the squared lenghts of the 
orrespondingsimple roots.Example 2.16 The Cartan matrix of the algebra of SO(3) or SU(2) is simplyK = 2. It has only one simple root and therefore its Dynkin diagram is just a
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Algebra Dynkin Diagram 

A (su(2) or sl(2) )
1

so(4) = su(2) + su(2) 

G 2

2B    (so(5) )

2A   (su(3) or sl(3) )

Figure 2.9: The Dynkin diagrams of rank 1 and 2 algebras.point. The algebra of SU(3) on the other hand has two simple roots. From itsCartan matrix given in example 2.13 and the rules above we see that its Dynkindiagram is formed by two points linked by just one line. Using the rules aboveone 
an easily 
onstru
t the Dynkin diagrams for the algebras dis
ussed inexamples 2.11 - 2.15. They are given in �gure 2.9.The root system postulates, given in de�nition 2.16, impose severe restri
-tions on the possible Dynkin diagrams. In se
tion 2.15 we will 
lassi
y theadmissible diagrams, and we will see that there exists only nine types of sim-ple Lie algebras.We have said that for non simple algebras the Cartan matrix has a blo
kdiagonal form. This implies that the 
orresponding Dynkin diagram is not
onne
t. Therefore a Lie algebra is simple only and if only its Dynkin diagramis 
onne
ted.We say a Lie algebra is simply la
ed if the points of its Dynkin diagramare joined by at most one link. This means all the roots of the algebra havethe same length.



80 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS2.12 Root stringsWe have shown in theorem 2.5 that if � and � are non proportional roots then� + � is a root whenever �:� < 0, and �� � is a root whenever �:� > 0. We
an use this result further to see if � +m� or � � n� (for m;n integers) areroots. In this way we 
an obtain a set of roots forming a string. We then 
ometo the 
on
ept of the �-root string through �. Let p be the largest positiveinteger for whi
h �+p� is a root, and let q be largest positive integer for whi
h� � q� is a root. We will show that the set of ve
tors� + p� ; � + (p� 1)� ; ::: � + � ; � ; � � � ; ::: � � q� (2.181)are all roots. They 
onstitute the �-root string through �.Suppose that � + p� and � � q� are roots and that the string is broken,let us say, on the positive side. That is, there exist positive integers r and swith p > r > s su
h that1. � + (r + 1)� is a root but � + r� is not a root2. � + (s+ 1)� is not a root but � + s� is a rootA

ording to theorem 2.5, sin
e � + r� is not a root then we must have�: (� + (r + 1)�) � 0 (2.182)For the same reason, sin
e � + (s+ 1)� is not a root we have�: (� + s�) � 0 (2.183)Therefore we get that ((r + 1)� s)�2 � 0 (2.184)and sin
e �2 > 0 s� r � 1 (2.185)But this is a 
ontradi
tion with our assumption that r > s > 0. So this provesthat the string 
an not be broken on the positive side. The proof that thestring is not broken on the negative side is similar.Noti
e that the a
tion of the Weyl re
e
tion �� on a given root is to addor subtra
t a multiple of the root �. Sin
e all roots of the form � + n� are
ontained in the �-root string through �, we 
on
lude that this root string isinvariant under ��. In fa
t �� reverses the �-root string. Clearly the image



2.12. ROOT STRINGS 81of � + p� under �� has to be � � q�, and vi
e versa, sin
e they are the rootsthat are most distant from the hyperplane perpendi
ular to �. We then have��(� � q�) = � � q�� 2�:(� � q�)�2 � = � + p� (2.186)and sin
e the only possible values of 2�:��2 are 0, �1, �2 and �3 we get thatq � p = 2�:��2 = 0; �1; �2; �3 (2.187)Denoting � � q� by 
 we see that for the �-root string through 
 we haveq = 0 and therefore the possible values of p are 0, 1, 2 and 3. Consequentlythe number of roots in any string 
an not ex
eed 4.For a simply la
ed Lie algebra the only possible values of 2�:��2 are 0 and�1. Therefore the root strings, in this 
ase, 
an have at most two roots.Noti
e that if � and � are distin
t simple roots, we ne
essarily have q = 0,sin
e � � � is never a root in this 
ase. So[E��; E�℄ = [E�; E��℄ = 0 (2.188)If, in addition, �:� = 0 we get from (2.187) that p = 0 and 
onsequently �+�is not a root either. For a semisimple Lie algebra, sin
e if � is a root then ��is also a root, it follows that[E�; E�℄ = [E��; E��℄ = 0 (2.189)for � and � simple roots and �:� = 0. We 
an read this result from the Dynkindiagram sin
e, if two points are not linked then the 
orresponding simple rootsare orthogonal.Example 2.17 For the algebra of SU(3) we see from the diagram shown in�gure 2.6 that the �1-root string through �2 
ontains only two roots namely 2and 3= 2+1.Example 2.18 From the root diagram shown in �gure 2.7 we see that, forthe algebra of SO(5), the �1-root string through �2 
ontains thre roots �2,�3 = �1 + �2, and �4 = �2 + 2�1.Example 2.19 The algebra G2 is the only simple Lie algebra whi
h 
an haveroot strings with four roots. From the diagram shown in �gure 2.8 we see thatthe �1-root string through �2 
ontains the roots �2, �3 = �2+�1 , �5 = �2+2�1and �6 = 2�2 + 3�1.



82 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS2.13 Commutation relations from DynkindiagramsWe now explain how one 
an obtain from the Dynkin diagram of a Lie alge-bra, the 
orresponding root system and then the 
ommutation relations. Thefa
t that this is possible to be done is a demonstration of how powerful theinformation en
oded in the Dynkin diagram is.We start by introdu
ing the 
on
ept of height of a root . In theorem 2.7 wehave shown that any root 
an be written as a linear 
ombination of the simpleroots with integer 
oeÆ
ients all of the same sign (see eq. (2.167)). The heightof a root is the sum of these integer 
oeÆ
ients, i.e.h(�) � rankGXa=1 na (2.190)where na are given by (2.167). The only roots of height one are the simpleroots. This de�nition 
lassi�es the roots a

ording to a hierar
hy. We 
anre
onstru
t the root system of a Lie algebra from its Dynkin diagram startingfrom the roots of lowest height as we now explain.Given the Dynkin diagram we 
an easily 
onstru
t the Cartan matrix. Weknow that the diagonal elements are always 2. The o� diagonal elements arezero whenever the 
orresponding points (simple roots) of the diagram are notlinked. When they are linked we have Kab (or Kba ) equals to �1 and Kba (orKab ) equal to minus the number of links between those points.Example 2.20 The Dynkin diagram of SO(7) is given in �gure 2.10We see that the simple root 3 (a

ording to the rules of se
tion 2.11 ) has alength smaller than that of the other two. So we have K23 = �2 and K32 = �1.Sin
e the roots 1 and 2 have the same length we have K12 = K21 = �1. K13and K31 are zero be
ause there are no links between the roots 1 and 3. ThereforeK = 0B� 2 �1 0�1 2 �20 �1 2 1CA (2.191)On
e the Cartan matrix has been determined from the Dynkin diagram, oneobtain all the roots of the algebra from the Cartan matrix. We are interested insemisimple Lie algebras. Therefore, sin
e in su
h 
ase the roots 
ome in pairs� and ��, we have to �nd just the positive roots. We now give an algorithmfor determining the roots of a given height n from those of height n� 1. Thesteps are
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21 3Figure 2.10: The Dynkin diagram of so(7).1. The roots of height 1 are just the simple roots.2. We have seen in (2.189) that if two simple roots are orthogonal thentheir sum is not a root. On the other hand if they are not orthogonalthen their sum is ne
essarily a root. From theorem 2.6 one has �:� � 0for � and � simple, and therefore from theorem 2.5 one gets their sumis a root (if they are not orthogonal). Consequently to obtain the rootsof height 2 one just look at the Dynkin diagram. The sum of pairs ofsimple roots whi
h 
orresponding points are linked, by one or more lines,are roots. These are the only roots of height 2.3. The pro
edure to obtain the roots of height 3 or greater is the following:suppose �(l) = PrankGa=1 na�a is a root o height l, i.e. PrankGa=1 na = l. Usingthe Cartan matrix one evaluates2�(l):�b�2b = rankGXa=1 naKab (2.192)where �b is a simple root. If this quantity is negative one gets fromtheorem 2.5 that �(l)+�b is a root of height l+1. If it is zero or positiveon uses (2.187) to write p = q � rankGXa=1 naKab (2.193)where p and q are the highest positive integers su
h that �(l) + p�b and�(l)�q�b are roots. The integer q 
an be determined by looking at the setof roots of height smaller than l (whi
h have already been determined)and 
he
king what is the root of smallest height of the form �(l) �m�b.One then �nds p from (2.193). If p does not vanish, �(l) + �b is a root.Noti
e that if p � 2 one also determines roots of height greater thanl + 1. By applying this pro
edure using all simple roots and all roots ofheight l one determines all roots of height l + 1.4. The pro
ess �nishes when no roots of a given height l+1 is found. Thatis be
ause there 
an not exists roots of height l + 2 if there are no rootsof height l + 1.



84 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASTherefore we have shown that the root system of a Lie algebra 
an bedetermined from its Dynkin diagram. In some 
ases it is more pra
ti
al todetermine the root system using the Weyl re
e
tions through hyperplanesperpendi
ular to the simple roots.The root whi
h has the highest height is said the highest root of the algebraand it is generally denoted  . For simple Lie algebras the highest root is unique.The integer h( ) + 1 = PrankGa=1 ma + 1, where  = PrankGa=1 ma�a, is said theCoxeter number of the algebra.Example 2.21 In example 2.20 we have determined the Cartan matrix ofSO(7) from its Dynkin diagram. We now determine its root system followingthe pro
edure des
ribed above. The dimension of SO(7) is 21 and its rank is 3.So, the number of positive roots is 9. The �rst three are the simple roots �1 ,�2 and �3 . Looking at the Dynkin diagram in �gure 2.10 we see that �1 + �2and �2+�3 are the only roots of height 2, sin
e �1 and �3 are orthogonal. Wehave 2(�1+�2):�a�2a = K1a+K2a whi
h, from (2.191), is equal to 1 for a = 1; 2 and�2 for a = 3. Therefore, from (2.193), we get that 2�1 + �2 and �1 + 2�2 arenot roots but �1 + �2 + �3 and �1 + �2 + 2�3 are roots. Analogously we have2(�2+�3):�a�2a = K2a +K3a whi
h is equal to �1 for a = 1, 1 for a = 2 and 0 fora = 3. Therefore the only new root we obtain is �2 + 2�3. This exhausts theroots of height 3. One 
an 
he
k that the only root of height 4 is �1+�2+2�3whi
h we have obtained before. Now 2(�1+�2+2�3):�a�2a = K1a+K2a+2K3a whi
his equal to 1, �1 and 2 for a = 1; 2; 3 respe
tively. Sin
e it is negative fora = 2 we get that �1 + 2�2 + 2�3 is a root. This is the only root of height 5,and it is in fa
t the highest root of SO(7). So the Coxeter number of SO(7) is6. Summarizing we have that the positive roots of SO(7) areroots of height 1 �1; �2; �3roots of height 2 (�1 + �2); (�2 + �3)roots of height 3 (�1 + �2 + �3); (�2 + 2�3)roots of height 4 (�1 + �2 + 2�3)roots of height 5 (�1 + 2�2 + 2�3)These 
ould also be determined starting from the simple roots and using Weylre
e
tions.We now show how to determine the 
ommutation relations from the rootsystem of the algebra. We have been using the Cartan-Weyl basis introdu
edin (2.134). However the 
ommutation relations take a simpler form in the so
alled Chevalley basis . In this basis the Cartan subalgebra generators are



2.13. COMMUTATION RELATIONS FROM DYNKIN DIAGRAMS 85given by Ha � 2�a:H�2a (2.194)where �a (a = 1; 2; ::: rank G) are the simple roots and �a:H = �iaH i , whereHi are the Cartan subalgebra generators in the Cartan-Weyl basis and �ia arethe 
omponents of the simple root �a in that basis, i.e. [Hi; E�a℄ = �iaE�a.The generators Ha are not orthonormal like the Hi . From (2.134) and (2.170)we have that Tr(HaHb) = 4�a:�b�2a�2b = 2�2aKab (2.195)The generators Ha obviously 
ommute among themselves[Ha; Hb℄ = 0 (2.196)The 
ommutation relations between Ha and step operators are given by (see(2.124)) [Ha; E�℄ = 2�:�a�2a E� = K�aE� (2.197)where we have de�ned K�a � 2�:�a�2a . Sin
e � 
an be written as in (2.167) wesee that K�a is a linear 
ombination with integer 
oeÆ
ients, all of the samesign, of the a-
olumm of the Cartan matrixK�a = 2�:�a�2a = rankGXb=1 nbKba (2.198)where � = PrankGb=1 nb�b. Noti
e that the fa
tor multiplying E� on the r.h.sof (2.197) is an integer. In fa
t this is a property of the Chevalley basis. Allthe stru
ture 
onstants of the algebra in this basis are integer numbers. The
ommutation relations (2.197) are determined on
e one knows the root systemof the algebra.We now 
onsider the 
ommutation relations between step operators. From(2.125) [E�; E�℄ = 8><>: N��E�+� if � + � is a rootH� = maHa if � + � = 00 otherwise (2.199)where ma are integers in the expansion ��2 = PrankGa=1 ma �a�2a . The stru
ture
onstants N��, in the Chevalley basis, are integers and 
an be determined



86 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASfrom the root system of the algebra and also from the Ja
obi identity . Let usexplain now how to do that.Noti
e that from the antisymmetry of the Lie bra
ketN�� = �N�� (2.200)for any pair of roots � and �. The stru
ture 
onstants N�� are de�ned up tores
aling of the step operators. If we make the transformationE� ! ��E� (2.201)keeping the Cartan subalgebra generators un
hanged, then from (2.199) thestru
ture 
onstants N�� must transform asN�� ! ������+�N�� (2.202)and ����� = 1 (2.203)As we have said in se
tion 2.9, any symmetry of the root diagram 
an be ele-vated to an automorphism of the 
orresponding Lie algebra. In any semisimpleLie algebra the transformation � ! �� is a symmetry of the root diagramsin
e if � is a root so is ��. We then de�ne the transformation � : G ! G as�(Ha) = �Ha ; �(E�) = ��E�� (2.204)and �2 = 1. From the 
ommutation relations (2.196), (2.197) and (2.199) onesees that su
h transformation is an automorphism if����� = 1N�� = ������+�N��;�� (2.205)Using the freedom to res
ale the step operators as in (2.202) one sees that it ispossible to satisfy (2.205) and make (2.204) an automorphism. In parti
ularit is possible to 
hoose all �� equals to �1 and thereforeN�� = �N��;�� (2.206)Consider the �-root string through � given by (2.181). Using the Ja
obiidentity for the step operators E�, E�� and E�+n�, where p > n > 1 and p isthe highest integer su
h that � + p� is a root, we obtain from (2.199) thatN�+n�;��N�+(n�1)�;� �N�+n�;�N�+(n+1)�;�� = 2�:(� + n�)�2 (2.207)
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e that the se
ond term on the l.h.s of this equation vanishes when n = p, sin
e �+(p+1)� is not a root. Adding up the equations (2.207) for n takingthe values 1, 2, ... p , we obtain thatN�+�;��N�� = 2�:��2 p+ 2 (p+ (p� 1) + (p� 2) + ::: + 1)= p(q + 1) (2.208)where we have used (2.187).From the fa
t that the Killing form is invariant under the adjoint represen-tation (see (2.48) it follows that it is invariant under inner automorphisms, i.e.Tr(�(T )�(T 0)) = Tr(TT 0) with �(T ) = gTg�1. However one 
an show thatthe Killing form is invariant any automorphism (inner or outer). Using thisfa
t for the automorphism (2.204) (with �� = �1), the invarian
e property(2.46) and the normalization (2.134) one getsTr([E�; E�℄E����) = N�� 2(� + �)2= �Tr([E��; E��℄E�+�)= �Tr([E�+�; E��℄E��)= �N�+�;�� 2�2 (2.209)Consequently N�+�;�� = � �2(� + �)2N�� (2.210)Substituting this into (2.208) we getN2�� = (� + �)2�2 p(q + 1) (2.211)Therefore, up to a sign, the stru
ture 
onstants N�� de�ned in (2.199) 
an bedetermined from the root system of the algebra.Using the Ja
obi identity for the step operators E�, E� and E��n�, with nvarying from 1 to q where q is the highest integer su
h that � � q� is a root,and doing similar 
al
ulations we obtain thatN2�;�� = (� � �)2�2 q(p+ 1) (2.212)



88 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASThe relation (2.211) 
an be put in a simpler form. From (2.187) we havethat (see se
tion 25.1 of [HUM 72℄)(q + 1)� p(� + �)2�2 = p+ 2�:��2 + 1� p(� + �)2�2= 2�:��2 + 1� p�2�2 � p2�:��2=  2�:��2 + 1! 1� p�2�2! (2.213)We want to show the r.h.s of this relation is zero. We distinguish two 
ases:1. In the 
ase where �2 � �2 we have j 2�:��2 j�j 2�:��2 j. From table 2.2 wesee that the possible values of 2�:��2 are �1, 0 or 1. In the �rst 
ase weget that the �rst fa
tor on the r.h.s of (2.213) vanishes. On the othertwo 
ases we have that �:� � 0 and then (�+ �)2 is stri
tly larger thanboth, �2 and �2 . Sin
e we are assuming � + � is a root and sin
e, aswe have said at the end of se
tion 2.8, there 
an be no more than twodi�erent root lengths in ea
h 
omponent of a root system, we 
on
ludethat �2 = �2 . For the same reason � + 2� 
an not be a root sin
e(� + 2�)2 > (� + �)2 and therefore p = 1. But this implies that these
ond fa
tor on the r.h.s of (2.213) vanishes.2. For the 
ase of �2 < �2 we have that (�+�)2 = �2 or �2, sin
e otherwisewe would have three di�erent root lengths. This for
es �:� to be stri
tlynegative. Therefore we have (���)2 > �2 > �2 and 
onsequently ��� isnot a root and so q = 0. But j 2�:��2 j<j 2�:��2 j and therefore 2�:��2 = �1; 0or 1. Sin
e �:� < 0 we have 2�:��2 = �1. Then from (2.187) we havep = �2�:��2 �22�:� = �2�2 . Therefore the se
ond fa
tor on the r.h.s of (2.213)vanishes.Then, we have shown that q + 1 = p(� + �)2�2 (2.214)and from (2.211) N2�� = (q + 1)2 (2.215)This shows that the stru
ture 
onstants N�� are integer numbers. From(2.196), (2.197) and (2.199) we see that all stru
ture 
ontants in the Chevalley



2.13. COMMUTATION RELATIONS FROM DYNKIN DIAGRAMS 89basis are integers. Summarizing we have[Ha; Hb℄ = 0 (2.216)[Ha; E�℄ = 2�:�a�2a E� = K�aE� (2.217)[E�; E�℄ = 8><>: (q + 1)"(�; �)E�+� if � + � is a rootH� = 2�:H�2 = maHa if � + � = 00 otherwise (2.218)where we have denoted "(�; �) the sign of the stru
ture 
onstant N��, i.e.N�� = (q+1)"(�; �). These signs, also 
alled 
o
y
les, are determined throughthe Ja
obi identity as explained in se
tion 2.14. As we have said before q isthe highest positive integer su
h that � � q� is a root. However when � + �is a root, whi
h is the 
ase we are interested in (2.218), it is true that q isalso the highest positive integer su
h that �� q� is a root. The reason is thefollowing: in a semisimple Lie algebra the roots always appear in pairs (� and��). Therefore if � � � is a root so is � � �. In addition we have seen inse
tion 2.12 that the root strings are unbroken and they 
an have at most fourroots. Therefore, sin
e we are assuming that �+ � is a root, the only possibleway of not satisfying what we said before is to have, let us say, the �-rootstring through � as � � 2�, � � �, �, � + �; and the �-root string through �as �� �, �, � + � or �� �, �, � + �, � + 2�. But from (2.187) we have2�:��2 = 1 (2.219)and 2�:��2 = 0 or � 1 (2.220)whi
h are 
learly in
ompatible.We have said in se
tion 2.12 that for a simply la
ed Lie algebra there 
anbe at most two roots in a root string. Therefore if �+� is a root ��� is not,and therefore q = 0. Consequently the stru
ture 
onstants N�� are always �1for a simply la
ed algebra.



90 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS2.14 Finding the 
o
y
les "(�; �)As we have seen the Dynkin diagram of an algebra 
ontains all the ne
essaryinformation to 
onstru
t the 
ommutation relations (2.216)-( 2.218). Howeverthat information is not enough to determine the 
o
y
les "(�; �) de�ned in( 2.218). For that we need the Ja
obi identity. We now explain how to usesu
h identities to determine the 
o
y
les. We will show that the 
onsisten
y
onditions imposed on the 
o
y
les are su
h that they 
an be split into anumber of sets equal to the number of positive non simple roots. The sign ofa 
o
y
le in a given set 
ompletly determines the signs of all other 
o
y
les ofthat set, but has no in
uen
e in the determination of the 
o
y
les in the othersets. Therefore the 
o
y
les "(�; �) are determined by the Ja
obi identities upto su
h \gauge freedom" in �xing independently the signs of the 
o
y
les ofdi�erent sets.From the antisymmetry of the Lie bra
ket the 
o
y
les have to satisfy"(�; �) = �"(�; �) (2.221)In addition, from the 
hoi
e made in (2.206) one has"(�; �) = �"(��;��) (2.222)Consider three roots �, � and 
 su
h that their sum vanishes. The Ja
obiidentity for their 
orresponding step operators yields, using (2.216) - (2.218)0 = [[E�; E�℄; E
 ℄ + [[E
 ; E�℄; E�℄ + [[E�; E
℄; E�℄= �((q�� + 1)"(�; �)2
:H
2 + (q
� + 1)"(
; �)2�:H�2+(q�
 + 1)"(�; 
)2�:H�2 )= �(((q�
 + 1)"(�; 
)� �2
2 (q�� + 1)"(�; �))2�:H�2+((q
� + 1)"(
; �)� �2
2 (q�� + 1)"(�; �))2�:H�2 ) (2.223)Sin
e the integers q0s are non negative we get"(�; �) = "(�; 
) = "(
; �) (2.224)and also 1
2 (q�� + 1) = 1�2 (q�
 + 1) = 1�2 (q
� + 1) (2.225)



2.14. FINDING THE COCYCLES "(�; �) 91Further relations are found by 
onsidering Ja
obi identities for three step op-erators 
orresponding to roots adding up to a fourth root. Now su
h identitiesyield relations involving produ
ts of two 
o
y
les. However, in many situationsthere are only two non vanishing terms in the Ja
obi identity. Consider threeroots �, � and 
 su
h that � + �, � + 
 and � + � + 
 are roots but � + 
is not a root. Then the Ja
obi identity for the 
orresponding step operatorsyields 0 = [[E�; E�℄; E
℄ + [[E
 ; E�℄; E�℄ + [[E�; E
℄; E�℄= (q�� + 1)(q�+�;
 + 1)"(�; �)"(�+ �; 
)+(q�
 + 1)(q�+
;� + 1)"(�; 
)"(� + 
; �) (2.226)Therefore one gets "(�; �)"(�+ �; 
) = "(�; 
)"(�; � + 
) (2.227)and (q�� + 1)(q�+�;
 + 1) = (q�
 + 1)(q�+
;� + 1) (2.228)There remains to 
onsider the 
ases where the three terms in the Ja
obi identityfor three step operators do not vanish. Su
h thing happens when we have threeroots �, � and 
 su
h that � + �, � + 
, � + 
 and � + � + 
 are roots aswell. We now 
lassify all 
ases where that happens. We shall denote long rootsby �, �, �, ... and short roots by e, f , g, ... . From the properties of rootsdis
ussed in se
tion 2.8 one gets that 2�:��2 , 2�:e�2 , 2e:fe2 = 0, �1. Let us 
onsiderthe possible 
ases:1. All three roots are long. If � + � is a root then (�+�)2�2 = 2 + 2�:��2 . Sin
e�+ � 
an not be a longer than � one gets 2�:��2 = �1. So �+ � is a longroot and if �+ � + � is also a root one gets by the same argument that2(�+�):��2 = �1. Therefore �+� and �+� 
an not be roots simultaneouslysin
e that would imply, by the same arguments, 2�:��2 = 2�:��2 = �1 whi
his a 
ontradi
tion with the result above.2. Two roots are long and one short. If � + e is a root then (�+e)2�2 =1+ e2�2+ 2�:e�2 . Sin
e �+e 
an not be longer than � it follows that 2�:e�2 = �1.Therefore � + e is a short root sin
e (� + e)2 = e2. So, if � + e + � isa root then (�+e+�)2�2 = 1 + (�+e)2�2 + 2(�+e):��2 and therefore 2(�+e):��2 = �1.Consequently �+ � and �+ e 
an not be roots simultaneously sin
e thatwould imply, by the same arguments, 2�:��2 = 2�:e�2 = �1.



92 CHAPTER 2. LIE GROUPS AND LIE ALGEBRAS3. Two roots are short and one long. Analogously if e+ f and �+ e+ f areroots one gets 2(e+f):��2 = �1 independently of e+ f being shost or long.So, it is impossible for �+ e and �+ f to be both roots sin
e one wouldget 2�:e�2 = 2�:f�2 = �1.4. All three roots are short. If e + f is a root then (e+f)2e2 = 2 + 2e:fe2 andthere exists three possibilities:(a) 2e:fe2 = �1 and e + f is a short root.(b) 2e:fe2 = 1 and (e+f)2e2 = 3 (
an only happen in G2).(
) 2e:fe2 = 0 and (e+f)2e2 = 2 (
an only happen in Bn, Cn and F4).In se
tion 2.8 we have seen that the possible ratios of squared length of theroots are 1, 2 and 3. Therefore there 
an not exists roots with three di�erentlengths in the same irredu
ible root system sin
e if �2�2 = 2 and 
2�2 = 3 then
2�2 = 32 .Consider the 
ase 4:b and let g be the third short root. Then if e + g is aroot we have (e+g)2(e+f)2 = 23 + 2e:g(e+f)2 = 1 or 13 . But this is impossible sin
e 2e:g(e+f)2would not be an integer. So the se
ond 
ase is ruled out sin
e we would nothave e+ f , e+ g, f + g and e + f + g all roots.Consider the 
ase 4:
. If e + g is a root then (e+g)2(e+f)2 = 1 + 12 2e:gg2 = 1 or12 . Therefore 2e:gg2 = 0 or �1. Similarly if f + g is a root we get 2f:gg2 = 0or �1. But if e + f + g is also a root then it has to be a short root sin
e(e+f+g)2(e+f)2 = 32 + 2(e+f):g(e+f)2 . Consequently 2(e+f):g(e+f)2 = �1 and (e+f+g)2(e+f)2 = 12 . It thenfollows that 2e:gg2 + 2f:gg2 = 2(e+f):g(e+f)2 (e+f)2g2 = �2. Therefore in the 
ase 4:
 we 
anhave e+ f , e+ g, f + g and e + f + g all roots if e:f = 0, 2e:gg2 = 2f:gg2 = �1.Consider the 
ase 4:a. Again if e+ g is a root then (e+g)2g2 = 2+ 2e:gg2 = 1 or2. So, 2e:gg2 = 0 or �1. Similarly if f + g is a root 2f:gg2 = 0 or �1. If e+ f + g isalso a root then (e+f+g)2g2 = 2 + 2(e+f):gg2 = 1 or 2. Therefore 2(e+f):gg2 = 0 or �1.Consequently 2e:gg2 and 2f:gg2 
an not be both �1. Suppose then 2e:gg2 = 0 and
onsequently e + g is a long root, i.e. (e+g)2g2 = 2. A

ording to the argumentsused in 
ase 4:
 we get e+ f + g is a short root and then 2f:gg2 = �1.We then 
on
lude that the only possibility for the o
urren
e of three shortroots e, f and g su
h that the sum of any two of them and e+f+g are all rootsis that two of them are ortoghonal, let us say e:f = 0 and 2e:gg2 = 2f:gg2 = �1.This 
an only happen in the algebras Cn or F4. Therefore none of the three
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obi identity for the 
orresponding step operators will vanish.We have 0 = [[Ee; Ef ℄; Eg℄ + [[Eg; Ee℄; Ef ℄ + [[Ef ; Eg℄; Ee℄= (qef + 1)(qe+f;g + 1)"(e; f)"(e+ f; g)+(qge + 1)(qg+e;f + 1)"(g; e)"(g + e; f)+(qfg + 1)(qf+g;e + 1)"(f; g)"(f + g; e) (2.229)A

ording to the dis
ussion in se
tion 2.12 any root string in an algebra wherethe ratio of the squared lengths of roots is 1 or 2 
an have at most 3 roots.From (2.187) we see that qef = 1 and qge = qfg = qe+f;g = qg+e;f = qf+g;e = 0.Therefore"(e; f)"(e+ f; g) = "(g; e)"(f; g + e) = "(f; g)"(e; f + g) (2.230)We 
an then determine the 
o
y
les using the following algorithm:1. The 
o
y
les involving two negative roots, "(��;��) with � and � bothpositive, is determined from those involving two positive roots throughthe relation (2.222).2. The 
o
y
les involving one positive and one negative root, "(��; �) withboth � and � both positive, are also determined from those involvingtwo positive roots through the relations (2.224) and (2.222). Indeed, if�� + � is a positive root we write �� + � = 
 and if it is negative wewrite ��+� = �
 with 
 positive in both 
ases. Therefore from (2.224)and (2.222) it follows "(��; �) = "(�
;��) = �"(
; �) in the �rst 
ase,and "(��; �) = "(�; 
) in the se
ond 
ase.3. Let � be a positive non simple root whi
h 
an be written as � = �+� =
 + Æ with �, �, 
 and Æ all positive roots. Then the 
o
y
les "(�; �)and "(
; Æ) 
an be related to ea
h other by using 
ombinations of therelations (2.227)Using su
h algorithm one 
an then verify that there will be one 
o
y
le tobe 
hosen freely, for ea
h positive non-simple root of the algebra. On
e those
o
y
les are 
hosen, all the other are uniquely determined.
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lassi�
ation of simple Lie algebrasThe simple Lie algebras are, as we have seen, the building blo
ks for 
onstru
t-ing all Lie algebras and therefore the 
lassi�
ation of those is very important.We have also seen that there exists, up to isomorphism, only one Lie algebraasso
ioated to a given Dynkin diagram. Sin
e the Dynkin diagram for a sim-ple Lie algebra is ne
essarily 
onne
ted, we see that the 
lassi�
ation of thesimple algebras is equivalent to the 
lassi�
ation of possible 
onne
ted Dynkindiagrams. We now give su
h 
lassi�
ation.We will �rstly look for the possible Dynkin diagrams ignoring the arrowson them. We then de�ne unit ve
tors in the dire
tion of the simple roots as�a = �aq�2a (2.231)Therefore ea
h point of the diagram will be asso
iated to a unit ve
tor �a, andthese are all linearly independent. They satisfy2�a � �b = 2�a � �bq�2a�2b = �qKabKba (2.232)Now, from theorem 2.6 we have that �a � �b � 0, and therefore from (2.174)2�a � �b = 0;�1;�p2;�p3 (2.233)whi
h 
orrespond to minus the square root of the number of lines joiningthe points a and b. We shall 
all a set of unit ve
tors satisfying (2.233) anadmissible set.One noti
es that by ommiting some �a's, the remaining ones form an ad-missible set, whi
h diagram is obtained from the original one by ommiting the
orresponding points and all lines atta
hed to them. So we have the obviouslemma.Lemma 2.2 Any subdiagram of an admissible diagram is an admissible dia-gram.Lemma 2.3 The number of pairs of verti
es in a Dynkin diagram linked byat least one line is stri
tly less than r, the rank of the algebra (or number ofverti
es).



2.15. THE CLASSIFICATION OF SIMPLE LIE ALGEBRAS 95Proof: Consider the ve
tor � = rXa=1 �a (2.234)Sin
e the ve
tors �a's are linearly independent we have � 6= 0 and then0 < �2 = r + 2 Xpairs �a � �b (2.235)And from (2.233) we see that if a and b are linked, then 2�a � �b � �1. In orderto keep the inequality we see that the number of linked pairs of points mustbe smaller or equal to r � 1. 2Corollary 2.1 There are no loops in a Dynkin diagram.Proof: If a diagram has a loop we see from lemma 2.2 that the loop itselfwould be an admissible diagram. But that would violate lemma 2.3 sin
e thenumber o linked pairs of verti
es is equal to the number of verti
es. 2Lemma 2.4 The number of lines atta
hed to a given verti
e 
an not ex
eedthree.Proof: Let � be a unit ve
tor 
orresponding to a vertex and let �1, �2,. . . �k be the set of unit ve
tors whi
h 
orrespond to the verti
es linked to it.Sin
e the diagram has no loops we must have�a � �b = 0 a; b = 1; 2; 3; : : : k (2.236)So we 
an write � = kXa=1 (� � �a) �a + (� � �0) �0 (2.237)where �0 is a unit ve
tor in a subspa
e perpendi
ular to the set �1, �2, . . . �k.Then �2 = 1 = kXa=1 (� � �a)2 + (� � �0)2 (2.238)But the number of lines linked to � is (see (2.232) and (2.233))4 kXa=1 (� � �a)2 = 4� 4 (� � �0)2 � 4 (2.239)
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Figure 2.11: Possible links a vertex 
an have.Figure 2.12: The only 
onne
ted diagram with triple link.The equality is only possible if � � �0 = 0. But that is impossible sin
e it means� is a linear 
ombination of �1, �2, . . . �k. Therefore, the number of lines linkedto � is stri
tly less than 4 and the lemma is proved. 2Consequently we see that the possible links a vertex 
an have are shown in�gure 2.11 and then it follows the 
orollary 2.2.Corollary 2.2 The only 
onne
ted diagram whi
h has a triple link is the oneshown in �gure 2.12 and it 
orresponds to the ex
eptional Lie algebra G2.Corollary 2.3 If an admissible diagram D has a subdiagram � given in �gure2.13, then the diagram D0 obtained from D by the 
ontra
tion of the � is alsoan admissible diagram. By 
onstra
tion we mean the redu
tion of � to thepoint � = a+kXa=l �a (2.240)whi
h 
orresponds to a new simple root � = Pa+ka=l �a. Therefore, the simpleroots of D0 are � together with the simple roots of D whi
h do not 
orrespondto �a, �a+1, . . . �a+k.Proof: We have to show that D0 is an admissible diagram. The ve
tor �,de�ned in (2.240), together with the remaining �a's in D are linearly indepen-
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ε ε ε εi+1i i+k-1 i+kFigure 2.13: Diagram �.dent. � has unit length sin
e �2 = k + 2 Xpairs �a � �b (2.241)But sin
e 2�a � �b = �1, for a amd b being nearest neighbours, we have�2 = k + (k � 1) (�1) = 1 (2.242)Any � belonging to D � � 
an be linked at most to one of the points of �.Otherwise we would have a loop. Therefore, either� � � = � � �a for a given �a in � (2.243)or � � � = 0 (2.244)But sin
e � and �a belong to an admissible diagram we have that they satisfy(2.233). Therefore, � and � also satisfy (2.233) and 
onsequently D0 is anadmissible diagram.Corollary 2.4 Any admissible diagram 
an not have subdiagrams of the formshown in �gure 2.14.The reason is that by lemma 2.3 we would obtain that the diagrams shownin �gure 2.15 are subdiagrams of admissible diagrams. From lemmas 2.2 and2.4 we see that this is impossible.So, from the results obtained so far we see that an admissible diagram hasto have one of the forms shown in �gure 2.16.Consider the diagram B) of �gure 2.16, and de�ne the ve
tors� = pXa=1 a�a ; � = qXa=1 a�a (2.245)
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I

II

IIIFigure 2.14: Non-admissible subdiagrams.

Figure 2.15:
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100 CHAPTER 2. LIE GROUPS AND LIE ALGEBRASTherefore �2 = pXa=1 a2 + 2 Xpairs ab �a � �b= pXa=1 a2 � p�1Xa=1 a (a+ 1)= p2 � p�1Xa=1 a = p2 � p (p� 1) =2= p (p+ 1) =2 (2.246)where we have used the fa
t that 2�a � �b = �1 for a and b being nearestneighbours and 2�a � �b = 0 otherwise. In a similar way we obtain that�2 = q (q + 1) =2 (2.247)Sin
e the points p andq are linked by a double line we have2�p � �q = �p2 (2.248)and so � � � = pq �p � �q = �pq=p2 (2.249)Using S
hwartz inequality (� � �)2 � �2�2 (2.250)we have from (2.246), (2.247) and (2.249) thatp2q2 < p (p+ 1) q (q + 1) =2 (2.251)Sin
e the equality 
an not hold be
ause � and � are linearly independent, eq.(2.251) 
an be written as (p� 1) (q � 1) < 2 (2.252)There are three possibilities for p; q � 1, namely1. p = q = 22. p = 1 and q any positive integer3. q = 1 and p any positive integer



2.15. THE CLASSIFICATION OF SIMPLE LIE ALGEBRAS 101Figure 2.17:Figure 2.18:In the �rst 
ase we have the diagram 2.17 whi
h 
orresponds to the ex
ep-tional Lie algebra of rank 4 denoted F4. In the other two 
ases we obtain thediagram of �gure 2.18 whi
h 
orresponds to the 
lassi
al Lie algebras so(2r+1)or Sp(r) depending on the dire
tion of the arrow.Consider now the diagram D) of �gure 2.16 and de�ne the ve
tors� = p�1Xa=1 a�a � = q�1Xa=1 a�a = s�1Xa=1 a�a (2.253)Doing similar 
al
ulations to those leading to (2.246) we obtain�2 = p(p� 1)=2 �2 = q(q � 1) �2 = s(s� 1) (2.254)The ve
tors �, �, � and  (see diagram D) in �gure 2.16) are linearly indepen-dent. Sin
e  2 = 1 we have from (2.254)
os2 (�;  ) = (� �  )2�2 2 = (p� 1) (�p�1 �  )2�2= (1� 1=p)2 (2.255)where we have used that 2�p�1 �  = �1.Analogously we have 
os2 (�;  ) = (1� 1=q)2 (2.256)and 
os2 (�;  ) = (1� 1=s)2 (2.257)We 
an write  as = ( � �) �j � j2 + ( � �) �j � j2 + ( � �) �j � j2 + ( � �0) �0 (2.258)
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Figure 2.19:where �0 is a unit ve
tor in the subspa
e perpendi
ular to �, � and �. Then 2 = 1 = ( � �)2�2 + ( � �)2�2 + ( � �)2�2 + ( � �0)2 (2.259)Noti
e that ( � �) has to be di�erent from zero, sin
e �, �, � and  are linarlyindependent, we get the inequality
os2 (�;  ) + 
os2 (�;  ) + 
os2 (�;  ) < 1 (2.260)and so from (2.255-2.255) 1p + 1q + 1s > 1 (2.261)Whithou any loss of generality we 
an assume p � q � s. Then the possibilitiesare1. (p; q; s) = (p; 2; 2) with p any positive integer. The diagram we obtain isgiven in �gure 2.19 whi
h 
orresponds to the 
lassi
al Lie algebra so(2r).2. (p; q; s) = (p; 3; 2) with p taking the values 3, 4 or 5. The diagramswe obtain 
orrespond to the ex
eptional Lie algebras E6, E7 and E8respe
tively, given in �gure 2.20.This ends the sear
h for 
onne
ted admissible diagrams. We have only to
onsider the arrows on the diagrams with double and triple links. When thatis done we obtain all possible 
onne
ted Dynkin diagrams 
orresponding tothe simple Lie algebras. We list in �gure 2.21 the diagrams we have obtainedgiving the name of the 
orresponding algebra in both, the physi
ist's andmathemati
ian's notations.
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E 6

E 7

E 8

(p=3)

(p=4)

(p=5) Figure 2.20:
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1 2 3 r-1 r

rA  ~ SU(r+1)
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3 4 5
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E 7

1 2 3 4 5 6 7

8

E 8

1 2 3 4

4F

1 2

2G

1 2 r-3 r-2

r-1

r
rD  ~ SO(2r)

1 2 r-2 r-1 r

rC  ~ Sp(r)

rB  ~ SO(2r+1)

1 2 r-2 r-1 r

Figure 2.21: The Dynkin diagrams of the simple Lie algebras.



Chapter 3Representation theoryof Lie algebras
3.1 Introdu
tionIn this 
hapter we shall develop further the 
on
epts introdu
ed in se
tion 1.5for group representations. The 
on
ept of a representation of a Lie algebrais analogous to that of a group. A set of operators D1, D2, : : : a
ting ona ve
tor spa
e V is a representation of a Lie algebra in the representationspa
e V if we 
an de�ne an operation between any two of these operators su
hthat it reprodu
es the 
ommutation relations of the Lie algebra. We will beinterested mainly on matrix representations and the operation will be the usual
ommutator of matri
es. In addition we shall 
onsider the representations of
ompa
t Lie algebras and Lie groups only, sin
e the representation theory ofnon 
ompa
t Lie groups is beyond the s
ope of these le
ture notes.Some results on the representation theory of �nite groups 
an be extendedto the 
ase of 
ompa
t Lie groups. In some sense this this is true be
ause thevolume of the group spa
e is �nite for the 
ase of 
ompa
t Lie groups, andtherefore the integration over the group elements 
onverge. We state withoutproof two important results on the representation theory of 
ompa
t Lie groupswhi
h are also true for �nite groups:Theorem 3.1 A �nite dimensional representation of a 
ompa
t Lie group isequivalent to a unitary one.Theorem 3.2 A unitary representation 
an be de
omposed into unitary irre-du
ible representations. 105



106 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASWe then see that the irredu
ible representations (irreps.) 
onstitute thebuilding blo
ks for 
onstru
ting �nite dimensional representations of 
ompa
tLie groups. The aim of this 
hapter is to show how to 
lassify and 
onstru
tthe irredu
ible representations of 
ompa
t Lie groups and Lie algebras.3.2 The notion of weightsWe have de�ned in se
tion 2.6 (see de�nition 2.12) the Cartan subalgebra of asemisimple Lie algebra as the maximal abelian subalgebra wi
h 
an be diago-nalized simultaneously. Therefore we 
an take the basis of the representationspa
e V as the eigenstates of the Cartan subalgebra generators. Then we haveHi j �i = �i j �i i = 1; 2; 3:::r(rank) (3.1)The eigenvalues of the Cartan subalgebra generators 
onstitute r-
omponentve
tors and they are 
alled weights. Like the roots, the weights live in a r-dimensional Eu
lidean spa
e. There 
an be more than one base state asso
iatedto a single weight. So the base states 
an be degenerated.In se
tion 2.8 we have seen that the operator H� = 2� �H=�2, has integereigenvalues. Therefore from (3.1) we haveH� j �i = 2� � ��2 j �i (3.2)and 
onsenquently we have that2� � ��2 is an integer for any root � (3.3)Any ve
tor � satisfying this 
ondition is a weight, and in fa
t this is theonly 
ondition a weight has to satisfy. From (2.148) we see that any root is aweight but the 
onverse is not true. Noti
e that 2����2 does not have to be aninteger and therefore the table 2.2 does not apply to the weights.A weight is 
alled dominant if it lies in the Fundamental Weyl Chamber oron its borders. Obviously a dominant weight has a non negative s
alar produ
twith any positive root. It is possible to �nd among the dominant weights, rweights �a, a = 1; 2:::r, satisfying2�a � �b�2b = Æab for any simple root �b (3.4)



3.2. THE NOTION OF WEIGHTS 107In orther words we 
an �nd r dominant weights whi
h are orthogonal to allsimple roots ex
ept one. These weights are 
alled fundamental weights. Theyplay an important role in representation theory as we will see below.Consider now a simple root �a and any weight �. From (3.3) we have that2� � �a�2a = ma = integer (3.5)Using (3.4) we have 2�a�2a �  �� rXa=1ma�a! = 0 (3.6)Sin
e the simple roots 
onstitute a basis of an r-dimensional Eu
lidean spa
ewe 
on
lude that � = rXa=1ma�a (3.7)Therefore any weight 
an be written as a linear 
ombination of the funda-mental weights with integer 
oeÆ
ients. We now want to show that any ve
torformed by an integer linear 
ombination of the fundamental weights is also aweight, i.e., it satis�es the 
ondition (3.3). In order to do that we introdu
ethe 
on
ept of 
o-root , whi
h is a root devided by its squared lenght�v � ��2 (3.8)Sin
e (�v)2 = 1�2 (3.9)and 2�v � �v(�v)2 = 2� � ��2 (3.10)one sees that the 
o-roots satisfy all the properties of roots and 
onsequentlyare also roots. However the 
o-roots of a given algebra G are the roots ofanother algebra Gv , 
alled the dual algebra to G. The simply la
ed algebras,su(N) (AN1), so(2N) (DN ), E6 , E7 and E8, together with the ex
eptionalalgebras G2 and F4 are self-dual algebras, in the sense that G = Gv . Howeverso(2N+1) (BN ) is the dual algebra to sp(N) (CN) and vi
e versa. The Cartanmatrix of the dual algebra Gv is the transpose of the Cartan matrix of G sin
e(Kab)v = 2�va � �vb(�vb)2 = 2�a � �b�2a = Kba (3.11)



108 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASwhere we have used the fa
t that the simple 
o-roots are given by�va = �a�2a (3.12)Any 
o-root 
an be written as a linear 
ombination of the simple 
o-roots withinteger 
oeÆ
ients all of the same sign. To show that we observe from theorem2.7 that �v = ��2 = rXa=1na�2a�2�va (3.13)and from (3.4) we get na = 2�a � ��2a (3.14)Therefore �v = rXa=1 2�a � ��2 �va � rXa=1ma�va (3.15)sin
e from (3.3) we have that 2�a���2 is an integer. In additon these integers areall of the same sign sin
e all �a's lie on the Fundamental Weyl Chamber or onits border.Let � be a ve
tor de�ned by � = rXa=1 ka�a (3.16)where �a are the fundamental weights and ka are arbitrary integers. Using(3.15) and (3.4) we get2� � ��2 = 2�v � � =Xa;b makb2�b � �a�2a =Xa maka (3.17)Therefore � is a weight. So we have shown that any integer linear 
ombinationof the fundamental weights is a weigtht and that all weights are of this form.Consequently the weights 
onstitute a latti
e � 
alled the weight latti
e. Thisquantized spe
tra of weights is a 
onsequen
e of the fa
t that H� has integereigenvalues and is an important feature of representation theory of 
ompa
tLie algebras.As we have said any root is a weight and 
onsequently belong to �. We 
analso form a latti
e by taking all ve
tors whi
h are integer linear 
ombinationsof the simple roots. This latti
e is 
alled the root latti
e and is denoted by �r .All points in �r are weights and therefore �r is a sublatti
e of �. The weight
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e forms an abelian group under the addition of ve
tors. The root latti
e isan invariant subgroup and 
onsequently the 
oset spa
e �=�r has the stru
tureof a group (see se
tion 1.4). One 
an show that �=�r 
orresponds to the 
enterof the 
overing group 
orresponding to the algebra whi
h weight latti
e is �.We will show that all the weights of a given irredu
ible representation of a
ompa
t Lie algebra lie in the same 
oset.Before giving some examples we would like to dis
uss the relation betweenthe simple roots and the fundamental weights, whi
h 
onstitute two basis forthe root (or weight) spa
e. Sin
e any root is a weight we have that the simpleroots 
an be written as integer linear 
ombination of the fundamental weights.Using (3.4) one gets that the integer 
oeÆ
ients are the entries of the Cartanmatrix, i.e. �a =Xb Kab�b (3.18)and then �a =Xb K�1ab �b (3.19)So the fundamental weights are not, in general, written as integer linear 
om-bination of the simple roots.Example 3.1 SU(2) has only one simple root and 
onsequently only one fun-damental weight. Choosing a normalization su
h that � = 1, we have that2� � ��2 = 1 and so � = 12 (3.20)Therefore the weight latti
e of SU(2) is formed by the integers and half integernumbers and the root latti
e only by the integers. Then�=�r = ZZ2 (3.21)whi
h is the 
enter of SU(2).Example 3.2 SU(3) has two fundamental weights sin
e it has rank two. They
an be 
onstru
ted solving (3.4) or equivalently (3.19). The Cartan matrix ofSU(3) and its inverse are given by (see example 2.13)K =  2 �1�1 2 ! K�1 = 13  2 11 2 ! (3.22)So, from (3.19), we get that fundamental weights are�1 = 13 (2�1 + �2) �2 = 13 (�1 + 2�2) (3.23)
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Figure 3.1: The fundamental weights of A2 (SU(3) or SL(3))In example 2.10 we have seen that the simple roots of SU(3) are given by�1 = (1; 0) and �2 = ��1=2;p3=2�. Therefore�1 =  12 ; p36 ! �2 =  0; p33 ! (3.24)The ve
tors representing the fundamental weights are given in �gure 3.1.The root latti
e, �r , generated by the simple roots �1 and �2, 
orrespondsto the points on the interse
tion of lines shown in the �gure 3.2. The weightlatti
e, generated by the fundamental weights �1 and �2 , are all points of �rplus the 
entroid of the triangles, shown by 
ir
les and plus signs on the �gure3.2.The points of the weight latti
e 
an be obtained from the origin, �1 and �2by adding to them all points of the root latti
e. Therefore the 
oset spa
e �=�rhas three points whi
h 
an be represented by 0, �1 and �2. Sin
e �1 + �2 =�1 + �2 and 3�1 = 2�1 + �2 lie in the same 
oset as 0, we see that �=�r hasthe stru
ture of the 
y
li
 group ZZ3 whi
h is the 
enter of SU(3).3.3 The highest weight stateIn a irredu
ible representation one 
an obtain all states of the representationby starting with a given state and applying sequen
es of step operators on it.If that was not possible the representation would have an invariant subspa
eand therefore would not be irredu
ible.
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Figure 3.2: The weight latti
e of SU(3).



112 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASConsider a state with weight � satisfying (3.1). The state de�ned byj �0i � E� j �i (3.25)satis�es Hi j �0i = HiE� j �i= (E�Hi + [Hi ; E� ℄) j �i= (�i + �i)E� j �i (3.26)and therefore it has weight �+ �. Therefore the stateE�1E�2 : : : E�n j �i (3.27)has weight �+ �1 + : : :+ �n.For this reason the weights in an irredu
ible representation di�er by a sumof roots, and 
onsequently they all lie in the same 
oset in �=�r. Sin
e thatis the 
enter of the 
overing group we see that the weights of an irredu
iblerepresentation is asso
iated to only one element of the 
enter.In a �nite dimensional representation, the number of weights is �nite, sin
ethis is at most the number of base states (remember the weights 
an be degen-erated). Therefore, by applying sequen
es of step operators 
orresponding topositive roots on a given state we will eventually get zero. So, an irredu
ible�nite dimensional representation possesses a state su
h thatE� j �i = 0 for any � > 0 (3.28)This state is 
alled the highest weight state of the representation, and � is thehighest weight. It is possible to show that there is only one highest weightin an irrep. and only one highest weight state asso
iated to it. That is, thehighest weight is unique and non degenerate.All other states of the representation are obtained from the highest weightstate by the appli
ation of a sequen
e of step operators 
orresponding to neg-ative roots. The state de�ned byj �i � E��1E��2 : : : E��n j �i (3.29)a

ording to (3.26) has weight �� �1� �2 : : :� �n. All the basis states are ofthe form (3.29). If one applies a positive step operator on the state (3.29) theresulting state of the representation 
an be written as a linear 
ombination of



3.3. THE HIGHEST WEIGHT STATE 113states of the form (3.29). To see this, let � be a a positive root and � any ofthe negative roots appearing in (3.29). Then we haveE� j �i = (E��1E� + [E� ; E��1 ℄)E��2 : : : E��n j �i (3.30)In the 
ases where ���1 is a negative root or it is not a root or even ���1 = 0,we obtain that the se
ond term on the r.h.s. of (3.30) is a state of the form of(3.29). In the 
ase � � �1 is a positive root we 
ontiunue the pro
ess until allpositive step operators a
t dire
tly on the highest state j �i, and 
onsequentlyannihilate it. Therefore the state (3.30) is a linear 
ombination of the states(3.29).The weight latti
e � is invariant by the Weyl group. If � is a weight, andtherefore satis�es (3.3), it follows that �� (�) also satis�es (3.3) for any root�, and so is a weight. To show this we use the fa
t that �� (x) � �� (y) = x � yand �2� = 1. Then (denoting 
 = �� (�))2� � �� (�)�2 = 2� � �� (�)�� (�)2 = 2
 � �
2 = integer (3.31)However we 
an show that the set of weights of a given representation, whi
his a �nite subset of �, is invariant by the Weyl group. The state de�ned byj ��i � S� j �i (3.32)where j �i is a state of the representation and S� is de�ned in (2.154), is alsoa state of the representation sin
e it is obtained from j �i by the a
tion of anoperator of the representation. Using (2.155) we getx �H j ��i = S�S�1� x �HS� j �i= S��� (x) �H j �i= �� (x) � � j ��i= �� (�) � x j ��i (3.33)Sin
e the ve
tor x is arbitrary we obtain that the state j ��i has, weight �� (�)Hi j ��i = HiS� j �i = �� (�)i S� j �i = �� (�)i j ��i (3.34)Therefore if � is a weight of the representation so is �� (�) for any root �.One 
an easily 
he
k that the root latti
e �r is also invariant by the Weylre
e
tions.
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onsequen
e of the above result is that the highest weight � of an irrep.is a dominant weight. By taking its Weyl re
e
tion�� (�) = �� 2� � ��2 � (3.35)one obtains that 2� � � has to be non negative if � is a positive root, sin
e�� (�) is also a weight of the representation and 
onsequenlty 
an not ex
eed� by a multiple of a positive root. Therefore� � � � 0 for any positive root � (3.36)and the highest weight � is a dominant weight.The highest weight � 
an be used to label the representation. This is oneof the 
onsequen
es of the following theorem whi
h we state without proof.Theorem 3.3 There exists a unique irredu
ible representation of a 
ompa
tLie algebra (up to equivalen
e) with highest weight state j �i for ea
h � of theweight latti
e in the Fundamental Weyl Chamber or on its border.The importan
e of this theorem is that it provides some sort of 
lassi�
a-tion of all irreps. of a 
ompa
t Lie algebra. All other redu
ible representationsare 
onstru
ted from these ones. The irreps. 
an be labelled by their high-est weight � as D� or D(n1;n2;:::nr) where the na's are non-negative integersappearing in the expansion of � in terms of the fundamental weights �a, i.e.� = Pra=1 na�a, and na = 2���a�2a .An irrep. is 
alled a fundamental representation when its highest weight isa fundamental weight. Therefore the number of fundamental representationsof a semisimple 
ompa
t Lie algebra is equal to its rank.The highest weight of the adjoint representation is the highest positive root(see se
tion 2.13). It follows that the weights of the adjoint representation areall roots of the algebra together with zero whi
h is a weight r-fold degenerated(r= rank).We say a weight � is a minimal weight if it satis�es2� � ��2 = 0 or �1 for any root � (3.37)The representation for whi
h the highest weight is minimal is said to be aminimal representation. These representations play an important role in granduni�ed theories (GUT) in the sense that the 
onstituent fermions prefer, ingeneral, to form multiplets in su
h minimal representations.



3.3. THE HIGHEST WEIGHT STATE 115Example 3.3 In the example 3.1 we have seen that the only fundamentalweight of SU(2) is � = 12 . Therefore the dominant weights of SU(2) arethe positive integers and half integers. Ea
h one of these dominant weights
orresponds to an irredu
ible representation of SU(2). Then we have that� = 0 
orresponds to the s
alar representation, � = 12 the spinorial rep. whi
his the fundamental rep. of SU(2) (dim = 2), � = 1 is the ve
torial rep. whi
his the adjoint of SU(2) (dim = 3) and so on.Example 3.4 In the 
ase of SU(3) we have two fundamental representationswith highest weights �1, and �2 (see example 3.2. They are respe
tively thetriplet and antitriplet representations of SU(3). The rep. with highest weight�1+�2 = �3 is the adjoint. All representations with highest weight of the formwith � = n1�1 + n2�2, with n1 and n2 non negative integers are irredu
iblerepresentations of SU(3).
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itiesIf we apply the step operator E� or E��, for a �xed root �, su

essively on astate of weight � of a �nite dimensional representation, we will eventually getzero. That means that there exist positive integer numbers p and q su
h thatE� j �+ p�i and E�� j �� q�i (3.38)p and q are the greatest positive integers for whi
h �+p� and ��q� are weightsof the representation. One 
an show that all ve
tors of the form �+ n� withn integer and �q < n < p , are weights of the representation. Therefore theweights form unbroken strings, 
alled weight strings , of the form�+ p� ;�+ (p� 1)� ; : : : �+ � ;� ;�� � ; : : : �� q� (3.39)We have shown in the last se
tion that the set of weights of a representation isinvariant under the Weyl group. The e�e
t of the a
tion of the Weyl re
e
tion�� on a weight is to add or subtra
t a multiple of the root �, sin
e �� (�) =�� 2����2 �, and from (3.3) we have that 2����2 is an integer. Therefore the weightstring (3.39) is invariant by the Weyl re
e
tion ��. In fa
t, �� reverses thestring (3.39) and 
onsenquently we have that�� (�+ p�) = �� q� = �� 2� � ��2 �� p� (3.40)and so 2� � ��2 = q � p (3.41)This result is similar to (2.187) whi
h was obtained for root strings. However,noti
e that the possible values of q � p , in this 
ase, are not restri
t to thevalues given in (2.187) (q� p 
an, in prin
iple, have any integer value). In the
ase where � is the highest weight of the representation we have that p is zero if� is a positive root, and q is zero if � is negative. The relation (3.41) providesa pra
ti
al way of �nding the weights of the representation. In some 
ases it iseasier to �nd some weights of a given representation by taking su

essive Weylre
e
tions of the highest weight. However, this method does not provide, ingeneral, all the weights of the representation.On
e the weights are known one has to 
al
ulate their multipli
ities. Thereexists a formula, due to Kostant, whi
h expresses the multipli
ities dire
tly asa sum over the elements of the Weyl group. However, it is not easy to usethis formula in pra
ti
e. There exists a re
ursive formula, 
alled Freudenthal's
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h is mu
h easier to use. A

ording to it the multipli
ity m (�)of a weight � in an irredu
ible representation of highest weight � is givenre
ursively as (see se
tions 22.3 and 24.2 of [HUM 72℄)�(�+ Æ)2 � (�+ Æ)2�m (�) = 2X�>0 p(�)Xn=1� � (�+ n�)m (�+ n�) (3.42)where Æ � 12 X�>0� (3.43)The �rst summation on the l.h.s. is over the positive roots and the se
ond oneover all positive integers n su
h that �+ n� is a weight of the representation,and we have denoted by p (�) the highest value of n. By starting withm (�) = 1one 
an use (3.43) to 
al
ulate the multipli
ities of the weights from the higherones to the lower ones.If the states j �i1 and j �i2 have the same weight, i.e., � is degenerated,then the weight �� (�) is also degenerate and has the same multipli
ity as �.Using (3.32) we obtain that the statesj �� (�)i1 = S� j �i1 and j �� (�)i2 = S� j �i2 (3.44)have weight �� (�) and their linear independen
e follows from the linear inde-penden
e of j �i1 and j �i2. Indeed,0 = x1 j �� (�)i1 + x2 j �� (�)i2 = S� (x1 j �i1 + x2 j �i2) (3.45)So, if j �i1 and j �i2 are linearly independent one gets that one must havex1 = x2 = 0 and so, j �� (�)i1 and j �� (�)i2 are also linearly independent.Therefore all the weights of a representation whi
h are 
onjugate under theWeyl group have the same multipli
ity. This fa
t 
an be used to make theFreudenthal's formula more eÆ
ient in the 
al
ulation of the multipli
ities.Example 3.5 Using the results of example 2.14 we have that the Cartan ma-trix of so(5) ond its inverse areK =  2 �1�2 2 ! K�1 = 12  2 12 2 ! (3.46)Then, using (3.19), we get that the fundamental weights of so(5) are�1 = 12 (2�1 + �2) �2 = �1 + �2 (3.47)
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Figure 3.3: The weights of the spinor representation of so(5).where �1 and �2 are the simple roots of so(5). Let us 
onsider the fundamen-tal representation with highest weight �1. The s
alar produ
ts of �1 with thepositive roots of so(5) are2�1 � �1�21 = 1 2�1 � �2�22 = 02�1 � (�1 + �2)(�1 + �2)2 = 1 2�1 � (2�1 + �2)(2�1 + �2)2 = 1 (3.48)Therefore using (3.41) (with p = 0 sin
e �1 is the highest weight) we get that�1 ; (�1 � �1) ; (�1 � �1 � �2) ; (�1 � 2�1 � �2) (3.49)are weights of the representation. By taking Weyl re
e
tions of these weightsor using (3.41) further one 
an 
he
k that these are the only weights of thefundamental rep. with highest weight �1.Sin
e all weights are 
onjugate under the Weyl group they all have the samemultipli
ity as �1 , whi
h is one. Therefore they are not degenerate and therepresentation has dimension 4. This is the spinor representation of so(5).One 
an 
he
k that the weights of the fundamental representation of so(5) withhighest weight �2 are�2 ; �2 � �2 = �1 ; �2 � �1 � �2 = 0 ; (3.50)�2 � 2�1 � �2 = ��1 ; �2 � 2�1 � 2�2 = � (�1 + �2)



3.5. THE WEIGHT Æ 119Again these weights are not degenerate and the representation has dimension5. This is the ve
tor representation of so(5).Example 3.6 Consider the irrep. of su(3) with highest weight � = �3 =�1 + �2 , i.e., the highest positive root. Using (3.41) and performing Weylre
e
tions one 
an 
he
k that the weights of su
h rep. are all roots plus thezero weight. Sin
e the roots are 
onjugated to �3 = � under the Weyl group we
on
lude that they are non degenerated weights. The multipli
ity of the zeroweight 
an be 
al
ulated from the Freundenthal's formula. From (3.43) we havethat, in this 
ase, Æ = �3 and so from (3.42) we get�4�23 � �23�m (0) = 2 �m (�1)�21 +m (�2)�22 +m (�3)�23� (3.51)Sin
e m (�1) = m (�2) = m (�3) = 1 and �21 = �22 = �23 we obtain thatm (0) = 2. So there are two states with zero weight and 
onsequently therepresentation has dimension 8. This is the adjoint of su(3).3.5 The weight ÆA ve
tor whi
h plays an important role in the representation theory of Liealgebras is the ve
tor Æ de�ned in (3.43). It is half of the sum of all positiveroots. In same 
ases Æ is a root, but in general that is not so. However Æ isalways a dominant weight of the algebra. In other to show that we need someresults whi
h we now prove.Let �a be a simple root and let � be a positive root non proportional to�a. If we write � = Prb=1 nb�b we have that nb 6= 0 for some b 6= a. Now,the 
oeÆ
ient of �b in ��a (�) is still nb, and 
onsequently ��a (�) has at leastone positive 
oeÆ
ient. So, ��a (�) is a positive root, and it is di�erent from�a, sin
e �a is the image of ��a under ��a. Therefore we have proved thefollowing lemma.Lemma 3.1 If �a is a simple root, then ��a permutes the positive roots otherthan �a.From this lemma it follows that��a (Æ) = Æ � �a (3.52)and 
onsequently 2Æ � �a�2a = 1 for any simple root �a (3.53)



120 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASFrom the de�nition (3.43) it follows that Æ is a ve
tor on the root (or weight)spa
e and therefore 
an be written in terms of the simple roots or the funda-mental weights. Writing Æ = rXb=1 xb�b (3.54)we get from (3.4) and (3.53) that2Æ � �a�2a = 1 = rXb=1 xb2�b � �a�2a = xa (3.55)So we have shown that Æ = rXb=1�b (3.56)and 
onsequently Æ is a dominant weight.



3.6. CASIMIR OPERATORS 1213.6 Casimir operatorsLet �s1s2:::sn be a tensor invariant under the adjoint representation of a Liegroup G. By that we mean�s1s2:::sn = ds1s01 (g) ds2s02 (g) : : : dsns0n (g) �s01s02:::s0n (3.57)for any g 2 G, and where dsjs0j (g) is the matrix representing g in the adjointrepresentation, i.e. gTsg�1 = Ts0ds0s (g) (see (2.31)).Consider now a representation D of G and 
onstru
t the operatorC(D)n � �s1s2:::sn D (Ts1)D (Ts2) : : :D (Tsn) (3.58)Noti
e that su
h operator 
an only be de�ned on a given representation sin
eit involves the produ
t of operators and not Lie bra
kets of the generators.We then haveD (g)C(D)n = �s1s2:::sn D �gTs1g�1�D �gTs2g�1� : : : D �gTsng�1�D (g)= ds01s1 (g) : : : ds0nsn (g) �s1:::snD �Ts01� : : :D �Ts0n�D (g)= �s01:::s0nD �Ts01� : : :D �Ts0n�D (g)= C(D)n D (g) (3.59)So, we have shown that C(D)n 
ommutes with any matrix of the representationhC(D)n ; D (g) i = 0 (3.60)We are interested in operators that 
an not be redu
ed to lower orders.That implies that the tensor �s1s2:::sn has to be totally symmetri
. Indeed,suppose that �s1s2:::sn has an antisymmetri
 part in the indi
es sj and sj+1.Then we writeD �Tsj�D �Tsj+1� = 12fD �Tsj� ; D �Tsj+1�g+ 12 hD �Tsj� ; D �Tsj+1� i= 12fD �Tsj� ; D �Tsj+1�g+ f tsjsj+1D (Tt) (3.61)and so, C(D)n will have terms involving the produ
t of (n�1) operators. There-fore, by totally symmetrizing the tensor �s1s2:::sn we get operators C(D)n whi
hare monomials of order n in D (Ts)'s. Su
h operators are 
alled Casimir opera-tors, and n is 
alled their order. They play an important role in representation



122 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASAr SU(r + 1) 2, 3, 4, : : : r + 1Br SO(2r + 1) 2, 4, 6, : : : 2rCr Sp(r) 2, 4, 6 : : : 2rDr SO(2r) 2, 4, 6 : : : 2r � 2, rE6 2, 5, 6, 8, 9, 12E7 2, 6, 8, 10, 12, 14, 18E8 2, 8, 12, 14, 18, 20, 24, 30F4 2, 6, 8, 12G2 2, 6Table 3.1: The orders of the Casimir operators for the simple Lie Groupstheory. From S
hur's lemma 1.1 it follows that in an irredu
ible representationthe Casimir operators have to be proportional to the identity.One way of 
onstru
ting tensors whi
h are invariant under the adjointrepresentation, is by 
onsidering tra
es of produ
ts of generators in a givenrepresentation D0, sin
eTr (D0 (Ts1Ts2 : : : Tsn)) = Tr �D0 �gTs1g�1gTs2g�1 : : : gTsng�1�� (3.62)Then taking �s1s2:::sn � 1n! XpermutationsTr (D0 (Ts1Ts2 : : : Tsn)) (3.63)we get Casimir operators. However, one �nds that after the symetrization pro-
edure very few tensors of the form above survive. It follows that a semisimpleLie algebra of rank r possesses r invariant Casimir operators fun
tionally in-dependent. Their orders, for the simple Lie algebras, are given in table 3.1.3.6.1 The Quadrati
 Casimir operatorNoti
e from table 3.1 that all simple Lie groups have a quadrati
 Casimiroperator. That is be
ause all su
h groups have an invariant symmetri
 tensorof order two whi
h is the Killing form (see se
tion 2.4)�st = Tr (d (Ts) d (Tt)) (3.64)and C(D)2 � �stD (Ts)D (Tt) (3.65)



3.7. CHARACTERS 123where �st is the inverse of �st.Using the normalization (2.134) of the Killing form, we have that theCasimir operator in the Cartan-Weyl basis is given byC(D)2 = rXi=1D (Hi)D (Hi)+X�>0 �22 (D (E�)D (E��) +D (E��)D (E�)) (3.66)Sin
e the Casimir operator 
ommutes with all generators, we have from theS
hur's lemma 1.1 that in an irredu
ible representation it must be propor-tional to the unit matrix. Denoting by � the highest weight of the irredu
iblerepresentation D we haveC(D)2 j �i =  rXi=1 �2i + X�>0 �22 [D (E�) ; D (E��) ℄! j �i=  �2 + X�>0 �22 H2�! j �i=  �2 + X�>0� � �! j �i (3.67)where we have used (3.28) and (2.125). So, if D, with highest weight �, isirredu
ible, we 
an write using (3.43) thatC(D)2 = � � (�+ 2Æ) 1l = �(�+ Æ)2 � Æ2� 1l (3.68)where 1l is the unit matrix in the representation D under 
onsideration.Example 3.7 In the 
ase of SU(2) the quadrati
 operator is J2 , i.e., thesquare of the angular momentum. Indeed, from example 3.1 we have that� = 1, and then Æ = 1=2 and therefore C(D)2 = � (�+ 1). Sin
e � is a positiveinteger or half integer we see that these are really the eigenvalues of J2.3.7 Chara
tersIn de�nition 1.13 we de�ned the 
hara
ter of an element g of a group G in agiven �nite dimensional representation of G, with highest weight �, as beingthe tra
e of the matrix that represents that element, i.e.�� (g) � Tr (D (g)) (3.69)Obviously equivalent representations (see se
tion 1.5) have the same 
hara
-ters. Analogously, two 
onjugate elements, g1 = g3g2g�13 , have the same 
har-a
ter in all representations. Therefore the 
onjuga
y 
lasses 
an be labelledby the 
hara
ters.



124 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASExample 3.8 Using (2.27) and the 
ommutation relations (2.58) for the al-gebra of so(3) (or su(2)) one gets thatei�2 T2 T3 e�i�2 T2 = T1 (3.70)and 
onsequently ei�2 T2 ei�T3 e�i�2 T2 = ei�T1 (3.71)An analogous result is obtained if we inter
hange the roles of the generators T1, T2 and T3. Therefore the rotations by a given angle �, no matter the axis, are
onjugate. The 
onjuga
y 
lasses of SO(3) are de�ned by the angle of rotation,and the 
hara
ters in a representation of spin j are given by�j (�) = �j �ei�T3� = jXm=�j eim� (3.72)where m are the eigenvalues of T3 (see se
tion 2.5). We have a geometri
progression and therefore�j (�) = ei(j+ 12)� � e�i(j+ 12)�ei�=2 � e�i�=2 (3.73)Noti
e that rotations by � and �� have the same 
hara
ter.The relation (3.71) 
an be generalized for any 
ompa
t Lie group. Anyelement of a 
ompa
t group is 
onjugate to an element of the abelian subgroupwhi
h is the exponentiation of the Cartan subalgebra, i.e.g = g0ei��Hg0�1 (3.74)Therefore the 
onjuga
y 
lasses, and 
onsequently the 
hara
ters, 
an be la-belled by r parameters or "angles" (r = rank).However, the elements of the abelian group parametrized by � and �� (�)have the same 
hara
ter, sin
e from (2.155) we haveS�ei��HS�1� = ei��(�)�H (3.75)Thus the parameter � and its Weyl re
e
tions parametrize the same 
onjuga
y
lass.The generalization of (3.73) to any 
ompa
t group was done by H. Weyl in1935. In a representation with highest weight the elements of the 
onjuga
y
lass labelled by have a 
hara
ter given by�� (�) = P�2W (sign�) ei�(�+Æ)��eiÆ��Q�>0 (1� e�i���) (3.76)



3.7. CHARACTERS 125where the summation is over the elements � of the Weyl group W , and wheresign is 1 (�1) if the element � of the Weyl group is formed by an even (odd)number of re
e
tions. Æ is the same as the one de�ned in (3.43). This relationis 
alled the Weyl 
hara
ter formula.The 
hara
ter 
an also be 
al
ulated on
e one knows the multipli
ities ofthe weights of the representation. From (3.69) and (3.74) we have that�� (�) = TrD� �ei��H� =X� m (�) ei��� (3.77)where the summation is over the weights of the representation and m (�) aretheir multipli
ities. These 
an be obtained from Freudenthal's formula (3.42).In the s
alar representation the elements of the group are represented bythe unity and the highest weight is zero. So setting � = 0 in (3.76) we obtainwhat is 
alled the Weyl denominator formulaX�2W (sign�) ei�(Æ)�� = eiÆ�� Y�>0 �1� e�i���� (3.78)In general, su
h formula provides a nontrivial relation between a produ
t anda sum. Substituting (3.78)in (3.76) we 
an write the Weyl 
hara
ter formulaas the ratio of two sums:�� (�) = P�2W (sign�) ei�(�+Æ)��P�2W (sign�) ei�(Æ)�� (3.79)The dimension of the representation 
an be obtained from the Weyl 
har-a
ter formula (3.76) noti
ing thatdimD� = Tr (1l) = �� (0) (3.80)we then obtain the so 
alled Weyl dimensionality formuladimD� = Q�>0 (�+ Æ) � �Q�>0 Æ � � (3.81)Example 3.9 In the 
ase of SO(3) (or SU(2)) we have that � = 1, Æ = 1=2and 
onsequently we have from (3.81) thatdim Dj = 2j + 1 (3.82)This result 
an also be obtained from (3.73) by taking the limit � ! 0 andusing L'Hospital's rule



126 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRAS(m1; m2) dimension(1; 0) (triplet) 3(0; 1) (anti-triplet) 3(2; 0) 6(0; 2) 6(1; 1) (adjoint) 8(3; 0) 10(0; 3) 10(2; 1) 15(1; 2) 15Table 3.2: The dimensions of the smallest irreps. of SU(3)Example 3.10 Consider an irrep. of SU(3) with highest weight �. We 
anwrite � = m1�1 + m2�2 where �1 and �2 are the fundamental weights andm1 and m2 are non-negative integers. From (3.56) we have that (Æ + �)2 =(m1 + 1)�1 + (m2 + 1)�2. Normalizing the roots of SU(3) as �2 = 2 we have(from (3.4)) that �a � �b = Æab (a; b = 1; 2), where �1 and �2 are the simpleroots and therefore ( �3 = �1 + �2 )(Æ + �) � �1 = m1 + 1 ; (Æ + �) � �2 = m2 + 1 ; (Æ + �) � �3 = m1m2 + 2Æ � �1 = Æ � �2 = 1 ; Æ � �3 = 2 (3.83)So, from (3.81) the dimension of the irrep. of SU(3) with highest weight � isdim D� = dim D� = 12 (m1 + 1) (m2 + 1) (m1 +m2 + 2) (3.84)In table 3.2 we give the dimensions of the smallest irreps. of SU(3).Example 3.11 Similarly let us 
onsider the irreps. of SO(5) (or Sp(2)) withhighest weight � = m1�1+m2�2. From example 2.14 we have that the positiveroots of SO(5) are �1, �2, �3 � �1 + �2, and �4 � 2�1 + �2, and so using(3.4) and (3.56) we get (setting �21 = 1, �22 = 2)2Æ � �1�21 = 2Æ � �2�22 = 1 ; 2Æ � �3�23 = 321 ; 2Æ � �4�24 = 22 (Æ + �) � �1�21 = m1 + 1 ; 2 (Æ + �) � �2�22 = m2 + 1 (3.85)2 (Æ + �) � �3�23 = 12 (m1 + 2m2 + 3) ; 2 (Æ + �) � �4�24 = 12 (m1 +m2 + 2)



3.7. CHARACTERS 127(m1; m2) dimension(1; 0) (spinor) 4(0; 1) (ve
tor) 5(2; 0) (adjoint) 10(0; 2) 14(1; 1) 16(3; 0) 20(0; 3) 30(2; 1) 35(1; 2) 40Table 3.3: The dimensions of the smallest irreps. of SO(5) (or Sp(2))Therefore from (3.81)dim D(m1;m2) = 16 (m1 + 1) (m2 + 1) (m1 +m2 + 2) (m1 + 2m2 + 3) (3.86)The smallest irreps. of SO(5) (or Sp(2)) are shown in table 3.3.We give in �gures 3.4 and 3.5 the dimensions of the fundamental represen-tations of the simple Lie algebras (extra
ted from [DYN 57℄).
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al Lie groups.
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130 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRAS3.8 Constru
tion of matrix representationsWe have seen that �nite dimensional representations of 
ompa
t Lie groupsare equivalent to unitary ones (see theorem 3.1). In su
h representations theCartan subalgebra generators and step operators 
an be 
hosen to satisfy1Hyi = Hi ; Ey� = E�� (3.87)We have 
hosen the basis of the representation to be formed by the eigenstatesof the Cartan subalgebra generators. Using (3.1) and (3.87) we haveh�0 j Hi j �i = �ih�0 j �i = �0ih�0 j �i (3.88)and so (�0 � �) h�0 j �i = 0 (3.89)and 
onsequently states with di�erent weights are orthogonal. In the 
ase aweight is degenerate, it is possible to �nd an orthogonal basis for the subspa
egenerated by the states 
orresponding to that degenerate weight. We thenshall denote the base states of the representation by j �; ki where � is the
orresponding weight and k is an integer number that runs from 1 to m(�),the multipli
ity of �. We 
an always normalize these states su
h thath�0; k0 j �; ki = Æ�;�0 Ækk0 (3.90)If T denotes an operator of the representation of the algebra then the matrixD (T )(�0;k0) (�;k) � h�0; k0 j T j �; ki (3.91)form a matrix representation sin
e they reprodu
e the 
ommutation relationsof the algebra. Indeed[D (T ) ; D (T 0) ℄(�0;k0) (�;k) = X�00;k00 h�0; k0 j T j �00; k00ih�00; k00 j T 0 j �0; k0i� X�00;k00 h�0; k0 j T 0 j �00; k00ih�00; k00 j T j �0; k0i= h�0; k0 j [T ; T 0 ℄ j �0; k0i= D ([T ; T 0 ℄)(�0;k0) (�;k) (3.92)1In order to simplify the notation we will denote the operators D (Hi) and D (E�) by Hiand E� respe
tively.



3.8. CONSTRUCTION OF MATRIX REPRESENTATIONS 131where we have used the fa
t that1l =X�;k j �; kih�; k j (3.93)is the identity operator.When a step operator E� a
ts on a state of weight �, it either annihilatesit or produ
es a state of weight �+ �. Therefore, using (3.93) and (3.90) onegets E� j �; ki = X�0;k0 j �0; k0ih�0; k0 j E� j �; ki= m(�+�)Xl=1 j �+ �; lih�+ �; l j E� j �; ki (3.94)where the sum is over the states of weight � + �. Therefore, from (3.91) onehas D (E�)(�0;k0) (�;k) = h�+ �; k0 j E� j �; kiÆ�0;�+� (3.95)The matrix elements of Hi are known on
e we have the weights of therepresentation, sin
e from (3.1) and (3.90)D (Hi)(�0;k0) (�;k) = h�0; k0 j Hi j �; ki = �i Æ�0;� Æk0;k (3.96)Therefore, in order to 
onstru
t the matrix representation of the algebrawe have to 
al
ulate the \transition amplitudes" h�+ �; l j E� j �; ki. Noti
ethat from (3.87) h�+ �; l j E� j �; kiy = h�; k j E�� j �+ �; li (3.97)Now, using the 
ommutation relation (see (2.218))[E� ; E�� ℄ = 2� �H�2 (3.98)one getsh�; k j [E� ; E�� ℄ j �; ki = h�; k j 2� �H�2 j �; ki (3.99)= 2� � ��2= h�; k j E�E�� j �; ki � h�; k j E��E� j �; ki= m(���)Xl=1 h�; k j E� j �� �; lih�� �; l j E�� j �; ki� m(�+�)Xl=1 h�; k j E�� j �+ �; lih�+ �; l j E� j �; ki



132 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASand so, using (3.97)m(���)Xl=1 j h�; k j E� j �� �; li j2 �m(�+�)Xl=1 j h�+ �; l j E� j �; ki j2= 2� � ��2(3.100)where m (�+ �) and m (�� �) are the multipli
ities of the weights �+� and�� � respe
tively.The relation (3.100) 
an be used to 
al
ulate the modules of the transitionamplitudes re
ursively. By taking � to be a positive root and � the highestweight � of the representation we have that the se
ond term on the l.h.s. of(3.100) vanishes. Sin
e, in a irrep., � is not degenerate we 
an negle
t theindex k and write m(���)Xl=1 j h� j E� j �� �; li j2= 2� � ��2 = q (3.101)where, a

ording to (3.41), q is the highest positive integer su
h that � � q�is a weight of the representation. Taking now the se
ond highest weight werepeat the pro
ess and so on.The other relations that the transition amplitudes have to satisfy 
omefrom the 
ommutation relations between step operators. If �+ � is a root wehave from (2.218)h�+ � + �; l j [E� ; E� ℄ j �; ki = (q + 1) "(�; �)h�+ � + �; l j E�+� j �; ki(3.102)Then using (3.90) and (3.94) one getsm(�+�)Xk0=1 h�+ � + �; l j E� j �+ �; k0ih�+ �; k0 j E� j �; ki� m(�+�)Xk0=1 h�+ �+ �; l j E� j �+ �; k0ih�+ �; k0 j E� j �; ki= (q + 1) "(�; �)h�+ � + �; l j E�+� j �; ki (3.103)where q is the highest positive integer su
h that ��q� (or equivalently ��q�,sin
e we are assuming �+� is a root) is a root, and "(�; �) are signs determinedfrom the Ja
obi identities (see se
tion 2.14)We now give some examples to ilustrate how to use (3.100) and (3.103)to 
onstru
t matrix representations. This method is very general and 
onse-quently diÆ
ult to use when the representation (or the algebra) is big. Thereare other methods whi
h work better in spe
i�
 
ases.



3.8. CONSTRUCTION OF MATRIX REPRESENTATIONS 1333.8.1 The irredu
ible representations of SU(2)In se
tion 2.5 we have studied the representations of SU(2). We have seenthat the weights of SU(2), denoted by m, are integers or half integers, and ona given irredu
ible representation with highest weight j they run from �j to jin integer steps. The weights are non-degenerated and so the representationshave dimensions 2j + 1. As we did in se
tion 2.5 we shall denote the basis ofthe representation spa
e asj j;mi m = �j;�j + 1; : : : ; j � 1; j (3.104)and they are orthonormal hj;m0 j j;mi = Æm;m0 (3.105)The Chevalley basis for SU(2) satisfy the 
ommutation relations[H ; E� ℄ = �E� [E+ ; E� ℄ = H (3.106)where H = 2� �H=�2, with � being the only positive root of SU(2). In se
tion2.5 we have used the basis[T3 ; T� ℄ = �T� [T+ ; T� ℄ = 2T3 (3.107)and so we have E� � T� and H � 2T3. Sin
e m are eigenvalues of T3T3 j j;mi = m j j;mi (3.108)we get from (3.91) the matrix representing T3 asD(j)m0;m (T3) = hj;m0 j T3 j j;mi = mÆm;m0 (3.109)Using the relation (3.100), whi
h is the same as taking the expe
tationvalue on the state j j;mi of both sides of the se
ond relation in (3.107), we getj hj;m j T+ j j;m� 1i j2 � j hj;m + 1 j T+ j j;mi j2= 2m (3.110)where we have used the fa
t that T y+ = T� (see (3.87)). Noti
e that T+ j j; ji =0, sin
e j is the highest weight and soj hj; j j T+ j j; j � 1i j2= 2j (3.111)Clearly, su
h result 
ould also be obtained dire
tly from (3.101). The othermatrix elements of T+ 
an then be obtained re
ursively from (3.110). Indeed,



134 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASdenoting 
m �j hj;m + 1 j T+ j j;mi j2, we get 
j�1 = 2j, 
j�2 = 2j +2(j� 1),
j�3 = 2j + 2(j � 1) + 2(j � 2), and so
m = j�m�1Xl=0 2(j � l) = (j �m)(j +m + 1) = j(j + 1)�m(m + 1)Therefore j hj;m + 1 j T+ j j;mi j2= j(j + 1)�m(m + 1) (3.112)and sin
e hj;m+ 1 j T+ j j;miy = hj;m j T� j j;m+ 1i (3.113)we get j hj;m� 1 j T� j j;mi j2= j(j + 1)�m(m� 1) (3.114)The phases of su
h matrix elements 
an be 
hosen to vanish, sin
e in SU(2)we do not have a relation like (3.103) to relate them. Therefore, we getT� j j;mi = qj(j + 1)�m(m� 1) j j;m� 1i (3.115)and so, D(j)m0;m (T+) = hj;m0 j T+ j j;mi= qj(j + 1)�m(m + 1) Æm0;m+1D(j)m0;m (T�) = hj;m0 j T� j j;mi= qj(j + 1)�m(m� 1) Æm0;m�1 (3.116)3.8.2 The triplet representation of SU(3)Consider the fundamental representation of SU(3) with highest weight �1. Inexample 3.10 we have seen it has dimension 3, and in fa
t it is the so 
alledtriplet representation of SU(3). From (3.4) we have2�1 � �1�21 = 2�1 � �3�23 = 1 (3.117)where �3 = �� 1 + �2, �1 and �2 are the the simple roots of SU(3). So,from(3.41) we get that �1, (�1 � �1) and (�1 � �3) are weights of the representation.Sin
e the representation has dimension 3 it follows that they are the onlyweights and they are non-degenerate. Those weights are shown in �gure 3.6.
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Figure 3.6: The weights of the triplet representation of SU(3)Taking the Cartan subalgebra generators in the Chevalley basis we haveh�0 j Ha j �i = 2�a � ��2a Æ�0;� a = 1; 2 (3.118)where we have used (3.90), and where we have negle
ted the degenera
y index.From (3.4) and the Cartan matrix of SU(3) (see example 2.13) we have2�1 � (�1 � �1)�21 = �1 2�2 � (�1 � �3)�22 = 12�1 � (�1 � �3)�21 = 0 2�2 � (�1 � �1)�22 = 1 (3.119)Denoting the states as (as a matter of ordering the rows and 
olumus of thematri
es)j 1i �j �1i ; j 2i �j �1 � �1i ; j 3i �j �1 � �3i (3.120)we obtain from (3.117), (3.118), (3.119) and that the matri
es representing theCartan subalgebra generators areD�1 (H1) = 0B� 1 0 00 �1 00 0 0 1CA D�1 (H2) = 0B� 0 0 00 1 00 0 �1 1CA (3.121)Using (3.101) and (3.117) we have thatj h�1 j E�1 j �1 � �1i j2=j h�1 j E�3 j �1 � �3i j2= 1 (3.122)



136 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASMaking � = �1 � �1 and � = �2 in (3.100) and using the fa
t thath�1 � �1 + �2 j E�2 j �1 � �1i = 0 (3.123)sin
e �1 � �1 + �2 is not weight, we getj h�1 � �1 j E�2 j �1 � �1 � �2i j2= 1 (3.124)These are the only non vanishing \transition amplitudes". From (3.95) and(3.120) we see that the only non vanishing elements of the matri
es representingthe step operators areD�1 (E�1) = h�1 j E�1 j �1 � �1i � ei�D�1 (E�2) = h�1 � �1 j E�2 j �1 � �3i � ei'D�1 (E�3) = h�1 j E�3 j �1 � �3i � ei� (3.125)where, a

ording to (3.122) and (3.124), we have introdu
ed the angles �, �and '. The negative step operators are obtained from these ones using (3.87).Choosing the 
o
y
le " (�1; �2) = 1 and sin
e �2 � �1 is not a root, wehave from (3.103) that the fases have to satisfy (set � = �1 � �3 , � = �1 and� = �2 in (3.103)) � + ' = � (3.126)There are no futher restri
tions on these fases.Therefore we get that the matri
es whi
h represent the step operators inthe triplet representation areD�1 (E�1) = 0B� 0 ei� 00 0 00 0 0 1CA D�1 (E��1) = 0B� 0 0 0e�i� 0 00 0 0 1CA (3.127)D�1 (E�2) = 0B� 0 0 00 0 ei'0 0 0 1CA D�1 (E��2) = 0B� 0 0 00 0 00 e�i' 0 1CAD�1 (E�3) = 0B� 0 0 ei(�+')0 0 00 0 0 1CA D�1 (E��3) = 0B� 0 0 00 0 0e�i(�+') 0 0 1CAIn general, the fases � and ' are 
hosen to vanish. The algebra of SU(3)is generated by taking real linear 
ombination of the matri
es Ha (a = 1; 2),(E� + E��) and (E� � E��). On the other hand the algebra of SL(3) is gener-ated by the same matri
es but the third one does not have the fa
tor i. Noti
ethat in this way the triplet representation of the group SU(3) is unitary whilstthe triplet of SL(3) is not.
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Figure 3.7: The weights of the anti-triplet representation of SU(3)3.8.3 The anti-triplet representation of SU(3)We now 
onsider the other fundamental representation of SU(3) whi
h hashighest weight �2 . In example 3.10 we saw it also has diemnsion 3 and it isthe anti-triplet of SU(3). Using (3.4) we get that the weight are �2, �2 � �2and �2 � �3 and 
onsequently they are not degenerate. They are shown in�gure 3.7.We shall denote the states asj 1i �j �2i ; j 2i �j �2 � �2i ; j 3i �j �2 � �3i (3.128)Using the Cartan matrix of SU(3) (see example 2.13), (3.4) and (3.118) weget that the matri
es whi
h represent the Cartan subalgebra generators in theChevalley basis areD�2 (H1) = 0B� 0 0 00 1 00 0 �1 1CA D�2 (H2) = 0B� 1 0 00 �1 00 0 0 1CA (3.129)Using (3.101) we have thatj h�2 j E�2 j �2 � �2i j2=j h�2 j E�3 j �2 � �3i j2= 1 (3.130)and from (3.100) j h�2 � �2 j E�1 j �2 � �1 � �2i j2= 1 (3.131)



138 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASUsing (3.95) we get that the only non vanishing matrix elements of the stepoperators are D�2 (E�1) = h�2 � �2 j E�1 j �2 � �3i � ei�D�2 (E�2) = h�2 j E�2 j �2 � �2i � ei'D�2 (E�3) = h�2 j E�3 j �2 � �3i � ei� (3.132)where, a

ording to (3.130) and (3.131), we have introdu
ed the fases �, ' and�. From (3.87) we obtain the matri
es for the negative step operators. Usingthe fa
t that (q + 1) " (�1; �2) = 1 we get from (3.103) that these fases have tosatisfy � + ' = �+ � (3.133)Therefore the matri
es whi
h represent the step operators in the anti-tripletrepresentation areD�2 (E�1) = 0B� 0 0 00 0 ei�0 0 0 1CA D�2 (E��1) = 0B� 0 0 00 0 00 e�i� 0 1CA (3.134)D�2 (E�2) = 0B� 0 ei' 00 0 00 0 0 1CA D�2 (E��2) = 0B� 0 0 0e�i' 0 00 0 0 1CAD�2 (E�3) = �0B� 0 0 ei(�+')0 0 00 0 0 1CA D�2 (E��3) = �0B� 0 0 00 0 0e�i(�+') 0 0 1CASo, these matri
es are obtained from those of the triplet by making the 
hangeE��1 $ E��2 and E��3 $ �E��3 . From (3.121) and (3.129) we see theCartan subalgebra generators are also inter
hanged.3.9 Tensor produ
t of representationsWe have seen in de�nition 1.12 of se
tion 1.5 the 
on
ept of tensor produ
tof representations. The idea is quite simple. Consider two irredu
ible repre-sentations D� and D�0 of a Lie group G, with highest weights � and �0 andrepresentation spa
es V � and V �0 respe
tively. We 
an 
onstru
t a third rep-resentation by 
onsidering the tensor produ
t spa
e V �
�0 � V � 
 V �0. Theoperators representing the group elements in the tensor produ
t representationare D�
�0 (g) � D� (g)
D�0 (g) (3.135)



3.9. TENSOR PRODUCT OF REPRESENTATIONS 139and they a
t as D�
�0 (g)V �
�0 = D� (g)V � 
D�0 (g)V �0 (3.136)They form a representation sin
eD�
�0 (g1)D�
�0 (g2) = D� (g1)D� (g2)
D�0 (g1)D�0 (g2)= D� (g1g2)
D�0 (g1g2)= D�
�0 (g1g2) (3.137)The operators representing the elements T of the Lie algebra G of G aregiven by D�
�0 (T ) � D� (T )
 1l + 1l
D�0 (T ) (3.138)IndeedhD�
�0 (T1) ; D�
�0 (T2) i = hD� (T1) ; D� (T1) i
 1l+ 1l
 hD�0 (T1) ; D�0 (T1) i= D� ([T1 ; T2 ℄)
 1l + 1l
D�0 ([T1 ; T2 ℄)= D�
�0 ([T1 ; T2 ℄) (3.139)Noti
e that if j �; li and j �0; l0i are states of the representations V � andV �0 with weights � and �0 respe
tively, one getsD�
�0 (Hi) j �; li
 j �0; l0i = D� (Hi) j �; li
 j �0; l0i+ j �; li 
D�0 (Hi) j �0; l0i= (�i + �0i) j �; li
 j �0; l0i (3.140)It then follows that the weigths of the representation V �
�0 are the sumsof all weights of V � with all weights of V �0 . If � and �0 are the highest weightsof V � and V �0 respe
tively, then the highest weight of V �
�0 is �+ �0, and the
orresponding state is j �+ �0i =j �i
 j �0i (3.141)whi
h is 
learly non-degenerate.In general, the representation V �
�0 is redu
ible and one 
an split it as thesum of irredu
ible representations of GV �
�0 = ��00V �00 (3.142)where V �00 are irredu
ible representations with highest weight �00. The de
om-position (3.142) is 
alled the bran
hing of the representation V �
�0 .



140 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRASTaking orthonormal basis j �; li and j �0; l0i for V � and V �0 respe
tively,we 
an 
onstru
t an orthonormal basis for V �
�0 asj �+ �0; ki = m(�)Xl=1 m(�0)Xl0=1 Ckl;l0 j �; li
 j �0; l0i (3.143)where m (�) and m (�0) are the multipli
ities of � and �0 in V � and V �0 re-spe
tively, and k = 1; 2; : : :m (�+ �0), with m (�+ �0) being the multipli
ityof �+ �0 in V �
�0. Clearly, m (�+ �0) = m (�)m (�0). The 
onstants Ckl;l0 arethe so-
alled Clebs
h-Gordan 
oeÆ
ients.Example 3.12 Let us 
onsider the tensor produ
t of two spinorial represen-tations of SU(2). As dis
ussed in se
tion 3.8.1 it is a two dimensional repre-sentation with states j 12 ; 12i and j 12 ;� 12i, and satisfyingT3 j 12 ;� 12i = �12 j 12 ;� 12i (3.144)and (see (3.115))T+ j 12 ; 12i = 0 ; T+ j 12 ;� 12i =j 12 ; 12iT� j 12 ; 12i = j 12 ;� 12i ; T� j 12 ;� 12i = 0 (3.145)One 
an easily 
onstru
t the irredu
ible 
omponents by taking the highestweight state j 12 ; 12i
 j 12 ; 12i and a
t with the lowering operator. One getsD 12
 12 (T�) j 12 ; 12i
 j 12 ; 12i = (T� 
 1l+ 1l
 T�) j 12 ; 12i
 j 12 ; 12i= j 12 ;� 12i
 j 12 ; 12i+ j 12 ; 12i
 j 12 ;� 12iand �D 12
 12 (T�)�2 j 12 ; 12i
 j 12 ; 12i = 2 j 12 ;� 12i
 j 12 ;� 12i (3.146)and �D 12
 12 (T�)�3 j 12 ; 12i
 j 12 ; 12i = 0 (3.147)On the other hand noti
e thatD 12
 12 (T�) (j 12 ;� 12i
 j 12 ; 12i� j 12 ; 12i
 j 12 ;� 12i) = 0 (3.148)Therefore, one gets that the statesj 1; 1i � j 12 ; 12i
 j 12 ; 12ij 1; 0i � (j 12 ;� 12i
 j 12 ; 12i+ j 12 ; 12i
 j 12 ;� 12i) =p2j 1;�1i � j 12 ;� 12i
 j 12 ;� 12i (3.149)
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onstitute a triplet representation (spin 1) of SU(2).The state j 0; 0i � (j 12 ;� 12i
 j 12 ; 12i� j 12 ; 12i
 j 12 ;� 12i) =p2 (3.150)
onstitute a s
alar representation (spin 0) of SU(2).The bran
hing of the tensor produ
t representation is usually denoted interms of the dimensions of the irredu
ible representations, and in su
h 
ase wehave 2
 2 = 3+ 1 (3.151)Given an irredu
ible representation D of a group G one observes that it isalso a representation of any subgroup H of G. However, it will in general bea redu
ible representation of the subgroup. The de
omposition of D in termsof irredu
ible representations of H is 
alled the bran
hing of D. In order toillustrate it let us dis
uss some examples.Example 3.13 The operator T3 generates a subgroup U(1) of SU(2) (see(3.107)). From the 
onsiderations in 3.8.1 one observes that ea
h state j j;mi
onstitutes a s
alar representation of su
h U(1) subgroup. Therefore, ea
hspin j representation of SU(2) de
omposes into 2j + 1 s
alars representationof U(1).Example 3.14 In example 3.6 we have seen that weights of the adjoint rep-resentation of SU(3) are its roots plus the null weight whi
h is two-fold degen-erate. So, let us denote the states asj ��1i ; j ��2i ; j ��3i ; j 0i ; j 00i (3.152)Consider the SU(2)
 U(1) subgroup of SU(3) generated bySU(2) � fE��1; 2�1 �H�21 gU(1) � f2�2 �H�22 g (3.153)One 
an de�ne the state j 0i asj 0i � E��1 j �1i (3.154)and 
onsequently the statesj �1i ; j 0i ; j ��1i (3.155)
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onstitute a triplet representation of the SU(2) de�ned above. In addition, thestates j �2i ; j �3i (3.156)and j ��3i ; j ��2i (3.157)
onstitute two dublet representations of the same SU(2).By taking j 00i to be orthogonal to j 0i one gets that it is a singlet repre-sentation of SU(2).Clearly, ea
h state j �i in (3.152) 
onstitute a s
alar representation of theU(1) subgroup with eigenvalue 2�2 � �=�22. Sin
e, U(1) 
ommutes with theSU(2) it follows the states of a given irredu
ible representation of SU(2) haveto have the same eigenvalue fo the U(1). Therefore, we have got the followingbran
hing of the adjoint of SU(3) in terms of irreps. of SU(2)
 U(1)8 = 3(0) + 2(1) + 2(�1) + 1(0) (3.158)where the numbers inside the parenteses are the U(1) eigenvalues.
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