EQUAÇÕES DIFERENCIAIS DE 2^a ORDEM LINEARES

1. Introdução

Na forma normal as EDOs de lineares de 2^a ordem podem ser escritas na forma

(1)
$$y'' + p(x)y' + q(x)y = g(x).$$

A EDO homogênea associada a (1) é

(2)
$$y'' + p(x)y' + q(x)y = 0,$$

sendo p,q e g funções contínuas definidas em um intervalo $I\subset\mathbb{R}.$ É conveniente usar a notação:

$$L[y] = y'' + p(x)y' + q(x)y,$$

que define um operador linear no espaço das funções definidas em I.. Em particular, vale o chamado Princípio da superposição

Lema 1. Se y_1 e y_2 são soluções de (2), então e $y_h = c_1y_1 + c_2y_2$ é solução de (2).

Lema 2.

- Se \bar{y} é solução de (1) e y_h é solução de (2) então $y = \bar{y} + y_h$ também é solução de (1).
- Se y_1 e y_2 são soluções de (1), então e $y_h = y_1 y_2$ é solução de (2).

Date: April 6, 2020.

Como consequência, se \bar{y} for uma solução fixada de (1), então $qualquer\ solução$ de (1), será da forma $y=y_p+y_h$. sendo y_h uma solução de (2).

Lembremos agora a seguinte

Definição 3. Dizemos que duas funções y_1 e y_2 , definidas em um intervalo I são linearmente dependentes (L.D.) se existirem constantes não nulas, c_1 e c_2 tais que $c_1y_1 + c_2y_2 \equiv 0$. Caso contrário, dizemos que y_1 e y_2 são linearmente independentes.

A definição pode ser estendida de maneira análoga para n funções. No caso de duas funções y_1 e y_2 serão L.D se $y_1 = Ky_2$ ou $y_2 = Ky_1$, K constante real.

Vale o seguinte resultado importante para as equações homogêneas.

Teorema 4. Se y_1 e y_2 são soluções linearmente independentes de (2) então todas as soluções de (2) são da forma:

$$y = c_1y_1 + c_2y_2$$
 $c_1 \ e \ c_2 \ constantes \ reais$.

Para provar este resultado, vamos precisar de algumas definições e resultados auxiliares.

Definição 5. Se y_1 , y_2 são funções deriváveis no intervalo I definimos o determinante Wronskiano de y_1 , y_2 em I, por

$$W[y_1, y_2](x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix}$$

Proposição 6. Se y_1 , y_2 são funções deriváveis no intervalo I, linearmente dependentes, então $W[y_1, y_2](x) \equiv 0$ em I

Demonstração. Se $c_1y_1(x) + c_2y_2(0) \equiv 0$, então $c_1y_1'(x) + c_2y_2'(0) \equiv 0$. Portanto o sistema

$$\begin{bmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

tem solução não trivial, o que só pode ocorrer se $W[y_1, y_2](x) \equiv 0$ em I.

Lema 7. Se y_1 , y_2 são soluções L.I. da equação (2) no intervalo I, então $W[y_1, y_2](x) \neq 0$, para todo $x \in I$.

Demonstração. Por contradição. Se $W[y_1, y_2](x_0) = 0$, para algum $x_0 \in I$ então o sistema

$$\begin{bmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

tem solução não trivial, isto é, existem c_1 , c_2 tais que a função $y_h(x) = c_1y_1+c_2y_2$ é solução do problema linear homogêneo (2) $com\ condição\ inicial\ nula$. Por unicidade de soluções, $y_h(x) = c_1y_1(x)+c_2y_2(x) \equiv 0$ e segue que y_1 , y_2 são soluções L.D., contra a hipótese.

Demonstração do Teorema 4. Sejam y_1 , y_2 soluções L.I. da equação (2) e y(x) uma outra solução qualquer no intervalo I com condições iniciais.

$$\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y_1 \end{cases}.$$

Do Lema 7 segue que $W[y_1, y_2] \neq 0$ e, portanto, existem c_1 c_2 tais que o sistema

$$\begin{bmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$

tem solução. Daí obtemos que $c_1y_1 + c_2y_2$ e y satisfazem as mesmas condições iniciais e, portanto, têm que coincidir.

Observação 8. Em vista do Teorema 4, para encontrar a solução geral da equação (1), precisamos

- Encontrar uma solução particular de (1).
- Encontrar duas soluções L.I. de (2).

Além disso, duas soluções y_1 , y_2 de (2) serão $L.I. \Leftrightarrow W[y_1, y_2](x_0) \neq 0$ em algum ponto $x_0 \in I \Leftrightarrow W[y_1, y_2](x_0) \neq 0$ em todo ponto $x_0 \in I$.

Exemplo 9. Encontrar a solução geral da equação

$$y'' - 2y' + y = 2x.$$

Nesse caso $y_1(x) = e^x$ e $y_2(x) = xe^x$ são soluções L.I. da equação homogênea associada e $y_p(x) = 2x+4$ é solução particular da equação dada. Portanto, sua solução geral é dada por $2x+4+c_1e^x+c_2xe^x$., c_1 e c_2 constantes arbitrárias.