SIGNAL PROCESSING

2.0 INTRODUCTION

All of the biomechanical variables are time-varying, and it doesn’t matter
whether the measure is kinematic, kinetic, or EMG; it must be processed like
any other signal. Some of these variables are directly measured: acceleration
and force signals from transducers or EMG from bioamplifiers. Others are a
product of our analyses: moments-of-force, joint reaction forces, mechanical
energy and power. All can benefit from further signal processing to extract
cleaner or averaged waveforms, correlated to find similarities or differences
or even transformed into the frequency domain.

This chapter will summarize the analysis techniques associated with auto-
and cross-correlations, frequency (Fourier) analysis and its applications cor-
rect data record length and sampling frequency. The theory of digital filtering
is presented here; however, the specific applications of digital filtering of kine-
matics appears in Chapter 3 and analog filtering of EMG in Chapter 10. The
applications of ensemble averaging of variables associated with repetitive
movements are also presented.

2.1 AUTO- AND CROSS-CORRELATION ANALYSES

Autocorrelation analyzes how well a signal is correlated with itself, between
the present point in time and past and future points in time. Cross-correlation
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analyses evaluate how well a given signal is correlated with another signal
over past, present, and future points in time. We are familiar in statistics
with the Pearson product moment correlation. It is a measure of relation-
ship between two variables and allows us to determine whether a variable x
increases or decreases as the variable y increases. The strength and polarity
of this relationship is given by the correlation coefficient: the higher the value
the stronger the relationship, while the sign indicates if variables x and y are
increasing and decreasing together (positive correlation) or if one is increasing
while the other is decreasing (negative correlation). The correlation coefficient
is a normalized dimensionless number varying from —1 to +1.

2.1.1 Similarity to the Pearson Correlation

Consider the formula for the Pearson product moment correlation coefficient
relating two variables, x and y:

1 N
& 2 @i = HOi =)
r=—"= @2.1)
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where: x; and y; are the i samples of x and y, X and ¥ are the means of x
and y, and s, and s, are the standard deviations of x and y.

The numerator of the formula is the sum of the product of the two vari-
ables after the mean value of each variable has been subtracted. It is easy to
appreciate that if x and y are random and unrelated then (x; — ¥) and (y; — )
will be scattered in the x-y plane about zero (see Figure 2.1). These products

Figure 2.1 Scatter diagram of variable x against variable y showing no relationship
between the variables.
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Figure 2.2 Scatter diagram showing a positive correlation between variable x and
variable y.

will be +ve in quadrants 1 and 3 and —ve in quadrants 2 and 4, and provided
there are enough points their sum, r, will tend towards zero, indicating no
relationship between the two variables.

Now if the variables are related and tend to increase and decrease together
(x; —X) and (y; —y) will fall along a line with a positive slope in the x-y
plane (see Figure 2.2). When we sum the products in Equation (2.1), we will
get a finite +ve sum, and when this sum is divided by N, we remove the
influence of the number of data points. This product will have the units of the
product of the two variables, and its magnitude will also be scaled by those
units. To remove those two factors, we divide by sys,, which normalizes the
correlation coefficient so that it is dimensionless and lies between —1 and +1.

There is an estimation error in the correlation coefficient if we have a
finite number of data points, therefore, the level of significance will increase
or decrease with the number of data points. Any standard statistics textbook
includes a table of significance for the coefficient r, reflecting the error in
estimation.

2.1.2 Formulae for Auto- and Cross-Correlation Coefficients

The auto- and cross-correlation coefficient is simply the Pearson product
moment correlation calculated on two time series of data rather than on
individual measures of data. Autocorrelation, as the name suggests, involves
correlating a time series with itself. Cross-correlation, on the other hand, cor-
relates two independent time series. The major difference is that a correlation
of time series data does not yield a single correlation coefficient but rather
a whole series of correlation values. This series of values is achieved by
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shifting one of the series forward and backward in time, the value of this
shifting will be evident later. The magnitude (4ve or —ve) of this shifting is
decided by the user and the time series of correlations is a function of the
phase shift, 7. The formula for the autocorrelation of x () is Ry, (7):

T

1
— t)x(t dt
T / x(1)x(r+17)
0
Ry (7)) = (2.2)
" Ry (0)
Where: x(t) has zero mean.
The formula for the cross-correlation of x(¢) and y(7) is Ry, (7):

| T
?/x(t)y(t + 1)dt

Ry (1) = —> (2.3)

VR O)R,, (0)

where: x(¢) and y(¢) have zero means.

It is easy to see the similarities between these formulae and the formula for
the Pearson product moment coefficient. The summation sign is replaced by
the integral sign, and to get the mean we now divide by T rather than N. The
denominator in these two equations, as in the Pearson equation, normalizes
the correlation to be dimensionless from —1 to +1. Also the two time series
must have a zero mean, as was the case in the Pearson formula, when the
means of x and y were subtracted. Note that the Pearson correlation is a single
coefficient, while these auto- and cross-correlations are a series of correlation
scores over time at each value of 7.

2.1.3 Four Properties of the Autocorrelation Function

Property #1. The maximum value of R,,(t) is Ry, (0) which, in effect, is

the mean square of x(¢). For all values of the phase shift, 7, either +ve or

—ve Ry (1) is less than Ry, (0), which can be seen from the following proof.
From basic mathematics we know:

T

/ (x(t) —x(t —1))dt >0

0
Expanding, we get:
T

f (@) +x(t —1)> = 2x()x(t — 7))dr >0
0
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T T T

/x(t)zdt—i—/x(t—r)zdt —Z/x(t)x(t— T)dr > 0

0 0 0

For these integrations, t is constant; thus, the second term is equal to the
first term, and the denominator for the autocorrelation is the same for all
terms and is not shown. Thus:

Rix(0) + Ry (0) =2 Ry (z) = 0

R (0) = Ry (7) = 0 2.4
Property #2. An autocorrelation function is an even function, which means
that the function for a —ve phase shift is a mirror image of the function for

a +ve phase shift. This can be easily derived as follows; for simplicity, we
will only derive the numerator of the equation:

T

R, () = %/x(z)x(t + 1)dt

0
Substituting ¢ = (' — 1) and taking the derivative, we have dr = dr":

T
Ry (1) = %/X(f — D)x(t)dt" = Ry (—=7) (2.5)
0

Therefore, we have to calculate only the function for +ve phase shifts
because the function is a mirror image for —ve phase shifts.

Property #3. The autocorrelation function for a periodic signal is also peri-
odic, but the phase of the function is lost. Consider the autocorrelation of a
sine wave; again we derive only the numerator of the equation.

x(t) = E sin(wt)
T
R, (t) = %fE sin(wt)E sin(w (t — 7))dt
0

Using the common trig identity: sin(a) sin(b) = lh(cos(a — b) — cos(a +
b)), we get:

E? T

Ry (7) = T

1
[t cos(wt) — % sin(2wt + wr)i|
w 0
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E? 1
Ry (t) = — | (T cos(wt) — 0) — — (sin(QwT + wt) — sin(wt))
2T 2w
Since T is one period of sin(wt),.". sin2wT + wt) — sin(wt) = 0 for all t.

E2
LR (T) = - cos(wt) (2.6)

Similarly if x () = E cos(wt) also Ry (1) = %2 cos(wt)

Note that Equation (2.6) is an even function as predicted by property #2;
a plot of this Ry, (t) after normalization is presented in Figure 2.3.

This property is useful in detecting the presence of periodic signals buried
in white noise. White noise is defined as a signal made up of a series of
random points, where there is zero correlation between the signal at any
point with the signal at any point ahead of or behind it in time. Therefore, at
any T # 0 R () =0 and at T = 0 Ry, (r) = 1. Thus, the autocorrelation of
white noise is an impulse, as shown in Figure 2.4.

If we have a signal, s(¢), with added noise, n(t), we can express x(z) =
s(t) + n(t), and substituting in the numerator of Equation (2.2) we get:

T
Ry (1) = / (s@)+n@) (st +1)+n+r1))d
0

T T

= fs(t)s(t + 7)dt +/n(t)s(t + 7)dt
0 0
T T

+ /s(t)n(t + 7)dt + /n(t)n(t + 1)dt

0 0

Since the signal and noise are uncorrelated, the 204 and 3™ terms will = 0.
R (T) = Ry (T) + Ry (7) (2.7

Property #4. As seen in property #3 the frequency content of x (¢) is present
in R, (7). The power spectral density function is the Fourier transform of
R, (t); more will be said about this in the next section on frequency analysis.
However, it is sometimes valuable to use the autocorrelation function to
identify any periodicity present in x(¢) or to identify the presence of an
interfering signal (e.g., hum) in our biological signal. Even if there were no
periodicity in x(¢), the duration of Ry, (r) would give an indication of the
frequency spectra of x (f); lower frequencies result in R, (7) remaining above
zero for longer phase shifts, while high frequencies tend to zero for small
phase shifts.
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Figure 2.3 Autocorrelation of a sine or cosine signal. Note that this is an even function
and the repetitive nature of R, (t) at the frequency of the sine and cosine wave.

Rx(1)

T—>

Figure 2.4 Autocorrelation of white noise. Note that Ry, (t) = 0 at all T # 0, indicat-
ing that each data point has O correlation with all other data points ahead and behind
it in time.

2.1.4 Three Properties of the Cross-Correlation Function

Property #1. The cross-correlation of x(¢) and y(¢) is not an even function.
Because the two signals are completely different, the phase shifting in the
+ve direction will not result in the same “cross products” as shifting in the
—ve direction. Thus, Ry (7) # Ry (—7).

Property #2. The maximum value of R,,(t) is not necessarily at 7 = 0.
The maximum +ve or negative peak of Ry, (r) will occur when the two
signals are most in phase or most out of phase. For example, if x(r) is a
sine wave and y(¢) is a cosine wave of the same frequency at = 0, the
signals are 90° out of phase with each other, and the cross products over one
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Stimulus S1 S2

Rs1s2(7)

0 T1:t

Figure 2.5 Cross-correlation of a neural or muscular signal recorded at two sites, S1
and S2, separated by a distance, d. R, (7) reaches a peak when S2 record is shifted
7)1 = t sec. Thus, the velocity of the transmission V = d/t.

cycle will sum to zero. However, shifting the cosine wave forward 90° will
bring the two signals into phase such that all the cross products are +ve and
R,y (7) = 1. Shifting the cosine wave backward 90° will bring the two signals
180° out of phase so that all the “cross products” are —ve and Ry () = —1.
A physiological example is the measurement of transmission delays (neural
or muscular) to determine the conduction velocity of the signal. Consider
Figure 2.5, where the signal is stimulated and is recorded at sites S1 and S2;
the distance between the sites is d. The time delay between the S1 and S2 is
t as determined from Rg;s5,(7), the cross-correlation of S1 and S2. Figure 2.5
shows a peak at t; =t when S2 is shifted so that it is in phase with S1.

Property #3. The Fourier transform of the cross-correlation function is the
cross spectral density function, which is used to calculate the coherence func-
tion, which is a measure of the common frequencies present in the two
signals. This is a valuable tool in determining the transfer function of a
system in which you cannot control the frequency content of the input signal.
For example, in determining the transfer function of a muscle with EMG as
an input and force an output, we cannot control the input frequencies (Bobet
and Norman, 1990).

2.1.5 Importance in Removing the Mean Bias from the Signal

A caution that must be heeded when cross correlating two signals is that the
mean (dc bias) in both signals must be removed prior calculating R,y (7). Most
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standard programs do this without your knowledge, but if you are writing
your own program, you must do so or a major error will result. Consider
x(t) =s1(t) +my and y(t) = s2(t) + my, where m; and m, are the means of
51 and sy, respectively.

T
ny(f):/(Sl(t)+ml)(s2(f+f)+m2)df

0

T T

= fsl(t)sz(t + T)dt + / mysy(t + ©)dt
0 0
T T

—I—/mzsl(t)dt—l—/mlmzdt

0 0

Since the signals and m1 and m2 are uncorrelated, the 2" and 3" terms
will = 0.
T T
SRy (1) = fsl(t)S2(t + 7)dt —I—/mlmzdt

0 0

The 1% term is the desired cross-correlation, but a major bias will added
by the 2"¢ term, and the peak of R\, (t) may be grossly exaggerated.

2.1.6 Digital Implementation of Auto- and Cross-Correlation
Functions

Since data are now routinely collected and stored in a computer, the
implementation of the auto- and cross-correlation is the digital equivalent of
Equations (2.2) and (2.3), shown below in Equations (2.8) and (2.9)

N
L [x() —X)(x(n +71) =X)]
N
Ra (1) = ———— (2.8)
v ; (x(n) — X)2

1
N n
ny(t) =

M=

[x() =Dy + 1) = T)]

1

(2.9)
1

Z|

N
> @) =Dy n) —y)
n=1
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Both auto- and cross-correlations are calculated for various phase shifts
that a priori must be specified by the user, and this will have an impact on
the number of data points used in the formulae. If, for example, x(n) and
y(n) are 1000 data points, and it is desired that ¢ = £100, then we can only
get 800 cross products and, therefore, N will be set to 800. Sometimes the
signals of interest are periodic (such as gait); then, we can wrap the signal on
itself and calculate the correlations using all the data points. Such an analysis
is known as a circular correlation.

2.1.7 Application of Autocorrelations

As indicated in property #3 an autocorrelation indicates the frequency content
of x(¢). Figure 2.6 presents an EMG record and its autocorrelation. The upper
trace (a) is the raw EMG signal, which does not show any visible evidence of
hum, but the autocorrelation seen in the lower trace (b) is an even function
as predicted by property #2 and shows the presence of 60 Hz hum. Note
from Figure 2.3 that Ry, (t) for a sinusoidal wave has its first zero crossing
at /s of a cycle of the sinusoidal frequency; thus, we can use that first zero
crossing of Ry, (7) to estimate the average frequency in the EMG. The first
zero crossing for this Ry, (t) occurred at about 3ms, representing an average
period of 12 ms, or an average frequency of about 83 Hz.

2.1.8 Applications of Cross-Correlations

2.1.8.1 Quantification of Cross-Talk in Surface Electromyography.
Cross-correlations quantify what is in common in the profiles of x(¢) and
v(t) but also any common signal present in both x(#) and y(¢). This may be
true in the recordings from surface electrodes that are close enough to be
subject to cross-talk. Because a knowledge of surface recording techniques
and the biophysical basis of the EMG signal is necessary to understand
cross-talk, the student is referred to Section 10.2.5 in Chapter 10 for a
detailed description of how Ry, (7) has been used to quantify cross-talk.

2.1.8.2 Measurement of Delay between Physiological Signals. Experi-
mental research conducted to find the phase advance of one EMG signal
ahead of another has been used to advantage to find balance strategies in
walking (Prince et al., 1994). Balance of the head and trunk during gait
against large inertial forces is achieved by the paraspinal muscles. It was noted
that the head anterior/posterior (A/P) accelerations were severely attenuated
(0.48 m/s*) compared with hip accelerations (1.91 m/s?), and it was impor-
tant to determine how the activity of the paraspinal muscles contributed to
this reduced head acceleration. The EMG profiles at nine vertebral levels
from C7 down to L4 were analyzed to find the time delays between those
balance muscles. Figure 2.7 presents the ensemble average (see Section 2.3
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Figure 2.6 (a) is a surface EMG signal recorded for 0.5 sec that does not show the
presence of any 60Hz hum pickup. (b) is the autocorrelation of this EMG over a
7 = =100 ms. Again, note that this is an even function and observe the presence of
a periodic component closely resembling a sinusoidal wave with peaks equal to the
period of a 60 Hz (approximately 17 ms).
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Figure 2.7 Ensemble-averaged profiles over the stride period of EMG signals of
paraspinal muscles at C; and Ly levels for one of the subjects. Note the 2™ harmonic
peaks occurring during the weight acceptance periods of the left and right feet to
balance the trunk and head. The C7 amplitude is lower than the Ly amplitude because
the inertial load above C7 is considerably lower than that above Ls. More important
is the timing of C; so that it is ahead of Ly, indicating that the head is balanced first,
ahead of the trunk. (Reproduced by permission from Gait and Posture)

later) of L4 and C7 muscle profiles over the stride period for one subject). A
cross-correlation of these two signals showed that C7 was in advance of L4
by about 70 ms. For all 10 young adults in this study, all signals at C7, T2,
T4, T6, T8, T10, T12, and L2 were separately cross correlated with the L4
profile. The phase shift of these signals is presented in Figure 2.8. The ear-
lier turn on of the more superior paraspinal muscles indicates a “top-down”
anticipatory strategy to stabilize the head first, then the cervical level, the tho-
racic level, and finally the lumbar level. This strategy resulted in a dramatic
decrease in the A/P head acceleration over the stride period compared to the
A/P acceleration of the pelvis. In a subsequent study on fit and healthy elderly
(Wieman, 1991) the head/hip acceleration (%) in the elderly (41.9%) was sig-
nificantly higher (p < .02) compared with that of young adults (22.7%); this
indicated that the elderly had lost this “top-down” anticipatory strategy, and
the paraspinal EMG profiles bore this out.

2.1.8.3 Measurement of Synergistic and Coactivation EMG Profiles.
There is considerable information in EMG profiles regarding the action
of agonist/antagonist muscle groups during any given activity. Recently,
cross-correlation techniques have been used to quantify coactivation patterns
(agonist/antagonist active at the same time) and non-coactivation patterns
(agonist/antagonist having synergistic out of phase patterns): Nelson-Wong
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Figure 2.8 Phase shift (ms) of the activation profiles of the paraspinal muscles relative
to the profile at the L, level. The negative shift indicates the activation was in advance of
L4. The curve fit was exponential. (Reproduced by permission from Gait and Posture)

et al. (2008) reported a study of left and right gluteus medius patterns during
a long duration standing manual task. Because these patterns are an excellent
example of motor synergies and are also related to another medial/lateral
postural strategy their details are presented in Chapter 11.

2.2 FREQUENCY ANALYSIS

2.2.1 Introduction— Time Domain vs. Frequency Domain

All the signals that we measure and analyze have a characteristic frequency
content, which we refer to as the signal spectrum; this is a plot of all the
harmonics in the signal from the lowest to the highest. The purpose of this
section is to provide a conceptual background with sufficient mathematical
derivations to help the student collect and process data and be an intelligent
collector and consumer of commercial software. Frequency domain analysis
uses a powerful transform called the Fourier transform, named after Baron
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Jean-Baptiste-Joseph Fourier, a French mathematician who developed the
technique in 1807.

The knowledge of the frequency spectrum of any given signal is mandatory
in making decisions about collection and processing of any given signal. The
spectrum decides the sampling rate you must chose before an analog-to-digital
conversion is done, and it also decides the length of record that must be
converted. Also, the spectrum influences the frequency of filtering of the
data to remove undesirable noise and movement artifacts. All these factors
will be discussed in the sections to come.

2.2.2 Discrete Fourier (Harmonic) Analysis

1. Alternating Signals. An alternating signal (often called ac, for alter-
nating current) is one that continuously changes over time. It may be
periodic or completely random, or a combination of both. Also, any sig-
nal may have a dc (direct current) component, which may be defined
as the bias value about which the ac component fluctuates. Figure 2.9
shows example signals.

2. Frequency Content. Any of these signals can also be discussed in terms
of their frequency content. A sine (or cosine) waveform is a single
frequency; any other waveform can be the sum of a number of sine and
cosine waves.

Note that the Fourier transformation (see Figure 2.10) of periodic signals
has discrete frequencies, while nonperiodic signals have a continuous spec-
trum defined by its lowest frequency, f;, and its highest frequency, f;. To
analyze a periodic signal, we must express the frequency content in multiples

A =
VEVE

Periodic—sine wave Periodic—saw tooth

AN ANFA T
W W Y

t dc t
component

o

Random signal Periodic + random + dc

Figure 2.9 Time-related waveforms demonstrate the different types of signals that
may be processed.
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Figure 2.10 Relationship between a signal as seen in the time domain and its equiv-
alent in the frequency domain.

of the fundamental frequency fy. These higher frequencies are called harmon-

ics. The third harmonic is 3fy, and the tenth harmonic is 10fy. Any perfectly

periodic signal can be broken down into its harmonic components. The sum

of the proper amplitudes of these harmonics is called a Fourier series.
Thus, a given signal V (¢) can be expressed as:

V(t) = Vye + V| sin (wot + 01) + V3 sin Qwot +603) + - - -
+ V, sin (nwot + 6,) (2.10)
where wg = 27f;, and 6, is the phase angle of the nth harmonic.

For example, a square wave of amplitude V' can be described by the Fourier
series of odd harmonics:

4v 1 1
V(t)=—(sinwot+§sin3wot+§sin5wot+---) (2.11)
b1

A triangular wave of duration 2¢ and repeating itself every 7 seconds is:

Ve | 1 2\’ 2\’
V()=—|=z+ (=) coswpt + | z— | cos3 wot + - -- (2.12)
T |2 T 3

Several names are given to the graph showing these frequency components:
spectral plots, harmonic plots, and spectral density functions. Each shows the
amplitude or power of each frequency component plotted against frequency;
the mathematical process to accomplish this is called a Fourier transformation
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or harmonic analysis. Figure 2.10 shows plots of time-domain signals and
their equivalents in the frequency domain.

Care must be used when analyzing or interpreting the results of any har-
monic analysis. Such analyses assume that each harmonic component is
present with a constant amplitude and phase over the total analysis period.
Such consistency is evident in Equation (2.10), where amplitude V;, and phase
¢, are assumed constant. However, in real life each harmonic is not constant
in either amplitude or phase. A look at the calculation of the Fourier coef-
ficients is needed for any signal x(¢). Over the period of time 7, using the
discrete Fourier transform, we calculate n harmonic coefficients.

2 T

a, = —/ x(t) cosnwot dt (2.13)
T Jo
2 T

b, = —f x (1) sinnwot dt (2.14)
T Jy

Cn = V al% + b;%

6, = tan~! <Z—> (2.15)

It should be noted that a, and b,, are calculated average values over the
period of time 7. Thus, the amplitude ¢, and the phase 6,, of the nth harmonic
are average values as well. A certain harmonic may be present only for part of
the time 7', but the computer analysis will return an average value, assuming
that it is present over the entire time. The fact that a, and b, are average
values is important when we attempt to reconstitute the original signal as is
demonstrated in Section 2.2.4.5.

The digital equivalent of the Fourier transform is important to review
because it gives us some insight into the number of calculations that are
necessary. In digital form, Equations (2.13) and (2.14) for N samples during
the period T':

N
2
= > xi cos(naxi /N) (2.16)
i=0
N
2
bn = > xisin(nawi /N) (2.17)
i=0

For each of the n harmonics, N calculations are necessary. The number
of harmonics that can be analyzed is from the fundamental (n = 1) up to the
Nyquist frequency, which is when there are two samples per sine or cosine
wave or when n = N /2. Therefore, for N /2 harmonics, there are N2 /2 calcu-
lations necessary for each of the sine or cosine coefficients. The total number



30 SIGNAL PROCESSING

of calculations is N2. It should be noted that the major expense in computer
time is looking up the sine and cosine values for each of the N angles.

2.2.3 Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) became necessary because of the extremely
large number of calculations necessary in the Discrete Fourier Transform.
As early as 1942, Danielson and Lanczos introduced the Danielson-Lanczos
Lemma, which showed that the Discrete Fourier Transform of length N can
be broken into two separate odd and even numbered components of length
N /2 each. In a similar manner, each N /2 component can be broken into
two more odd and even numbered components of length N /4 each, and each
of these can be broken into two more odd and even components of length
N /8 each. Thus, the basis of the FFT is a data record that must be binary in
length. Therefore, if you collect data files that are not binary in length, the
FFT can only accept the largest binary length file within your data file. For
example, if you collected 1000 data points, the largest binary file length would
be 512 points; thus, 488 points would be wasted. Therefore, it is advisable
to prearrange data collection files to be binary in length; in the case of the
previous example, a data file of 1024 points would be appropriate. With the
advent of computers, many FFT algorithms appeared (Bringham, 1974), and
in the mid-1960s J. W. Cooley and J. W. Tukey at IBM developed what is
probably the best-known FFT algorithm.

One of the major savings in the FFT is to avoid repetitive and time-
consuming calculations especially sines and cosines. If we look at Equations
(2.16) and (2.17), we see that for the fundamental frequency (n = 1), we must
calculate N sine and N cosine values. For the second harmonic, we recalculate
every second sine and cosine value, and for the third harmonic we recalcu-
late every third sine and cosine value, and so on up to the highest harmonic.
What the FFT does is calculate all sine and cosine values for the fundamental
and this forms a “look-up” table for the fundamental plus all higher harmon-
ics. Further savings are achieved by clustering all the products of x; and
the same sine value, then summing all the x; values, and then carrying out
one product with the sine value. The number of calculations for the FFT =
N log, N, which is considerably less than N 2 for the Discrete Fourier Trans-
form. For example, for N = 4096 and a CPU cycle time of 0.1 us the DFT
would take 4096?1077 = 1.67s, while the FFT would take 4096 log, 4096
1077 = 49 ms.

2.2.4 Applications of Spectrum Analyses

2.2.4.1 Analog-to-Digital Converters. To students not familiar with elec-
tronics, the process that takes place during conversion of a physiological
signal into a digital computer can be somewhat mystifying. A short schematic
description of that process is now given. An electrical signal representing a
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Figure 2.11 Schematic diagram showing the steps involved in an analog-to-digital
conversion of a physiological signal.

force, an acceleration, an electromyographic (EMG) potential, or the like is
fed into the input terminals of the analog-to-digital converter. The computer
controls the rate at which the signal is sampled; the optimal rate is governed
by the sampling theorem (see Section 2.2.4.2).

Figure 2.11 depicts the various stages in the conversion process. The first
is a sample/hold circuit in which the analog input signal is changed into a
series of short-duration pulses, each one equal in amplitude to the original
analog signal at the time of sampling. The final stage of conversion is to
translate the amplitude and polarity of the sampled pulse into digital format.
This is usually a binary code in which the signal is represented by a number
of bits. For example, a 12-bit code represents 2'2 = 4096 levels. This means
that the original sampled analog signal can be broken into 4096 discrete
amplitude levels with a unique code representing each of these levels. Each
coded sample (consisting of Os and 1s) forms a 12-bit “word,” which is
rapidly stored in computer memory for recall at a later time. If a 5-s signal
were converted at a sampling rate of 100 times per second, there would be
500 data words stored in memory to represent the original 5-s signal.

2.2.4.2 Deciding the Sampling Rate—The Sampling Theorem. In the
processing of any time-varying data, no matter what their source, the sampling
theorem must not be violated. Without going into the mathematics of the
sampling process, the theorem states that “the process signal must be sampled
at a frequency at least twice as high as the highest frequency present in the
signal itself.” If we sample a signal at too low a frequency, we get aliasing
errors. This results in false frequencies, frequencies that were not present in
the original signal, being generated in the sample data. Figure 2.12 illustrates
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Figure 2.12 Sampling of two signals, one at a proper rate, the other at too low a
rate. Signal 2 is sampled at a rate less than twice its frequency, such that its sampled
amplitudes are the same as for signal 1. This represents a violation of the sampling
theorem and results in an error called aliasing.

this effect. Both signals are being sampled at the same interval 7. Signal 1
is being sampled about 10 times per cycle, while signal 2 is being sampled
less than twice per cycle. Note that the amplitudes of the samples taken from
signal 2 are identical to those sampled from signal 1. A false set of sampled
data has been generated from signal 2 because the sample rate is too low—the
sampling theorem has been violated.

The tendency of those using film is to play it safe and film at too high
a rate. Usually, there is a cost associated with such a decision. The initial
cost is probably in the equipment required. A high-speed movie camera can
cost four or five times as much as a standard model (24 frames per second).
Or a special optoelectric system complete with the necessary computer can
be a $70,000 decision. In addition to these capital costs, there are the higher
operational costs of converting the data and running the necessary kinematic
and kinetic computer programs. Except for high-speed running and athletic
movements, it is quite adequate to use a standard movie or television camera.
For normal and pathological gait studies, it has been shown that kinetic and
energy analyses can be done with negligible error using a standard 24—frame
per second movie camera (Winter, 1982). Figure 2.13 compares the results
of kinematic analysis of the foot during normal walking, where a 50-Hz
film rate was compared with 25 Hz. The data were collected at 50 Hz, and
the acceleration of the foot was calculated using every frame of data, then
reanalyzed again, using every second frame of converted data. It can be seen
that the difference between the curves is minimal; only at the peak negative
acceleration was there a noticeable difference. The final decision as to whether
this error is acceptable should not rest in this curve, but in your final goal.
If, for example, the final analysis was a hip and knee torque analysis, the
acceleration of the foot segment may not be too important, as is evident from
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Figure 2.13 Comparison of the forward acceleration of the right foot during walking
using the same data sampled at S0Hz and at 25Hz (using data from every second
frame). The major pattern is maintained with minor errors at the peaks.

another walking trial, shown in Figure 2.14. The minor differences in no way
interfere with the general pattern of joint torques over the stride period, and
the assessment of the motor patterns would be identical. Thus, for movements
such as walking or for slow movements, an inexpensive camera at 24 frames
per second appears to be quite adequate.

2.2.4.3 Deciding the Record Length. The duration of record length is
decided by the lowest frequency present in the signal. In cyclical events such
as walking, cycling, or swimming the lowest frequency is easy to determine;
it is the stride frequency or how often each segment of the body repeats itself.
For example, if a patient is walking at 105 steps/min the step frequency is
105/60 = 1.75 steps/s = 0.875 strides/s. Thus, the fundamental frequency is
0.875 Hz. However, there are a number of noncyclical movements, which do
not have a defined lowest frequency. One such “movement” is standing either
quietly or in a work-related task. In quiet standing, we model the total body as
an inverted pendulum (Gage et al., 2004), which simplifies the total body into
a single weighted-average center of mass (COM) and which can be compared
with the center of pressure (COP) measured from the force plate. Figure 2.15
presents a typical FFT of the COP and COM in the anterior/posterior direction
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Figure 2.14 Comparison of the hip moment of force during level walking using the
same data sampled at 50 Hz and at 25 Hz. The residual error is quite small because the
joint reaction forces dominate the inertial contributions to the net moment of force.
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Figure 2.15 FFT of the COM and COP in the anterior/posterior direction of a subject
standing quietly for 137 seconds. (Winter, D. A., A.B.C. (Anatomy, Biomechanics, and
Control) of Balance During Standing and Walking. Waterloo Biomechanics. 1995)



2.2 FREQUENCY ANALYSIS 35

for a subject standing quietly for 137 seconds (8192 samples @ 60 Hz). Note
that the FFT plots the amplitude of each harmonic from 0.0073 Hz to 1 Hz.
Also note the dominant low frequency components of both COM and COP
below 0.2Hz. The length of record must be at least a minute or longer.
This long record may be compromised when studying patients with balance
disorders because they may not be able to stand quietly for that length of
time. However, for studies on normal subjects Carpenter, et al. (2001) found
that records of at least one minute were required for acceptable reliability.

2.2.4.4 Analog and Digital Filtering of Signals— Noise and Movement
Artifacts. The basic approach can be described by analyzing the frequency
spectrum of both signal and noise. Figure 2.16a shows a schematic plot of a
signal and noise spectrum. As can be seen, the signal is assumed to occupy
the lower end of the frequency spectrum and overlaps with the noise, which
is usually higher frequency. Filtering of any signal is aimed at the selective
rejection, or attenuation, of certain frequencies. In the preceding case, the
obvious filter is one that passes, unattenuated, the lower-frequency signals,
while at the same time attenuating the higher-frequency noise. Such a filter,
called a low-pass filter, has a frequency response as shown in Figure 2.16b.
The frequency response of the filter is the ratio of the output X, (f) of the filter
to its input X; (f) at each frequency present. As can be seen, the response at
lower frequencies is 1.0. This means that the input signal passes through
the filter unattenuated. However, there is a sharp transition at the cutoff
frequency f. so that the signals above f, are severely attenuated. The net result
of the filtering process can be seen by plotting the spectrum of the output
signal X, (f) as seen in Figure 2.16c. Two things should be noted. First,
the higher-frequency noise has been severely reduced but not completely
rejected. Second, the signal, especially in the region where the signal and
noise overlap (usually around f;) is also slightly attenuated. This results in
a slight distortion of the signal. Thus, a compromise has to be made in the
selection of the cutoff frequency. If f. is set too high, less signal distortion
occurs, but too much noise is allowed to pass. Conversely, if f; is too low, the
noise is reduced drastically, but at the expense of increased signal distortion.
A sharper cutoff filter will improve matters, but at an additional expense.
In digital filtering, this means a more complex digital filter and, thus, more
computer time.

The first aspect that must be assessed is what the signal spectrum is as
opposed to the noise spectrum. This can readily be done, as is seen in the har-
monic analysis for 20 subjects presented in Figure 2.17. Here is the harmonic
content of the vertical displacement of the toe marker in natural walking
(Winter et al., 1974). The highest harmonics were found to be in the toe
and heel trajectories, and it was found that 99.7% of the signal power was
contained in the lower seven harmonics (below 6 Hz). Above the seventh
harmonic, there was still some signal power, but it had the characteristics of
“noise.” Noise is the term used to describe components of the final signal
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Figure 2.16 (a) Hypothetical frequency spectrum of a waveform consisting of a
desired signal and unwanted higher-frequency noise. (b) Response of low-pass filter
X, (f)/Xi(f), introduced to attenuate the noise. (¢) Spectrum of the output waveform,
obtained by multiplying the amplitude of the input by the filter response at each fre-
quency. Higher-frequency noise is severely attenuated, while the signal is passed with
only minor distortion in transition region around f,.

that are not the result of the process itself (in this case, walking). Noise
comes from many sources: electronic noise in optoelectric devices, spatial
precision of the TV scan or film digitizing system, and human error in film
digitizing. If the total effect of all these errors is random, then the true signal
will have an added random component. Usually, the random component is
high frequency, as is borne out in Figure 2.17. Here, we see evidence of
higher-frequency components extending up to the 20th harmonic, which was
the highest frequency analyzed. The presence of the higher-frequency noise
is of considerable importance when we consider the problem of trying to
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Figure 2.17 Harmonic content of the vertical displacement of a toe marker from
20 subjects during normal walking. Fundamental frequency (harmonic number = 1)
is normalized at 1.00. Over 99% of power is contained below the seventh harmonic.
(Reproduced by permission from the Journal of Biomechanics.)

calculate velocities and accelerations from the displacement data, as will be
evident later in Section 3.4.3.

The theory behind digital filtering (Radar and Gold, 1967) will not be
covered, but the application of low-pass digital filtering will be described in
detail. As a result of the previous discussion for these data on walking, the
cutoff frequency of a digital filter should be set at about 6 Hz. The format
of a recursive digital filter that processes the raw data in time domain is as
follows:

X'(nT) = agX (nT) + a1 X (nT — T) + axX (nT — 2T)

+ b, X' (nT — T) + boX' (0T — 2T) (2.18)
where X! = filtered output coordinates
X = unfiltered coordinate data
nT = nth sample
(nT —T) = (n—1)th sample
(nT — 2T) = (n—2)th sample
ao, ..., by, ... = filter coefficients

These filter coefficients ag, a1, ay, b; and b, are constants that depend on the
type and order of the filter, the sampling frequency, and the cutoff frequency.
As can be seen, the filter output X ! (n7T) is a weighted version of the immediate
and past raw data plus a weighted contribution of past filtered output. The
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exact equations to calculate the coefficients for a Butterworth or a critically
damped filter are as follows:

_ GanGefe /f)

. 2.19
, c (2.19)

where C is the correction factor for number of passes required, to be explained
shortly. For a single pass filter C = 1.

K = \/Ea)c for a Butterworth filter,

or, 2 w, for a critically damped filter

Ky = o? ao—L a; = 2a a) =a
s 1+K +K) 1 0 0
2
K3=ﬂ, by = —2ayp + Kj
K
b2:1—2a0—K3, or b2:1—a0—a1—a2—b1

For example, a Butterworth-type low-pass filter of second order is to be
designed to cutoff at 6 Hz using film data taken at 60 Hz (60 frames per
second). As seen in Equation (2.19) the only thing that is required to deter-
mine these coefficients is the ratio of sampling frequency to cutoff frequency.
In this case it is 10. The design of such a filter would yield the following
coefficients:

ap = 0.067455, a; =0.13491, a; = 0.067455,
by =1.14298, by, = —0.41280

Note that the algebraic sum of all the coefficients equals 1.0000. This gives
a response of unity over the passband. Note that the same filter coefficients
could be used in many different applications, as long as the ratio f; /f. is the
same. For example, an EMG signal sampled at 2000 Hz with cutoff desired
at 400 Hz would have the same coefficients as one employed for movie film
coordinates where the film rate was 30 Hz and cutoff was 6 Hz. The number
of passes, C, in Equation (2.17) are important when filtering kinematic data
in order to eliminate the phase shift of the filtered data. This aspect of digital
filtering of kinematic data will be detailed later in Section 3.4.4.2.

2.2.4.5 Fourier Reconstitution of Original Signal. Figure 2.18 is pre-
sented to illustrate a Fourier reconstitution of the vertical trajectory of the
heel of an adult walking his or her natural cadence. A total of nine harmonics
is represented here because the addition of higher harmonics did not improve
the curve of the original data. As can be seen, the harmonic reconstitution
is visibly different from the original, sufficiently so as to cause reasonable
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Figure 2.18 Fourier reconstruction of the vertical trajectory of a toe marker during
one walking stride. The actual trajectory is shown by the open square, the reconstruction
from the first nine harmonics is plotted with open triangles, and the contribution of the
ninth harmonic is plotted with open circles. The difference between the actual and the
reconstructed waveforms is the result of the lack of stationarity in the original signal.

errors in subsequent biomechanical analyses. This is because each harmonic
amplitude and phase values are average values, as we cautioned about in
Section 2.22, and this is especially true for a foot marker during gait, which
has high frequencies during swing and low frequencies during stance.

2.2.4.6 Fourier Analysis of White Noise. White noise was introduced in
Figure 2.4, where an autocorrelation showed that each point has zero corre-
lation with any points ahead or behind it in time. In a computer, white noise
can be simulated by a random number generator. The other characteristic
of white noise is in the frequency domain where the frequency spectrum is
equal across the whole range of the signal, and this is similar to some of the
noise apparent in kinematic data—cine, television, and optoelectric systems.
To demonstrate this frequency spectum characteristic we present an analysis
of the FFT of white noise. Figure 2.19 (a) is a white noise signal simulated
on Excel from a random number generator with amplitude =1 sampled at a
rate of 2048 samples/sec. Thus, the highest frequency present in this signal
is the Nyquist frequency of 1024 Hz, so our FFT will cover frequencies from
OHz to 1024 Hz. An FFT of the signal in Figure 2.19 (a) is presented in
Figure 2.19 (b). Note that the spectrum over that range appears “noisy,” but
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Figure 2.19 (a) A simulated white noise signal from a random number generator with
amplitude +1 samples at 2048 samples/sec. Figure 2.19 (b) is the FFT of the white
noise signal at 1 Hz intervals from OHz to 1024 Hz. The “white” line passing through
this FFT plot is a 40-point moving average showing that the signal has approximately
equal power across the full spectrum of the signal.
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that is because of the fact that the FFT is plotting the amplitude at every
single Hz. A more realistic plot of this spectrum is to carry out a moving
average across the full spectrum, and this was done with a 40-point moving
average, which is the “white” curve in Figure 2.19 (b). This moving average
approaches the theoretical constant amplitude across the full spectrum; its
average amplitude is 0.330 and ranges from 0.233 to 0.446. A longer time
domain record than the 2048 points will result in a more constant frequency
plot. Also, it should be noted that some of the individual harmonic amplitudes
are greater than one, and this is not expected from the white noise signal,
which had an amplitude of +1. What is not shown here are the phase angles
of each of the harmonics; each has a different phase angle, so there will be
many cancellations as each harmonic is added.

2.3 ENSEMBLE AVERAGING OF REPETITIVE WAVEFORMS

A large number of movements that we study are cyclical in nature and,
therefore, can benefit from a cyclical average of its many variables. Gait
(walking and running) is the most common repetitive movement but cycling,
rowing, and lifting also benefit from such averaged profiles. Both intra- and
inter-subject averaged profile have been reported on a wide variety of kine-
matic, kinetic and EMG variables. The major benefit of such a technique
is that the averaged waveform is more reliable and the variation about the
mean gives us additional information as to the randomness of the variable.
For example, in gait the intra-subject lower limb joint angles have minimal
variability, while the moment profiles at these same joints are quite variable.
This phenomenon has resulted in a covariance analysis, which can readily be
done; we can calculate the mean variance at each of the joints from these
ensemble averages, from which the covariances can be determined. As a
result of those analyses, a total lower limb motor synergy has been identi-
fied, and this is reported in detail in Chapter 11. Such ensemble-averaged
waveforms also form the basis of clinical assessments, where the patient’s
profile superimposed on the average for a comparable healthy group provides
a very powerful tool in diagnosing specific motor abnormalities. An example
of such a clinical analysis is presented in the next section, Section 2.3.1.

2.3.1 Examples of Ensemble-Averaged Profiles

Figure 2.20 shows a typical waveform from a clinical gait study of an
above-knee amputee; the ankle, knee, and hip moments of the amputee
(dashed lines) are overlaid on the averaged profiles for 29 young adults
(Winter, 1995). The detailed diagnostics will not be discussed here except
to comment that the deviations from normal of each joint moment are readily
evident, and these differences may lead to altered therapy or adjustments
in the prosthesis. Note the averaged profiles are solid lines with dotted
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Figure 2.20 Moment-of-force profiles of an above-knee amputee (dashed lines) over-
laid on the ensemble-averaged profiles for 29 young adults. The averaged profiles are
solid lines with dotted lines representing £ one standard deviation. To reduce the vari-
ability of these intersubject moment curves, the joint moments were divided by body
mass prior to averaging. (Reproduced with permission from Winter, D.A. Biomechanics
and Motor Control of Human Gait: Normal, Elderly and Pathological, 2"¢ Ed. Waterloo
Biomechanics, 1995.)

lines representing + one standard deviation. The units of these intersubject
moment-of-force curves are N.m/kg; dividing by body mass was necessary to
decrease the variability by about 50%. Also noted is that the cyclical period
of one stride has been normalized to 100%. Thus, the process to create these
averaged waveforms requires the time base of each subject’s profiles to be
altered from their individual stride time (in sec) to a 100% stride baseline.

2.3.2 Normalization of Time Bases to 100 %

Assume that for one subject there are n samples of a given variable x over
the stride period and we wish to normalize this time-domain record to N
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samples over the 100% stride period; we will call this normalized curve y.
Therefore, each interval of the normalized curve would be n/N samples in
duration. Assume that n = 107 samples and N = 100. At N = 1, we need
the value of the variable at the 1.07" sample; thus, by linear interpolation,
y1 = 0.93x; + 0.07x2; for N =2 we need the value at the 2.14" sample,
or y; = 0.86x; + 0.14x. for N = 3 we need the value at the 3.21" sample,
or y3 = 0.79x3 + 0.21x4, and so on; for N = 99 we need the value at the
105.93™ sample, or yg9 = 0.07x105 + 0.93)6106; and ﬁnally Y100 = X107-

2.3.3 Measure of Average Variability about the Mean Waveform

The most common descriptive statistical measure of data where a single
measure i8 taken is the coefficient of variation, CV = o /X, where o is the
standard deviation and X is the sample mean. The CV is a variability to
mean ratio, and with the ensemble average, we wish to calculate a similar
variability score; this score is the average o over the stride period of N points
divided by the average signal (absolute value). Some researchers suggest that
the rms value of the signal replace the absolute value in the denominator, but
this changes the CV scores very little.

(2.20)
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