

LOM3221 – LABORATÓRIO DE ELETRÔNICA AULA 4

Prof. Dr. Emerson G. Melo

Sumário

- □LTspice;
- ■Experimentos:
 - ☐Polarização Fixa;
 - ☐Polarização por Divisor de Tensão;

LTspice

■ Software SPICE para simulação de circuitos eletrônicos; ☐ Permite desenhar esquemáticos e simular o comportamento de circuitos analógicos; Principais análises disponíveis: ☐Ponto de operação DC; ☐ Transiente (domínio do tempo); □AC (domínio da frequência); Ruído. Recursos para visualização de formas de onda e gráficos de tensão, corrente, ganho, etc. Parametrização de componentes através de comandos SPICE para realização de análises em função de temperatura, valores de resistência, capacitância, etc.

LTspice

- □Instalação
 - Acessar: https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
 - Realizar o download do aplicativo (Windows ou Mac).
 - Executar o instalador e seguir as instruções de instalação.
- □ Consultar o "Guia Inicial" e o "Manual do Usuário" disponíveis no e-Disciplinas para obter informações sobre o processo de construção dos esquemáticos e configuração das simulações.

Experimentos

- □Os experimentos serão realizados através de simulações utilizando o LTspice.
- ☐ Os resultados dos experimentos deverão ser introduzidos no Relatório disponível em e-Disciplinas-LOM3221-Aula 4-Relatório.
- ☐ Essa atividade irá compor parte da nota de laboratório referente aos "Testes" (TS).
- ☐ Em todos os resultados devem ser consideradas duas casas decimais.
- ☐ Utilizar ponto (.) para separação da parte decimal.

- Exemplo 1 Construir o circuito abaixo no LTspice;
- ☐ Determinar os valores de Rc e Rb para ajustar o ponto de operação do circuito.
- \square Comparar os valores da simulação com os valores de I_C e V_{CE} .

- Exemplo 1 Construir o circuito abaixo no LTspice;
- ☐ Determinar os valores de Rc e Rb para ajustar o ponto de operação do circuito.
- \square Comparar os valores da simulação com os valores de I_C e V_{CE} .

Reta de Carga

$$I_{Csat} = \frac{V_{CC}}{R_c}$$

$$V_{CC} = 12 V$$

$$I_{Csat} = 60 mA$$

$$R_C = \frac{V_{CC}}{I_{Csat}} = \frac{12 V}{60 mA}$$

$$R_C = 200\Omega$$

- Exemplo 1 Construir o circuito abaixo no LTspice;
- ☐ Determinar os valores de Rc e Rb para ajustar o ponto de operação do circuito.
- \square Comparar os valores da simulação com os valores de I_C e V_{CE} .

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

$$R_B = \frac{V_{CC} - V_{BE}}{I_B}$$

$$I_B = 150 \, \mu A$$

$$R_B = \frac{12 - 0.7}{150 \,\mu A}$$

$$R_B = 75,33 k\Omega$$

- Exemplo 1 Construir o circuito abaixo no LTspice;
- ☐ Determinar os valores de Rc e Rb para ajustar o ponto de operação do circuito.
- \square Comparar os valores da simulação com os valores de I_C e V_{CE} .

Experimento 1: Polarização Fixa

- ☐ Construir o circuito abaixo no LTspice;
- ☐ Determinar os valores de Rc e Rb para ajustar o ponto de operação do circuito.
- \square Comparar os valores da simulação com os valores de I_C e V_{CE} .

- Exemplo 2 Construir o circuito abaixo no LTspice;
- \square Observar os valores de I_C e V_{CE} em função de R_b para uma faixa de valores entre $1~k\Omega$ e $500~k\Omega$ com passo de $1~k\Omega$.
- \square Traçar a curva de β e determinar seu valor para $R_b=350~k\Omega$.

- Exemplo 2 Construir o circuito abaixo no LTspice;
- \square Observar os valores de I_C e V_{CE} em função de R_b para uma faixa de valores entre $1~k\Omega$ e $500~k\Omega$ com passo de $1~k\Omega$.
- \square Traçar a curva de β e determinar seu valor para $R_b=350~k\Omega$.

Experimento 2 – Polarização Fixa

- ☐ Construir o circuito abaixo no LTspice;
- \square Observar os valores de I_C e V_{CE} em função de R_b para uma faixa de valores entre $1~k\Omega$ e $1~M\Omega$ com passo de $1~k\Omega$.
- \square Traçar a curva de β e determinar seu valor para $R_b=100~k\Omega$.

- Exemplo 3 Construir o circuito abaixo no LTspice;
- \square Observar os valores de I_C , V_{CE} e β em função da temperatura para uma faixa de valores entre -50 °C e120 °C com passo de 1 °C.

- Exemplo 3 Construir o circuito abaixo no LTspice;
- \square Observar os valores de I_C , V_{CE} e β em função da temperatura para uma faixa de valores entre -50 °C e120 °C com passo de 1 °C.

Experimento 3 – Polarização Fixa

- □ Construir o circuito abaixo no LTspice;
- \square Observar os valores de I_C , V_{CE} e β para uma temperatura de 85 °C.

Experimento 4: Polarização Estável de Emissor

- ☐ Construir o circuito abaixo no LTspice;
- ☐ Determinar os valores de Rc, Re e Rb para ajustar o ponto de operação do circuito.
- \square Comparar os valores da simulação com os valores de $I_{\mathcal{C}}$ e $V_{\mathcal{C}}$.

Considerar:

$$V_{RE} = \frac{1}{10} V_{CC}$$

Experimento 5: Polarização por Divisor de Tensão

- ☐ Construir o circuito abaixo no LTspice;
- Determinar os valores de Re, Rc, R1 e R2 para ajustar o ponto de operação do circuito.
- \square Comparar os valores da simulação com os valores de $I_{\mathcal{C}}$ e $V_{\mathcal{C}}$.

Considerar análise exata:

Considerar analise exata:
$$V_{RE} = \frac{1}{10}V_{CC}$$

$$R_2 \le \frac{1}{10}\beta R_E$$

$$V_b = \frac{R_2V_{CC}}{R_1 + R_2}$$

$$I_B = \frac{E_{Th} - V_{BE}}{R_{Th} + (\beta + 1)R_E}$$

$$R_{Th} = \frac{R_1R_2}{R_1 + R_2}$$

Referências

- □ Boylestad, Robert L.; Nashelsky, Louis "Dispositivos Eletrônicos e Teoria de Circuitos", 6 ed., Rio de Janeiro, LTC (1998
- □ Boylestad, Robert L.; Nashelsky, Louis "Electronic Devices and Circuit Theory", 11 ed., Boston, Pearson (2013).