

PSI 3560 – COGNITIVE SYSTEMS

class T5

Marcio Lobo Netto João Eduardo Kogler Junior

Polytechnic School of the University of São Paulo Department of Electronic Systems Engineering © 2020 – University of São Paulo

ARTIFICIAL INTELLIGENCE AND COGNITIVISM

Symbolic Approach, Symbol Systems, Classical Artificial Intelligence

Summary

```
- First session (7:30-9:10)
```

- Cognitivism
- Symbolic Processing
- Strong & Weak Al
- Wide and Narrow Al
- Turing Test
- Chinese Room
 - Coffee break
 - Second session (9:20 11:00)

- We will have 4 sections with 5 to 7 slides each

PSI 3560

PSI 3560

Section 1

Cognitivism & Symbolic Processing

PSI 3560

Cognitivism

- A proposition oriented towards classical Artificial Intelligence principles
 - Symbolic Al
 - Handling symbols
- Algorithmic Reasoning
 - Recipe
 - A good way to express logic reasoning
 - Our own observation of reasoning abilities (process)
 - Hard to get how it emerge from our neural tissue (processor)

Cognitivism

- Brain Mind (HW SW) issue
 - Complex systems can be observed in different scales or levels
 - A cognitive process can emerge on a neural substrate
 - Even without being able, so far, to express how logic processes (mental) run on a neural tissue (brain), we recognize that it happens
 - Our perception of things

Cognitivism

Computational Mind

- Computational Theory of Mind
 - Which cognitive processes can be expressed by cognitivism?
 - Is cognitivism approach enough to express or to handle all cognitive features? And all mental ones?
 - Is it possible to express with symbols support any cognitive processes?
 - Probably not all, but some / many?
 - So, there is a computational side of the mind
 - Could a machine able to handle symbols be considered cognitive?
 - Are computers cognitive? Perhaps some will be!

Symbolic Processing

- Deductive Logic
 - Performing reasoning by using deductive logic

- Intelligent actions (algorithms)
 - If they are considered intelligent when performed by humans
 - They might be considered intelligent as well if performed by machines
 - Classical Artificial Intelligence

Symbolic Processing

Algorithm

- In computer science an algorithm is a finite sequence of executable actions (recipe) leading to the solution of a specific problem
 - Sorting, routing are are among typical examples
- Algorithms tend to be precious procedures, without ambiguity, performing mechanical actions, correctly and efficiently
- Conceived by the human "genius"
 - The computer algorithm is a transcription of the one conceived by a human

Section 2

- Strong and Weak Al
- Narrow & Wide Al

Strong & Weak Artificial Intelligence

- Strong Al
 - Human like
- Weak Al
 - On machines

- A way to accommodate things, avoiding hard questions
 - as proposed by John Searle

Narrow & Wide Artificial Intelligence

Narrow Al

- Focused on one subject
- May be very powerful
 - Deep Blue (beating a Chess Master)
 - But requests another approach to beat AlphaGo Master

Wide Al

- General AI for any subject
- So far, still in its infancy
 - Watson ? (Jeopardy)
 - Wider sense of logic reasoning
 - Domain transposition

Narrow & Wide Artificial Intelligence

Narrow Al

- May combine
 - 1: Preprogramed approaches (taught by humans)
 - 2: Embedded learning abilities (learning from self observation)
 - Exploiting advantages from both approaches
 - First attempts to bet chess masters used the first one
 - Exploiting sequences analysis (logic)
 - Exploiting scenario analysis (pattern)
 - Recent approaches to beat go masters used the second one

Artificial Intelligence

- Pre-Programed (designed by humans)
 - Reproducing human intelligent recipes
 - Teaching the machine how to behave
 - Cognitivist approach

- Evolutive (emergent designed conditions)
 - Self growing/improving abilities
 - Learning by self experience
 - Connectionist approach (further classes)

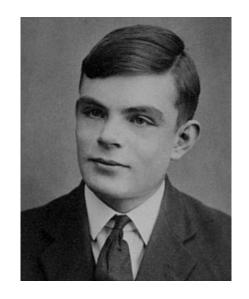
Artificial Humans – Human like Robots

- West World HBO series
 - What makes robots different from humans
 - The quest of building human like robots
 - Not just physically
 - But also mentally

copyright HBO

PSI 3560

Section 3


Allan Turing – Turing Machine & Test

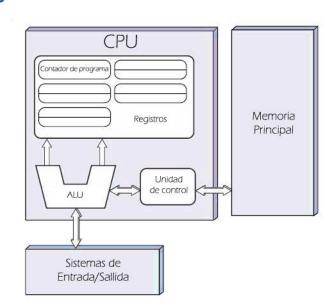
Alan Turing (1912 – 1954)

Alan Turing

- British mathematician, logician
- Cambridge
- Computer science
- Developer of bombe, a machine to break the codes from enigma (second world war)
- Proposition of universal computation concept, the Turing Machine
- Proposition of intriguing questions about computing abilities, the Turing Test

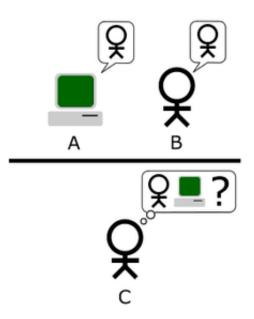
Turing Machine

- The Turing Machine
 - A symbols handling machine
 - Any computational action may be expressed by the Turing Machine
 - A concept
 - Is the mind just computational?
 - Is the cognitive mind its computational side?
 - Can be the cognitive mind reduced to (described by) a Turing Machine?



Turing Machine

- Universal machine (a concept)
 - Tuple M = (......)
 - Finite set of states, and an initial state
 - Alphabet of symbols
 - Recording tape
 - A controller able to read and write symbols to the tape following instructions from a controller embedded function
 - The evolution of the algorithm depends on the tape symbols and on the control function
 - Any computational algorithm can be described / performed by the TM
 - Theoretical not feasible for real implementations
 - Real propositions follow, for instance, the Von Neumann architecture

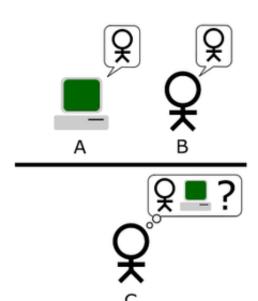


Turing Test

The Turing Test

- How to recognize if computational tasks have been performed by an human or a machine
- Interviewer needs to guess if answers come from a human or a machine,
- If he can not identify, then both are considered to be equivalent in this task
 - performing computational acts
 - handling symbols

29



PSI 3560

Modern version of the Turing Test

The Turing Test

 Does it look like human while performing computational tasks?

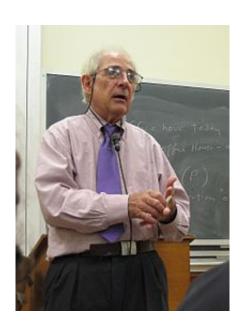
The modern quests

- Ok, at least on some tasks, the machine performs as well as humans
- But, can we say that it is as cognitive as humans?
- The questions now are deeper. It is not just about looking alike, but being equivalent

PSI 3560

Modern version of the Turing Test

- The modern quests: Ex Machina movie
 - The machine taking the lead on a kind of Turing Test
 - Getting deeper insights about this quest, but inverting roles
 - Humans need to prove they are humans, not machines


Section 4

• John Searle – Chinese Room

John Searle (1932 –)

- John Searle
 - American philosopher
 - Berkeley
 - Philosophy of Mind
- Subjects of interest
 - Meaning
 - Intentionality
 - Consciousness

Strong & Weak Al

- Proposed by John Searle
 - Strong AI (human like)
 - Weak AI (on machines)
 - Consider that we accept full AI (as capacity)
 - But would it be possible to be Strong, or would it be kept Weak (as postulated above)?
 - As technology evolves (computing power, data accessibility, ...) it is plausible to expect very sophisticated AI systems, some with cognitive abilities
 - But will they be accepted as humans, or just as highperformance machines

- Questions in Chinese are given to someone through this room's door, who do not understand the language
- This person has a set of rules and dictionaries allowing him to handle and answer the questions, even not understanding them
- Being able to provide proper answers
- Outsiders will have the impression the person is proficient in (comprehends) Chinese

- This raises the question
 - Does a symbolic system, able to properly handle symbols providing right answers, understands what it is performing?
 - If not, how can we be sure if the system understands what it does, as outsiders?

- Similarly, a machine programed to properly work on symbols (transforming them) may present these same skills
- Looking as an intelligent machine, even though it has no "idea" about what is going on!

- But we think we understand it! It is how we fell!
- Why? What might be the difference between us and these machines in such tasks?

- Chinese Room
 - Symbol handling is enough to express our mind abilities?
 - What about meaning?

- Translation of symbols (English Chinese)
 - Set of rules and dictionaries
 - A translation machine can perform such task without understanding its meaning
 - And a cognitive system?

Coffee break

10 minutes

