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Coriolis force, −2mω∧ ṙ. Because the magnetic force on a charged particle

tends to produce rotation about the direction of the magnetic field, rotating

frames are also useful in many problems involving a magnetic field.

Problems

1. Find the centrifugal acceleration at the equator of the planet Jupiter

and of the Sun. In each case, express your answer also as a fraction of

the surface gravity. (The rotation periods are 10 hours and 27 days,

respectively, the radii 7.1 × 104 km and 7.0 × 105 km, and the masses

1.9 × 1027 kg and 2.0 × 1030 kg.)

2. Water in a rotating container of radius 50mm is 30mm lower in the

centre than at the edge. Find the angular velocity of the container.

3. The water in a circular lake of radius 1 km in latitude 60◦ is at rest

relative to the Earth. Find the depth by which the centre is depressed

relative to the shore by the centrifugal force. For comparison, find the

height by which the centre is raised by the curvature of the Earth’s

surface. (Earth radius = 6400km.)

4. Find the velocity relative to an inertial frame (in which the centre of the

Earth is at rest) of a point on the Earth’s equator. An aircraft is flying

above the equator at 1000km h−1. Assuming that it flies straight and

level (i.e., at a constant altitude above the surface) what is its velocity

relative to the inertial frame (a) if it flies north, (b) if it flies west, and

(c) if it flies east?

5. The apparent weight of the aircraft in Problem 4 when on the ground

at the equator is 100 t weight. What is its apparent weight in each of

the three cases (a)–(c)?

6. A bird of mass 2 kg is flying at 10m s−1 in latitude 60◦N, heading due

east. Find the horizontal and vertical components of the Coriolis force

acting on it.

7. The wind speed in colatitude θ is v. By considering the forces on a

small volume of air, show that the pressure gradient required to balance

the horizontal component of the Coriolis force, and thus to main-

tain a constant wind direction, is dp/dx = 2ωρv cos θ, where ρ is the

density of the air. Evaluate this gradient in mbar km−1 for a wind

speed of 50 km h−1 in latitude 30◦N. (1 bar = 105 Pa; density of air =

1.3 kgm−3.)
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8. An aircraft is flying at 800 km h−1 in latitude 55◦N. Find the angle

through which it must tilt its wings to compensate for the horizontal

component of the Coriolis force.

9. An orbiting space station may be made to rotate to provide an artificial

gravity. Given that the radius is 25m, find the rotation period required

to produce an apparent gravity equal to 0.7g. A man whose normal

weight is 75 kgweight runs around the station in one direction and

then the other (i.e., on a circle on the inside of the cylindrical wall)

at 5m s−1. Find his apparent weight in each case. What effects will

he experience if he climbs a ladder to a higher level (i.e., closer to the

axis), climbing at 1m s−1?

10. A beam of particles of charge q and velocity v is emitted from a point

source, roughly parallel with a magnetic field B, but with a small

angular dispersion. Show that the effect of the field is to focus the beam

to a point at a distance z = 2πmv/|q|B from the source. Calculate the

focal distance for electrons of kinetic energy 500 eV in a magnetic field

of 0.01T. (Charge on electron = −1.6×10−19 C, mass = 9.1×10−31 kg,

1 eV = 1.6 × 10−19 J.)

11. *Write down the equation of motion for a charged particle in uniform,

parallel electric and magnetic fields, both in the z-direction, and solve

it, given that the particle starts from the origin with velocity (v, 0, 0).

A screen is placed at x = a, where a � mv/qB. Show that the locus

of points of arrival of particles with given m and q, but different speeds

v, is approximately a parabola. How does this locus depend on m and

q?

12. A beam of particles with velocity (v, 0, 0) enters a region containing

crossed electric and magnetic fields, as in the example at the end of

§5.2. Show that if the ratio E/B is correctly chosen the particles are

undeviated, while particles with other speeds follow curved trajectories.

Suppose the particles have velocities equal to v in magnitude, but with

a small angular dispersion. Show that if the path length l is correctly

chosen, all such particles are focussed onto a line parallel to the z-axis.

(Thus a slit at that point can be used to select particles with a given

speed.) For electrons of velocity 108 m s−1 in a magnetic field of 0.02T,

find the required electric field, and the correct (smallest possible) choice

for l.

13. The angular velocity of the electron in the lowest Bohr orbit of the

hydrogen atom is approximately 4 × 1016 s−1. What is the largest
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magnetic field which may be regarded as small in this case, in the

sense of §5.5? Determine the Larmor frequency in a field of 2T.

14. *The orbit of an electron (charge −e) around a nucleus (charge Ze)

is a circle of radius a in a plane perpendicular to a uniform magnetic

field B. By writing the equation of motion in a frame rotating with

the electron, show that the angular velocity ω is given by one of the

roots of the equation

mω2 − eBω − Ze2/4πε0a
3 = 0.

Verify that for small values of B, this agrees with §5.5. Evaluate the

two roots if B = 105 T, Z = 1 and a = 5.3 × 10−11 m. (Note, however,

that in reality a would be changed by the field.)

15. *A projectile is launched due north from a point in colatitude θ at an

angle π/4 to the horizontal, and aimed at a target whose distance is

y (small compared to Earth’s radius R). Show that if no allowance is

made for the effects of the Coriolis force, the projectile will miss its

target by a distance

x = ω

(

2y3

g

)1/2

(cos θ − 1
3 sin θ).

Evaluate this distance if θ = 45◦ and y = 40km. Why is it that the

deviation is to the east near the north pole, but to the west both on

the equator and near the south pole? (Neglect atmospheric resistance.)

16. *Solve the problem of a particle falling from height h above the equator

by using an inertial frame, and verify that the answer agrees with that

found using a rotating frame. (Hint : Use equations (3.48). Recall

Fig. 5.8.)

17. Find the equations of motion for a particle in a frame rotating with

variable angular velocity ω, and show that there is another apparent

force of the form −mω̇ ∧ r. Discuss the physical origin of this force.

18. Find the equation of motion for a particle in a uniformly accelerated

frame, with acceleration a. Show that for a particle moving in a uniform

gravitational field, and subject to other forces, the gravitational field

may be eliminated by a suitable choice of a.

19. *The co-ordinates (x, y, z) of a particle with respect to a uniformly

rotating frame may be related to those with respect to a fixed inertial
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frame, (x∗, y∗, z∗), by the transformation
⎡

⎣

x

y

z

⎤

⎦ =

⎡

⎣

cosωt sinωt 0

− sinωt cosωt 0

0 0 1

⎤

⎦

⎡

⎣

x∗

y∗

z∗

⎤

⎦ .

(Here, we use matrix notation: this stands for three separate equations,

x = cosωt · x∗ + sinωt · y∗,

etc.) Write down the inverse relation giving (x∗, y∗, z∗) in terms of

(x, y, z). By differentiating with respect to t, rederive the relation

(5.15) between d2r/dt2 and r̈. [Hint : Note that r̈ = (ẍ, ÿ, z̈), while

d2r/dt2 is the vector obtained by applying the above transformation

to (ẍ∗, ÿ∗, z̈∗).]
20. Another way of deriving the equation of motion (5.16) is to use La-

grange’s equations. Express the kinetic energy 1
2m(dr/dt)2 in terms of

(x, y, z), and show that Lagrange’s equations (3.44) reproduce (5.16)

for the case where the force is conservative.
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Problems

1. A double star is formed of two components, each with mass equal to

that of the Sun. The distance between them is 1 AU (see Chapter 4,

Problem 2). What is the orbital period?

2. Where is the centre of mass of the Sun–Jupiter system? (The mass

ratio is MS/MJ = 1047. See Chapter 4, Problems 2 and 3.) Through

what angle does the Sun’s position as seen from the Earth oscillate

because of the gravitational attraction of Jupiter?

3. The parallax of a star (the angle subtended at the star by the radius of

the Earth’s orbit) is �. The star’s position is observed to oscillate with

angular amplitude α and period τ . If the oscillation is interpreted as

being due to the existence of a planet moving in a circular orbit around

the star, show that its mass m1 is given by

m1

MS
=
α

�

(

MτE
MSτ

)2/3

,

where M is the total mass of star plus planet, MS is the Sun’s mass,

and τE = 1 year. Evaluate the mass m1 if M = 0.25MS, τ = 16years,

� = 0.5′′ and α = 0.01′′. What conclusion can be drawn without

making the assumption that the orbit is circular?

4. Two particles of masses m1 and m2 are attached to the ends of a light

spring. The natural length of the spring is l, and its tension is k times

its extension. Initially, the particles are at rest, with m1 at a height l

above m2. At t = 0, m1 is projected vertically upward with velocity v.

Find the positions of the particles at any subsequent time (assuming

that v is not so large that the spring is expanded or compressed beyond

its elastic limit).

5. *Prove that in an elastic scattering process the angle θ+α between the

emerging particles is related to the recoil angle α by

tan(θ + α)

tanα
=
m1 +m2

m1 −m2
.

(Hint : Express both tangents in terms of tan 1
2θ

∗.) What is the mass

ratio if the particles emerge at right angles to each other?

6. A proton is elastically scattered through an angle of 56◦ by a nucleus,

which recoils at an angle α = 60◦. Find the atomic mass of the nucleus,

and the fraction of the kinetic energy transferred to it.
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7. An experiment is to be designed to measure the differential cross-section

for elastic pion–proton scattering at a CM scattering angle of 70◦ and a

pion CM kinetic energy of 490keV. (The electron-volt (eV) is the atomic

unit of energy.) Find the angles in the Lab at which the scattered

pions, and the recoiling protons, should be detected, and the required

Lab kinetic energy of the pion beam. (The ratio of pion to proton mass

is 1/7.)

8. *An unstable particle of mass M = m1 +m2 decays into two particles

of masses m1 and m2, releasing an amount of energy Q. Determine

the kinetic energies of the two particles in the CM frame. Given that

m1/m2 = 4, Q = 1 MeV, and that the unstable particle is moving in

the Lab with kinetic energy 2.25MeV, find the maximum and minimum

Lab kinetic energies of the particle of mass m1.

9. The molecules in a gas may be treated as identical hard spheres. Find

the average loss of kinetic energy of a molecule with kinetic energy T

in a collision with a stationary molecule. (Hint : Use the fact that the

collisions are isotropic in the CM frame, so that all values of cos θ∗

between ±1 are equally probable.) How many collisions are required,

on average, to reduce the velocity of an exceptionally fast molecule by

a factor of 1000?

10. Two identical charged particles, each of mass m and charge e, are ini-

tially far apart. One of the particles is at rest at the origin, and the

other is approaching it with velocity v along the line x = b, y = 0,

where b = e2/2πε0mv
2. Find the scattering angle in the CM frame,

and the directions in which the two particles emerge in the Lab. (See

§4.7.)

11. *Find the distance of closest approach for the particles in Problem 10,

and the velocity of each at the moment of closest approach.

12. Obtain the relation between the total kinetic energy in the CM and

Lab frames. Discuss the limiting cases of very large and very small

mass for the target.

13. *Suppose that the asteroid of Chapter 4, Problem 17, has a mass of

6 × 1020 kg. Find the proportional change in the kinetic energy of the

Earth in this encounter. What is the resulting change in the semi-major

axis of the Earth’s orbit? By how much is its orbital period lengthened?

(Note that the postulated event is exceedingly improbable.)

14. Calculate the differential cross-section for the scattering of identical

hard spheres directly in the Lab frame.
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15. Find the Lab differential cross-section for the scattering of identical

particles of charge e and mass m, if the incident velocity is v. (See

(4.50).)

16. At low energies, protons and neutrons behave roughly like hard spheres

of equal mass and radius about 1.3 × 10−14 m. A parallel beam of

neutrons, with a flux of 3 × 1010 neutrons m−2 s−1, strikes a target

containing 4 × 1022 protons. A circular detector of radius 20mm is

placed 0.7m from the target, in a direction making an angle of 30◦ to

the beam direction. Calculate the rate of detection of neutrons, and of

protons.

17. *Write down the equations of motion for a pair of charged particles of

equal masses m, and of charges q and −q, in a uniform electric field E.

Show that the field does not affect the motion of the centre of mass.

Suppose that the particles are moving in circular orbits with angular

velocity ω in planes parallel to the xy-plane, with E in the z-direction.

Write the equations in a frame rotating with angular velocity ω, and

hence find the separation of the planes.


