O que vimos até agora

e O conceito de grupo

e Homomorfismo e Isomorfismo
e Automorfismo (inner and outer), Grupo de automorfismo

e Subgrupos

e Teoremas: Cayley e Lagrange



Continuando ...

e Klemento conjugado

We say an element g of a group G is conjugate to an element ¢’ € G if there

exists g € G such that

9=99'g" (1.12)
This concept of conjugate elements establishes an equivalence relation on the
group. Indeed, g is conjugate to itself (just take g = e), and if ¢ is conjugate to
g, so is ¢’ conjugate to g (since ¢’ = g '¢g). In addition, if ¢ is conjugate to ¢’
and ¢’ to ¢", i.e. ¢ = gg"g™*!, then ¢ is conjugate to ¢”, since g = ggg”"g g~ 1.
One can use such equivalence relation to divide the group G into classes.

e Classe de conjugacao (classe de equivaléncia)

Definition 1.6 The set of elements of a group G which are conjugate to each
other constitute a conjugacy class of G.

Obviously different conjugacy classes have no common elements. The indentity
element e constitute a conjugacy class by itself in any group. Indeed, if ¢ is
conjugate to the identity e, e = g¢’g™ !, then ¢’ = e.



e Subgrupo conjugado

Given a subgroup H of a group G we can form the set of elements ¢ ' Hg
where g is any fixed element of G and H stands for any element of the subgroup
H. This set is also a subgroup of GG and is said to be a conjugate subgroup of
H in G. In fact the conjugate subgroups of H are all isomorphic to H, since if
hi,hy € H and hihy = hs we have that b}, = g 'h1g and hl, = g 'hyg satisfy

Wby = g7 higg  hag = g~ hihag = g~ hag = hi (1.13)

Notice that the images of two different elements of H, under conjugation by
g € (G, can not be the same. Because if they were the same we would have

g 'hig =g theg — g(g_lhlg)g_1 = hy = hy = ho (1.14)

and that is a contradiction.

e Subgrupo invariante

By choosing various elements g € G we can form different conjugate subgroups
of H in G. However it may happen that for all ¢ € G we have

g 'Hg=H (1.15)

This means that all conjugate subgroups of H in G are not only isomorphic
to H but are identical to H. In this case we say that the subgroup H is an
invartant subgroup of GG. This implies that, given an element h; € H we can
find, for any element g € G, an element hy, € H such that

g_lhlg = hg — hlg = ghg (116)



e Simple and Semisimple groups

Definition 1.7 We say a group G is simple if its only invariant subgroups
are the identity element and the group G itself. In other words, G 1s simple if
it has no tnvariant proper subgroups. We say G is semistmple if none of its
invariant subgroups 1s abelian.

Example 1.16 Consider the group of the non-singular real n X n matrices,
which is generally denoted by GL(n). The matrices of this group with unit de-
terminant form a subgroup since if detM = detN = 1 we have det(M.N) =1
and detM~' = detM = 1. This subgroup of GL(n) is denoted by SL(n). If
g € GL(n) and M € SL(n) we have that g~*Mg € SL(n) since det(g~'Mg) =
detM = 1 . Therefore SL(n) is an invariant subgroup of GL(n) and con-
sequently the latter s not simple. Consider now the matrices of the form
R =x1,y,, with x being a non-zero real number, and 1,, being the n X n
identity matrix. Notice, that such set of matrices constitute a subgroup of
GL(n), since the identity belongs to it, the product of any two of them belongs
to the set, and the inverse of R = x 1y, is R~ = (1/x) 1,x,, which is also an
element of the set. In addition, such subgroup is invariant since any matriz R
commutes with any element of GL(n) and so it is invariant under conjugation.
Since that subgroup is abelian, it follows that GL(n) is not semisimple.



e Centralizer of an element

Definition 1.8 Given an element g of a group G we can form the set of all
elements of G which commute with g, t.e., all x € G such that xrg = gx. This
set 1s called the centralizer of g and it is a subgroup of GG.

In order to see it is a subgroup of G, take two elements x; and x5 of the
centralizer of g, i.e., x1g = gxy and x29 = gre. Then it follows that (x122)g =
r1(x29) = x1(gx2) = g(x122). Therefore x1x4 is also in the centralizer. On the
other hand, we have that

v (v19)zyt = 2y gyt — gyt = 2l (1.18)
So the inverse of an element of the centralizer is also in the centralizer. There-

fore the centralizer of an element g € G is a subgroup of G. Notice that
although all elements of the centralizer commute with a given element g they

do not have to commute among themselves and therefore it is not necessarily
an abelian subgroup of G.

e The center of a group

Definition 1.9 The center of a group G s the set of all elements of G which
commute with all elements of G.

We could say that the center of GG is the intersection of the centralizers of all
elements of G. The center of a group G is a subgroup of G and it is abelian ,
since by definition its elements have to commute with one another. In addition,
it is an (abelian) invariant subgroup.



e Example: U(N) and SU(N)

Example 1.17 The set of all unitary n X n matrices form a group, called
U(n), under matriz multiplicaton. That is because if Uy and Us are unitary
(Ul = Ut and U = Ust) then Us = U U, is also unitary. In addition the
inverse of U is just UT and the identity is the unity n X n matriz. The unitary
matrices with unity determinant constitute a subgroup, because the product of
two of them, as well as their inverses, have unity determinant. That subgroup
is denoted SU(n). It is an invariant subgroup of U(n) because the conjugation
of a matrix of unity determinant by any unitary matrix gives a matrix of unity

determinat, i.e. det (UMUT) =detM =1, with U € U(n) and M € SU(n).

Therefore, U(n) is not simple. However, it is not semisimple either, because it
has an abelian subgroup constituted by the matrices R = € 1,,..,, with 0 being
real. Indeed, the multiplication of any two R’s is again in the set of matrices
R, the inverse of R is R~! = e 1,., , and so a matriz in the set. Notice
the subgroup constituted by the matrices R is isomorphic to U(1), the group of
1 x 1 unitary matrices, i.e. phases €. Since, the matrices R commute with any
unitary matriz, it follows they are invariant under conjugation by elements of
U(n). Therefore, the subgroup U(1) is an abelian invariant subgroup of U(n),
and so U(n) is not semisimple. The subgroup U(1) is in fact the center of
U(n), i.e. the set of matrices commuting with all unitary matrices. Notice, that
such U(1) is not a subgroup of SU(n), since their elements do not have unity
deteminant. However, the discrete subset of matrices e2mim/n - with m =
0,1,2...(n — 1) have unity determinant and belong to SU(n). They certainly
commute with all n X n matrices, and constitute the center of SU(n). Those
matrices form an abelian invariant subgroup of SU(n), which is isomorphic to
Zn. Therefore, SU(n) is not semisimple.



e Direct products

We say a group G is the direct product of its subgroups Hy, H,...H,, , denoted

1. the elements of different subgroups commute
2. Every element g € G can be expressed in one and only one way as
g = hihs...h, (1.19)
where h; is an element of the subgroup H; , 1 =1,2,....n .
From these requirements it follows that the subgroups H; have only the identity
e in common. Because if f = e is a common element to Hy and Hp say, then the
element g = hy fhshyf the...h,, could be also written as g = hy fthshy fhe...hy,

. Every subgroup H; is an invariant subgroup of G, because if h, € H; then



Example 1.18 Consider the cyclic group Zg with elements e, a, a*, a°, a*

and a® (and a® = e ). It can be written as the direct product of its subgroups
H, = {e,a* a*} and and Hy = {e,a’} since

e =ee,a = a*a’,a’ = a’e,a’ = ea’, a* = a*e,a® = a*a’ (1.21)

Therefore we write Zg = Hy @ Hy (or Zg = Z3 ® Zy ).

e Another way

Given two groups G and GG' we can construct another group by taking the
direct product of G and G’ as follows: the elements of G = G ® G’ are formed

by the pairs (g,¢’) where ¢ € G and ¢’ € G'. The composition law for G” is
defined by

(91, 91)(92, 95) = (9192, 9195) (1.22)

where ¢192, (g795) is the product of ¢g; by ¢o, (¢; by g5) according to the
composition law of G (G’). If e and €’ are respectively the identity elements of
G and G', then the sets GR®1 = {(g,€') | g € G} and 1QG"' ={(e,¢') | ¢ € G’}
are subgroups of G = G ® G' and are isomorphic respectively to G and G’.
Obviously G ® 1 and 1 ® G’ are invariant subgroups of G" = G® G .



e Cosets

Given a group G and a subgroup H of G we can divide the group G into
disjoint sets such that any two elements of a given set differ by an element of
H multiplied from the right. That is, we construct the sets

gH = { all elements gh of G such that h is any element of H and g is a fixed
element of G}

If g = e the set eH is the subgroup H itself. All elements in a set gH are dif-
terent, because if ghy = ghsy then h; = hy . Therefore the numbers ot elements
of a given set gH is the same as the number of elements of the subgroup H.
Also an element of a set gH is not contained by any other set ¢’ H with ¢’ # ¢
. Because if ghy = ¢’hy then g = ¢’hoh;' and therefore g would be contained
in ¢ H and consequently gH = ¢’H'. Thus we have split the group G into
disjoint sets, each with the same number of elements, and a given element
g € GG belongs to one and only one of these sets.

G




The set of elements gH are called left cosets of H in G. They are certainly
not subgroups of GG since they do not contain the identity element, except for
the set e = H.

Analogously we could have split GG into sets H¢g which are formed by ele-
ments of G which differ by an element of A multiplied from the left. The same
results would be true for these sets. They are called right cosets ot H in G.

The set of left cosets of H in G is denoted by G/H and is called the left coset
space. An element of G/H is a set of elements of G, namely gH. Analogously
the set of right cosets of H in G is denoted by H \ G and it is called the right
coset space.

e Lagrange’s Theorem

Proof of Lagrange’s theorem(section 1.2).
From the considerations above we see that for a finite group G of order m with
a proper subgroup H of order n, we can write

m = kn (1.23)

where £ is the number of disjoint sets gH.O



e (Quocient or Factor Group

If the subgroup H of G is an invariant subgroup then the left and right
cosets are the same since ¢ ' Hg = H implies gH = Hg . In addition, the
coset space G/H, for the case in which H is invariant, has the structure of a

group and it is called the factor group or the quocient group. In order to show
this we consider the product of two elements of two different cosets. We get

ghig'ha = 99’9~ haig'ha = gg'hshs (1.24)

where we have used the fact that H is invariant, and therefore there exists
hs € H such that ¢th;¢’ = hs . Thus we have obtained an element of a
third coset, namely g¢'H. If we had taken any other elements of the cosets
gH and ¢’H, their product would produce an element of the same coset gg'H.
Consequently we can introduce, in a well defined way, the product of elements
of the coset space G/H, namely

gH¢'H = g¢’H (1.25)
The invariant subgroup H plays the role of the identity element since
(9H)H = H(gH) = gH (1.26)
The inverse element is ¢~ H since
g 'HgH =g 'gH=H =gHg 'H (1.27)

The associativity is guaranteed by the associativity of the composition law of
the group G. Therefore the coset space G/H = H \ G is a group in the case
where H is an invariant subgroup. Notice that such group is not necessarily a
subgroup of G or H.



e Examples

Example 1.19 The real numbers without the zero, R—0 , form a group under
multiplication. The positive real numbers, R, close under multiplication and
the inverse of a positive real number x is also positive (1/x) . Therefore R
s a subgroup of R — 0 . In addition we have that the conjugation of a real x
by another real y is equal to x , (y *xy = x) . Therefore RT is an invariant
subgroup of R — 0 . The coset space (R — 0)/R" has two elements, namely
R* and R~ (the negative real numbers). This coset space is a group and it

is isomorphic to the cyclic group of order 2, Zy (see example 1.10), since its
elements satisfy R".RT C Rt , R" R~ C R~, R-.R~ C R".

Example 1.20 Any subgroup of an abelian group is an invariant subgroup.



Example 1.21 Consider the cyclic group Zg with elements e, a, a?, ... a’

and a® = e and the subgroup Zy with elements e and a®. Then the cosets are
given by
co = {e,a’} , c1 = {a,a"} , ¢y = {a*, a"} (1.28)

Since Zo is an invariant subgroup of Zg the coset space Zg/Zs is a group.
Following the definition of the product law on the coset given above one easily
sees 1t 1s 1somorphic to Z3 since

Cop.Co — Cyp , Cphp.C1 — C1 , Cpy.Cog =— Co

C1.C1. = Cy , C1.C3 = Cy , C3.Co = Cq (1.29)

If we now take the subgroup Zs of Zg with elements e, a? and a* we get the
cosets

do = {e,a*,a"} , di ={a,a’, a"} (1.30)

Again the coset space Zg/Z3 is a group and it is isomorphic to Zy since

do.dy = dy , do.dy = dy , dv.dy = dg (1.31)



e Representation Theory

We need:

A vector space V', with vectors | v)

Operators D acting on V
D : V -V D | v) =| ")

An homomorphism G — D

G D

D(g) D(g') |v)=D(g99g") | v)

for all | v) € V




e Faithful Representation

When G — D is an isomorphism (one-to-one)

e Dimension of the Representation = Dimension of V'

e Linear Representation

When the operators D are linear operators, i.e.,

D(lv)+[v)) = D|v)+D|v)
D(a|v)) = aD |v) (1.37)

with | v), | v") € V and a being a c-number, we say they form a linear repre-
sentation of G.



e Scalar Representation

G D

D(g)D(g)=11=1=D (g9

Dimension of V =1

Dy (g’ Dj; = D /
e Matrix Representation ki (9')Dji(9) ki(9°9)

Given a basis | v;), 1 =1,2,3...dimV D(g) ‘ vv> —| v>
) =

D (g) | vi) =| vj) ¢ji =| vs) Dji (g)



Example 1.23 In example 1.9 we have defined the group S, . We can con-
struct a representation for this group wn terms of n X n matrices as follows:
take a vector space V,, and let | v;), 1 = 1,2,...n, be a basis of V,,. One can
define n! operators that acting on the basis permute them, reproducing the n!
permutations of n elements. Using (1.38) one then obtains the matrices. For
instance, in the case of Ss, consider the matrices

1 00 0 10
D(ag)=1]1 0 1 0 |; 1 0 0 |;
0 0 1 0 0 1
1 00 0 0 1
D(az)=|{ 0 0 1 |; 01 0 [;
0 10 1 00
0 1 0 0 0 1
D(as)={ 0 0 1 |; 1 00 (1.40)
1 00 0 10
where a,,, m =0,1,2,3,4,5, are the 6 elements of S3. One can check that the
action
D(am) | vi) =| v;)Dji(am) (1.41)
gives the 6 permutations of the three basis vectors | v;), i = 1,2,3, of V.

In addition the product of these matrices reproduces the composition law of
permutations in S3.

By considering Vs as the space of column wvectors 3 X 1 , and taking the
canonical basis

1 0 0
lv))=1 0 [|; |vo)=1| 1 |; Jus)=1| 0 (1.42)
0 0 1

one can check that the matrices given above play the role of the operators
permuting the basis too

Dij(am) | vk)j =| v1)i Dig(am) (1.43)



Example 1.24 As an example of a non-linear representation consider the

transformation on the complex plane z as D(g)(z1 4 22) L D(g)21 i D(g)ZQ

G124+ 0z z,a; € C; ajag —asaz #0  (1.44)

22 = :
a3 2 + Qy

Now consider a second transformation composed with the first (b; € C')

/ a1 z+a2

YA ,,_b12—|—b2_b1a3z_|_a4—|—b2
- / T p., arztas

ng —|—b4 b3 a3 Z+as —|-b4

(bl a1 + b2 CL3) Z + (bl a9 + b2 (14)
(bg a1 + b4 Clg) Z + (bg Ao + b4 CL4)

(1.45)

Note that such transformations compose in the same way as the product of
2 X 2 complex matrices, i.e.

bl bg aip as _ bl CL1—|—bQCL3 bl CL2+bQCL4 (1 46)
bg b4 as day bg a1 + b4 as bg Ao + b4 a4 .

Since the determinant of the matrices are not zero, the transformations (1.44)
constitute a group isomorphic to GL(2, C). By imposing

a1 P+ | ax|?=a3 >+ | a4 |*=1, and (a1 a} + aza’) =0, one gets a group
isomorphic to U(2). If in addition one imposes (a1 ay — asag) = 1, one gets a
group isomorphic to SU(2). The transformations (1.44) are called the Mobius
transformations of the complex plane.



The elements of a group mapped into the identity operator
constitute an invariant subgroup

G D

Note that that all elements in a given coset gH of the
coset space G/H are mapped into the same operator

D (gh) =D (g)D (h) =D (g)1= D (g)

So we have a faithful representation of the factor group G/H



e Equivalent Representations

Two representations D and D’ of an abstract group G are said to be equiv-
alent representations if there exists an operator C' such that

D'(g) = CD(g)C™" (1.49)

with C being the same for every g € (G. Such thing happens, for instance,
when one changes the basis of the representation

) = vj) Ay (1.50)
Then
D(g) |v;) = |v};)Dj(9)
= Uk>Dkl(g)Alz
= | vn) A A5 Dia(9) A
= [ V))A5 Dil(g) A (1.51)

Therefore the new matrix representatives are
D};(9) = Ajy, Dia(g) A (1.52)

So, the matrix representatives change as in (1.49) with C' = A~!'. Although
the structure of the representation does not change the matrices look different.



e Reducible Representations

4 v D(g)|vi)eW

any g € GG any |v) € Vp

V1 = invariant subspace

V' = Reducible Representation

V1 alone is a representation of G

(0 5)(n)=(%5)

In matrix notation

(05)(5)=(%")



e Completely Reducible Representations

V V
D V7 and V5 are invariant subspaces
V1 and V5 are each one representations of &

In matrix notation

(0 5)(2)=(am)




e Schur’s Lemma

Lemma 1.1 (Schur) Any matriz which commutes with all matrices of a gi-
ven irreducible representation of a group G must be a multiple of the unit
matrix.

Proof Let A be a matrix that commutes will all matrices D(g) of a given
irreducible representation of G, i.e.

AD(g) = D(g)A (1.58)
for any g € G. Consider the eigenvalue equation
Alv)y=X|v) (1.59)

where | v) is some vector in the representation space V. Notice that, if v is an
eigenvector with eigenvalue A, then D(g) | v) has also eigenvalue A since

AD(g) | v) = D(g9)A | v) = AD(g) | v). (1.60)

Therefore the subspace of V' generated by all eigenvectors of A with eigenvalue
A is an invariant subspace of V. But if the representation is irreducible that
means this subspace is the zero vector or is the entire V. In the first case we
get that A = 0, and in the second we get that A has only one eigenvalue and

therefore A = Al [ Algebraically closed field



Corollary 1.2 FEvery irreducible representation of an abelian group is one di-
mensional.

Proof Since the group is abelian any matrix has to commute with all other
matrices of the representation. According to Schur’s lemma they have to be
proportional to the identity matrix. So, any vector of the representation space
V' generates an invariant subspace. Therefore V' has to be unidimensional if
the representation is irreducible. O

Example: Rotation on the plane (SO(2))

coS sin T\ x cosf + ysinb
R(0) = ( _sm@e cosg > (o) ( Yy > B ( —x sin 0 +yy cos 0/ )
Abelian: R(O)R(p) = R(0 + ¢)



Definition 1.11 A representation D is said to be unitary if the matrices D,;
of the operators are unitary, i.e. DT = D1,

Theorem 1.3 Any representation of a finite group s equivalent to a unitary
representation compact

Definition 1.12 Given two representations D and D' of a given group G, one
can construct what is called the tensor product representation of D and D’.
Denoting by | v;), 1 =1,2,...dim D, and | v)), [ = 1,2,...dim D', the basis of
D and D' respectively, one constructs the basis of D ® D’ as

| wi) =| v)® | v)) (1.69)
The operators representing the group elements act as
D® (g) | wa) = D (9) ® D' (g) | wi) = D (g9) | vi) ® D' (g) | v} (1.70)

The dimension of the representation D ® D’ is the product of the dimensions
of D and D', i.e. dimD ® D' = dim D dim D’.



Produto direto de matrizes

S O T



e Example: Z5 ~ 55

Two dimensional rep.
1 0 0
D(e):<0 1) D(a):<1

Tensor product rep. D® = D ® D

(100 0) [
DW=l o1 0| D%@=
\0 0 0 1) \

_

—_O O O
O = O O
o OO -
~ e R

N—

S O = O



e Characters

Definition 1.13 In a given representation D of a group G we define the char-

acter xP(g) of a group element g € G as the trace of the matriz representing
10, 1.€.
dimD

x"(g) = Tr(D(g)) = ; Dii(g) (1.71)

Equivalent representations
Tr(D'(g)) = Tr(CD(9)C™") = Tr(D(9)) = x"(9) = x" (9)

Example

R(6) = ( cosf siné ) MROM = ( e;’@ (:39 )

—sinf cosd

TrR(A) = TerM R(O) M~ =2 cos 6



Note that: XD(e) = divm D

Six theorems in a row

Theorem 1.4 Let D and D’ be two irreducible representations of a finite
group G and xP and x?" the corresponding characters. Then

ﬁ > (x"(9))x" (9) = dppr (1.74)

geG

where N(G) s the order of G, dppr = 1 if D and D' are equivalent represen-
tations and dpp = 0 otherwise.

Theorem 1.5 A sufficient conditions for two representations of a finite group
G to be equivalent is the equality of their character systems.



Theorem 1.6 The number of times np that an irreducible representation D
appears in a given reducible representation D' of a finite group G is given by

np = @ S P (9)(x°(g))" (1.75)

geG

where P and xP' are the characters of D and D' respectively, and N (G) 1s
the order of GG.

Theorem 1.7 A necessary and suficient condition for a representation D of
a finite group G to be irreducible 1s

ﬁg;} [ X7 (9) =1 (1.76)

where x© are the characters of D and N(G) the order of G.

Valid for compact groups as well ﬁg) deg — fG Dg



Example

—sinf cost

R(0) = < cosf) sinf ) MR(O)M~! = < e;)ie 99 )
x(0) =TrR(0) = 2 cos b

2T
Volume / 6 — 9
0

1 2T 5 1 2T 5
— do | x(0 |“= — df 4 cos” 0
27T 0 27 0

1 2T
= — / df 2 (cos® O + sin® 0) = 2
27 0

It is a reducible representation



Theorem 1.8 The sum of the squares of the dimensions of the inequivalent
irreducible representations of a finite group G 1s equal to the order of G.

Theorem 1.9 The number of inequivalent irreducible representations of a fi-
nite group G 1s equal to the number of conjugacy classes of G.



Example: The tri-dimensional representation of S5

1 0 0 0 1 O
D(ao)(()l()) D(al)(l()())
0 0 1 0 0 1
1 0 0 0 0 1
D(ag)(()()l) D(ag)(()l())
0 1 0 1 0 O
0 1 0 0 0 1
D(a4)(001) D(a5)<100)
1 0 0 0 1 O
XD(CLO) = 3 1 5}
XD ay) = XD(CLQ) — D(CLS) =1 6 Z | XD(%;) |2: 2
x"(as) = x(as) = =0

It is a reducible representation



: 1 N
Invariant subspace | ws) = 7 ( 1 )

1 1
1 1
Complement w) = —| =1 |; Jw)=—=]| 1
2 6
0 _9
Relation to canonical basis
1 1 1
V2 Ve v
| w;) =] v;) Ay A= % v v
0 % 3

D'(a,) = A" D(a,) A D' (a) = ( D" (am) 0 )



13
D//(a2) — ( \% _21 ) 1
% 2 5
-1 3 -1 =3
/! . /! _
ra=(Ze %) re=(G 4
2 2 2 2
X (@) = X7 (a2) = x7 (a3) =0 s> X7 (a) =1
X7 (ag) = x" (a5) = -1 =0

It is an irreducible representation



Scalar Representation

Dy(a;) =1 i=0,1,2,3,4,5
1
But 6(12 +2%) # 1

Missing representation

D/// (ao) — D/// (@4) — D/// (@5)
D/// (al) — D/// (&2) — D/// (&3)

1
—1

1
Now 6(12+22+12) =1



e Real and complex representations

Definition 1.14 If all the matrices of a representation are real the represen-
tation 1s said to be real.

Notice that it D is a matrix representation of a group G, then the matrices
D*(g), g € G, also constitute a representation of GG of the same dimension as
D, since

D(g)D(g9') = D(gg') — D*(g)D*(¢9') = D*(99') (1.77)

If D is equivalent to a real representation Dg, then D is equivalent to D*. The
reason is that there exists a matrix C such that

Dg(g) = CD(g)C™" (1.78)
and so
Dg(g) = C*D*(g)(C*)™ (1.79)
Therefore
D*(g) = (C~'C*)"'D(g)C~'C" (1.80)

and D is equivalent to D*. However the converse is not always true, i.e. , if D is
equivalent to D* it does not means D is equivalent to a real representation. So

we classity the representations into three classes regarding the relation between
D and D*.



Definition 1.15 1. If D 1s equivalent to a real representation it is said
potentially real.

2. If D 1s equivalent to D* but not equivalent to a real representation it is
satd pseudo real.

3. If D 1s not equivalent to D* then it is said essentially complex.

Notice that if D is potentially real or pseudo real then its characters are real.



e Example: Dublet rep. of SU(2) (defining rep.)

A A
D(g):(_Zlék Zizk) |Z]_‘2_I_‘ZZ|2:1

D) =pw-(7 )

Zl:$1‘|—i$2 ZQZ$3+i$4
vi + x5 + a5 +ai =1 SU(2) ~ S
Zy = cosf e’ = \/a e Zy = sinf e'¥t = /1 — a e'¥"



e Example: Dublet rep. of SU(2)

.
D (g) = ew'l cos 0 eif? sin 0 O§9§§
g —e '%P2 sinfl e *¥' cosf 0< o, <27
SN oty 6_7{901 cos 0 —QWQ sin ¢
D(g ) =D'(g) = ( e %2 sinf e'%! cosf
anti-dublet rep. of SU(2)
. B e "% cosf e '¥2 sinb
D™ (g) = ( —e'?2 ginf  e'*1 cosf )
They are equivalent; Not true for SU(N) with N > 3

0 -1 e Pl cosf e’ ?2 sin 6 0 1Y\
1 0 —e7'?2 gsinf e '¥! cosf -1 0 /)

(0 -1 —e' %2 sin 6 e' Pl cos 6 [ e'¥1 cosf e P2 sinf \ D* (g)
L1 0 —e "% cosf —e "2 sinf )\ —e'¥2sinf e'¥! cosf - 9
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