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ABSTRACT
This paper proposes a new control chart, denoted by X̄tn, for eval-
uating the stability of a process mean, which is based on attribute
inspection. In the X̄tn control chart, the mean of the quality char-
acteristic of interest is controlled by a go-no-go gauge device that
generates five categorizations. In equally-spaced times, samples of
n items are collected, their categories are determined, and random
values are generated according to a truncated normal distribution
that corresponds to their categories. With these random values, the
averages are estimated and the X̄tn control charts are built. Exten-
sive computational experiments shown that the newly introduced
X̄tn control charts perform similarly to the usual X̄ control chart in
termsof average run length, provided that the sample sizes are raised
by approximately three additional sample units. Because the X̄tn con-
trol charts use attributes, they can be considered a viable alternative
to the traditional X̄ control chart.
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1. Introduction

Among the most useful tools for monitoring the quality of the characteristics of interest
in a manufacturing process, control charts are built to rapidly detect process shifts and,
consequently, minimize the number of defective products, as explained by Montgomery
[1]. The X̄ charts are the type most commonly used to evaluate the stability of a process
mean because of their simplicity, ease of implementation, and satisfactory performance in
practice. To implement the X̄ control charts, a variable inspection is performed tomeasure
the actual values of x and to calculate x̄. The X̄ control charts are still a subject of research
even though they have been proposed long ago, in the 1920s, because of their practical use
and simplicity. For instance, an economic X̄ control chart with warning limits was intro-
duced by Chung [2]. Original schemes to detect changes in the averages of the processes
were proposed by Nenes and Panagiotidou [3], Aparisi and de Luna [4], and Liu and Xue
[5], Garza-Venegas et al. [6], Haq and Khoo [7], among others. Control methods for the
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Figure 1. Typical progressive gauges used in industry.

averages in a multivariate context were proposed by Montgomery [1], Kenett et al. [8],
Makis [9] and Leoni et al. [10].

However, rather than representing the actual value of x, sometimes, a major concern
in an attribute inspection is whether a sample unit is conforming, that is, whether x falls
within the warning limits. A passing or nonpassing unit ring gauge to check whether the
diameter x of a shaft exceeds a limit is a typical example of attribute inspection [11]. Figure 1
illustrates typical progressive gauges that are able to determine in one run whether a unit
is oversized or undersized.

Additionally, Montgomery [1] observes that on a per unit basis, variable-type inspec-
tions are more expensive and time-consuming than attribute inspections. On the other
hand, although attribute control charts have lower operation costs and times than X̄ charts,
they have the highest average run lengths (ARLs), and for the small samples sizes, which are
common in practice, the under-control ARL is hard to fix to the 200 or 370 limits because
of the discrete nature of the corresponding distribution.

In fact, an elucidative example is provided by Montgomery [1], in which an X̄ chart is
compared to an np chart in the detection of the mean shift of a quality characteristic X that
follows a normal distribution, N(50, 22). Three-sigma control limits and a sample of size
nx̄ = 9 are used in the X̄ control chart. The power of this chart to detect a mean shift of one
standard deviation equals 0.50. On the other hand, the sample size for the np chart must be
at least nnp = 60 to detect the same mean shift with the same detection power. That is, the
sample sizes for the np charts must be more than 6 times larger than that for the X̄ charts,
nnp/nx̄ > 6.6; therefore, the choice of monitoring variable averages by means of np charts
is not encouraging at all for a practitioner.

Many articles have been published in the literature in which the authors have attempted
to solve the above practical issue found on a control chart. For instance, Wu and Jiao
[12] proposed an attribute control chart to monitor the mean of a variable in which the
run length between two consecutive nonconforming samples is checked, where samples
are considered nonconforming if a prespecified number of nonconforming items is found
in them. Wu et al. [13] proposed the npx control chart to monitor a process average by
attribute inspection, which employs information from each preceding sample, similar to
a Shewhart chart, and for each inspected sample, collects the number of items that fall
outside the lower and upper warning interval (LWL and UWL) to determine if a number
higher than a specified value (U) is found that signals the process may be out of control
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Figure 2. Five category go-no-go gauge.

or, in other words, that the process mean may have suffered a shift in a way that the val-
ues LWL, UWL, and U are such that the ARL is set to the minimum. Quinino et al. [14]
proposed a new control chart called X̄rec, in which a go-no-go gauge with three categories
is used, the number of items in each category is quantified, random numbers from a nor-
mal distribution are generated in each one of the three categories, averages are computed,
and X̄rec is finally obtained. Quinino et al. [14] reported that the performance obtained in
terms of the ARL was significantly better than that of an npx chart, but the out-of-control
ARLs were on average 53% higher than those from a conventional X̄ control chart. Ho and
Quinino [15] proposed a combination of attribute and variable data to control the variabil-
ity of a process. However, the papers mentioned earlier do not present ARL values that are
similar to those from a traditional X̄ control chart. Although possibly economically better,
the ARL values are considerably higher than those from the traditional X̄ control charts.

In a search for a better performance, Quinino et al. [16] introduced a new control chart,
named X̄att chart, in which a go-no-go gauge with five categories (similar to those illus-
trated in Figure 2) was used to quantify the number of items of the sample that are in
each category and to compute X̄att, which is the mean of the mean limits of each category.
Quinino et al. [16] determine each category in such a way that the out-of-control ARL is
minimized.

The approach proposed by Quinino et al. [16] implies that the distribution of X̄att is
discrete, which makes it difficult to fix the in-control ARL at the usual 370 value. To solve
this problem, Quinino et al. [16] sought to find the dimensions of the go-no-go gauge
in such a way that an ARL of approximately 370 was guaranteed, as usually practiced by
companies. Of course, changes on the gauge to comply with the optimal dimensions can
cause problems when companies already use standardizedmetres and do not want tomake
the changes. Another problem relates to the desire to have formulas of the control limits
that are the same as those used in the traditional X̄ chart.

In this article, a new proposal of a control chart is presented, called X̄tn, which has a
continuous distribution and can be used with the company’s usual metre. Consequently,
X̄tn generates an in-control ARL exactly equal to 370, as usually practiced in the traditional
X̄ control chart, and presents control limits with the same formulas as the X̄ chart. In prac-
tical terms, a sample of size n is collected periodically, and each item is allocated according
to the five categories defined by the go-no-go gauge. Then, a measure is generated ran-
domly for each item according to a truncated normal distribution with its upper and lower
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limits defined by the dimensions of the go-no-go gauge. With the generated measures, the
mean X̄tn is calculated and compared with the LCL and UCL control limits, which can be
calculated by the usual formulas of the traditional X̄ control chart to decide whether or not
the process is under control.

Thus, this newly introduced X̄tn control chart is an alternative to the X̄att control chart
when one wants to use the company’s attribute meter and ensure a prespecified under-
control ARL value. Despite the greater analytical complexity for X̄tn analysis, in operational
terms, the control system will not present additional difficulties because of its similarity
with the traditional X̄ control chart. Furthermore, the same formulas for the control limits
of the traditional X̄ control chart are used. As shown by extensive computational experi-
ments, the introduced X̄tn control chart has similar out-of-control ARL to the traditional
X̄ control chart once the sample sizes have approximately three additional units. Because
it is simpler and faster to perform measurements by attributes than variable-type inspec-
tions, the X̄tn control charts can be competitive in some real situations, as it will be shown
shortly.

This article is organized as follows. Section 2 details the sampling distribution of the X̄tn

statistic. Section 3 evaluates the performance of the proposed X̄tn control chart compared
to the traditional X̄ control chart by means of computational simulations and a normal
approximation. Section 4 discusses a solution that is not based on the normal approxima-
tion. Section 5 illustrates the procedure by a numerical example. Finally, Section 6 presents
some conclusions and final remarks.

2. The X̄tn control chart

Motivated by the points presented in the previous section, in the present paper, we seek
an attribute control chart without a considerable increase in the sample size that provides
in-control and out-of-control ARL values similar to the traditional X̄ control chart. It is
assumed that a company uses a system that classifies the items into five categories. Figure 2
illustrates some go-no-go gauges considered in this paper.

The quality characteristic X follows a normal distribution. When the process is in
control, its mean is known and equal to μ0, and when it is out of control, its mean
is μ1. The variance is known, kept unaltered and denoted by σ 2. The upper and
lower control limits for the standardized values are denoted by UCL and LCL, respec-
tively. The calibrated dimensions of the go-no-go gauge in Figure 2 are denoted as
UWLS > UWLi > LWLS > LWLi. One item is of class A if its value of quality characteris-
tic is lower than LWLi; of class B if its quality characteristic is in the range [LWLi; LWLs]; of
class C if its quality characteristic is in the range [LWLs; UWLi]; of classD if its quality char-
acteristic is in the range [UWLi; UWLs] and of class E if its quality characteristic is higher
than UWLs Using a device such as the ones shown in Figure 1, the inspection of each sam-
ple of size n can be summarized as (NA,NB,NC,ND,NE), being the number of items of class
A, B, C, D, E, respectively, with NA + NB + NC + ND + NE = n. Then, for each inspected
item, generate a random value from a truncated normal distribution in which lower and
upper truncation points are equal to the limits of the class in which the item was allo-
cated. Let xAr be the random value taken from a truncated normal TN(μ0, σ 2,−∞, LWLi)
distribution related to the r-th item of class A; xBj, the random value taken from a trun-
cated normal TN(μ0, σ 2, LWLi, LWLs) associated with the j-th item of class B; xCk, the
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Figure 3. Stratum related to a go-no-go gauge.

random value taken from a truncated normal TN(μ0, σ 2, LWLs, UWSi) for the k-th item
of class C; xDz the random value from a truncated normal TN(μ0, σ 2, UWSi, UWSs)
for the z-th item of class D, and finally xEs, the random value from a truncated normal
TN(μ0, σ 2, UWSs,∞) for the s-th item of class E. With such information, we compute

X̄tn = Xtn

n
=

�
NA
r=1xAr + �

NB
j=1xBj + �

NC
k=1xCk + �

ND
z=1xDz + �

NE
s=1xEs

n

and compare it with UCL and LCL to decide if the production process is in control or
not. Operationally, we are attaching numerical values to each class through generation of
values from truncated normal distributions. In practical terms, the operator or the system
will continue employing the same decision rule as that used in the traditional X̄ chart.

The assumption is that if the process mean shifts, the values of the random variables
NA, NB, NC, ND, NE will change, thus signaling the shift and its direction. To find the con-
trol limits of the X̄tn chart and to evaluate its performance, the distribution of Xtn must be
determined.When the process is in control, the procedure in substituting the originalmea-
sures (but not observed/measured) by the values randomly taken from various truncated
normal distributions will yield the same distribution of the original measures X, that is
N(μ0, σ 2). The problem can be viewed as a split of a population into 5 strata (see Figure 3)
with re-samplings in each stratum proportional to the probability of each stratum in a nor-
mal distribution. This will cause the distribution generated with the resampling of Xtn to
be equal to the distribution of the quality characteristic X ∼N(μ0, σ 2).

For a better understanding, Figure 4 illustrates overlapping of two histograms; one orig-
inated from the generation of 10 thousand values of a distributionN(μ0 = 0, σ 2 = 1), and
another is the distribution resulting from the generation of normal truncated distributions.
As expected, the two distributions can be considered equal.

Thus, the control limits for the X̄tn chart can be obtained analogous to the traditional X̄
chart, that is: UCL = μ0 + 3σ/

√
n and LCL = μ0 − 3σ/

√
n in order to attain in-control
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Figure 4. Normal Distribution N (0,1) versus distribution due to the generation of truncated normal
distributions.

ARL (ARL0) of 370. To calculate the out-of-control ARL (ARL1), the problem ismore com-
plicated as Xtn does not follow a normal distribution when the process mean shifts from
μ0 → μ1. Its mean and standard deviation are not respectively equal toμ1 and σ (but they
are for the traditional X̄ chart). For example, Figure 5 shows a histogram from a simulation
of 10 thousand values of Xtn with UWLS = 2, UWLi = 1, LWLS = −1 and LWLi = −2
andμ0 = 0 → μ1 = 0.8, that is, when the process is in control, it followsN (0,1) and out-
of-controlN (0.8,1). From Figure 5, we cannot consider such a distribution asN (0.8,1), as
its empirical distribution shape departs from the normal distribution shape, and in addi-
tion, its mean is lower than μ1 but its standard deviation larger than σ . A mathematical
discussion about the equality of the distributions of X and Xtn is presented in Appendix 1.

Thus, to calculate the distribution of Xtn is complicated and yields more difficulty to
achieve the exact distribution of X̄tn when the process is out of control. In this sense,
one alternative to acquire ARL1 is to consider the approximation X̄tn ≈ N(μ∗, σ ∗2/n) by
the central limit theorem. Note that to get ARL1 it is considered X̄ ∼ N

(
μ1, σ 2

n

)
in the

traditional X̄ chart as the quality characteristic X is normally distributed.
The expectation μ∗ can be viewed as a weighted average of means of each stratum (as

shown in Figure 3),

μ∗ = pAμ∗
A + pBμ∗

B + pCμ∗
C + pDμ∗

D + pEμ∗
E (1)

with weights pA = P(X <LWLi), pB = P(LWLi < X < LWLS), pC = P(LWLS < X <

UWLi), pD = P(UWLi < X < UWLS) and pE = P(X > UWLS) obtained adequately with
μ = μ0 if the process is in control and μ = μ1 if the process is out of control. The means
μ∗
i , i = A,B,C,D,E are obtained using the truncated normal distribution related to each
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Figure 5. Empirical distribution of Xtn when the process is out-of-control.

stratum as:

μ∗
A = ∫LWLi−∞ xf (x|μ0, σ 2)dx

∫LWLi−∞ f (x|μ0, σ 2)dx
(2)

μ∗
B = ∫LWLs

LWLi xf (x|μ0, σ 2)dx

∫LWLs
LWLi f (x|μ0, σ 2)dx

(3)

μ∗
C = ∫UWLi

LWLs xf (x|μ0, σ 2)dx

∫UWLi
LWLs f (x|μ0, σ 2)dx

(4)

μ∗
D = ∫UWLs

UWLi xf (x|μ0, σ 2)dx

∫UWLs
UWLi f (x|μ0, σ 2)dx

(5)

μ∗
E = ∫∞

UWLs xf (x|μ0, σ 2)dx
∫∞
UWLs f (x|μ0, σ 2)dx

(6)

f (x|μ0, σ 2) is the density probability function of a normal distribution. To exemplify, con-
sider the scenario shown in Figure 5; applying (1), we obtain μ∗ = 0.0026∗(−2.3732)
+ 0.0334∗(−1.3832)+ 0.5433∗0.0000+ 0.3057∗1.3832+ 0.1151∗2.3732 = 0.6437, which
is closer to the simulation of Figure 5.

It is important to note σ ∗2 can also be viewed as a weighted average of second centred
moments related to μ∗ of each stratum (as shown in Figure 3):

σ ∗2 = pAm∗
A + pBm∗

B + pCm∗
C + pDm∗

D + pEm∗
E (7)
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with

m∗
A =

∫ LWLi
−∞ (x − μ∗)2f (x|μ0, σ 2)dx∫ LWLi

−∞ f (x|μ0, σ 2)dx
(8)

m∗
B =

∫ LWLs
LWLi (x − μ∗)2f (x|μ0, σ 2)dx∫ LWLs

LWLi f (x|μ0, σ 2)dx
(9)

m∗
C =

∫ UWLi
LWLs (x − μ∗)2f (x|μ0, σ 2)dx∫ UWLi

LWLs f (x|μ0, σ 2)dx
(10)

m∗
D =

∫ UWLs
UWLi (x − μ∗)2f (x|μ0, σ 2)dx∫ UWLs

UWLi f (x|μ0, σ 2)dx
(11)

m∗
E =

∫∞
UWLs (x − μ∗)2f (x|μ0, σ 2)dx∫∞

UWLs f (x|μ0, σ 2)dx
(12)

Using (7) for the scenario depicted in Figure 4, we have σ ∗ = (0.0026∗9.2158+ 0.0334∗
4.1807+ 0.5433∗ 0.7054+ 0.3057∗0.6196+ 0.1151∗3.1057)0.5 = 1.0455, which is also
coherent with the simulated results of Figure 5.

Applying the expressions (1) and (7), we are able to obtain out-of-control average run
lengths using the approximation X̄tn ≈ N(μ∗, σ ∗2/n). Consider μ1 = μ0 + δσ , which
indicates a shift of the process mean signaling an out-of-control condition. This is equiv-
alent to testing the hypotheses: H0 : μ = μ0 versus H0 : μ 	= μ0, μ = μ0 + δσ . ARL1 is
obtained as 1/(1 − β), and β is the error of type II expressed as:

β = P(LCL < X̄tn < UCL|μ = μ1 = μ0 + δσ )

= �

(
UCL − μ∗

σ ∗/
√
n

)
− �

(
LCL − μ∗

σ ∗/
√
n

)
(13)

�(.) denotes the cumulative normal standard distribution function.
In the next section, the performance of the current proposal is compared with the

traditional X̄ chart in terms of ARL1, fixing ARL0 equal to 370.

3. Performance of the control charts in monitoring the process mean

The performance of the X̄tn control chart was compared with the X̄ chart based on ARL1.
Sample sizes of units five, six, seven, eight and nine were used in the comparative study
because they are values typically used in the traditional X̄ control chart. Other sample sizes
were also considered, but the results obtained were similar to those obtained for the sam-
ple sizes here evaluated. Thus, those results are not included in this paper. The value of
ARL0 = 370 was fixed (α = 0.0027). Values of ARL1 were calculated when the in-control
mean μ0 shifted to μ1 = μ0 + δσ , δ = [0.25; 0.5; 1.0; 1.5; 2.0]. Without loss of generality,
we consider the values of the quality characteristic standardized; that is, when the process is
in control, we haveN (0,1) and for an out-of-control situation,N (δ, 1). The values of class
limits of the go-no-go gauge were UWLS = 2, UWLi = 1, LWLS = −1 and LWLi = −2.
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Table 1. Values of ARL1 for the control charts X̄ and X̄tn.

N δ X̄
X̄tn – normal
approximation X̄tn – simulation

n = 5 ARL0 (δ = 0) 370.40 370.40 370.37
0.25 133.16 174.22 166.71
0.5 33.40 51.91 50.01
1 4.50 7.54 7.43
1.5 1.57 2.36 2.28
2 1.08 1.29 1.28
2.5 1.00 1.03 1.05

n = 6 ARL0 (δ = 0) 370.40 370.40 370.37
0.25 115.87 156.95 150.53
0.5 26.36 42.68 41.20
1 3.44 5.84 5.75
1.5 1.33 1.90 1.86
2 1.03 1.14 1.15
2.5 1.00 1.01 1.02

n = 7 ARL0 (δ = 0) 370.40 370.40 370.37
0.25 101.99 142.40 136.62
0.5 21.38 35.81 34.72
1 2.77 4.70 4.65
1.5 1.20 1.61 1.59
2 1.01 1.07 1.08
2.5 1.00 1.00 1.01

n = 8 ARL0 (δ = 0) 370.40 370.40 370.37
0.25 90.65 129.98 124.91
0.5 17.73 30.55 29.74
1 2.32 3.91 3.87
1.5 1.12 1.43 1.42
2 1.00 1.04 1.04
2.5 1.00 1.00 1.00

n = 9 ARL0 (δ = 0) 370.40 370.40 370.37
0.25 81.22 119.28 115.23
0.5 14.97 26.41 25.79
1 2.00 3.33 3.30
1.5 1.07 1.30 1.30
2 1.00 1.02 1.02
2.5 1.00 1.00 1.00

Other alternatives are also evaluated, but the conclusions are similar to those described in
this paper, so they will not be shown here.

The results are presented in Table 1. The column X̄ was obtained through the usual
analytical calculations, the column X̄tn – Normal Approximation was obtained accord-
ing to the approximation X̄tn ≈ N(μ∗, σ ∗2/n), and the column X̄tn – Simulation by the
simulation of 800 thousand runs and the lower and upper control limits as 0.135% and
99.865% quantiles. In Appendix 2, a macro that was used to obtain the simulation results
is presented, and in Appendix 3, a macro for the normal approximation is described.

We would like to point out the similarity of ARLs from the simulation and normal
approximation indicating that such a normal approximation seems reasonable.

As expected, the X̄ chart shows a lower ARL1 than the X̄tn chart for the same sample
size. However, if we add three additional sample units to the X̄tn chart, it will yield an ARL1
lower than or close to the X̄ chart. Table 2 shows theARL1 results of the X̄ chart with typical
values n = 4, 5, 6 and 7 and the respective ARL1 values for the X̄tn chart (obtained through
simulation) with three additional units. For example, for a shift of δ = 1.0, the X̄ control
chart with n = 5 results in an ARL1 of 4.5, which is larger than the ARL1, of approximately
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Table 2. Values of ARL1 for the control charts X̄ and X̄tn.

Chart X̄ X̄tn X̄ X̄tn X̄ X̄tn X̄ X̄tn

δ / n 4 7 5 8 6 9 7 10

ARL0 370.40 370.37 370.40 370.37 370.40 370.37 370.40 370.37
0.25 155.22 136.62 133.16 124.91 115.87 115.23 101.99 102.56
0.50 43.89 34.72 33.40 29.74 26.36 25.79 21.38 21.23
1.00 6.30 4.65 4.50 3.87 3.44 3.30 2.77 2.81
1.50 2.00 1.59 1.57 1.42 1.33 1.30 1.20 1.19
2.00 1.19 1.08 1.08 1.04 1.03 1.02 1.01 1.01
2.50 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00

Figure 6. ARL1 values for the chart X̄ compared to ARL1 values for the chart X̄tn.

3.87 for the X̄tn chart with n = 8. For better visualization, we have also included Figure 6,
which facilitates the observation of the similarities between the ARL1 of the X̄ chart and
the X̄tn chart with 3 additional units. In the case of the inferior part of Figure 6(c,d), the
lines visibly overlap, indicating the proximity of the ARL1s.

The X̄attchart proposed by Quinino et al. [16] is also included in the comparative study;
however, it is not possible to calibrate to achieve equal ARL0, as the values of class limits are
fixed in the current proposal. While using the go-no-go gauges (utilized by the company)
discussed in Sections 3 and 4, the values of ARL0 that are closer to the target value of 370
for the X̄att control chart are: [215.26, 198.47, 429.95, 400.08 and 232.84] for the respective
sample sizes equal ton = [5, 6, 7, 8 and 9]. TheARL0 values obtained for the chart X̄att were
also used for the X̄tn chart in order to allow for a comparison between both. Table 3 shows
the ARL1 value of X̄tn and X̄att control charts. We can observe that X̄att showed a better
performance than the X̄tn control chart. The comparison between these control charts is
not simple, as we have different ARL0 for each sample size. In the specific cases with sample
sizes n = 5 and 6, theARL0 values are similar (215.26 and 198.47, respectively) which leads
us to conclude that the ARL1 of the X̄tn control chart with n = 6 is approximately lower
than the ARL1 of the X̄att control chart with n = 5.
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Table 3. Values of ARL1 for the control charts X̄tn

and X̄att.

n δ X̄tn chart X̄att chart

n = 5 ARL0 (δ = 0) 215.26 215.26
0.25 104.29 98.49
0.5 33.85 30.84
1 5.77 5.26
1.5 1.99 1.88
2 1.21 1.18
2.5 1.03 1.03

n = 6 ARL0 (δ = 0) 198.47 198.47
0.25 87.98 78.88
0.5 26.75 22.12
1 4.43 3.62
1.5 1.64 1.46
2 1.11 1.07
2.5 1.01 1.01

n = 7 ARL0 (δ = 0) 429.95 429.95
0.25 154.37 141.03
0.5 38.49 33.00
1 4.92 4.21
1.5 1.63 1.49
2 1.09 1.06
2.5 1.01 1.00

n = 8 ARL0 (δ = 0) 400.08 400.08
0.25 133.24 116.16
0.5 31.27 25.20
1 3.98 3.24
1.5 1.43 1.30
2 1.05 1.03
2.5 1.00 1.00

n = 9 ARL0 (δ = 0) 232.84 232.84
0.25 78.19 67.90
0.5 19.21 15.34
1 2.84 2.34
1.5 1.24 1.15
2 1.02 1.01
2.5 1.00 1.00

The decision between the control charts X̄tn and X̄att for the scenario discussed in this
paper needs to consider the reasons that motivated the development of X̄tn control charts.
The use of X̄att control chart in an industrial environment in which the dimensions of the
go-no-go gauge are fixed may not allow for the use of traditional ARL0 values, due to the
discrete nature of the possible values of the X̄att control chart. In contrast, the X̄tn control
chart assumes continuous values, being able to consider any value for ARL0 and having the
advantage of being capable of employing the same control limits of the standard X̄ control
chart. Moreover, the possible values of ARL0 for the X̄att control chart are different for each
sample size. This may cause some difficulty or disarray in a company that has many prod-
ucts and/or quality characteristics to monitor with different sample sizes. In these cases,
the use of standard values of ARL0 for all cases is very recommendable in order to facil-
itate the problem identification by the workers. Another aspect that calls for attention in
the discrete nature is the possibility of drastic alterations of ARL0 due to small changes in
the control limits. For example, the control limit (LC) for the X̄att control was LC = 1.2 for
a sample size of n = 5, which results in an ARL0 equal to 215.26. However, small shifts of
the control limits, for example LC = 1.201, will cause a change of ARL0 to 454.96. This is
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not observed for the X̄tn control chart once it assumes continuous values. These alterations
coming from the discretization of X̄att could cause a serious problem, given that in some
industrial environments, it is very common to have justified numerical approximations for
very small deviations. These small deviations change very little of the ARL0 value in X̄tn,
but they may drastically affect the ARL0 value of the X̄att control chart. In this sense, we
surmise that a qualitymanager, who considers the previously stated problems as potentially
impacting the quality control system, may find the X̄tn chart to be more adequate than the
X̄att chart.

In general, evaluations of the items by attributes are cheaper and faster than taking
measurements of items; thus it is reasonable to consider the X̄tn chart as a competitive
alternative. Consider cX̄tn , as the evaluation cost of a single item through a go-no-go gauge
(by attributes) and cX̄ the evaluation cost of a single item through the use of measurement
(by variables). For the economical evaluation, we observe that when the value of ARL0 is
fixed at 370.34, the values of ARL1 for X̄tn with the size of (n+ 3) are lower than or very
close to the ARL1 values for the X̄ chart with the size of n. In this sense, the cost of evalu-
ation in a sample of size n by using the X̄chart will be ncX̄ . For the chart X̄tn, we will use a
sample of size (n+ 3) in order to have a similar behaviour to the X̄ chart in terms of ARL1,
which results in a cost of (n + 3)cX̄tn . Therefore, in economic terms, the chart X̄tn will be
preferable to the chart X̄ if (n + 3)cX̄tn < ncX̄ . Hence, the X̄tn control chart will be more
economical than the traditional X̄ control chart every time that cX̄tn <

ncX̄
n+3 . For a typical

situation of X̄ control charts with n = 5, it would be enough that the costs are such that
cX̄tn < 0.63cX̄ , which is a situation that may occur very often in the industrial environment
as stated by Wu et al. [13].

The normal approximation for X̄tn presented in this section shows a reasonable perfor-
mance mainly for the evaluated cases. However, if the exact distribution of X̄tn (obtained
by analytic solution and numerical calculus) were used, the question arises: how is the
performance of the proposal affected? In next section, this question will be discussed.

4. Determination of ARL1 by the analytic approach and numerical calculus

Effectively the determination of β = P(LCL < X̄tn < UCL|μ = μ1 = μ0 + δσ ) is needed
to obtain ARL1 values as ARL1 = 1/(1 − β). Specifically, we have to determine:

β = P(LCL < X̄tn < UCL|μ = μ1)

= P

(
LCL <

�
NA
r=1xAr + �

NB
j=1xBj + �

NC
k=1xCk + �

ND
z=1xDz + �

NE
s=1xEs

n
< UCL|μ = μ1

)

(13)

The random variables xA., xB., xC., xD., xE. are truncated normal distributions defined in
the beginning of Section 2. The random vectorN = (NA,NB,NC,ND,NE) follows a multi-
nomial distribution with parameters n, pA, pB, pC, pD, pE (defined also in Section 2) and
assumes a finite number of cases, which can be determined by the number of permutations
of the sequence (NA,NB,NC,ND,NE) constrained to (NA + NB + NC + ND + NE) = n
and 0 ≤ Ni ≤ n, i = A,B,C,D,E. Such a situation is similar to the distribution of n iden-
tical balls place in five urns, which can be determined by k = C4

n+4. Each urn represents
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the 5 classes defined by the limits UWLS, UWLi, LWLS and LWLi. For example, if n = 5,
we have 126 possible allocations of N . Let Wq, q = 1, . . . , k be the representation of each
allocation ofN . The probability of each possible configuration ofWq is given by amultino-
mial distribution with parametersn, pA, pB, pC, pD, pE. For example, considering the values
of the class limits of the go-no-go gauge to be UWLS = 2, UWLi = 1, LWLS = −1 and
LWLi = −2 and the distribution of the quality characteristic in the out-of-control situa-
tion to be given by X ∼ N(μ1 = 0.5; σ = 1), the probability of a particular value forWq,
as inWq = (NA = 1;NB = 0;NC = 2;ND = 2;NE = 0), is calculated by

P(Wq) = n!
nA!nB!nC!nD!nE!

pnAA pnBB pnCC pnDD pnEE

= 5!
1!0!2!2!0!

0.00131 × 0.02140 × 0.47722 × 0.34132 × 0.15870

= 0.0042.

With the use of the variableWq, q = 1, . . . , k, the equation (13) can be written as

β =
k∑

q=1
P(nLCL < �

NA
r=1xAr + �

NB
j=1xBj + �

NC
k=1xCk + �

ND
z=1xDz + �

NE
s=1xEs

< nUCL|μ1,Wq)P(Wq) (14)

by the total probability theorem. In the expression (14), the term P(Wq) is relatively easy
to calculate. However, the probability at the left hand is quite complicated as it involves a
sum of truncated normal distributions. Effectively, the difficulty lies in the multiple inte-
gral of the joint density of the truncated normal distribution (whose size is equal to the
sample size), subject to the constraint that the sum is less than nUCL and greater than
nLCL. It is necessary to develop k multiple integrals. For illustrative purposes, consider
one term of the expression (14) with n = 5, (NA = 1,NB = 0,NC = 2,ND = 2,NE = 0),
and the determination of P(Xtn < nUCL) is realized through the expression (15) with
Xtn = �

NA
r=1xAr + �

NB
j=1xBj + �

NC
k=1xCk + �

ND
z=1xDz + �

NE
s=1xEs. The computational imple-

mentation shows more efficiency if we consider positive and limited regions. Thus, we
recommend the usage of the domain R+ in the probability calculation. For example,
P(X < 1) ≈ P(0 < Y < 11) with X ∼ N(0; 1) and Y ∼ N(10; 1). That is, we shift the
mean in such a way that the probability of negative values is minimal to occur.

P(Xtn < s = nUCL)

=
∫ s

0

∫ s−xD2

0

∫ s−xD2−xD1

0

∫ s−xC2−xD1−xD2

0

∫ s−xC1−xC2−xD1−xD2

0
f (xA1)

f (xC1)f (xC2)f (xD1)f (xD2)dxA1dxC1dxC2dxD1dxD2 (15)

with

f (xA.) = f (x|μ0, σ 2)

∫LWLi−∞ f (x|μ0, σ 2)dx
I(X < LWLi);

f (xB.) = f (x|μ0, σ 2)

∫LWLs
LWLi f (x|μ0, σ 2)dx

I(LWLi < X < LWLs);
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Table 4. Values of ARL1 for the control charts X̄ and X̄tn using the expression (14).

n δ X̄ chart
X̄tn – normal
approximation X̄tn – simulation X̄tn – integral

n = 5 ARL0(δ = 0) 370.40 370.40 370.37 370.45
0.25 133.16 174.22 166.71 166.98
0.5 33.40 51.91 50.01 49.99
1 4.50 7.54 7.43 7.42
1.5 1.57 2.36 2.28 2.28
2 1.08 1.29 1.28 1.28
2.5 1.00 1.03 1.05 1.05

n = 6 ARL0(δ = 0) 370.40 370.40 370.37 370.27
0.25 115.87 156.95 150.53 150.42
0.5 26.36 42.68 41.20 41.24
1 3.44 5.84 5.75 5.75
1.5 1.33 1.90 1.86 1.86
2 1.03 1.14 1.15 1.15
2.5 1.00 1.01 1.02 1.02

n = 7 ARL0(δ = 0) 370.40 370.40 370.37 370.46
0.25 101.99 142.40 136.62 136.68
0.5 21.38 35.81 34.72 34.72
1 2.77 4.70 4.65 4.64
1.5 1.20 1.61 1.59 1.59
2 1.01 1.07 1.08 1.08
2.5 1.00 1.00 1.01 1.01

f (xC.) = f (x|μ0, σ 2)

∫UWLi
LWLs f (x|μ0, σ 2)dx

I(LWLS < X < UWLi);

f (xD.) = f (x|μ0, σ 2)

∫UWLS
UWLi f (x|μ0, σ 2)dx

I(UWLi < X < UWLS);

f (xE.) = f (x|μ0, σ 2)∫∞
UWLs f (x|μ0, σ 2)dx

I(X > UWLS).

The complexity increases as the sample size n increases. For example, for a sample size of
n = 7, there will be seven integrals. The computational implementation was developed in
MATLAB using the functions proposed by HoseaM. [17] andHannak G. [18] that employ
MATLAB’s own functions in a recursive system for simple, double and triple integrals using
the adaptive quadrature algorithm. Table 4 presents the results using expression (14), and
the programme is inAppendix 4. FromTable 2, we conclude that the threemethods provide
similar results. However, the last alternative (using expression (14) and the programme
described in Appendix 3) is extremely inefficient. Using a computer with an Intel® CoreTM

i7-7700 CPU and 4.2GHz processor with 16 GB Ram, approximately 240 hours were spent
for each sample size of Table 3. In these terms, we understand that the best alternative is to
consider the normal approximation. Note that, if the practitioner intends to exactly employ
the proposal of this paper, then Tables 1 and 2 provide reasonable designs without running
the macros.

5. Numerical example

A numerical example is presented in this section. The performance of the proposed
approach was presented in the previous section. The aim of this section is to present a
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Figure 7. P(Xtn ≤ x|w < x < w̄) in the out of control situation.

Table 5. Description of the eight last samples extracted from the production.

Sample Type A Type B Type C Type D Type E X̄tn

Decision
(UCL = 103.54;
LCL = 96.47)

1 NA = 0 NB = 1 NC = 7 ND = 0 NE = 1 97.98 In control
2 NA = 0 NB = 1 NC = 7 ND = 0 NE = 0 97.57 In control
3 NA = 0 NB = 1 NC = 5 ND = 2 NE = 0 93.32 Out of control
4 NA = 0 NB = 0 NC = 7 ND = 1 NE = 0 98.64 In control
5 NA = 0 NB = 1 NC = 5 ND = 2 NE = 0 97.43 In control
6 NA = 1 NB = 1 NC = 1 ND = 5 NE = 0 99.10 In control
7 NA = 1 NB = 0 NC = 5 ND = 2 NE = 0 96.43 Out of control
8 NA = 0 NB = 1 NC = 6 ND = 0 NE = 1 101.50 In control

practical situation to help a user decide whether to implement the proposed approach.
Here, we have adapted an example cited by Montgomery [1] and Quinino et al [14] in
which piston rings for automotive engines are produced by a forging process. The objec-
tive is to comply with different specifications from themarket.We wish to establish control
of the inside diameter (D) of the piston ringsmanufactured by this process.We assume that
it is not possible (it is economically costly) to make a direct measurement of the diameter;
thus, the attributes are evaluated using the equipment shown in Figure 2.

In this example, the quality engineer decided to use n = 8 rings in each sample in order
to have a similar ARL1 of the X̄ chart. When the process is in control, the parameters are
μ0 = 100.00mm and σ0 = 10.00mm. The engineer is concerned with detecting a change
within one or more standard deviations. The limits of the classes of the go-no-go gauge
device areUWLs = 120mm,UWLi = 110mm; LWLs = 90mmand LWLi = 80mm. The
control limits of the X̄tn chart are exactly the same as those of the X̄ chart, that is, UCL =
100 + 3 × 10√

8
= 103.54 and LCL = 100 − 3 × 10√

8
= 103.54 for α = 0.0027.
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Table 5 illustrates the evaluation procedure along the production process for the last
eight samples extracted from the production line. For each sample, the number of items
in each category is determined, each representative value for each category is calculated
and the value X̄tn is determined, as an average for the values generated by the respective
truncated normal distribution. If LCL < X̄tn < UCL, the process is considered in control.
Otherwise, it is considered out of control. Samples 3 and 7 indicate that the process was
out of control, while the others indicate otherwise. When the process was considered out
of control, some verification and adjustments were necessary (Figure 7).

6. Conclusions

In this paper, a new control chart, called the X̄tn control chart, is proposed for processmean
monitoring as an alternative to the X̄ control chartwhen information related to the values of
a quality characteristic is only available as attributes. The implementation of the proposed
technique is simple and considers control limits that normally are already calculated for the
traditional X̄ control chart. Therefore, the proposed control chart is easy for the operators
to understand and use.

In all cases examined, the X̄tn control chart with three additional units in the samples
showed a performance similar to that of the traditional X̄ control chart. Therefore, the
proposed chart can be viewed as an alternative to be employed when information on the
quality characteristic is available only through attribute inspection. In many practical situ-
ations, obtaining data through attributes is more economical and operationally easier than
taking measurements on a continuous scale.

In this article, the detection of changes in the average of the process was discussed; thus,
future works need to discuss the detection of changes in the process variance as well as
the joint detection of the mean and variance, such as in Costa and Rahim [19]. Another
interesting point would be to use attribute measures to control the coefficient of variation
based on, for example, Baocai and Bingxing [20]. Because the X̄tn chart is a Shewhart-type
control chart, in future work, a combination of an X̄tn control chart and a CUSUM control
chart, or an EWMA control chart (i.e. a CUSUMor EWMA chart using X̄tn as the statistic)
may be developed. The overall performance of this scheme must be compared with that of
a binomial CUSUM chart or EWMA chart.

Considering that when the process changes from the under-control situation to the out-
of-control situation, the X̄tn statistic changes not only themean but its distribution, the use
of the statistic proposed by Zhou et al. [21] can be very efficient in the sense that it used
a distribution-free control chart to detect any distributional change. Another possible way
to address this problem is through a kernel estimator, as used by Cruz et al. [22].

Finally, another possibility is to explore a multivariate context in the evaluation of the
averages by means of attributes. In the present paper, each item is allocated in 5 categories:
[−∞; LWLi]; [LWLi; LWLs]; [LWLs; UWLi]; [UWLi; UWLs] and [UWLs;∞]. If we have p
variables in an evaluation, wewould have to allocate the items in 5 categories. This could be
done by using p go-no-go gauges (one for each quality characteristic). With the results, we
could use a truncatedmultivariate normal distribution in order to generate the information
with continuous measurements inside of each one of the 5p categories. With the generated
values, we would be able to find, for example, the Hotelling’s T2 statistics. Therefore, we
could compare the performance of the attribute approach and the variable approach. We
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believe that the analytical solution would be very complex, making simulation a natural
path in a first approach.
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Appendix 1. Verification of equality between the control limits for the X̄tn

chart and the X̄ chart

When the monitoring is made by variables (that is, the measurements are taken), the distribution
by a sample of the mean X̄ obtained through a random sample of size n extracted from the popu-
lation X ∼ N(μ0; σ) is well known and expressed by X̄ ∼ N

(
μ0; σ√

n

)
. Here, X denotes the quality

characteristic of interest.
In the case of monitoring by attributes, the item is first classified into one of the classes

[−∞; LWLi]; [LWLi; LWLs]; [LWLs; UWLi]; [UWLi; UWLs] and [UWLs;∞] using a go-no-go
gauge device. Then, a random value is generated from a truncated normal distribution in which
lower and upper truncation points are equal to the limits of the class in which the itemwas allocated.
The dimensions obtained through this procedure are realizations of a random variable denoted as
Xtn. Thus, if Xtn follows the same distribution of X when the process is in control, then the con-
trol limits of X̄tn are the same as the control limits of X̄. That is, if the cumulative distribution
P(Xtn ≤ x) = P(X ≤ x), ∀x, then Xtn and X follow the same distribution and, consequently, the
control limits are equal. Let pA = P(X <LWLi), pB = P(LWLi < X < LWLS), pC = P(LWLS < X <

UWLi), pD = P(UWLi < X < UWLS) and pE = P(X > UWLS) be the probabilities of the given
classes.

When the process is in control, the probability P(Xtn ≤ x) can be expressed as y1 + y2y3. The
value of y1 is the sum of probabilities of the classes in which x is larger than its elements; y2 is
the probability of the class that contains x, and y3 is the conditional probability that the generated
random element is lower than x (in the class that contains x). This probability can be expressed as:

P(Xtn ≤ x|μ0) =
∑
w∈W

pwIx>w̄ +
∑
w∈W

pwIw<x<w̄ ×
∫ x
w f (x|μ0;σ

2)dx∫ w̄
w f (x|μ0;σ 2)dx

=
∑
w∈W

pwIx>w̄ +
∑
w∈W

Iw<x<w̄ ×
∫ x

w
f (x|μ0;σ

2)dx

= P(X ≤ x|μ0) (1)

where W = {A;B;C;D;E}, w and w̄ denote, respectively, the lower and upper limits of the class w,
and I{} is an indicator function.

https://www.mathworks.com/matlabcentral/fileexchange/47919-integraln-m
https://www.mathworks.com/matlabcentral/fileexchange/69013-integral_8
https://doi.org/10.1002/qre.2578
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Therefore, we can affirm that when the process is in control, the random variables Xtn and X
follow the same distribution function, and consequently, their sample means X̄tn and X̄ also obey
the same distribution leading to the same control limits for these two statistics.

When the process is out of control, we have:

P(Xtn ≤ x|μ1) =
∑
w∈W

pwIx>w̄ +
∑
w∈W

pwIw<x<w̄ × ∫xw f (x|μ0;σ
2)dx

∫w̄w f (x|μ0;σ 2)dx

	= P(X ≤ x|μ1) (2)

This difference is because the generation of the random variables under a truncated normal distri-
bution is realized under the same limits of classes used when the process is in control. Therefore, the

ratio
∫xw f (x|μ0;σ

2)dx
∫w̄w f (x|μ0;σ 2)dx

in (2) should be
∫xw f (x|μ1;σ

2)dx
∫w̄w f (x|μ1;σ 2)dx

. This is a consequence of the loss of information

when we do not make the evaluations by variables but by attributes.
For a better understanding, consider a numerical example: when the process is in control X ∼

N(0; 1) with UWLS = 2, UWLi = 1, LWLS = −1 and LWLi = −2. In this case, we have:
P(Xtn ≤ 1.5|μ0) = pA + pB + pC + P(1 < X < 1.5) = 0.0228+ 0.1359+ 0.6827+ 0.0918

= 0.9332; in other words, the results are equal to P(X ≤ 1.5) = 0.9332.
Now, consider an out-of-control process, for exampleX ∼ N(0.8; 1); then:P(Xtn ≤ 1.5|μ1) = pA +

pB + pC + P(1 < X < 1.5|μ1)P(1 < X < 1.5|μ0)/P(1 < X < 1.5|μ0)
= 0.0026+ 0.0334+ 0.5433+ 0.2066 = 0.7858, that is, these results are not equal toP(X ≤ 1.5|μ1)
= 0.7580. Figure 5 illustrates this case and contains the value obtained by simulation for
P(Xtn ≤ 1.5|μ1) ≈ 0.7857.Given the class that contains x = 1.5, the probability to generate a
random value lower than 1.5 might be (K +G)/(K +G+H + L), but the approximate value of
K/(K + L) is used, as observed in Figure 7.
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Appendix 2. Macro for simulation

clear all

tic %

% Detect change in mean (standardized)

u0= 0; %in control

u1= 1; % out of control

dp= 1; n= 7; % Sample size

% Dimensions of Standardized Equipment

LWI= u0-2∗dp; LWS= u0-1∗dp; UWI= u0+1∗dp;
UWS= u0+2∗dp;
corridas= 500000;

% Distribution under H0

for i= 1:corridas

%Tradicional chart A= random (‘normal’,u0,dp,n,1);
A1=mean(A); Saida(i,1)= A1; % chart by Attributes

S1= sum(A< = LWI); S2= sum((A> LWI &
A< = LWS));

S3= sum((A> LWS & A< = UWI));
S4= sum((A> UWI & A< = UWS));
S5= sum((A> UWS)); S= [S1 S2 S3 S4 S5];

% Generating Truncated Data

pd = makedist(‘Normal’,u0,dp); r= [];

t = truncate(pd,-inf,LWI); r1 = random(t,S(1,1),1);
r1= r1’; r= [r r1];

t = truncate(pd,LWI,LWS); r1 = random(t,S(1,2),1);
r1= r1’; r= [r r1]; t = truncate(pd,LWS,UWI);

r1 = random(t,S(1,3),1); r1= r1’; r= [r r1];

t = truncate(pd,UWI,UWS); r1 = random(t,S(1,4),1);
r1= r1’; r= [r r1];

t = truncate(pd,UWS,inf ); r1 = random(t,S(1,5),1);
r1= r1’; r= [r r1];

A2=mean(r); Saida(i,2)= A2; end

alfa= cdf(‘normal’,-3,0,1);

LI= prctile(Saida(:,1),alfa∗100);
LS= prctile(Saida(:,1),(1-alfa)∗100);
LIA= prctile(Saida(:,2),alfa∗100);
LSA= prctile(Saida(:,2),(1-alfa)∗100);
% Distribution under H1

for i= 1:corridas

% Tradicional chart; A= random (‘normal’,u1,dp,n,1);
A1=mean(A); Saida(i,3)= A1;

% Distribution under H1

for i= 1:corridas

% Tradicional chart

A= random (‘normal’,u1,dp,n,1); A1=mean(A);
Saida(i,3)= A1; % chart by Attributes

S1= sum(A< = LWI);

S2= sum((A> LWI & A< = LWS));

S3= sum((A> LWS & A< = UWI));

S4= sum((A> UWI & A< = UWS));

S5= sum((A> UWS)); S= [S1 S2 S3 S4 S5];

% Generating Truncated Data

pd = makedist(‘Normal’,u0,dp); r= [];

t = truncate(pd,-inf,LWI); r1 = random(t,S(1,1),1);

r1= r1’; r= [r r1];

t = truncate(pd,LWI,LWS); r1 = random(t,S(1,2),1);

r1= r1’; r= [r r1];

t = truncate(pd,LWS,UWI); r1 = random(t,S(1,3),1);

r1= r1’; r= [r r1]; t = truncate(pd,UWI,UWS);

r1 = random(t,S(1,4),1); r1= r1’; r= [r r1];

t = truncate(pd,UWS,inf ); r1 = random(t,S(1,5),1);

r1= r1’; r= [r r1]; A2=mean(r); Saida(i,4)= A2;

end

% Tradicional chart

ARL0= 1/(mean((Saida(:,1)
< = LI))+mean((Saida(:,1)> = LS)))

ARL1= 1/(mean((Saida(:,3)
< = LI))+mean((Saida(:,3)> = LS)))

% chart by Attributes

ARL0A= 1/(mean((Saida(:,2)
< = LIA))+mean((Saida(:,2)> = LSA)))

ARL1A= 1/(mean((Saida(:,4)
< = LIA))+mean((Saida(:,4)> = LSA)))

toc %
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Appendix 3. Macro for approximation by central limit theorem

clear all
tic %
% Detect change in mean (standardized)
u= 1.5;
u0= 0;
dp= 1;
n= 7; % Sample size
% Dimensions of Standardized Equipment
LWI= u0-2∗dp;
LWS= u0-1∗dp;
UWI= u0+1∗dp;
UWS= u0+2∗dp;

fun = @(x) x.∗pdf(‘normal’,x,u0,dp)/
(cdf(‘normal’,LWI,u0,dp));
q1 = integral(fun,-inf,LWI);
p1= (cdf(‘normal’,LWI,u,dp));
fun = @(x) x.∗pdf(‘normal’,x,u0,dp)/
(cdf(‘normal’,LWS,u0,dp)-cdf(‘normal’,LWI,u0,dp));
q2 = integral(fun,LWI,LWS);
p2= (cdf(‘normal’,LWS,u,1)-cdf(‘normal’,LWI,u,dp));
fun = @(x) x.∗pdf(‘normal’,x,u0,dp)/
(cdf(‘normal’,UWI,u0,dp)-cdf(‘normal’,LWS,u0,dp));
q3 = integral(fun,LWS,UWI);
p3= (cdf(‘normal’,UWI,u,dp)-cdf(‘normal’,LWS,u,dp));
fun = @(x) x.∗pdf(‘normal’,x,u0,dp)/
(cdf(‘normal’,UWS,u0,dp)-cdf(‘normal’,UWI,u0,dp));
q4 = integral(fun,UWI,UWS);
p4= (cdf(‘normal’,UWS,u,dp)-
cdf(‘normal’,UWI,u,dp));
fun = @(x) x.∗pdf(‘normal’,x,u0,dp)/
(1-cdf(‘normal’,UWS,u0,dp));
q5 = integral(fun,UWS,inf );

p5= (1-cdf(‘normal’,UWS,u,dp));
M= q1∗p1+q2∗p2+q3∗p3+q4∗p4+q5∗p5
fun = @(x) ((x-M).ˆ2).∗pdf(‘normal’,x,u0,dp)/
(cdf(‘normal’,LWI,u0,dp));
z1 = integral(fun,-inf,LWI);
fun = @(x) ((x-M).ˆ2).∗pdf(‘normal’,x,u0,dp)/
(cdf(‘normal’,LWS,u0,dp)-cdf(‘normal’,LWI,u0,dp));
z2 = integral(fun,LWI,LWS);
fun = @(x) ((x-M).ˆ2).∗pdf(‘normal’,x,u0,dp)/
(cdf(‘normal’,UWI,u0,dp)-cdf(‘normal’,LWS,u0,dp));
z3 = integral(fun,LWS,UWI);
fun = @(x) ((x-M).ˆ2).∗pdf(‘normal’,x,u0,dp)/
(cdf(‘normal’,UWS,u0,dp)-cdf(‘normal’,UWI,u0,dp));
z4 = integral(fun,UWI,UWS);
fun = @(x) ((x-M).ˆ2).∗pdf(‘normal’,x,u0,dp)/
(1-cdf(‘normal’,UWS,u0,dp));
z5 = integral(fun,UWS,inf );
V= z1∗p1+z2∗p2+z3∗p3
+z4∗p4+z5∗p5;
SV= Vˆ0.5;
V1= V/n;
SV1= V1ˆ0.5;

UCL= u0+3∗(dp/(nˆ0.5));
LCL= u0-3∗(dp/(nˆ0.5));
beta= cdf(‘normal’,UCL,M,SV1)-
cdf(‘normal’,LCL,M,SV1);

ARL1= 1/(1-beta)
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Appendix 4. Macro for numerical solution

clear all
tic
u= 11; %Sob H1
u0= 10; dp= 1;
n= 5; % Sample size
% Dimensions of Standardized Equipment
pp= cdf(‘normal’,-3,0,1); LS= n∗u0+3∗((n∗dp)ˆ0.5);
LI= n∗u0-3∗((n∗dp)ˆ0.5); LWI= u0-2∗((n∗dp)ˆ0.5);
LWS= u0-1∗((n∗dp)ˆ0.5); UWI= u0+1∗((n∗dp)ˆ0.5);
UWS= u0+2∗((n∗dp)ˆ0.5);
p1= (cdf(‘normal’,LWI,u,1));
p2= (cdf(‘normal’,LWS,u,1)-cdf(‘normal’,LWI,u,1));
p3= (cdf(‘normal’,UWI,u,1)-cdf(‘normal’,LWS,u,1));
p4= (cdf(‘normal’,UWS,u,1)-cdf(‘normal’,UWI,u,1));
p5= (1-cdf(‘normal’,UWS,u,1)); P= [p1 p2 p3 p4 p5];
i= 1
for x1= 0:n
for x2= 0:(n-x1)
for x3= 0:(n-x1-x2)
for x4= 0:(n-x1-x2-x3)
x5= n-x1-x2-x3-x4;
Resultado(i,1)= x1; Resultado(i,2)= x2;
Resultado(i,3)= x3; Resultado(i,4)= x4;
Resultado(i,5)= x5; X= [x1 x2 x3 x4 x5];
Y = mnpdf(X,P); Resultado(i,6)= Y;
z1= x1; z2= x2; z3= x3; z4= x4; z5= x5;
L1= [];
L2= [];
if z1> 0
for x11= 1:z1
L1= [L1;0]; L2= [L2;LWI];

end
end
if z2> 0
for x11= 1:z2

L1= [L1;LWI]; L2= [L2;LWS];
end

end
if z3> 0
for x11= 1:z3

L1= [L1;LWS]; L2= [L2;UWI]; end
end

if z4> 0
for x11= 1:z4
L1= [L1;UWI]; L2= [L2;UWS]; end
end
if z5> 0
for x11= 1:z5
L1= [L1;UWS]; L2= [L2;20]; end
end
a1= L2(1); a2= L1(1); a3= L2(2); a4= L1(2);
a5= L2(3); a6= L1(3);
a7= L2(4); a8= L1(4); a9= L2(5); a10= L1(5);
if n= 5
f5 = @(x,y,z,k,v) pdf(‘normal’,x,u,1)/
(cdf(‘normal’,a1,u0,1)- . . .

cdf(‘normal’,a2,u0,1)).∗(x< a1 & x> a2).∗ . . .

pdf(‘normal’,y,u,1)/(cdf(‘normal’,a3,u,1)-
cdf(‘normal’,a4,u0,1)).∗ . . .

(y< a3 & y> a4).∗ . . .

pdf(‘normal’,z,u,1)/(cdf(‘normal’,a5,u,1)-
cdf(‘normal’,a6,u0,1)).∗ . . .

(z< a5 & z> a6).∗ . . .

pdf(‘normal’,k,u,1)/(cdf(‘normal’,a7,u,1)-
cdf(‘normal’,a8,u0,1)).∗ . . .

(k< a7 & k> a8).∗ . . . pdf(‘normal’,v,u,1)/
(cdf(‘normal’,a9,u,1)-cdf(‘normal’,a10,u0,1)).∗ . . .

(v< a9 & v> a10);
upper_y=@(x) (LS-x); upper_z=@(x,y) (LS-x-y);
upper_k=@(x,y,z) (LS-x-y-z); upper_v=@(x,y,z,k)
(LS-x-y-z-k);
q5 = integralN(f5,a2,a1,a4,
upper_y,a6,upper_z, . . .

a8,upper_k,a10,upper_v,’AbsTol’,1e-3,’RelTol’,1e-3);
Resultado(i,7)= 1-q5; upper_y=@(x)(LI-x);
upper_z=@(x,y)(LI-x-y); upper_k=@(x,y,z)(LI-x-y-z);
upper_v=@(x,y,z,k)(LI-x-y-z-k);
q5a = integralN(f5,0,LI,0,upper_y,0,
upper_z,0,upper_k,0,upper_v, . . .

‘AbsTol’,1e-3,’RelTol’,1e-3);
Resultado(i,8)= q5a;
i= i+1
end
end
end
end
B1= Resultado(:,7).∗Resultado(:,6);
B2= Resultado(:,8).∗Resultado(:,6);
Beta= B1-B2;
ARL1= 1/(1-Beta)
Toc
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