

LOM3221 – LABORATÓRIO DE ELETRÔNICA AULA 4

Prof. Dr. Emerson G. Melo

LTspice;

Experimentos:

□Polarização Fixa;

■Polarização por Divisor de Tensão;

LTspice

- □Software SPICE para simulação de circuitos eletrônicos;
- Permite desenhar esquemáticos e simular o comportamento de circuitos analógicos;
- Principais análises disponíveis:
 - Ponto de operação DC;
 - Transiente (domínio do tempo);
 - AC (domínio da frequência);
 - Ruído.
- Recursos para visualização de formas de onda e gráficos de tensão, corrente, ganho, etc.
- Parametrização de componentes através de comandos SPICE para realização de análises em função de temperatura, valores de resistência, capacitância, etc.

Instalação

Acessar: <u>https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html</u>

Realizar o download do aplicativo (Windows ou Mac).

Executar o instalador e seguir as instruções de instalação.

Consultar o "Guia Inicial" e o "Manual do Usuário" disponíveis no e-Disciplinas para obter informações sobre o processo de construção dos esquemáticos e configuração das simulações.

Experimentos

- Os experimentos serão realizados através de simulações utilizando o LTspice.
- □Os resultados dos experimentos deverão ser introduzidos no Relatório disponível em e-Disciplinas-LOM3221-Aula 4-Relatório.
- Essa atividade irá compor parte da nota de laboratório referente aos "Testes" (TS).
- Em todos os resultados devem ser consideradas duas casas decimais.
- Utilizar ponto (.) para separação da parte decimal.

□ Exemplo 1 – Construir o circuito abaixo no LTspice;

Determinar os valores de Rc e Rb para ajustar o ponto de operação do circuito.

 \Box Comparar os valores da simulação com os valores de I_C e V_{CE} .

□ Exemplo 1 – Construir o circuito abaixo no LTspice;

Determinar os valores de Rc e Rb para ajustar o ponto de operação do circuito.

 \Box Comparar os valores da simulação com os valores de I_C e V_{CE} .

□ Exemplo 1 – Construir o circuito abaixo no LTspice;

Determinar os valores de Rc e Rb para ajustar o ponto de operação do circuito.

 \Box Comparar os valores da simulação com os valores de I_C e V_{CE} .

□ Exemplo 1 – Construir o circuito abaixo no LTspice;

Determinar os valores de Rc e Rb para ajustar o ponto de operação do circuito.

 \Box Comparar os valores da simulação com os valores de I_C e V_{CE} .

Experimento 1: Polarização Fixa

Construir o circuito abaixo no LTspice;

Determinar os valores de Rc e Rb para ajustar o ponto de operação do circuito.

 \Box Comparar os valores da simulação com os valores de I_C e V_{CE} .

Exemplo 2 – Construir o circuito abaixo no LTspice;

 \Box Observar os valores de I_C e V_{CE} em função de R_b para uma faixa de valores entre 1 $k\Omega$ e 500 $k\Omega$ com passo de 1 $k\Omega$.

□ Traçar a curva de β e determinar seu valor para $R_b = 350 \ k\Omega$.

Exemplo 2 – Construir o circuito abaixo no LTspice;

 \Box Observar os valores de I_C e V_{CE} em função de R_b para uma faixa de valores entre 1 $k\Omega$ e 500 $k\Omega$ com passo de 1 $k\Omega$.

□ Traçar a curva de β e determinar seu valor para $R_b = 350 \ k\Omega$.

Experimento 2 – Polarização Fixa

Construir o circuito abaixo no LTspice;

 \Box Observar os valores de I_C e V_{CE} em função de R_b para uma faixa de valores entre 1 $k\Omega$ e 1 $M\Omega$ com passo de 1 $k\Omega$.

□ Traçar a curva de β e determinar seu valor para $R_b = 100 k\Omega$.

Exemplo 3 – Construir o circuito abaixo no LTspice;

 \Box Observar os valores de I_C , V_{CE} e β em função da temperatura para uma faixa de valores entre -50 °C e120 °C com passo de 1 °C.

Exemplo 3 – Construir o circuito abaixo no LTspice;

 \Box Observar os valores de I_C , V_{CE} e β em função da temperatura para uma faixa de valores entre -50 °C e120 °C com passo de 1 °C.

Experimento 3 – Polarização Fixa

Construir o circuito abaixo no LTspice;

 \Box Observar os valores de I_C , V_{CE} e β para uma temperatura de 85 °C.

Experimento 4: Polarização Estável de Emissor

Construir o circuito abaixo no LTspice;

Determinar os valores de Rc, Re e Rb para ajustar o ponto de operação do circuito.

 \Box Comparar os valores da simulação com os valores de I_C e V_C .

Experimento 5: Polarização por Divisor de Tensão

Construir o circuito abaixo no LTspice;

Determinar os valores de Re, Rc, R1 e R2 para ajustar o ponto de operação do circuito.

 \Box Comparar os valores da simulação com os valores de I_C e V_C .

Boylestad, Robert L.; Nashelsky, Louis "Dispositivos Eletrônicos e Teoria de Circuitos", 6 ed., Rio de Janeiro, LTC (1998

Boylestad, Robert L.; Nashelsky, Louis "Electronic Devices and Circuit Theory", 11 ed., Boston, Pearson (2013).