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Objective

To present an introduction to the Proper Orthogonal

Decomposition (POD) method. Some examples are also discussed.

This class is based in Feeny & Kappagantu (1998).
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Introduction

• POD is an empirical method for dynamic analysis and allows

conclusions a posteriori about the investigated system;

• Besides its use in dynamics of structures, POD is employed in

�ow analyses (turbulence), image processing among other

applications. This class focuses on its use for vibration

analyses.
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Investigated problem

• Consider the vibrations of a structure. Let M be the number

of degrees of freedom (properly chosen) sampled at N time

instants. The displacement on the m-th degree of freedom at

tn is xm(tn);

• We de�ne the response matrix X as:

X =


x1(t0) x2(t0) x3(t0) . . . xM(t0)
x1(t1) x2(t1) x3(t1) . . . xM(t1)
x1(t2) x2(t2) x3(t2) . . . xM(t2)

...
...

...
...

...

x1(tN) x2(tN) x3(tN) . . . xM(tN)
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Correlation matrix

• The correlation matrix R = 1

NX
tX.

• Provided R is symmetric and real, it can be put in the diagonal

form. The eigenvalues of R are the proper orthogonal values

(POVs) and the corresponding eigenvectors are the proper

orthogonal modes (POMs).
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Geometric interpretation

Let v be a normalized POM. Consequently, Rv = λv. Como

R = 1

NX
tX, we obtain (Xv)t(Xv) = λN ↔ 1

N (Xv)
t(Xv) = λ
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Geometric interpretation

Each row of X can be interpreted as an snapshot (a �photograph�).

De�ning pj as the snapshot at a particular instant tj , Xv is given

by: 
vTp1
vTp2
...

vTpN
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Geometric interpretation

Xv can be interpreted as the projection of the experimental data

onto v. Consequently, λ plays the role of a mean squared distance

from the origin. In mechanical systems, this distance is associated

with energy.
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Formulação

Undamped system under free vibrations: Mẍ+Kx = 0. The

response can be written as a function of the natural modes vi by
means of:

x(t) =
M∑
i=1

Ai sin(ωi t − φi )vi

where Ai and φi depend on the initial condition.
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• As showed in the class, an eigenvector of R (POM) converges

to a modal vector. This is valid for low-damped systems.

• POD can be used as an empiric scheme for determining the

modal shape (a possible alternative do other methods such as,

for example, the Circle Adjust Method)
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A brief note

For a harmonically forced system, the POM do not tend to the

modal vectors. However, close to the resonance, in which one mode

dominates the response and the corresponding POV is much large

than the others, the associated POM is a good approximation for

the excited mode.
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De�nition

• A non-linear mode can be interpreted as an invariant manifold

in the state-space;

• Fenny & Kappagantu (1998) deal with synchronous non-linear

modes.
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The POD use for non-linear systems

• POMs are an optimal linear representation for the non-linear

normal modes;

• The POD technique can be used obtaining reduced-order

models for non-linear systems
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Final remarks

• For several applications, POMs can be assumed to match the

natural modes of a linear system. This allows the de�nition of

the modal shapes in a quick way from experiments;

• Even for forced vibrations, the modal shapes can be obtained

from POD;
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Final remarks

• POD can be easily programmed and is a powerful toll for quick

or complex analyses;

• For synchronous non-linear normal modes, POMs consist of

the best linear �t (based on energy criterion);

• Feeny & Kappagantu suggest, as further works, investigations

on the POD use for non-synchronous non-linear modes.
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