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DIATOMIC MOLECULES ACCORDING TO THE WAVE
MECHANICS, II. VIBRATIONAL LEVELS

By Praruie M. Mogse
Palmer Physical Laboratory, Princeton University

The combination of the energy of repulsion and the electronic energy
can be considered as a nuclear potential energy

E(r)=(e2Z,Z:/7) =V (7).
The wave function ¥ can be considered as a product of three factors
V=N -®(¢p)  O(0)-R(r)/r, where it can be shown that
@zeiﬂ'd’
® =sin? 0- P,;7(cos 6)
where g and j are integers. The normalizing factor NV is adjusted so that
J¥ ¥ dv=1.
When these functions have been substituted in the general equation an
equation for R results,
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We must search, then, for a form for E
exactly give the allowed energy levels as the finite polynomial.
W(n) = =D+ hu[(n+3) — a(nt4)?].

A SOLUTION OF THE PROBLEM
The function which it is proposed to use here is the simple one
E(r) =De2¢(r—m0) — 2 D= lr—r0) | BC))

If this form of £ is substituted in Eq. (3), j set equal to zero, and the
transformation %= (r—ry)made, then
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[W —De2e442Dg=e|R=0. (6)

W(n)= —D+ hwo(n+1/2) — (h2wo/AD)(n+1/2)?
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quanta (LI, 93) is given very closely by the area under the AG curve. For a
linear AG curve this relation holds exactly and, as can easily be seen, leads also
to equation (III, 97).

The foregoing considerations regarding the limit of the vibrational terms are
not of great importance for infrared spectra, since the intensity in a series of
bands falls off so rapidly that high v values
are never observed in practice. However, AG

these considerations will prove to be very (:';02
important in the discussion of electronic
band spectra and of the band-spectroscopic 3000
determination of heats of dissociation
2000 |
(Chapter VII).
1000
Mathematical representation of the
potential curves. As previously mentioned T T T T T T
an cxpression with quadratic and cubic Fra. 51. AG Curve for the Groun!

terms in (r — r.) [equation (111, 71)] repre-
sents the potential energy of a diatomic mol-
ecule near the equilibrium position only.
A mathematic | expression that actually
represents a potential curve of the form of the solid curve in Fig. 46, even for
large values of r, has been proposed by Morse (504). It is

State of the Hy, Molecule [after the Datx
Given by Beutler (91)]. The observed
AG.43 values are plotted with the
abiseissae r 4 3.

Ur —r,) = D,(1 — ¢?07)2 (111, 98)

Here D, is the dissociation encrgy, referred to the minimum (sece Fig. 50), and
B is a constant whose value will be derived. It can be seen that the Morse func-
tion gives a curve of the form shown in Fig. 46, since, for r — oo, U approaches
D, and for r = r,, U is a minimum— namely, {/ = 0. On the other hand, for
r = 0, U does not approach oo, as it must do for a correct potential energy func-
tion. IHowever, the part of the curve in the neighborhood of » = 0 is of no
practical importance.

Morse has shown that when (I11, 98) is substituted for V, the wave equation
(I, 12) can be solved rigorously [see, however, ter Haar (1014)].  The term values
are found to be

Db
G() = 5\/2'”2;; (v + % - ;‘—1;; (v + _%)2 (111, 99)

without any higher powers of (v + &). According to (LII, 74), the coefficient

of (v + %) is we. Therefore
:?wzc; —p.A
=  |——w, = 1.2177 T We o |— 11
8 Dk we, = 1.2177 X 10" w, D, (III, 100)

where u4 is the reduced mass in atomic-weight units (Aston scale) and D, is in
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em™! units. The same formula results from the coefficient of (v + 3)? in

(ITI, 99) when (ITI, 97) is substituted.

The Morse funetion (I, 98) is frequently used for the representation of
potential curves, since it is very convenient.  In cases in which the vibrational
levels cannot be represented by a two-constant, formula, it is best to take the
empirical ), and w, in order to ecaleulate g from (I1I, 100). Iowever, the
coefficient of (v + 3)? in (111, 99) will then not agree with the observed w,,.

Poesehl and Teller (568) have shown that for a given observed set of vibrational levels
the Morse funetion is not the only possible potential function that, on substitution in the wave
equation, will yield these vibrational levels, even if the levels can be represented by a two-
constant formula.  In order to avoid ambiguity in the choiee of the potential funetion, data
on the rotational constants of the molecule must be used.  Various authors have given potential
functions that take account of the values of the rotational constants.  Critieal suminaries of
and improvements upon all this work have been given by Hylleraas (351), Coolidge, James,
and Vernon (162a), and Hulburt and Tlirschfelder (1078). The last-named authors have
suggested the following modification of the Morse funetion:

) = De[(1 —e P2 4 ¢p33¢ 2 (L + bBa)] (111, 101)

In this cquation x = r — r. and g s given by (111, 100) (our r and g are defined differently
from those of Hulburt and Hirschfelder); ¢ [not to be confused with the veloeity of light
oceurring in (111, 100)] and b are constants depending on the vibrational and rotational con-

stants in the following way :
1 1 (] n a,w,-)
c=1-— -
Bre 68,2

b=2 '[ 7_ 1 (5 p D | Befe | 2w, ] (TTT, 102)
) =2 - el U — y
cl12 T pn\d TenE T, 3np> ’

where the rotational constants B, and «, will be defined in subsection (¢) below.  The ad-
vantage of the funetion (IT1, 101) is that its five parameters ean be obtained fairly readily
from just those five speetroscopie constants w,, o, 1),, 3, and «, that are the only ones
experimentally determined for most eleetronie states.  Tlulbuel and Thirschtelder have given
the values of the constants ¢ and b for the ground states of a considerable number of molecules.

Klein 101) and Rydberg (608) (609) have given a method for construeting the potential
curve point for point from the observed vibrational and rotational levels without assuming
an analytieal expression for the potential funetion.  The exact curves obtained in this way
are generally farly closely approximated by the simple Morse eurve (which is mueh simpler
to ealeulate).  The potential curve for the ground state of Ha in Fig. 50 (full curve) has been
derived by the Klein-Rydberg method.  The corresponding Morse funetion is given as a
broken-line curve [see also Hylleraas (351)].  In many cases the agreement is not. quite as
good.  Nevertheless for many considerations the Morse function is o fairly satisfuctory
approximation. A\ very much closer approximation to the “exaet’” curves is provided by the
modified Morse function (ITI, 101) at least in all cases in which a comparison has been made.
For a discussion of the limitations of the Klein-Rydberg method as well as other important
remarks on potential funetions reference should he made to the paper by Coolidge, James, and
Vernon (162a) which eontains also another modification of the Morse funetion which has
considerable merit.  Rees (1343) has given an analytical formulation of the Klein-Rydberg
method.

Linnett (1175) has suggested a potential function

mﬁ=ﬁ—mw
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where the first term represents the repulsion of the atomie cores and the constants a and m
(= 3) in it are the same for all states of a given molecule, while the constants b and n of the
second term may be adjusted for each individual state.  Linnett has shown that this function
gives a better representation of the interrelation of the constants k., 7., 1), and w.r, than does
the Morse function. However he has not. compared this function with “true” potential fune-
tions obtained, for example, by the Klein-Rydberg method.

"~ (b) The Nonrigid Rotator -

Energy levels. Thus far we have used the models of the rigid rotator and
the harmonice (or anharmonie) oscillator independently of each other.  However,
it is quite obvious that the molecule cannot be a strietly rigid rotator when it
is also able to carry out vibrations in the direction of the line joining the two
nuclei.  Therefore a better_model for representing the rotations of the molecule

e T e TR -

is given by the nony ‘igid rotalor | “that i is, a rotating system consisting of two mass
poinis which are not conneeted by a massless rigid bar but by a massless spring.
_ In bllCh a sy%i(‘m as aresult of the action of centrifugal foree, the internuclear
distance, and consequently the moment of inertia, increases with™ increasing
rotation. Therefore, in expression (111, 15) for the 1()ta.t1(m:t1 term valucs of a
rigid rotator the factor b, 87°cl depends on the rotational energy (that is, on the
rotational quantum number), decreasing with increasing J. A more detailed
-aleulation shows as indicated below thai, to a very good approximation, the
rotational terms of the nonrigid rotator are given by ‘

E,
/),(

F(J) = = B[l —wJ(J + 1)]J(J + 1). (I1II, 103)
That is to say, B[l — wJ(J + 1)] appears in the place of B in (II1; 15). The
constant B in (111, 103) s given by the same formula (111, 16) as previously but
substituting for the moment of mertia / its value for zero rotational energy;
w is very small compared to 1. Equation (ILI, 103) is usually written

FQ) = BJ(T +1) = DJ*J + 1)> (I11, 104)

Tt should be noted that some authors use a positive sign in (111, 104) instead of
the negative one used here.  With our choice of sign D always has a positive
value.!

{ The rotational constant ) depends on the vibrational frequency w of the
molecule, since the smaller w is, the flatter will be the potential curve [according
to (ITI, 31)] in the neighborhood of the minimum and therefore the greater will
be the influence of centrifugal forece—that is, the greater will be D. It will be
shown below that D is given by

4B3
D =— (III, 105)

w

if, for the vibrations, the model of the harmonic oscillator is used. As we have

?This D, of course, has nothing to do with the dissociation energy .
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EXERCICIO 2

A figura ao lado com as curvas de energia

potencial harménica e anarmoénica, e os

niveis de energia do oscilador anarménico, é

tradicionalmente mostrada em livros-texto

de Fisico-Quimica.

Use uma planilha eletronica para fazer uma figura analoga com unidades nos

eixos de distancia (A) e de energia (kJ/mol) com as constantes moleculares

experimentais da tabela abaixo. Na figura deve constar: a energia potencial e

niveis de energias do modelo harménico, e a energia potencial e niveis de

energias do modelo anarménico de acordo com o potencial de Morse. Faga

uma figura para a molécula N, e outra para |,. Compare o erro no termo

anarmonico vex. dado pelo modelo de Morse e os valores experimentais da

tabela paraN; e l,.

Table 4.1 Molecular Constants for Some Diatomic Molecules”

Electronic R, k, v, D,/he B, a, VX, D,
Molecule Term  (A) (mdyn/A) (em~") (em™") (em™") (em~!) (cm™") (em™!)
H, X'Ty 07412 5756 44032 38297 6085 306 1213 47x1072
HF X!+ 09168 9.659 4138.7 49,314 20956 0.79% 90.0 22x%x1073
N, X 'E;’ 1.0977 2294 23580 79,868 1998 00177 14.1 5.7% 10~
co X'+t 11283 19.018 21698 90,542 193127 0.01751 13.294 6.20% 10-6
co d’A 13700 5366 11526 29,522 1.3099 0.0168  7.281 58x10°¢
0, X 32; 12074 11.766 1580.2 42,046 14456 0.0158 12.0 48x 10-¢
1, X 12: 2.667 1720 21452 12,560 0.03739 0.00012 0.61 4.5x10°°

“ Data mainly from Bourcier. The isotopic species are 'H, °F, N, 'C, O, 7'



