Groups and Geometry
e Discrete and finite groups: Zn, Sy

e Discrete and infinite groups: integers under addition
e Continuous groups:
non-compact: real under addition (real line)
SO(2) or compact U(1): circle
compact: SO(2) ® SO(2): torus

SU(2): three-sphere S?



Continuous Groups

Parameters (essential) g = g(z1,22...2) (local)
Under the group product g(x)g(z') = g(z") r" = F(x,z)
Inverse element g(x)g(z') =e = g(z")g(x) v = f(z)

Topological Group:

F(x,x') and f(x) are continuous functions of its arguments

Lie Group G-

(7 constitute a manifold

F(x,2") and f(z) possess derivatives of all orders with

respect to its arguments, i.e., are analytic functions



Lie Groups

Definition 2.1 A Lie group s an analytic manifold which is also a group
such that the analytic structure is compatible with the group structure, i.e. the
operation G X G — G 18 an analytic mapping.

Manitold M

On every point P there is a tangent plane RY (N the same everywhere)

One can map a neighbourhood of P into the tangent plane RY,
and such maps are continuous and differentiable.

Not

/




Example 2.1 The real numbers under addition constitute a Lie group. In-
deed, we can use a real variable x to parametrize the group elements. Therefore
for two elements with parameters x and x' the function in (2.2) is given by

" =F(x,2') =2+ 2 (2.5)
The function given in (2.4) is just
f) = (2.6)
These two functions are obviously analytic functions of the parameters.
Example 2.2 The group of rotations on the plane, discussed in example 1.25,

is a Lie group. In fact the groups of rotations on IR" , denoted by SO(n), are

Lie groups. These are the groups of orthogonal n X n real matrices O with unit
determinant (O'O = 1, detO =1)

Example 2.3 The groups GL(n) and SL(n) discussed in example 1.16 are
Lie groups, as well as the group SU(n) discussed in example 1.17



The Strategy

Lie groups are differentiable manifolds

Manifolds are locally Euclidean spaces

Do perturbation theory:
approximate the structure of the group on the tangent plane

Tangent vectors

A
L3 curve z;(t) Differentiable function f(x;)

Tangent vector V,,

v =20, o

o =
/ 552 dit ox




The tangent space

The tangent vectors at p to all differentiable curves passing through p form
the tangent space T,M of the manifold M at the point p. This space is a
vector space since the sum of tangent vectors is again a tangent vector and the
muliplication of a tangent vector by a scalar (real or complex number) is also

a tangent vector.

/

Given a set of local coordinates z* , ¢ = 1,2, ...dim M in a neighbourhood
of a point p of M we have that the operators aii are linearly independent and
constitute a basis for the tangent space 1,,M. Then, any tangent vector V,, on

T,M can be written as a linear combination of this basis

V, = il (2.8)

p axz




Vector Field

On a differentiable curve the tangent vectors are
continuously and differentiably related

Vector Field: choose tangent vectors on 1, M, for every p € M, such that they
are related in a continuous and differentiable way

Given a set of local coordinates on M we can

write a vector field V', in that coordinate neighbourhood, in terms of the basis

)

5, and its components V* are differentiable functions of these coordinates

0
ox’

V =V"(x)



Given two vector fields V' and W in a coordinate neighbourhood we can
evaluate their composite action on a function f. We have

OVIOf .. 0%
J JY/
0w o VYV arion

Wwv§H=Ww (2.10)
Due to the second term on the r.h.s of (2.10) the operator WV is not a vector
field and therefore the ordinary composition of vector fields is not a vector
field. However if we take the commutator of the linear operators V and W we
get

: : 2.11
ox’ ox’ ( )

and this is again a vector field. So, the set of vector fields close under the
operation of commutation and they form what is called a Lie algebra.

_ J _ J
[um:<wmv—wﬂv>a.
Ox’

So: on any manifold we can construct a Lie algebra



Lie Algebras

Definition 2.2 A Lie algebra G is a vector space over a field k with a bilinear
composition law

(z,y) — |y
z,ay +bz] = alz,y]+ bz, 2] (2.12)

with x, y, z € L and a, b € k, and such that

1. |z,2] =0
2. [z, [y, 2]] + [z, [z, y]] + [y, [z, x]] = 0; (Jacobi identity)

Notice that (2.12) implies that [x,y] = —[y, z], since

r4+y,x+y] = 0
= [z,y] + [y, 7]



Field (corpo)

Definition 2.3 A field is a set k together with two operations
(a,b) > a+b (2.14)

and

(a,b) — ab (2.15)

called respectively addition and multiplication such that
1. k 1s an abelian group under addition

2. k without the identity element of addition s an abelian group under mul-
tiplication

3. multiplication 1s distributive with respect to addition, 1.e.

a(b+c) = ab+ac
(a+b)c = ac+be

The real and complex numbers are fields.



Other Fields

e Rational numbers g, with p, ¢ € Z

e The field F5

0+0=0 O0+1=1 1+1=0
1-1=1 1-0=0 0-0=0

e The field Fy ={0,1, a, b}

O+a=a O+b=05b l1+a=25> 14+b=a a+a=0

O-a=0 0-b=0 l-a=a 1-b=5b a-a==~>o

b+b=0

b -

b=a

a+b=1

a-b=1



The Lie Algebra of a Lie Group

Group GG Vo

Wg//
/! /
g =99
_ o yri 0 N iaxﬂj of
Deﬁne Wg//f — %/(f ox ) = ‘/;]/ axlzf(x ) — ‘/g/ (‘)g;’i agj//j
If Wg// — Vg//

V 1s a left invariant vector field



The commutator of two left invariant vector fields
1s a left invariant vector field

COHSider vg’ = [V:q/? ‘79/] — (Vg’ o' B Vg’ o'

and so

‘/g// — [‘/g// , ‘79//]
JoVE, OV 0
— 9" O o vg” or" | O

ox" 0 [, 0x" _. 02" 0 Ox'" s,
_ k l ok l
o (vg’ o'k O (Vg’ o' ) Vg’ o'k O (Vg’ o' )) O
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Definition 2.4 A wvector subspace H of a Lie algebra G 1is said to be a Lie
subalgebra of G if it closes under the Lie bracket, 1i.e.

H,H|CH (2.19)

and if H itself 1s a Lie algebra.

Definition 2.5 The Lie algebra of the left invariant vector fields on a Lie
group 18 the Lie algebra of this Lie group.

One should notice that a left invariant vector field is completely determined
by its value at any particular point of G. In particular it is determined by its

value at the group identity e .



f\vectors of left invariant vector fields
Group GG

Take a basis on the tangent plane at e

T,,a=1,23.. .dimG

T, Ty =1f5T.

N\

structure constants

Change basis T = A Ty,



One-parameter subgroup

A one parameter subgroup of a Lie group G is a differentiable curve, i.e., a
differentiable mapping from the real numbers onto G, t — ¢(¢) such that

g(t)g(s) = gt +s)
g(0) = e (2.21)

It T is the tangent vector at the identity element to a differentiable curve
g(t) which is a one parameter subgroup, then it is possible to show that

g(t) = exp(tT) (2.22)

The exponential map

It is an analytic mapping of T.G onto G and that it maps a neighbourhood of
the zero element of T,G in a one to one manner onto a neighbourhood of the
identity element of G.



Notions on Lie Algebras

Commutation relations 1o, Ty) = ify T

Jacobil indentity

[Taa [Tba Tc“ T [Tm [Taa Tb“ T [Tba [Tm Ta“ =0

T4 fafe + fafs =

Example: SU(2) T, Ty =ieqpe Tt



Exponential of a matrix

1 1
el =14+ L+ 124+ 134+ . .

2! 3!
Take
. . I3 :1:1—2':132
L=1(x101+ 2202+ x303) z<$1+2x2 e ) ( )
2 2, 2 . 9 1 0 3 9 2 2
p2 4 p2 A
GL:<1—2' | 0 >]1—|—<1—3' | = >L T:\/x%—l—xg—l—x%
SINn T t _ SINTr
el = cosr 14 L el =e ' =cosrl L
T T

el is an unitary matrix — SU(2) group (dete” =e™ " =1)



Consider the matrix function f(A) =exp (AL)T exp (—AL)

ff = exp(AL)[L, T]exp(—AL)
f" exp(AL)[L, [L, T]]exp(—AL)

.
3
|

exp(AL)[L, ...[L,|L,T]]]exp(—AL)

Taylor expansion

FO)=T+[L, T N+[L,[L,T]] % +[L,[L,[L,T]]] > +...

So, f is a Lie algebra element

f(1):eLTe—L:T+[L,T]+% (L, [L,T]] +% (L,[L,[L,T]]] +...



The adjoint representation

The Lie algebra is a vector space V

L

The operator g = e” maps V into V

T —gTg '=e"Te " D(g)|T)=|gTg ")
But

— — —1
91 (92T 95") 97" = (g192) T (1 92)

D(g1) D(g2) | T) =D (g192) | T)

It 1s a representation



(GGiven a basis 1, one builds the matrix representation

gT.g " = T,d"(9)

7192 Ta(9192)"" = Tod'(9192)
= g1(g2T0g5 "oy "
= 911,97 "d%(g2)
= Tyd(91)d5,(g2)

d(9192) — d(gl)d(gz)



Given an element 1" of a Lie algebra, it maps the Lie into itself
T: G—G=[T,G] D(T) |G)=|IT,G])

Jacobi identity

[Ta [T’,QH—I—[Q, [T7T/H+[T/7 [Q,T]]:O

or [T,[T’,Q]]—[T’,[T,Q]]:[[T,T’],Q]

(D(T) D(T") = D(T") D(T)) |G) =D (T, T']) | 9)

We have a representation of the Lie algebra
on the vector space of the algebra itself.

The adjoint representation



Definition 2.7 If one can associate to every element T of a Lie algebra G a
n X n matriz D(t) such that

1. D(T+T') = D(T)+ D(T')
2. D(aT) = aD(T)
3. D([T,T"]) = [D(T), D(T")]

forT.T" € G and a being a c-number. Then we say that the matrices D define
a n-dimensional matrixz representation of G.

Adjoint matrix representation: take a basis

(T, T,] =T,d)(T)

T, [T, )] - [T, [T, T.]] = Tedy(T)de(T") — T dy(T")dy(T)
= [[T,T'], T.]
— Tch([TvT/D (

[d(T), d(T")] = d([T", T"])



T, Ty = Ty dey (T) v [Ty, Ty] = T.d (T,)

[Tava]:i cbeC > dcb(Ta):ifgb

The physicist’s way

Take g close to the identity g=1+ic"T,
(1 + T, Ty(1 —ieT,) = T.d5(1+ie"T,)
= T8¢ + ie%dS(T)))

— Tb + iéa[Ta, Tb}

d%(Ta) =1 c(;b



Notice that the conjugation defines a mapping of the Lie algebra G into
itselt which respects the commutation relations. Defining 0 : G — G

o(T) = gTg™" (2.34)
for a fixed ¢ € G and any T' € G, one has
o(T),0(T")] = [gTg™",gT"g™"]
= g[T,T'g™"
= o([T,T) (2.35)

Such mapping is called an automorphism of the Lie algebra.

Definition 2.6 A mapping o of a Lie algebra G into itself is an automorphism
if 1t preserves the Lie bracket of the algebra, 1.e.

o(T),0(T")] = o([T,T7]) (2.36)

for any T, T" € G.



Trace forms (bilinear forms)

In a given finite dimensional representation D of a Lie algebra we define
the quantity

n? (T, T") = Tr (D(T)D(T")) (2.45)

which is symmetric and bilinear
L. (T, T") = nP(T",T)
2. n2(T, 2T + yI") = an” (T, T") + yn" (T, T")
It is invariant under the adjoint representation
(T, T) =n"(gTg ", 9T'g™")

using the cyclic property of the trace

Tr([D(T), D(T]D(T")) = Tr(D(T)[D(T"), D(T")]) g=1+¢eT”

7717([1v7 T/], T//) n UD(T’ [T”) T’] 0 /



The Killing Form

The trace form in the adjoint representation is called the Killing form

N = 0(Ta, Ty) = Tr(d(T,)d(Ty)) = — fofi dey (To) =4 5,

Definition 2.8 A Lie algebra is said to be abelian if all its elements commute
with one another.

In this case all the structure constants vanish and consequently the Killing
form is zero. However there might exist some representation D of an abelian
algebra for which the bilinear form (2.45) is not zero.



Definition 2.9 A subalgebra H of G is said to be an invariant subalgebra (or
ideal) if

H,G|CH (2.50)

Definition 2.10 We say a Lie algebra G s simple if it has no invariant subal-

gebras, except zero and itself, and it 1s semisimple if it has no invariant abelian
subalgebras.

for non-simple Lie algebras, the adjoint representation is not irreducible

Theorem 2.1 (Cartan) A Lie algebra G is semisimple if and only if its
Killing form is non degenerated, 1.e.

det | Tr(d(T,)d(Ty)) |# 0. (2.51)

or in other words, there is no T’ € G such that

Tr(d(T)d(T")) = 0 (2.52)

for every T" € G.



Definition 2.11 We say a semisimple Lie algebra is compact if its Killing
form 1s positive definaite.

The Lie algebra of a compact semisimple Lie group is a compact semisimple
Lie algebra. By choosing a suitable basis 7, we can put the Killing form of a
compact semisimple Lie algebra in the form .

Tlab — 5ab (253)
Let us define the quantity
fabc = fgbndc (254)
From (2.49) we have
fave = fETr(d(T))d(T.)) = —iTr(d([T,, Ty)T.)) (2.55)

Using the cyclic property of the trace one sees that f,. is antisymmetric with
respect to all its three indices. Notice that, in general, f,. is not a structure
constant.

For a compact semisimple Lie algebra we have from (2.53) that f¢ = faupe
, and therefore the commutation relations (2.23) can be written as

T, T3] = i fure T, (2.56)

Therefore the structure constants of a compact semisimple Lie algebra can be
put in a completely antisymmetric form.



2.5 su(2) and sl(2): Lie algebra prototypes

As we have seen the group SU(2) is defined as the group of 2 x 2 complex

unitary matrices with unity determinant. If an element of such group is written

as g = expt1', then the matrix 7" has to be hemitian and traceless. Therefore

the basis of the algebra su(2) of this group can be taken to be (half of) the
1

Pauli matrices (T; = 50;)

1(0 1 1[0 —i 1(1 0
T12<1 O)’T22<i 0>’T32<0—1> (2.57)

They satisty the following commutation relations

The matrices (2.57) define what is called the spinor (2-dimensional) represen-
tation of the algebra su(2).



From (2.39) we obtain the adjoint representation (3-dimensional) of su(2)

dij (Tk) = z’ekﬂ- = ieikj (259)
and so
00 O 0 0 1
dT)=i| 00 =1 | : dT)=i| 0 0 0 |;
01 0 -1 0 0
0 —1 0
dTy) = il 1 0 0 (2.60)
0 0 O

One can easily check that they satisfy (2.58).

As we have seen the group of rotations in three dimensions SO(3) is defined
as the group of 3 x 3 real orthogonal matrices. Its elements close to the identity
can be written as g = exp T, and therefore the Lie algebra so(3) of this group
1s given by 3 X 3 pure imaginary, antisymmetric and traceless matrices. But the
matrices (2.60) constitute a basis for such algebra. Thefore the Lie algebras
su(2) and so(3) are isomorphic, although the Lie groups SU(2) and SO(3) are
just homomorphic (in fact SO(3) ~ SU(2)/Z5).

The Killing form of this algebra, according to (2.49), is given by

ni; = Tr(d(T;T;)) = 20, (2.61)



S0, it is non degenerate. This is in agreement with theorem 2.1, since this
algebra is simple. According to the definition 2.11 this is a compact algebra.
The trace form (2.45) in the spinor representation is given by

Wy = Tr(D(TT)) = 3, 262
S0, it is proportional to the Killing form, n® = in. This is a particular example
of a general theorem we will prove later: the trace form in any representation
of a simple Lie algebra is proportional to the Killing form.

Notice that the matrices in these representations discussed above are her-
mitian and therefore the matrices representing the elements of the group are
unitary (g = exp4T). In fact this is a result which constitute a generalization
of theorem 1.3 to the case of compact Lie groups: any finite dimensional rep-
resentation of a compact Lie group is equivalent to a unitary representation.
Since the generators are hermitian we can always choose one of them to be
diagonal. Traditionally one takes T3 to be diagonal and defines (in the spinor
rep. T3 is already diagonal)

Ty =T, +iT} (2.63)

Notice that formally, these are not elements of the algebra su(2) since we have
taken complex linear combination of the generators. These are elements of the
complex algebra denoted by Aj.



Using (2.58) one finds

T3, Ty = +T.
T, T.] = 2T (2.64)

Therefore the generators of A; are written as eigenvectors of 753 . The eigen-
values +1 are called the roots of su(2). We will show later that all Lie algebras

can be put in a similar form. In any representation one can check that the
operator

C=T+T5+T; (2.65)

commutes with all generators of su(2). It is called the quadractic Casimir
operator. The basis of the representation space can always be chosen to be
eigenstates of the operators T3 and C' simultaneously. These states can be
labelled by the spin 3 and the weight m

Ty | j,m) =m|j,m) (2.66)



The operators T, raise and lower the eigenvalue of T3 since using (2.64)

TgTj: |], m) — ([T3,T:|:] —|—T:|:T3> |], m>
= (mE1)T% | j,m) (2.67)

We are interested in finite representations and therefore there can only exists
a finite number of eigenvalues m in a given representation. Consequently there
must exist a state which possess the highest eigenvalue of 75 which we denote

J
T, | j,j) =0 (2.68)

The other states of the representation are obtained from | j, ) by applying T_

successively on it. Again, since the representation is finite there must exist a
positive integer [ such that

(T )] j,5) = 0 (2.69)

Using (2.63) one can write the Casimir operator (2.65) as

1
C:ﬁ+dﬂﬂ+ﬂﬂ) (2.70)



So, using (2.64), (2.66) and (2.68)

2
= JU+1) 177 (2.71)

Since C' commutes with all generators of the algebra, any state of the repre-
sentation is an eigenstate of C' with the same eigenvalue

o 1 o
Clji) = @§+fﬂJ1+Tj€MLﬁ

Cljm)=30G+1)[5,m) (2.72)

where | j,m) = (T_)" | 7,5) for m = j —n and n < [. From Schur’s lemma
(see lemmal.1), in a irreducible representation, the Casimir operator has to be
proportional to the unity matrix and so

C=j+1)1 (2.73)
Using (2.70) one can write

T. T =C—T;+T; (2.74)



Therefore applying T on both sides of (2.69)

TT(T2)']j.j) = O
= (JU+D) -G +G-0) 145 (275

Since, by assumption the state (T_)" | 7, j) does exist, one must have
UG+ =G -0+ - =2 -0)1+1)=0 (2.76)

Since [ is a positive integer, the only possible solution is [ = 27. Therefore we
conclude that

1. The lowest eigenvalue of 13 is —j

2. The eigenvalues of T3 can only be integers or half integers and in a given
representation they vary from 5 to —j in integral steps.



The group SL(2), as defined in example 1.16, is the group of 2 x 2 real ma-
trices with unity determinant. If one writes the elements close to the identity
as g = exp L (without the ¢ factor), then L is a real traceless 2 x 2 matrix. So
the basis of the algebra sl(2) can be taken as

10 1 1/ 0 1 11 0
L1_2<1o>’L2_2<—1o)’L?’_z(o—1) (2.77)

This defines a 2-dimensional representation of sl/(2) which differ from the spinor
representation of su(2), given in (2.57), by a factor ¢ in Ly. One can check the
they satisty

L1, Lo) = —L3; Ly, L3] = —Lo; |Lo, L3] = — Ly (2.78)

From these commutation relations one can obtain the adjoint representation
of sl(2), using (2.39)

0 0 0 00 —1
dL)=10 0 -1 | : dL)=|[00 0 |:
0 —1 0 1 0 0

(2.79)

Q.
N\
=~
w
N——"
|
O = O
o O =
o OO



According to (2.49), the Killing form of sl(2) is given by

1 0 0
ni; = Tr(d(L;L;)) =2 0 —1 0 (2.80)
0 0 1

sl(2) is a simple algebra and we see that its Killing form is indeed non-
degenerate (see theorem 2.1). From definition 2.11 we conclude sl(2) is a
non-compact Lie algebra.

The trace form (2.45) in the 2-dimensional representation (2.77) of sl(2) is

| (1 0 0
@mm:ﬂﬂﬂ@:§ 0 —1 0 (2.81)
0 0 1

Similarly to the case of su(2), this trace form is proportional to the Killing
form, n?~4m = in.



The operators
Li=1Li+ L, (2.82)

according to (2.78), satisfy commutation relations identical to (2.64)
L3, Li] ==xLy; [Ly, L] =2Ls (2.83)

The quadratic Casimir operator of sl(2) is
2 72, 72 2 1
C=I1i—L3+ L= L3+ (Ll +L-Ly) (2.84)

The analysis we did for su(2), from eqs. (2.66) to (2.76), applies also to sl(2)
and the conclusions are the same, i.e. , in a finite dimensional representation of
sl(2) with highest eigenvalue j of L3 the lowest eigenvalue is —j. In addition
the eigenvalues of L3 can only be integers or half integers varying from j
to —7 in integral steps. The striking difference however, is that the finite
representations of sl(2) (where these results hold) are not unitary. On the
contrary, the finite dimensional representations of su(2) are all equivalent to
unitary representations. Indeed, the exponentiation of the matrices (2.57) and
(2.60) (with the ¢ factor) provide unitary matrices while the exponentiation of
(2.77) and (2.79) do not. All unitary representations of sl(2) are necessarily
infinite dimensional. In fact this is true for any non compact Lie algebra.

The structures discussed in this section for the cases of su(2) and sl(2) are
in fact the basic structures underlying all simple Lie algebras. The rest of this
course will be dedicated to this study.



2.6 The structure of semisimple Lie algebras

We now start the study of the features which are common to all semisimple
Lie algebras. These features are in fact a generalization of the properties of
the algebra of angular momentum discussed in section 2.5. We will be mainly
interested in compact semisimple algebras although several results also apply
to the case of non-compact Lie algebras.

Theorem 2.2 Gien a subalgebra H of a compact semisimple Lie algebra G
we can write

G=MH+P (2.85)

where

H,PICP (2.86)

where P is the orthogonal complement of H in G w.r.t. a trace form in a given
representation, i.e.

Tr(PH) = 0 (2.87)

Proof P does not contain any element of H and contains all elements of G
which are not in H. Using the cyclic property of the trace

Tr(H[H,P])=Tr([H,H|P)=Tr(HP) =0 (2.88)

Therefore

H, Pl CP. (2.89)

[

This theorem does not apply to non compact algebras because the trace
form does not provide an Euclidean type metric, i.e. there can exist null vectors
which are orthogonal to themselves. As an example consider si(2).



Example 2.5 Consider the subalgebra H of sl(2) generated by (L + Lo) (see
section 2.5). Its complement P is generated by (L1 — Lg) and Ls. However
this is mot an orthogonal complement since, using (2.80)

Tr((Ly + Lo)(L1 — L)) =4 (2.90)

In addition (L + Lo) are null vectors, since

Tr(Ly + Ly)? =Tr(Ly — Ly)* =0 (2.91)

Using (2.78) one can check (2.86) is not satisfied. Indeed

L1+ Lo, L1 — L] = 2L
L1+ Lo, L] = —(Ly+ Lo) (2.92)
So
H,PICHA+P (2.93)

Notice P is a subalgebra too

Ly, L1 — Lo) = —(Ly — Ly) (2.94)



Theorem 2.3 A compact semisimple Lie algebra is a direct sum of simple
algebras that commute among themselves.

Proof If G is not simple then it has an invariant subalgebra H such that

H,. G| CH (2.95)
But from theorem 2.2 we have that

H,PICP (2.96)
and therefore, since P N'H = 0, we must have

H,P] = 0 (2.97)
But P, in this case, is a subalgebra since

Tr([P,PH)=Tr(P/P,H]) =0 (2.98)

and from theorem 2.2 again

P, Pl CP (2.99)

If P and H are not simple we repeat the process. O



Theorem 2.4 For a simple Lie algebra the invariant bilinear trace form de-
fined in eq. (2.45) is the same in all representations up to an overall constant.
Consequentely they are all proportional to the Killing form.

Proof Using the definition (2.31) of the adjoint representation and the invari-
ance property (2.48) of n? (T, T") we have

n" (T, T,) = Tr(D(gTag 'gThg™"))
= Tr(D(T.d%(9)Tad5(9)))
= (d")(gm" (1., Ty)d%(g)
= (d'n"d)aw (2.100)

Therefore n? is an invariant tensor under the adjoint representation. This is
true for any representation D, in particular the adjoint itself. So, the Killing
form defined in (2.49) also satisfies (2.100). From theorem 2.1 we have that
for a semisimple Lie algebra, detn # 0 and therefore n has an inverse. Then
multiplying both sides of (2.100) by ! and using the fact that n=! = (d"nd) ™!
we get

n~'n? = (d'nd)" (d"n"d) = d"'n"'n"d (2.101)
and so

d(g)n~'n” =n""n"d(g) (2.102)

For a simple Lie algebra the adjoint representation is irreducible. Therefore
using Schur’s lemma (see lemma 1.1) we get

nin? =1 — nP =\ (2.103)

So, the theorem is proven. O
The constant A is representation dependent and is called the Dynkin index
of the representation D.



We will now show that it is possible to find a set of commuting generators
such that all other generators are written as eigenstates of them (under the
commutator). These commuting generators are the generalization of T3 in
su(2) and they generate what is called the Cartan subalgebra.

Definition 2.12 For a semistmple Lie algebra G, the Cartan subalgebra is
the mazximal set of commuting elements of G which can be diagonalized simul-
taneously.

The formal definition of the Cartan subalgebra of a Lie algebra (semisimple or
not) is a little bit more sophisticated and involves two concepts which we now
discuss. The normalizer of a subalgebra IC of G is defined by the set

NK)={ze G| |z,K] C K} (2.104)

Using the Jacobi identity we have
[z, 2], K] C K (2.105)

with z, 2" € N(K). Therefore the normalizer N(K) is a subalgebra of G and IC

is an invariant subalgebra of N(K). So we can say that the normalizer of IC in

G is the largest subalgebra of G which contains IC as an invariant subalgebra.
Consider the sequence of subspaces of G

Go=0; G = [g,g], Gy = [g,g1]; G = [g,gi_ﬂ (2.106)

We have that Gg D G1 D G2 D ... D G; and each G; is a invariant subalgebra
of G. We say G is a nilpotent algebra if G,, = 0 for some n. Nilpotent algebras
are not semisimple.

Similarly we can define the derived series

Goy=6; Guy=10.9]; Go =1601).90)); - Gu = [Gu-1),Gu-1)] (2.107)

If Gy = 0 for some n then we say G is a solvable algebra . All nilpotent
algebras are solvable, but the converse is not true.



Definition 2.13 A Cartan subalgebra of a Lie algebra G is a nilpotent subal-
gebra which is equal to its normalizer in G.

Lemma 2.1 If G is semisimple then a Cartan subalgebra of G is a mazrimal
abelian subalgebra of G such that its generators can be diagonalized simultane-
ously.

Definition 2.14 The dimension of the Cartan subalgebra of G 1is the rank of
Gg.

Notice that it H, , Hy ... H, are the generators of the Cartan subalgebra then
g 'Hyg , g'Hyg ... go'H.g (9 € G) generates an abelian subalgebra of G
with the same dimension as that one generated by H;, ¢+ = 1,2,...r. This is
also a Cartan subalgebra. Therefore there are an infinite number of Cartan
subalgebras in G and they are all related by conjugation by elements of the
oroup G which algebra is G.



By choosing suitable linear combinations one can make the basis of the
Cartan subalgebra to be orthonormal with respect to the Killing form of G,
c 1
i.e.

Tr(H;H;) = 6;, (2.108)

with 72,7 = 1,2, ... rank G. From the definition of Cartan subalgebra we see
that these generators can be diagonalized simultaneously.

We now want to construct the generalization of the operators 7. = T +115
of su(2), discussed in section 2.5, for the case of any compact semisimple Lie
algebra. They are called step operators and their number is dim G - rank G.
According to theorem 2.2 they constitute the orthogonal complement of the
Cartan subalgebra and therefore

Tr(H,T,,) =0 (2.109)

with ¢ = 1,2... rank G, m = 1,2... (dim G - rank G). In addition, since a
compact semisimple Lie algebra is an Euclidean space we can make the basis
T,, orthonormal, i.e.

Tr(TTy) = Gpmn (2.110)



Again from theorem 2.2 we have that the commutator of an element of the
Cartan subalgebra with 7;,, is an element of the subspace generated by the basis
T, . Then, since the algebra is compact we can put its structure constants in
a completely antisymmetric form, and write

or

where we have defined the matrices

of dimension (dim G - rank G) and which are hermitian
(hZ)jnn - (hi):;m — _ifinm — Z.fmm — (hi)mn (2-114>

Therefore we can find a unitary transformation that diagonalizes the matrices
h; without affecting the Cartan subalgebra generators H; .

T — Uiy
(hi)mn = (UhU" ) (2.115)

with UT = U~!'. We shall denote by E, the new basis of the subspace orthog-
onal to the Cartan subalgebra. The indices stand for the eigenvalues of the

matrix h; (or of the generators H; ). The commutation relations (2.112) can

now be written as
[Hia Ea] = OziEa (2116)

The eigenvalues «; are the components of a vector of dimension rank G and
they are called the roots of the algebra G . The generators E, are called step
operators and they are complex linear combinations of the hermitian generators
T,,. Notice that the roots « are real since they are the eigenvalues of the
hermitian matrices h;.



From (2.113) we see that the matrices h; are antisymmetric, and their off
diagonal elements are purely imaginary. So

W =h; h'=—h (2.117)

(/

Therefore if v is an eigenstate of the matrix h; then since the eigenvalue «; is
real we have

hiv = ;v (2.118)
and then
hiv* = —hv* = qv° (2.119)

Consenquently if « is a root its negative (—a ) is also a root. Thus the roots
always occur in pairs.
We have shown that we can decompose a compact semisimple algebra L as

G=H+)> G, (2.120)

where H 1s generated by the commuting generators H; and constitute the
Cartan subalgebra of G. The subspace G, is generated by the step operators
E,. This is called the root space decomposition of G.In addition one can show
that for a semisimple Lie algebra

dim G, =1; for any root o (2.121)

and consequently the roots are not degenerated. So, there are not two step op-
erators E, and E! corresponding to the same root a.. Therefore for a semisim-
ple Lie algebra one has

dim G - rank G = >, dim G, = number of roots = even number



Using the Jacobi identity and the commutation relations (2.116) we have that
if o and [ are roots then

Hi, |[Ea, Egl] = —|Ea,[Es, Hi]] — [Eg, [Hi, Ea]
= (ai+5) [Ea, Ep] (2.122)

Since the algebra is closed under the commutator we have that [E,, Fj3| must
be an element of the algebra. We have then three possibilities

1. a+ B is a root of the algebra and then [E,, Fg| ~ Fuoip
2. a4+ [ is not a root and then |F,, E3] =0

3. a+ =0 and consequently [E,, Es] must be an element of the Cartan
subalgebra since it commutes with all H; .

Since in a semisimple Lie algebra the roots are not degenerated (see (2.121)),
we conclude from (2.122) that 2« is never a root.

We then see that the knowlegde of the roots of the algebra provides all
the information about the commutation relations and consequently about the
structure of the algebra. From what we have learned so far, we can write the
commutation relations of a semisimple Lie algebra G as

H;,H;] = 0 (2.123)
[HZ', Ea] — OéiEa (2124)
NopEoyp it o+ B is aroot
Eo, Egl = H, ifa+5=0 (2.125)

0 otherwise

where H, = 2a.H/a?, 1,5 = 1,2, ... rank G (see discussion leading to (2.129)
and (2.130)). The structure constants N,z will be determined later. The basis
{H;, E,} is called the Weyl-Cartan basis of a semisimple Lie algebra.






