CUSTOS DE CAPITAL E OPERACIONAIS NA MINERAÇÃO

São Paulo - 9 de abril de 2020

Mauricio Guimarães Bergerman

SUMÁRIO

- □ Fontes de informação
- Estimativa de capex e opex esperada para cada etapa do projeto
- Estimativa do Capex
- Estimativa do Opex

FONTES DE INFORMAÇÃO

- Rudeno, V. The mining valuation handbook, 2012.
- Cost calculator Infomine http://calc2015.costs.infomine.com/welcome.aspx
- Ausimm, Cost estimation handbook, 2012.
- Mintek, Handbook on the Estimation of Metallurgical Process Costs, 1991.
- Mular, A. L.; Parkinson, E.A. Mineral Processing Equipment Costs and Preliminary Capital Cost Estimation, 1972.
- Fornecedores

ETAPA DO PROJETO

(AACE International,	2011)					- Common of		TEL SON RESIDEN
Development Phase	Project Definition (%)	Capital Estimate	Capital Estimate Accuracy (%)	Scenario Options	Site Selection	Selling Prices	Input Prices	Operating Parameters
FEL1 Conceptual study	0-2	Screening, ballpark	-20 to +100	Two or more	Country	Generic, annual mean	Historical	Benchmarked
FEL2 Prefeasibility study	10-40	Budget	-10 to +30	One plus trade-off studies	Region	Consensus forecasts	Historical	Benchmarked vendor preliminary specifications
FEL3 Feasibility study	30-70	Definitive	-5 to +20	One	Specific site	Market study	Historical trending to forecast	Vendor specifications
FEL4 Implementation	90-100	Control	-3 to +15	-	-	Actual	Actual contracted input prices	Vendor specifications
Operations startup	100	2	-	-	#	Actual	Actual input prices	Vendor specifications
Operations	100				2	-	Actual input prices	Actual historical

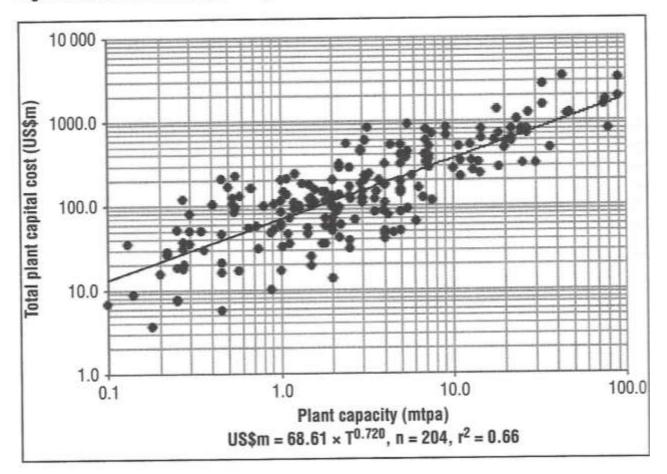
TABLE 1.1 Generic study classification guide.

Terminology used in this handbook		Scoping study – Phase 1	Prefeasibility, study – Phase 2	Feasibility study – Phase 3
Front end loading		FEL 1	FEL 2	FEL 3
Different titles that may	Conceptual	Concept	Preliminary feasibility	Final feasibility
be used to describe this level of study	Opportunity assessment	Order of magnitude (OOM)		Basic engineering
		Identification phase	Selection phase	Definition phase
	Screening	Scoping*		'Bankable' feasibility
	Scoping (see footnote)			Definitive feasibility
		Capacity factor	Equipment factor	Forced detail
		Preliminary evaluation	Intermediate economic study	
Estimate type (AACE)		Class 5	Class 4	Class 3
Expected accuracy range of capital cost	±35% to ±100% Typically ±50%	±30% to ±35%	±20% to ±25%	±10% to ±15%
Expected estimate contingency range	30% to 75%	20% to 35%	15% to 25%	10% to 15%
Level of definition (% of complete engineering (see Table 4.5)	Minimal, generally based on other operations, or in-house 'database'	1 - 2% Basic general layouts	10 - 15% Preliminary take-offs	15 - 25% Detailed drawings and take-offs
Typical estimating methodologies (but refer Table 4.5 for detail by line item)	Capacity factored Parametric models, judgement or analogy Stochastic estimating methods, including cost-capacity curves, and various factors	Equipment factored or parametric models. Some 'first principles' estimating related to early scope definition	Semi-detailed unit costs, and more deterministic estimating methods Preliminary MTOs (Some) budget pricing	More detailed unit costs and MTOs Budget prices and vendor quotes Higher degree of deterministic estimating methods Line items, and forced detail where definition is lacking

Notes: a. Although the term 'scoping study' can sometimes be used synonymously with a study at a level before FEL1, throughout the rest of this handbook, it is used to indicate a study generally before that of a prefeasibility study (PFS). FEL = front end loading (Independent Project Analysis Institute (IPAI)). MTO = material take-off.

ESTIMATIVA DE CUSTOS

- Custos de capital (Capex) e Operacional (Opex)
- Os custos de uma mina dependem de uma série de fatores, como (Rudeno, 2012):
 - Tipo de mineral;
 - Mina a céu aberto ou subterrânea;
 - Infraestrutura existente energia, cidade, aeroporto, estradas, ferrovia;
 - Suprimento de água e energia;
 - Topografia;
 - □ Clima chuva, neve, umidade, temperatura.


- □ Regras de dedão:
 - Materiais com pouco processamento (carvão, óleo): custo por tonelada de ROM
 - Material com processamento (metais básicos): custo por tonelada processada na usina.
 - Ouro: custo por unidade produzida (ounce).
 - Observar que os valores variam muito apenas referência para aproximações iniciais.

□ Regras de dedão (base 2011 US\$):

Commodity	Capital costs range/unit of annua production
Black coal	\$10/tonne to \$671/tonne
LNG	\$194/tonne to \$5 000/tonne
Coal seam methane	\$3m/Pj to \$10m/Pj
Copper	\$1833/tonne to \$14400/tonne
Gold	\$104/ounce to \$2430/ounce
ron ore	\$13/tonne to \$720/tonne
_ead-Zinc	\$310/tonne to \$3889/tonne
Mineral sands	\$250tonne to \$1233/tonne
Nickel metal	\$1800/tonne to \$59204/tonne
Uranium	\$91/t to \$313/t

□ Regras de dedão (base 2011 US\$):

Figure 8.4: treatment total plant capital costs

- □ Regras de dedão:
 - Regra dos seis décimos (six-tenths):

$$\frac{\textit{Custo da usina 1 (desconhecido})}{\textit{Custo a usina 2 (conhecido)}} = \left(\frac{\textit{Capacidade 1}}{\textit{Capacidade 2}}\right)^{0,6}$$

TABLE 1.2 Plant component ratio method (after Mular, 1978).

ESTIMATIV

Conceitual:
 Estimativas por equipamento principais e índices para demais itens

Notes	Capital cost estimate item	Mult	Capital cost \$ N		
		Min	Max	Factor used	
а.	Total direct cost of major equipment , roads, power line, maj	or buildings, t	ownship, airstr	rip etc.	1000
	"Factored elements", such as:				
b.	Piping	7%	25%	15%	150
C.	Electrical	12%	25%	15%	150
d.	Instrumentation and control	3%	10%	5%	50
е.	Spares	1%	5%	2%	20
f.	First-fill	1%	3%	1%	10
	Infrastructure				
g.	Architectural and auxiliary buildings; minor infrastructue	7%	15%	9%	90
	Total direct cost for the plant				1470
	Indirect costs				
h.	Owners' costs	5%	15%	7%	103
i,	Freight and taxes	3%	10%	4%	59
1	EPCM	5%	30%	18%	265
k.	Construction camp, temporary facilities, catering, etc	4%	10%	6%	88
	Total indirect cost for the plant				515
L.	Contingency (on direct and indirect)	15%	40%	30%	595
	Total installed capital cost for the plant				2580

- a. As derived by methodologies described in this handbook.
- b. Only for 'small' pipes and piperacks; larger pipes will normally be separately estimated under direct equipment costs.
- c. Electrical cabling; racking; connections; small motors, large and variable voltage variable frequency (VVVF) motors generally part of equipment.
- Instrumentation and control for minor aspects, not major capital expenditure (Capex) such as a supervisory control and data acquisition (SCADA) system.
- e. Dependent on project and strategic decisions on spares holding.
- f. Often calculated. Includes reagents and mill balls. Sometimes part of working capital.
- g. Minor buildings only; major buildings are normally separately estimated.
- h. May be very small for junior company, and significant cost for major players.
- i. Country and location dependent.
- Dependent on form of contract, complexity of project and location.
- k. Appropriate to the location and size of workforce.
- I. Usually derived on individual line items of direct cost depending on degree of definition. Variable depending upon study phase.

- □ Britagem primária (base 2007, só equipamentos)
 - Estrutura complementar (Tcs, prédio, lubrificação, tubulação, elétrica):
 - +2,5 a 3,5x para britadores giratórios
 - + 2 a 2,5 para mandíbulas

TABLE 11.4
Primary crusher budget prices (c 2007).

Crusher type	Cost (A\$)			
Jaw crushers				
C100 (750 × 1000 mm)	300 000			
C125 (950 × 1250 mm)	600 000			
C160 (1200 × 1600 mm)	850 000			
Primary gyratory crushers				
54 × 74 in	3 900 000			
60 × 89 in	5 500 000			

- □ Britagem secundária e diante (base 2007, só equipamentos)
 - Estrutura complementar (Tcs, peneira, prédio, lubrificação, tubulação, elétrica):
 - +2,0 a 3,5x para prédios sem silos
 - + 4x para prédios com silos

TABLE 11.5
Cone crusher budget prices (courtesy of Metso Minerals, c 2007).

Cauchantura	0
Crusher type	Cost (A\$)
HP300	\$450 000
HP500	\$950 000
HP800	\$1 700 000
MP800	\$2 500.000
MP1000	\$3 500 000

Nac vs Imp.: No Brasil: R\$ 15 mi

- Britagem secundária e diante (base 2007, só equipamentos)
 - Estrutura complementar (Tcs, peneira, prédio, lubrificação, tubulação, eletétrica):
 - +2,0 a 3,5x para prédios sem silos
 - + 4x para prédios com silos

TABLE 11.7

Vertical impact crusher budget price range (courtesy Sandvik AB).

Main application	Crusher	Weight (kg)	Capacity ^a (t/h)	
Tertiary and	CV115	6 000	10 - 50	
downstream	CV116	9 500	51 - 121	
Price range A\$150 000 - 400 000	CV117	9 500	122 - 192	
A\$100 000 - 400 000	CV118	11 700	193 - 250	
	CV128	14 826	251 - 444	
	CV129	14 826	445 - 600	

- Britagem secundária e diante (base 2007, só equipamentos)
 - Estrutura complementar (Tcs, peneira, prédio, lubrificação, tubulação, eletétrica):
 - +2,0 a 3,5x para prédios sem silos
 - + 4x para prédios com silos

TABLE 11.6
Budget price range of cone crushers (courtesy Sandvik AB).

Main application	Crusher	Installed power (kW)	Weight (kg)	Capacity* (t/h)
Secondary crushers	CS420	90	7 070	70 - 168
Price range A\$300 000 - 1 000 000	CS430	150	12 700	91 - 344
	CS440	220	19 790	195 - 601
	CS660	315	35 490	318 - 1050
Tertiary and downstream crushers with	CH420	90	5 570	27 - 128
coarse chambers may also be used in secondary applications	CH430	150	9 470	48 - 208
Price range A\$250 000 - 2 500 000	CH440	220	14 820	90 - 395
	CH660	315	24 020	162 - 662
	CH870	500	58 000	280 - 1512
	CH880	600	70 000	309 - 2128

a. Capacity is presented as nominal values. The crusher capacity will depend on chamber selection, throw and CSS. Presented values are the extreme selection of these parameters. Values are calculated using bulk density of 1.6 t/m³. Capacity will also depend on feed material properties like moisture and particle size distribution.

- Pilha:
 - AU\$ 8 a 10 milhões por 100.000 t estocadas (volume total).
- Moagem (base 2010)
 - Barras: 1,5 a 2,5 milhões US\$/MW (moinhos de 1 a 1,5 MW)
 - Bolas: 2,5 milhões US\$/MW (menores que 1 MW) a 0,8 milhões US\$/MW (maiores que 16 MW)
 - Custo total (prédio, lubrificação, resfriamento, bombas, ciclones, tubulação, elétrica): 2,2 a 3,5 o preço do equipamento (quanto maior o equipamento, menor o fator)

□ Flotação:

- Aerador / condicionador: +10%
- □ Prédio, tubulação, elétrica: +50%

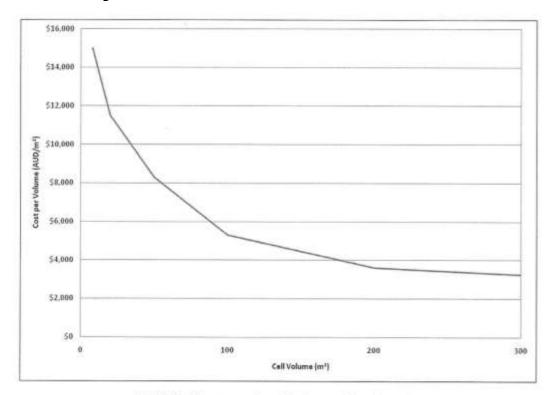


FIG 12.18 - Cost per volume for Outotec flotation cells.

Espessamento:

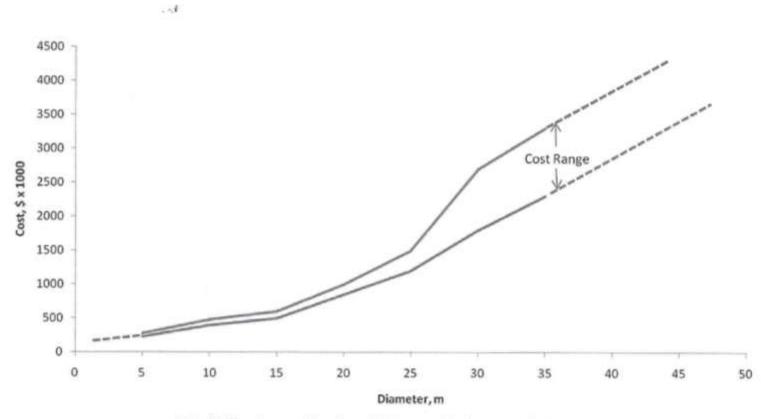
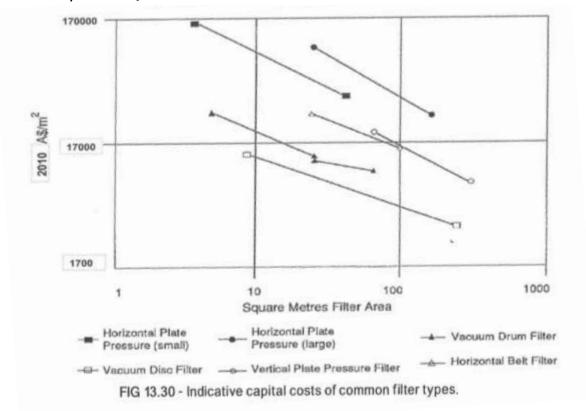



FIG 13.13 - Conventional and high-rate thickener capital cost.

□ Filtro:

- □ Tecidos / placas: +15%
- Bomba / compressor: +20%

- Inclui:
 - Mão de obra
 - Consumíveis (reagentes, corpos moedores, revestimentos)
 - Manutenção
 - Itens de estoque
 - Custo de energia
 - Custo de água
 - Transporte
 - \square Outros: empresa/G&A, treinamento, ramp-up, seguros, financeiro

□ Regras de dedão (base 2011 US\$):

Figure 8.7: treatment plant total operating costs 1000.0 100.0 10.0 1.0 10.0 0.0 0.1 1.0 100.0 Plant capacity (mtpa) US\$/t = 17.99 \times T^{-0.448}, n = 310, r² = 0.62

- Nosso projeto (segundo semestre):
 - Mão de obra 15%
 - □ Consumíveis (reagentes, corpos moedores) 15%
 - Manutenção/revestimentos 35%
 - Itens de estoque
 - □ Custo de energia 35%
 - Custo de água pesquisar
 - Transporte
 - \square Outros: empresa/G&A, treinamento, ramp-up, seguros, financeiro

- □ Nosso projeto (valores 2015 obtidos informalmente com os fornecedores):
 - Energia: R\$ 300/MWh
 - Corpos moedores Maggoteaux
 - Bolas Alto Cromo: R\$ 5.500,00 / ton
 - Bolas Baixo Cromo: R\$ 4.700,00 / ton
 - Reagentes Flomin (CFR no porto sem transporte e impostos)
 - amil xantato de potássio 90% ativo com 100% de amil Flomin C 3505 USD 2.05 a 2.20/kg
 - ditiofosfato de sódio Flomin C 5333 USD 1.75/kg / Flomin C 2430 USD 2.15/kg
 - PG F 650 USD 2.70 / Flomin F 742 (PG) USD 3.50 / kg
 - MIBC Flomin F 500 USD 2.80/kg
 - Cal virgem R\$ 500/t
 - SNF Floculante USD 3,00 a 4,00/kg
 - Filtro (Ausminn, 2011): AUS 2 a 3/t filtrada
 - Como adicional para os consumíveis teriam os impostos (9,25% PIS/COFINS + 4% ICMS + 5% IPI + Frete); O valor do frete vai depender muito dos volumes transportados (como média pode-se utilizar + USD 0,35/kg para quantidades acima de 5,0 tons).

OUTROS PROJETOS DE COBRE NO BRASIL

Dados aproximados (obtidos na internet):

	Ano	no ROM (t/ano)	ROM (t/ano) Produção (Cu contido		Capex (milhões US\$)		Capex		Opex (US\$/t ROM)	
	Allo	KOWI (t/alio)	no concentrado)	Total	Usina	US\$/t ROM	US\$/t Cu	Total	Usina	
Alemão	2012	5.450.000	57.690	1.560		286	27041			
Cristalino	2009	16.000.000	95.200	1.527		95	16040			
Salobo	2009	12.000.000	102.600	1.699		142	16559			
Avanco	2015	800.000	12.000	60	25	75	5000			
Serrote	2012	7.000.000	30.576	420	154	60	13736	13,04	4,87	

Fontes

- AUSIMM. Cost estimation handbook. Second edition. Monograph 27. The Australian Institute of Mining and Metallurgy. 2012.
- □ Rudeno, V. The mining valuation hadbook, 2012.