182 COMPUTER SIMULATION IN BIOLOGY
Conclusion

This chapter has been concerned with temporal and spatial variation

in light intensity, and the effect of light on photosynthesis. The phﬁ%:'

tosynthetic models have been limited to the aquatic environment, and
confined to very simple equations. Models that are considerably more
complex than those given here have been developed for these phenomena,
principally to escape the limits of the assumptions of the simple models.
Models of light are nsed in many simulations from biological fields other
than those in this chapter. For example, light models are used in simula-
tions of photosynthetic biochemistry, of plant and animal behavior cued
by photoperiodism, and in visual phenomena. The relationship between
solar radiation and temperature will be discussed in the next chapter.

CHAPTER 12

TEMPERATURE AND BIOLOGICAL

ACTIVITY

Models of temperature are important in most fields of biological in-
quiry because of the effect temperature has on rates of biological activity.
This is produced primarily by effects of temperature on chemical reaction
rates. At low temperatures reaction rates become vanishingly small, and
biological activity all but ceases. At high temperatures competing reac-
tions, such as the denaturation of vital proteins are favored, and organ-
isms begin to lose their integrity. Biological activity is primarily confined
to temperatures between 0 and 100° Celsius. This chapter will describe
some methods for modeling seasonal and daily varistion of temperature
and heat balance, and for describing the effect of temperature on rates of
biological processes.

12.1 Seasonal and Daily Variation in Temperature

Temperature of the environment is largely a function of solar radiation.
For this reason environmental temperatures tend to follow sinusoidal pat-
terns like those of light intensity in the previous chapter. Temperature
also partly depends on the quantity of heat stored in the environment
as a result of solar inputs. If solar radiation were stored and reradiated
uniformly, the temperature curve would be the integral of the solar sine
curve. Analytically, the integral of a sine function is a negative cosine
function:

/sinxdw = e COS T+ € (12.1)

A negative cosine curve is identical to the sine curve, except that it lags
the sine curve by 90° (i.e., it is out of phase by one-fourth wavelength ).
This relationship is diagrammed in Figure 12.1. The cosine approxima-
tion of temperature is inadequate, because the earth’s surface is not ho-
mogeneous; air, land, and water can absorb, circulate and exchange heat
é:mergy at different rates. At most locations on the earth's surface, air
temperature lags solar intensity by 3 to 4 weeks, rather than 13 weeks as
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Figure 12.1. Comparison of sine curve with its integral, the neg-
ative cosine curve.

predicted by the negative cosine curve. If we use the 4-week figure and
assume that average annual air temperature is 10°C with a range of 12°C

for average daily temperatures on either side of the annual mean, we can

find the average daily temperature for any week with

T =10+ 12 - sin (m&gfj) (12.2)
w} p

This can be compared with a model for light intensity from Chapter 11

.f - :
Ty = 400 + 200 - sin (217 f}mm}i)

In many simulations, extremes of temperatures are more importaut than
means. Webb et al. (1975) developed a model for air temperature of
an Oregon forest which was composed of three elements: mean daily
temperature, daily temperature range, and daily temperature excursion,
Air temperature at any hour of any day is found with the relationship

Air Temperature = Mean + ( Range){Excursion) {12.4)

(12.3)
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The following equations were used to find each of these COIRPOnents:

Mean = 10 + 8sin (‘Eﬁw {12.5)

D 107 s

Range =7+ 2sin | % ~w:-<»;~w-i (12.6)
‘ 465

. ) ) £ -

Excursion = gin { 20— {12.7)

Equation 12.5 indicates that mean daily temperature has an annual av-
erage of 10°C, and a range of 8°C. This is multiplied by the sine fanction
which starts its 365-day cycle on day 107 (17 April); the peak mean tem-
perature of 18°C will come on day 198 (17 July). Equation 12.6 indic
that the average daily fluctuation of £7°C in temperature will take pla
on days 107 and 290; the maximum fluctuation of +9°C will occur on ¢ v
198. Equation 12.7 provides the timing of the daily temperature varia-
tion, with the minimum at 0400 (4 am) and a maximum at 1600 {4 pm).
In these three equations, time is expressed as D, Julian calendar days,
and as H, hours, from 0 to 24 with solar noon at 12,

Exercise 12-1: Write a program to simulate air temperature in an Ope-
gon forest, using Equations 12.4-12.7. Perform time increments in
nested FOR-NEXT loops, using the cuter loop to increment ¢
and the inner loop for hours. Set up vour program to produce
graphical output showing air tesnperature for each hour during the
weeks of 1-7 January and 4-10 July. Then modify your program to
produce a graph of air temperature over the 24-hour period of yo
birthday. (This will be useful for planning your birthday picnic in
an Oregon forest.)

1’2‘2 Heat Balance in Biological Systems

Heat balance determines the temperature of natural ob jects and organ-
isms. If an object is absorbing or generating heat faster than it is giving off
heat, obviously its temperature must rise. In this section we will consider
the heat balance of an entire lake, and also of a desert-dwelling mammal.

The major source of heat energy input for a lake is solar radiation
striking its surface. It is not surprising that the heat content snd water
temperature of a lake will follow an approximate sine function on an an-
nual basis. The energy budget equation which describes the heat content
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of a lake is i
Qt:&.&j i (Qg -+ (I,g + Sy - E, — ()g) {1?“5]

where (), is the heat content of a lake at time ¢, and J,,.a, is the heat
coutent one week later. Heat content is measured on the basis of the
exposed surface of the lake, as calories cm™2. The other components of
the equation are I, the effective radiation coming in through the lake's
surface; S, the sensible heat transfer by conduction or convection to

or from the atmosphere:; E,, the heat lost or gained by evaporation or

condensation; and O, the heat lost as radiation to the atmosphere. These
four components are rates, and are each expressed below as calories cm™~?
week ™!,
Radiation input by weeks may be described by the following equation:
) o - w1
1y = 2800 + 1400 sin (277 m;;)«zw) {12.9)

%

The form of this equation and the constants have been described above

(e.g. Equation 12.2). Sensible heat transfer is based on Newton’s law of
cooling (see Chapter 1) and is given by

Sy = k(T, - T,) (12.10)

where T, is the surface temperature of the water and 7T}, is the tempera- .

ture of the air overlying the water. Air temperature may fluctuate as in
Equation 12.2. The transfer coeflicient will vary with wind velocity; you
may assume that it has a value of 100 calories em™2 week~! °C~1

Evaporation removes heat from the lake and may be described by the
equation

E, = RH (P, - P,) (12.11)

The various terms in this equation are defined as follows. R is a rate con-
stant that depends on wind velocity, Assuming an average wind velocity
of 10 m sec™!, B will have an approximate value of 1.0 gram mmHg~?
em™? week ™' H is the latent heat of evaporation and is a function of
water temaperature. Over the range of 0 to 50°C, H may be approximated
by this equation:

H = 595.8 — 0.54T,, (12.12)

P, is the saturation water vapor pressure, which is also a function of sur-
face water temperature, P, is approximated by a cubic equation (Chapter
3)

Py == 457 4+ 0.357T,, + 0.0065772 + 0.000472 {12.13)
£, is the partial pressure of water vapor in the air and is quite variable.
For purposes of this simulation we may assume a constant 80 percent
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relative humidity, so that P, will be a function of air temperature as
follows:

Py = 3.66 + 0.286T, + 0.0052772 + 0.00037 (12.14)

According to the Stefan-Boltzmann law, thermal radiation of the lake
to the atmosphere is a function of the absolute temperature of the lake
surface, raised to the fourth power. The atmosphere will also radiate
to the lake as a function of atmospheric temperature. The relationship
between atmospheric temperature and radiation is not simple {Hutchinson
1957). We will employ a simple equation that relates the net thermal
radiation between a lake and the atmosphere to the difference between
air temperature and water temperature:

Oy =TTy — Ty) {12.15)

i et Q TSNS SR SRS ST S |
where (; is the net thermal radiation with units of calories cm™? week™ !

Exercise 12-2: Prepare a flowchart for a program to simulate water

: temperature of a lake based on the heat-balance model describ

with Equations 12.8-12.15. Then implement your program using

the given transfer coefficients and rate constants. The output of

your program should consist of a graph showing lake temperat

for 104 weeks (2 years). Assume the lake has an initial temperature

of 6°C on January 1, and that the lake circulates continuously

throughout the year. Also assume the lake to have an average
depth of 10 meters, so that

(Tw)y = v (12.16)

based on the specific heat of water of 1 calorie gram~* °C~!. Al
though this simulation appesrs complex because of the mumber
of equations involved, it is in fact greatly simplified and ignores
many important features of the lake environment, including strati-

see Hutchinson (1957) and Wetzel {1983).

Exercise 12-3: Like most mammals placed in a hot environment, camels
regulate their body temperatures partially by evaporative cooling
(sweating) if they have enough drinking water. Howe Liy
dehydrated and thirsty camel exposed to heat will conserve water,
and rather than sweating will allow its body temperature to in-
crease. This takes advantage of the decreased rate of tran
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heat that oceurs with increased body temperatures in warm envi-

ronments (Newton’s law). Camels rely on large body mass, about
460 Kg as an average, to moderate effects of increased heating.
While the sun shines, a camel’s body will absorb heat and increase
in temperature, and during the relatively cool desert night it will
lose heat.

Write a program to simulate the body temperature change of a
partly dehydrated camel, based on the following considerations; (1)
Internal metabolic heat production is constant at 250 Keal hour™!.
(2) Air temperature varies sinusoidally on a 24-hour cycle, with a
maximum of 46°C at 1400, and a daily mean of 33°C, (3) Between
a camel’s body and air, thermal conductance k is 62.5 kcal hour™!
U1 heat loss and gain follow Newton's law {Equation 1.10; see

also Equation 12.10). (4) T;, body temperature at time ¢, is found

with /M, where M is body mass in kilograms and @, is total
heat content at time ¢,

Begin your simulation at midnight with a camel having a bmiy,'
heat content of 16500 keal above 0°C. For each hour, find the total
heat gained or lost by the camel (kcal), and plot the results of your

simulation over a 96-hour period. Also produce a graph showing
body temperature of the camel over the same time period.

12.3 Effect of Temperature on Chemical Reaction

Rates

Biological activities such as feeding, digestion, respiration, photosyn-.

thesis, growth, and movement depend on chemical reactions which are
catalyzed by enzyme proteins. Because of this dependency, temperature
will affect biological activity in two ways. First, a temperature rise will
increase the number of reactant molecules having an energy equal to or

greater than the activation energy for the reaction. This effect tends to

increase the reaction rate. Second, high temperatures may denature en-
zyme molecules, causing them to lose their catalytic activity. These two
effects compete, resulting in the typical temperature optimum curve asso-
ciated with essentially all biological activity. Some models of temperature
dependency of biological systems are described in the next few sections.

One of the earliest models dealing with the effect of temperature on
chemical reaction rates was developed by Arrhenius in 1889, based on the
concept of activation energy. This equation defines the change in reaction
rate with temperature as follows:

(12.17)
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where & is the reaction rate constant, 7' is absolute temperature in °K, R
is the gas law constant, and E, is the activation energy for the reaction,
When integrated analytically, this equation can take the following form:

~l 1 ISP
lnk = (m{: . ;w;) + ke, {12.18)
r T

where Ink,, is an integration constant, repres
k.

‘Notice that this is an equation for a straight line. This allows Ink to
be graphed as a function of 1/T, and therefore to obtain — Eo /R as
slope. These Arrhenius plots are often used to find the activation energy
for various biological reactions.

By integrating Equation 12.18 between limits and tuking antilogs, the
equation becomes

ting the lmiting value of

where b is the rate at temperature T, and k16 the rate at some reference
temperature T, . Equation 12.19 can be made more nseful by expressing
temperature as °C rather than °K. The reference temperature i
0°C, and E,/R is combined as a single constant:

i = koexp [ A C_ 12.90
ke k“““}<<7+£33> (12:20)

In this form, ke is the rate at some Celsius temperature O, and kg is the

rate at 0°C. The value of the constant A may be found from the slope of
the Arrhenius plot, where
4 = ArEhenitselopg (12.21)
o 273 o
The value of A may also be estimated from the (1o value {see below)
and Equation 12.20. For further discussion of the development of the
Arrhenius equation, see Hamil et al. {1966).
- A simple and widely used method for describing the effect of temper-
ature on chemical reactions is called the (214 approximation. Q. is the
factor by which reaction velocity is increased for a temperature rise of
10°C. The equation, in a form like Equation 12.20, is

A0 4G Fy#y oy
ko = koQ g (12.22)

ar S ,
ky = ky Qi Cu/0 (12.28)
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where &, and k, are rates at temperatures Oy and 1. The equation is

useful over relatively narrow ranges of temperature. Prosser and Brown

{1961) discuss this problem further.

12.4 Effect of Temperature on Enzyme Activity

The amount of product produced by a reaction catalyzed by an engyme
depends on two reactions that have different rates. One reaction is the
actual formation of product; the other is the denaturation of the enzyme,
These reactions may be written together as follows: '

. k ks
S+ E - ES ey P4 E

kg

D

where F is the active form of the enzyme, D) is the denatured form,

P is the product, § is the substrate, and ES is the enzyme- substrate
compound. The rate of product formation is

dP
= = ki [ES) {12.24)

If substrate is in excess and &; is the rate constant for the limiting reaction,
we may assume that ES is in equilibrium with £ and § , 80 that ky is
given by

(12.25)

If this equation is rearranged and substituted into Equation 12.24, then

AP I .
= = (kaks [S) [B] = k. [E) (12.26)

where k, is an overall constant involving &y, ks, and substrate concentra-

tion [5], which will be essentially constant if in great excess. The reaction
now simplifies to !
ky &
D <« & I > P4 E

‘The effect of temperature on k, may be modeled using a modification of
Eguation 12.20:

: AT
ko = kp by exp [ i 12,97
(kr)p = (kr )y exp (1”+273> (12.27)
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where 7" indicates temperature in °C.

The denaturation rate constant, k,, also depends on temperature, and
may be described by an equation similar to 12.27. Because of the very
high activation energy involved, the reaction has a very high value of A4,
which is equivalent to a very high Qg value. Here we will assume that
denaturation is controlled totally by kinetic effects. The equation would
be much the same if instead we were to assume a temperature effect on
the equilibrium constant involved in the denaturation reaction.

Exercise 12-4: Using the equations above, write a program to simulate
the effect of temperature on an enzyme-catalyzed reaction. Base
your measurement of rate of product formation (i.e. activity of
enzyme) on amount of product that is obtained after the reaction
has proceeded for some arbitrarily specified period of time. Be-
cause denaturation of the enzyme depends on time, the optimum
temperature shown by your simulation will partly be a function of
length of this time period, as shown in Figure 12.3. A flowchart for
the program is shown in Figure 12.2. boplement your simulation
using the following values:

(ko =1 (k) = 0.0001 A, = 18
Ag =55 Ey =2 e = 20

Set At = 0.01. The output of your simulation should be a graph of
the amount of product vs. temperature, for temperatures from 0 to
80°C. Your graph should resemble a typical optimum temperature
curve like those of Figure 12.3.

12.5 Models of Temperature Effects on Biological Ac-
tivity

Many models have been published to describe effect of temperature on
rates of biological processes. The available literature is so large that Watt
(1975) described it as “truly awesome”. Many of these models attempt to
use simple enzyme effects for complex biological processes involving many
enzymes. In general, such models assume that s single enzyme will limit
rates in complex systems like a developing embryo or feeding animal, The
response of the whole organism is assumed to be similar to that of the
limiting enzyme. This assumption is usually incorrect, because different
enzymes can be limiting at different temperatures.
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Figure 12.3. Curves showing simulation results of response of
enzymes to different temperatures.

Overall response of a biological process to temperature is a composite
of the response curves of all enzymes that might limit the rate within
the temperature range for the organism. An overall response curve may
be very different from that produced by a single enzyme. For example,
Sharpe and DeMichele’s (1977) model of development rate at different
temperatures was based on Eyring’s transition-state theory (Johnson et
al. 1954, Eyring and Urry 1965). Assuming a single limiting enzyme,

“the model uses six constants that must be estimated from data. They
- note that the composite curve from multiple limiting enzymes could be
described with their equation. The constants then would be simply re-
gression coefficients for an empirical equation.

“We present here two empirical equations which have heen used to de-
seribe effects of temperature on biological rates. Below optimum tem-
perature the rate rises approximately exponentially; above optimum it
descends sharply.
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O'Neill et al. (1972) developed an equation which results in a curve with
the necessary form, and at the same time is based on constants which sy
be readily derived from most experimental data. The equation has the
following form:

“‘T
Trr
P AT

FOR t:=1
Figure 12.2. Flowchart for a program to simulate the effect of temperature on
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(12.29)

apt




194 COMPUTER SIMULATION IN BIOLOGY
and T
Vo ;«T—»«:M%?‘?}mu (12.30)
lrrmx ap
and .
W2 (14 YT 40/W ,
T = ( v ) (12.31)

400

Here, kp is the rate of the process at temperature 7, kg, 18 the rate
at the optimum temperature 7 opts and Ti.y is upper lethal temperature,
Temperatures are all measured in °C. W is defined as follows:

W == {Qw - 1) (Tmm - T;}m) (1232}
The Q10 value should be estimnated from the nearly linear increasing por-
tion of the rate curve. The principal advantage of Equation 12.28 over
other exponential equations is that its constants are readily found from
plots of most real data. Its disadvantage is the obscure theory behind
Equations 12.31 and 12.32. For temperatures above Tinax it 18 necessary
to set kp = 0, because the equation is not designed to predict values
beyond that point.

Logan (1988) reviewed a number of empirical equations that can pro-

duce temperature-rate curves resembling those of Figures 12.3 and 12.4.
One of the more useful empirical models is partly based on an exponential
function like the O'Neill equation above:

/ 2
T & V¥
kT e kl w..?;;mnl MMMMMMM - EXp (.wﬂr2> (12-3«3}
i 4 ko
In this equation, ke is the rate at temperature 7', k; and ky are empirical
constants, and 7 and o are determined from experimental temperature
data as

7y - Tmit:

The maximum and optimum temperatures for the reaction rate are de-
fined as in the O'Neill model above. Tin 18 determined from the data,

and is the low temperature at which the reaction rate drops effectively
to zero. The bracketed part of Equation 12.33 contains two terms which
compete to determine the rate, The first term {left-hand) resembles the
Michaelis-Menten relationship, and will produce a si gmoid rise in the rate

(12.34)

(12.35)

-
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with increasing temperature. The second, exponential term deseribes the
rate of denaturation of a limiting enzyme, which causes the rate to de-
cline. As temperature increases, the two terms compete, and ke resches
& maximum value at the optimum temperature. Above this temperature,
the second term predominates because its rate of change per degree iy
much greater than the first term,

The constants k; and k, may be determined with nonlinear curve-fitting
technigues. In actual practice, the values of the constants and the values
of the temperature optimum, maxinmm and minimum may all be evalu-
ated with techniques that permit the least-squares estimation of severs
coefficients.

Exercise 12-5: Write a program which determines kpr with Equation
12.28 for temperatures between 0 and 48°C Use the following
values for constants in the equation:

Topt = 37 Tmax = 42 Qm = 2.5 kmm = 100

Output for your program should be a curve showing ky plotied
against temperature in °C,

Exercise 12-6: Moner (1972) obtained the following values for growth
rate (inverse of division time} for the ciliated protozoan Tetrahy-
mena pyriformis at different temperatures:

°C Rate °C Rate “ Rate

14 0.0023 21 0.0073 28 00129
15 0.0029 22 0.0087 29 00131

16 0.0036 23 0.0093 30 0.0132
17 0.0041 24 0.0100 31 00131
18 0.0048 25 00110 42 00111
19 0.0060 26 00117 33 0.0059
20 0.0066 27 0012 34 0.0000

Produce a graph of these data with a simple connect-the-dots roy-
tine, plotting rate vs. °C. From the plot, estimate the constans
needed for the O’Neill model (Equation 12.28).

Write a program as in Exercise 12-5 to draw a curve of ke vs,
temperature from 10°C to 40°C, using your estimates of the con-
stants. On the same graph, plot the actual data points to examine
the accuracy of the model equation. You will discover that the
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model is quite sensitive to small differences in the estimate of (g,

You should try using various (Jyp values to improve the it of the

plotted line to the data.

Exercise 12-7: As in Exercise 12-6, produce a rate vs. temperature
graph of Moner's (1972) data. From the plot, estimate the values
of Toprs Timax and Ty needed for Logan’s Equation 12.33. Then
use the CURNLFIT program (Chapter 3) to estimate the constants
ki and kg, (To do this, you will need to read in the temperature
as z-values and the rates as y-values. Put Equation 12.33 into
CURNLFIT using kp as Y, T as X, and your estimates of Ty,
Tinax, and Top as constants; use ky as coefficient 4 and kg as coef-
ficient B.) For initial approximate values needed by CURNLFIT,
use 3 times the measured maximum rate for ky {coefficient A), and
2 times (Tyay -~ Tnin) for ky (coefficient B).

12.6 Modeling Development in Variable Tempera-
tures

Muost plants, animals and microbes grow and develop in environments

with fluctuating temperatures. Several methods are available for applying
rate equations to development in varying temperatures. These models can
have important practical application; for example, models for simulating
the development of insect eggs or larval stages can permit agricultural
controls to be applied most efficiently for maximum effectiveness. We will
examine here a simple rate-summation model for predicting development
in changing temperatures {Messenger and Flitters 1959, Grainger 1959,
Tanigoshi and Browne 1978).

The rate-summation technique estimates duration of development based

on the amount of time spent at a given temperature. This time s mul-
tiplied by the development rate, determined from constant temperature
experiments. The time-rate product indicates how much development oc-
curs during the period. Time-rate products are summed consecutively
until the sum reaches unity, at which point the simulated development is
complete. Consider a hypothetical example for eggs of a species of insect
which experimentally have shown the following development rates at two
temperatures:

Constant Temperature Duration Rate (1/duration)
10°C 100 hrs 0.01 hr~*
20°C 33.3 hrs 0.03 hr~*

coutributes to the heat content of & compartment at depth z as deseril
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Suppose that an egg is laid in an environment with temperatures alter
nating between 10°C and 20°C on a 12-hour cycle. If the egg begins to
develop at the start of a 12-hour period of 10°C, development will proceed

a8 follows:

Time period  Rate Development  Sum  Total hre

12 hrs at 10°C  0.01 0.12 0.12 12
12 hrs at 20°C 0.03 0.36 0.48 24
12 brs at 10°C 0.0 0.12 0.60 36
12 hrs at 20°C  0.03 0.36 0.96 48
4 hrs at 10°C  0.01 0.04 1.00 52

Exercise 12-8: Write and implement a program based on the rate-
summation method to find duration of development when temper-
ature varies. Include in your program a sequence of DATA state-
ments giving length of the period, temperature, and the rate at
that temperature. Your program should read a DATA statement,
and then calculate the proportion of development that oceurs dur-
ing the period, sum up the development to that time, and check to
find if it exceeds 1.00. If not, data for the next period should be
read. The portion of the final period required to complete devel-
opment should be calculated. Output from your program should
be in a tabular form, as given above. Test your program using a
cycle of alternating 6-hour periods of rates of 0.022 and 0.034 at
12°C and 18°C respectively. Assume egg development begins at
the start of a period with the higher rate.

12.7 Model of a Stratifying Lake

The heat-balance model of a lake in Section 12.2 was not very realistic

because heat was assumed to be uniform throughout the water colurmn. o
fact, most heat is absorbed near vhe surface and carried down through the
water column. One method for modeling lake temperature is to divide
the lake vertically into separate compartments. For this method, heat

transport is assumed to occur only in the vertical dimension between

compartments. Bach compartment represents one meter of depth below
1 cm? of surface, so the volume of each compartment is 100 cm®. ¥
content of each compartment is measured in calories; in this model, water
at 0°C has a caloric content of 0. Thus, temperature of any compartmer
is its heat content divided by 100 cal °C— %,

o

114

- Solar radiation provides the principal heat input. Absorbed energ
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by a modification of Equation 11.8:

o), = I = Iy = I, (e“‘"”(" R "”’z) (1&3{5!
where [, is energy absorbed per unit time, I, is amount of solar energy

reaching the top of compartment z, / z+1 18 the amount at the bottom, 7
is the absorption coefficient and I, is the surface intensity.

Other types of heat transfer between the lake and the atmosphere are:

assumed to occour only at the surface. The remaining terms in the heat
balance model (Equation 12.8) are '

Qo=S-0-E (12.37)

where (J,, is the heat transport across the surface per unit of time, 5 is a
sensible heat exchange (convective or conductive), O is heat radiated to
the atmosphere, and E is heat transfer by evaporation or condensation,
In addition to the solar energy absorbed, each compartment will have its
energy content altered by the transport of heat to the compartment from
the adjacent warmer layer, and by the transport of heat from the compart-

ment to the adjacent cooler layer. We will assume that the warmer layer
is at a shallower depth, and the cooler layer is deeper. Amount of heat

¢J, transported from compartment z to compartment z + 1 is assumed

to be a function of the temperature difference and the eddy diffusivity

coefficient, A,, as follows:

Qs = FA, (T, - Tuy) (12.38)

where F' is a proportionality constant. In finding heat transfer for the
bottom compartment, assume the sediments have the same temperature
as the bottom layer of water. The eddy diffusivity coefficient is a function

of both the force that produces mixing, i.e. wind, and the force that
resists the mixing, i.e. the density gradient; water of greater density les

beneath water of lesser density. The eddy diffusivity coefficient may be
approximated with

Ay = Apin +0.94,_1 exp [~G (po4q — 2] (12.39)

Ao will be the wind-induced surface value for eddy diffusivity. (To find
A, for the bottom compartment of water, assume the sediments to have
a density value of 1.5). The constant 0.9 describes the exponential de-
crease in the surface value of eddy diffusivity with increasing depth. G
is a constant of proportionality. A,y is the minimum eddy diffusivity,
with a value of approximately 0.01 cal em™%. p, and Pz+1 are the densi-
ties of water in compartments z and z -+ 1. Water density is a function of
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temperature, and may be obtained from the following empirical quadratic
equation which applies very well over the range of normal lake tempera-
tures:

s = 0.999884 + (5.75 x 107°) T, — (7.27 x 1078) T2 (12.40)

Exercise 12-9: Write a program to simulate the warming of a lake in the
spring, assuming an initial temperature of 4°C for all depths. Let
the lake have a depth of 20 meters (i.e. 20 compartments), with
compartment 1 representing the depth interval 0-1 m. The com-
partmental temperature values should be stored in a subseripted
array. Losses and additions of heat in each compartment may be
calculated with the equations above. The calculation of tempera-
tures should be a two-part process. In the first part, the densities
for all the compartments are calculated, and then the change in
heat content and temperature is caleulated for each of the com-
partments in turn, top to bottom:

AT, = (L), + Q.1 — Q) /100 (12.41)

with the values for J, and @ coming from Equations 12.36 and
12.38. For compartment 1, the heat transfer across the surface can
be considered to be Q, (Equation 12.37).

In the second stage the changes are applied to each compartment
to update its temperatures:

T, e~ T, + Ajrz

Remember to set the temperature of the sediments (compartment
21) to equal the temperature of compartment 20. Use the following
values in setting up your simulation; some represent daily versions
of weekly values in Exercise 12 2:

Ip=350 Ag=05 O=-20 E=70
§=30 n=040 F =100 ¢ = 2000

Run your simulation for 30 days; the surface temperature should
approach 26°C. Plot depth-temperature curves at least for times
0 and 30. Your output should consist of a graph showing tem-
perature on the x-axis, and depth on the y-axis. Your graph may
be clearer if you plot temperatures of each compartment as con-
nected line segments, rather than as connected points. Graphs
for comparison with actual lakes may be found in any textbook of
limnology, for example Hutchinson (1957) or Wetzel (1983).
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Conclusion

This chapter has introduced you to some representative models of texn

poral and spatial variation of temperature, and the effect of temperature
on biological activity, Although they are interesting in themselves, you
will find temperature models like these used in simulations of complex
systems.  For example, a model of lake temperature could be used in

conjunction with a temperature-activity model and a model of photosyn-

thesis as input for a model of algal productivity. Temperature-activity

models are essential for simulations in which physiological rates of plants

or poikilothermic animals are important components. '

=

CHAPTER 13

COMPARTMENTAL MODELS
OF BIOGEOCHEMICAL CYCLING

In several previous chapters we considered various ecological models of
growing and interacting populations. In this chapter we will study some
ecological models for simulating How of energy and material through or-
ganisms and their environment. These biogeochemical models focus on
transfer through components of ecosystems, without considering individ-
ual organisms. Our approach will be to examine comparatively simple
models that illustrate the principles of biogeochemical models. The tech-
niques of compartmental modeling learned here will be useful in the next
several chapters.

13.1 The Concepts of Material and Energy Flow

The concept of flow of materials between different components of the
biosphere was worked out early in the twentieth century. For example,
Lotka’s (1925) box-and-arrow diagram for a global eyele of carbon would
be at home (with slightly modified data) in current ecology textbooks,
This analytical approach was evidently on Elton’s mind as he worked out
the first food web for an ecosystem in 1923 (Hutchinson 1978). The s

‘approach influenced Lindeman (1942) in the first attempt to measure

energy flow through an ecosystem.

One of the early attempts to obtain a complete, detailed description of
energy content and Hows in a single ecosystem was Odum’s (1957) work on
Silver Springs, Florida. The results of this research may be summari
in an energy-flow diagram (Figure 13.1). Similar diagrams are the basis
of most ecosystem models.

The diagrams show the amount and direction of fow AIMONE COMPO-
nents of an ecological community, and between the comumunity and its
environment. To develop a complete diagram, one must know for each
component the standing crop, and the energy or material inputs and ont-

~puts. The organisms in the system may be grouped in a variety of ways;

& common division is by trophic level. Depending on the interests and
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Figure 13.1. An energy diagram of the biological community in
Silver Springs, Florida. Based on diagrams by Odum (1957) and
by Patten (1971).

variety of ways.

e
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13.2 Block Diagrams and Compartment Models

- Block diagrams are useful conceptual tools for developing simulations

of flow, with each component of the system represented by a rectangular
block. The blocks are connected by arrows showing flow of energy or
material between components, or between components and the environ-
ment. The system may include all biological components of a conununity,
or only a portion, depending upon the modeler’s definition of the system,
Once the system has been defined, everything else is “environment” . In-
puts to the system are termed driving or forcing functions. Figure 13.2 is
an example of a block diagram.

[ e o i e o oy
; c TFéN Bo -T%Q Fﬁg fj%‘z 2
To ‘ .

1 N, i N, R, Ny, LA )N, i
I Foy g
{ - i
] 51 Fo 53 fy §
|
i }
i N3 |
| i
{ |
] Fo I
b o e e o L{}:’ mmmmmmmmmmmmm J

Figure 13.2. A simple block diagram of the Silver Springs energy
flow compartmental model, modified from Patten (1971).

The blocks within a diagram may be defined with words. However,
letters with subscripts to designate compartments, N; and Ny for exam-
ple, are more convenient because they may be used directly in writing
computer programs. Between compartments, the flows Fyq, Fiyq, ete., will
have subscripts indicating receiving and donating blocks. sonventionally,
a subscript of 0 indicates the environment. In this book, the first number
n the subscript of a flow will represent the receiving compartment, and
the second the source compartment. You should be aware that this sub-
script order may be reversed by different modelers working in different
‘biological fields. No standardization exists.

- In the Silver Springs model (Figure 13.2), N = producers, Ny = herbi-
wores, N3 = carnivores, Ny = top carnivores, and Ny = decompo Fig
and Fpo are the two driving flows from the environment. Fi, Foa, Foa,
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Fyyq and Fys represent respiratory losses to the environment from the By~
tem. Fj, represents the physical loss of plant biomass carried downstream
and out of the system by water currents,

Under steady-state conditions, the sum of system inputs, Fig and Fyg,
must equal the sum of the system outputs, Foy, Fua, Fos, Foa, Fos and
F§y . Also at steady state, the sum of the inputs to any block must equal
the sum of outputs from that block.

The units for the blocks will depend on the system. Usually they express

mass or energy on the basis of volume or area. Typical units might be -

grams of dry weight per square meter, grams of organic carbon per cubie
meter, or kilocalories per square meter. The flows will use the same units

together with units of time, such as grams per square meter per day, or

grams of organic carbon per square meter per year.

A compartmental model is a more formal statement of the block dia-
gram, and includes the equations describing the Hows between compart-
ments. Sheppard (1948) apparently was the first to use “compartment” in
this sense (Godfrey 1983). The flows or fluxes are used in the equations to
provide an energy or material balance for each compartment. The rate of
change for each compartment is found by adding the flows into the come-
partment and the flows out of the compartment. For the Silver Springs
model these are

- = Py ~ Fyy ~ Fyy ~ Fyy ~ Fy, (13.1)
(ﬁf,N;g A, = - - - PR
~r = By 4 Fag — Fyy — Fyy — Fyy (13.2)

dt
(i{l)V; “ - e oy e
Md}i = Fyp ~ Fy3 — Fyg — F3 (13.3)
AN - . . s
—=2 = Fu3 ~ Fyy — Fy (13.4)
dt
1N ; ( )
f«gﬁw = Fy1 + Fyy + Fyg + Fiy — Fog (13.5)

Each flow is defined by an equation which usually involves a rate coef-
ficient. We will designate the rate coefficients as Jij. A large number
of equations could be used to model flow between compartments, but
only a few useful equations are encountered frequently. Some of these are
described in Table 13.1. A variety of other examples may be found in
Godfrey {1953)
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- Ey=fyN;

~ tions of flow are functions of the size of the

Flow from compartment j to ¢ is constant,
and is independent of time and system
state.

Flow to i is proportional to the conter
J. This is a linear equation with cont
by the donor compartment only, with rate
constant f;;.

Flow to ¢ is proportional to the content of 4.
This is a linear equation describing control
of flow by the receptor compartment.

f';ﬁ = fzjjf\fg

Flow to ¢ is controlled by both donor and
receptor compartinents in a cross-product
manner. This is the mass-action approach.
The equation is nonlinear.

Fij = fi;N;N;

Flow from j to 1 is a function of time. An
example is a sine function (Equation 11.2).

Fy = fi - f(time)

Flow from j to { is controlled by a positive
linear term and s negative non-linear term,
much like the logistic equation.

Fij = fijNi(1 - gi; Ny)

o fyN

Flow from j to { is limited with a hyper-
bolic term as in Michaelis-Menten kinetics

Table 13.1. Some useful equations for describing flow between com-
partments. Fj; is the instantaneous flow to compartment ¢ from com-
partment j, and f; is the rate coefficient. &, indicates the content of
compartment i.

Compartment models of the type described here are often implemented
on computers by solving the system of equations with matrix algebra.

- This method will be discussed in Chapter 16. For the present, we will

solve the equations with a direct approach. Because most of the

SHEN
ompartinents, it is ne ;

SEALY
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to use the two-stage numerical approach with Euler integration. For clar-
ity of programming, the first stage should be separated into two parts as
described in Section 6.2. That is, the various Hows F will all be calcu-
lated, and then the net changes of content for each compartment will be
determined to complete the first stage. Then, following the usual second
stage procedures, values of the compartments will be updated.

13.3 The Silver Springs Model

We will continue working with the Silver Springs model as an exam-
ple. It is not better than similar and more recent models. However, it
is familiar and relatively uncomplicated, and it still appears in general

ecology textbooks. The set of equations given in this section define the

flows in the block diagram of Figure 13.2, and have been modified from
Odum (1957) and Patten (1971):

Fyy = M + Rsin (27:« g;l:_;&},)

(A. Forcing:) 52

Fyo =k

Fig is the energy input from photosynthesis, assumed to be proportional
to light intensity. M is the annual mean photosynthesis, and R is the
range of the annual fluctuation around the mean. Fy is the energy in
70 loaves of bread fed daily to catfish by the tourist concession at the
springs.

Foy = Ta N
{B. Feeding:) . s

Fag = 132Ny

Fag = 143Ny

Feeding is donor-dependent in this system, with 7;; the linear coefficient
having units of inverse weeks (wk™1).

Fap = usy N
{C. Mortality:) LT s
Fry == pigo Ny
Fsg = ugaNs

Fyg = pasaNg
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Here 45 is a coefficient of donor-dependent mortality, with units of wk™!,
ii.); Respiration:) For = por Ny
Fy = poa Ny
Foz = poalN3

Foa = poalNy

Fos = posNs
Here pij is a coefficient of donor-dependent respiration, with units of
wk*. )
(E. Export:) FYy = A1 Ny
Ao is a coefficient of the loss dowunstream of small plants and pieces of
plants that break loose from the plants that grow in the Silver Spring
system. The coefficient has units of wk1.

After the Fy; values are calculated with the equations given above,
the first stage in the two-stage Euler procedure is completed with the
calculation of the AN; values:

AN = (Fyo — Fay — Fyy ~ Fyy — Fyy) Ot
ANy = (Fyg + Fay — Fyp — Fag —~ Fya) At
ANy = (Fyy — Fyg — Fsg — Fpy) Al

ANy = (Fy3 ~ Fsq ~ Foq) Ot

ANg = (Fy; + Fyg + Fuy + Fuy — Fos) At

The second stage of the Euler integration is completed as usual, with

N,; e A’i “+ A«N%

Exercise 13-1: Write and implement a program to simulate eoergy
flow through Silver Springs using the model equations above. For
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the various compartment sizes and flows, use values given below
derived from Odum (1957). The values of mean annual standing
crop given in Figure 13.1 {units of keal m™?) are suitable for 'mitmi
compartment sizes:

Ny o= 2635 Ny == 213 Ny = 62 Ng=19 Ny = 25

The values of rate coefficients (units of yr™*) can be calculated by
inserting yearly values for the Hows and for standing crops into the
flow equations for mortality, feeding, respiration and export. This
process vields coeflicients as follows:

pisy = 1.310 pse = 5.141 ping = 0.742 Hsg = 0.889
7oy == 1094 Ty = 1.798 a3 = 0.339

poy = 4.545 poz = B.873 pog == H.097 pPos = 1.444
pos = 184.0 Agy = .94

For the driving functions, use the following values:
k == 486 keal m™? yr~? R o= 175 keal m ™% wk™t
M = 400 keal m ~2 wk™*

L of the rate coeflicients above are based on annual flows through
the system; weekly values may be found with division by 52. Use
weeks as the time unit for your simulation, with Af = 0.1 week

as the unit for Euler integration. Larger At values will produce

unstable results.

Write your program to plot the contents of each compartment

for each week, including initial values. Your output will be a graph
with five separate lines, each showing the content of a model com
partent. .

After you have entered the program into your computer, make
constant. The system should tend rapidly to a steady-state concdi-
tion. If it does not, then check your program for errors.

After this initial check, carry out a 3-year simulation, beginning
with the first week in January. Set K = 175 keal m™% wk—1.

Exercise 13-2: A crude simulation of ecological succession may be ob-

tained with the model above by setting the solar input to a constant
value (7 = 0} and reducing the starting size of all compartments to

.
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of the system to proceed for about 150 weeks to stabilize. Again
use At = 0.1 week.

Exercise 13-3: Modify the Silver Springs model above by employing
nonlinear feeding equations as follows:

ﬂ __—

21 = 15 N1 Ny
7 ¥

Fyg = 13, Na Ny

o 7
5’43 == *2'431’\731’\&

Numerical values for the coefficients may be found by insertiog the
values for flows and standing crop sizes {(Figure 13.1) and solving,
This produces the following values for the coefficients:

7o = 000513 7, =0.0200 1l = 0.0376

As in Exercise 13-1, run the simulation for a J-year period, plot-
ting the energy content of the five compartments. The larger ex-
carsions of the compartment contents produced by the nonlinear
flows should be apparent.

13.4 Global Carbon-Cycle Model

The increased concentration of carbon dioxide that has been measured
in the earth’s atmosphere has caused concerns about global warming.
There exist real controversies on the relative roles of burning fossil fu-
els and clearing tropical forests in producing the increase. The relative
ability of terrestrial plants and the oceans 1o serve as reservoirs for the
increase in carbon is also controversial. Complex compartmental models
are important tools in working with analysis and prediction of the carbon
cycle. Bolin (1981) has vutlined a simple model of the carbon cycle that
shows many of the expected characteristics of the cycle. We will use a
modified version of this model as an introduction to the important sub-
ject of carbon cycle modeling, and as a further lustration of ecological
compartment models.

In this model, carbon is distributed among seven compartments (Fig
13.3). The principal pool of the atmosphere can exchange carbon with
both oceanic and terrestrial components. The oceans are represented by
only two compartients, one for the mixed layers near the surface that

come into contact with the atmosphere, and another for the deeper, more
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isolated waters. The terrestrial component is made up of four compart-
ments: short-lived vegetation with a rapid carbon turnover, including
annual plants and vegetative parts such as leaves; long-lived vegetation,
particularly the woody trunks, stems and roots of trees; detritus, defined

as dead and decomposing organic matter, sometimes called litter, duff, or -

humus; and organic material in the soil.

Atmosphere Ny = 700
A A
Fay F, Folss B J110
100 100 , ”
E Short-lived Terrestrial
16 Biota Ng = 130
Mixed Upper 53
Ocean Layer £, Fss
N = 1000 a0 15
E 3 E Long-
= Fas Detritus ja—82—] live
F Ng = 60 15 Biota
-%«Q L%,Q 2” 5= (wood)
Fe|2 Ng = 700
Deep Ocean
Layer
Ny = 36000 Soil N, = 1500

Figure 13.3. Block diagram of the equilibrium carbon cycle, mod-
ified from Bolin (1981). Pool sizes are in units of 10'5 grams
(=gigatons; GT). Transfers between compartments are in units of
GT year?.

With two exceptions, the Hows between compartments are linear, first-
order, donor-controlled flows. That is, flow to cornpartment ¢ from com-
partment j is described with

‘The two exceptions are the Hows representing uptake of atmospheric car-

bon by terrestrial plants, and the transfer of carbon dioxide from the ocean

- model and more complex models may be found in papers by Yearsley
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to the atmosphere. In the first case, flow between plants and the atmo-

sphere is controlled by both donor and receptor compartments. Within

broad limits, a larger biomass of plants should be able to take up more
atmospheric carbon than a smaller quantity of plants. Also, an increase
in atmospheric CO; may stimulate plant growth, so that the transfer to
plants may occur at a greater rate. However, the transfer is not directly
proportional to the concentration of atmospheric COy; that is, a dou-
bling of the CO, concentration would almost certainly not double the
flow of carbon. Bolin (1981) suggested a linearized version of a nonliness
equation. Yearsley and Lettenmaier (1987) used the following nonlinear

eguation for this transfer:

Fai = kay Ny (1 +81n fé‘@) (13.7)

(3\’1}@.

Here, {N}}p is the equilibrium value for the atmospheric carbon, N, is the
current concentration, and g is a photosynthetic coefficient. The e,
tion is semi-empirical, and indicates that uptake of atmospheric carbon
18 proportional to the amount of plant material when the atmosphere is
at the equilibrium level of 700 GT. As atmospheric carbon rises above
the equilibrium level, plants will be able to take up only a part of the
increased atmospheric CO; .

* The second instance of nonlinear flow is the transfer from the ocean to
the atmosphere. This transfer is made complex by the chemical buffer-
ing system of the ocean. Bolin (1981) suggested that the flow could be
described with

M, | No i onr
Fia = kg ((Nn Jo+ «‘;"E“K,ii“g [Ny - W‘*z)ﬁ)

70

(13.8

_The equilibrium values for the atmosphere and mixed-layer are given with

{NiJo and (N2)p . The current value of the mixed layer is Ny, and £ iy
a buffering coustant. ky; (not a misprint} is the constant for the flow to

compartment 2 from 1. This equation may be written in a much simpler

form when appropriate constants are inserted. The result is:

Fig = Ny ~ 900 (13.9)

This form of the equation will hold for all reasonable values of an increase

in the COy content of the mixed layer. Elaborations of Bolin’s bagic

and Lettenmaier (1987), Mulholland et al. (1987), and Detwiler and Hall

{1988).
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Exercise 13-4: On your computer, implement the global carbon model
from the above information. As an early step in your program,
solve for the transfer coefficients for the various flows (except Fia
and Fyy) using Equation 13.6. That is, find &y = Fij/N;. Use
the whole-number equilibrium values in Figure 13.3. Because the
model is sensitive to errors in the fourth or fifth significant digit for
these constants, it is easiest to have the computer solve for these
ki; values and retain them.

Write your program using two-stage Buler integration, following
the procedure described in Sections 13.2 and 13.3. That is, first
calculate all the flows Fi; using Bquation 13.6, but for Fio use
Equation 13.9, and for £, use Equation 13.7 with 4 = 0.10 and
ksy = 110/130. Then find all the compartmental changes AN,
and finally perform the updates for the new values of N;. For this
simulation set At = 0.1 year. ,

Begin your simulation with the equilibrium pool values from
Figure 13.3. Plot the values of the various pools N; through time
for 20 years to be sure they remain at equilibrium.

After you are sure your program is working with the equilibrinm
values, alter your program so that a shug of 10 GT of carbon is
added to the atmosphere at the beginning of year 10. This sim-
ulates the burning of a large amount of fossil fuel in that year.
Follow the result of the perturbation for 90 years. For this simula-
tion, the graphical output should show the departure of each pool
from its equilibrium value, rather than pool size. That is, your
z-axis should run from 0 to 100 years, and your y-axis from -10 to
+10 GT.

Exercise 13-5: Modify the program of Exercise 13-4 to simulate 4 single
incident of massive destruction of forest and release of carbon by
burning of the wood. This is easily done by removing 10 GT from
the compartment of long-lived biota at the same time that 10 GT
is added to the atmosphere.

Exercise 13-6: For more than a century atmospheric carbon has been
increasing principally because of combustion of fossil fuels includ-
ing coal and oil. The amount of carbon added to the atmosphery
each year has also increased. The amount of carbon from fossil
sources added to the atmosphere cach year by human activity may
be described quite accurately with

GT added each year = (0.5 003

where ¢ is the number of years since 1900 {Rotty 1981).
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Modify your program from Exercise 13-4 to simulate the addi-
tion of carbon from fossil fuel combustion for an 80 vear period,
1900-1980. At least initially most of the added carbon accumu-
lates in the atmospheric pool Ny. As output from your program,
plot the cumulative carbon input to the atmosphere from fossil fuel
combustion, and the change in the atmosphere from equilibrium.
Then alter your program so that it will plot the distribution of
the added carbon among the seven pools over the 80-year period.
Initially, almost 100% of the added carbon will be in the atmo-
sphere; this should decline to about 30% after 80 vears, with 70%
distributed among the other compartments.

13.5 Simulated Food Chain

Elliot et al. (1983) based a model of a planktonic grazing food chais
on & general model of predation developed by Wiegert (1975, 1979). The
model is instructive because it attempts to include a number of realistic
factors in the transfer of material through the food chain. Some of these
factors you have encountered previously in Chapters 7 and 8 for hom
neous populations, including self-limitation of population size, satura
of predators, and minimal prey density. The basic four-compartn
model of the planktonic food chain is shown in Pigure 13.4.

| e o N

i FOW %2 %:3 %4 i

i |

N, No N, Ny ||

gﬂ ! | %1 F:'%Q Fﬁ“ﬁ‘% y i
——]  8lgae i herbivore e VY et 10D

] i ¢ aroen © camore | |

i i

i i

i !

b e e e e e D e = e i i

Figure 13.4. A block diagram for a simple 4-compartment model
. of a planktonic grazing food chain.

“The model is simplified so that non-grazing losses from each compart-
ment are combined in a single term. That is, rates of respiration, non.
grazing mortality, etc., are all lumped together in a single factor to model
loss to the environment. This flow to the enviromment from each of the
four compartments is given by

01 = Agi lV; (13.10)
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where Ny is compartmental density (measured in units of mass) and ,\“l

is the rate constant for loss, with units of time™?!,

The system is driven by a flow into compartment 1 from the environ-
ment, Fyg. This How will be a constant in the simulation deseribed here.
However, it may be made a function of time, for example a sine function
as in the Silver Springs simulation above.

The predatory or grazing transfers of mass between all the compart-
ments are modeled with equations having the same form. The equations
include terms for both donor and receptor control:

(13.11)

Fyy = 19y Ny [Day Ry |,
Fyp = 139Ny [Dyg Rap) | (13.12)
Fiy = 143Ny [Dys Ras) (13.13)

In these equations 7y; is the feeding rate constant for grazing transfer to
compartment ¢ from j. It may also be thought of as the rate constant for
exponential growth of N;, whenever D;; and R,; are held constant.

The + subscript for the bracketed term is used to indicate that this
term must be positive or zero. That is,

gy =2 i 220

{Note that this is not equivalent to absolute value.) In these equations,
this convention prevents the flow from being negative, and having the
prey feeding on the predator. (’I‘h{, terminology is easily programmed in
BASIC with the statement IF X < 0 THEN X = 0.)

The explanations of the D &ild ii’, components of these equations will be
given for the specific example of Fyy, the flow to compartment 2 from com-
partment 1. Only the subscripts need to be altered to find the eqm\alout
terms for Fyo and Fyg.

Dy s a term for the donor control of flow to compartment 2 from 1
The term may take several forms, including Dg; = 1 to indicate simple re-
ceptor control of flow. Wiegert (1979) suggests the following as a realistic

expression:
, gy~ N )
Dy = |1 (fﬁ?l Mi.) (13.14)
gy e/ . :

The function of the + subscripts is important and is described above.

g1 15 a constant that represents a saturating density of prey Ny. When
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prey density Ny is greater than gy, then Dy s equal to 1. Thus, &y
in Equation 13.11 will not be decreased because of a lack of prey. g, s
a constant that represents some minimal density of prey. If prey density
Ny drops below gy, then Dyy drops to zero. In this case, Fyy in Equation
13.11 will become zero also, and there will be no feeding on the prey. {ya
may represent for example the number of hiding places for prey, where
they can be safe from predation.)

Ryy is the term in Equation 13.11 for receptor control of the How Fyy.
In this model it describes self-limitation of the predator population, with

a modified logistic function. Weigert's (1979) expression was:

Aoz \ 7 Ny — o ,
Ry =1~ (1 . m%) (’Z 2 ffﬁ) (13.15)
T/ \Y2-an/, |,

Again, the + subscripts are important. Agg is the rate constant for loss
from compartment 2. g is a constant indicating the density at which
predators begin to interact and to compete with each other. When N
exceeds g, Ray drops below 1 because of the predators’ self-interference.
Y2 represents the limiting maximum density of predators, so that Hy, will
decline as Na approaches ya9 .

This model system is extremely flexible, and can be used to simulate
many features of the grazing food chain of aguatic ecosystems. The equa-
tions and constants may be modified to provide a variety of possible sime-
nlations, involving changes in refuge size, maximal densities, predation
rates, and loss rates. These variations will produce widely varying re-
sults. The density of compartments may reach equilibrium, or oscillate in
stable and unstable ways.

Exercwe 13-7T1: Write a program for simulating planktonic grazing with
the 4-compartment model of food chains described above. As de-
scribed in Section 13.2, use a two-stage Euler integration, with the

. first stage subdivided into two parts. That is, for stage one first
calculate the How rates between components of the system with
Equations 13.10 through 13.15, and then find the AN, values by
summing rates. For stage two, update the compartment valy it
should be adequate to set At = 0.1 for the simulation of plankionic
grazing.

The following coefficients were suggested by Elliot et al. (1983
as reasonable estimates for the grazing planktonic food chain in
some freshwater systems:
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Agy = 0.10 Agg = (.46 Agg = 0,37 Apa = 0.20
ro1 = 1.15 Tay = .74 Tag = 0.27
crgy == 20,0 gy = 15.0 gy = 5.0
o1 = H.0 ~yan == 2.0 Yag = 0.50

g gy = 5.0 g = 1.0

yoa =300 433 =200 g =200

Use a constant input for this system of Fyp = 20.0. For initial
values of the compartments, use the following:

Ny = 10.0 Ny = 2.0 Ny = 5.0 Ny =1.0

In this simulation, units of time and units of mass are arbitrary.
As output for this simulation, plot values of the (x)mp&.rmwnmi
densities N; against time for 0 to 240 units of time.

Exercise 13-8: Modify the simulation of Exercise 13-7 to show the ef-
fect of limiting the maximum density of the top carnivore. This
modification might be needed for a simulation with a species that
is more territorial, for example. Thus, in your program reduce the
constant for maximum top carnivore density, vy, from 20 to 10
units and then rerun the simulation,

Conclusion

This chapter has introduced you to some of the concepts and techniques

of working with models of material and energy flow through large-scale
systems. In succeeding chapters vou will work with compartmental mod-

els of smaller systems, and many of the methods you have learned here
will be useful. The direct two-stage Euler approach has been described for
implementing these models on the computer. The more elegant matrix
approach will be taken up in Chapter 18. The three examples deseribed in
this chapter were relatively simple and designed to promote understand-
ing of methodology. However, the same techniques may be applied to
more
and the results less intuitively obvious, but the fundamental methods still
apply.

complex, diverse systems. The simulation programs become longer, ’

CHAPTER 14
DIFFUSION MODELS

In the compartmental ecological systems of the previous chapter, the
mechanisms of transport of material and energy between compartments
were relatively straightforward. In physiological models, the mechanisms
of transport are frequently the subject of interest. These mechanisis usu-
ally fall into three general categories: diffusion, active transport, and fluid
flow. Each of these presents different problems requiring different model-
ing approaches. We will consider the first two mechanisms in this chapter.
Fluid flow and other transfers among physiclogical compartments will be
discussed in the next chapter.

A solution is made by dissolving some matter {solute) in a fuid (sol-
vent). A solution may be described by its mass concentration, which is
the mass of the solute per unit volume of solution. Molecules of solute are
dispersed through the solvent by diffusion, a result of the thermal move-
ments of the solvent molecules colliding with the molecules of solute.

14.1 Transport by Simple Diffusion

A simple model of transport of material by diffusion between a single
compartment and an unchanging environment was discussed in Section
1.5. Frequently we are interested in diffusion between compartments, for
example between two adjacent cells (Figure 14.1). Across a membrane
separating the two compartments, net material transfer will proceed from
the compartment of higher concentration to the compartment of lower
concentration. The rate of transfer will be proportional to the difference
in concentrations. For the simple model here, we will assume constant
compartmental volumes and uniformity of concentration inside compart-
ments.

The following equation describes forward diffusion from compartment

(a{Q ) _ kQi (14.1)
dt Vi '

ito g
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PPRp———

N ——

Figure 14.1. Diagram representing simple transport between two
cells, with () representing concentration. The direction of diffu-

sion is indicated with f (forward) and b (back), relative to com-
partment 1.

{J; is the mass of some diffusing substance in compartment i, Vi is the
yolu‘nm of compartment i, and k is the rate constant for diffusion. Note
that concentration is ;/V;, and that & has units of volume {unit time)™!.
A negative is included to indicate a loss of material from compartment i,

When an amount of material exists in compartment j, there will ocour
a reverse or back diffusion from j to i. The effect of this on compartment
¢ is described with ’

(f;_;’ )1 - ‘%*?Mz (142)

[ 51 O o S F g S TS RN . — oz b s ol '
T'he net rate of diffusion of the substance from compartment ¢ is the sum
of these two equations;

Qi _ [dQ. de); Q, Q. ’ ]
(), () () (&%) o

I b o of corx bk .

T'he change in amount of substance in each compartment may be solved
with the usual procedure for two-stage simple Euler numerical integration.
The first stage requires two equations: ;

NG =k [ Qi Qi A, .
: (@i Q ,
The second stage involves the usual update procedure:
Qi — Qi + AQ; (14.6)
Q@ — Q; +8Q; (14.7)
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Exercise 14-1: Write and implement a program to simulate diffusion of
a substance between two compartments of a hypothetical system.
Initally only one of the compartments will contain a quantity of
the diffusing substance, Use the following as constants in vour
simulation:

k= 0.75 ml min™* Vj = 60 ml Vi = 20 ml

For initial values, set ; = 0 mg and Q; = 100 mg. Use a &f value
of 0.1 with simple Euler integration. As output, produce a graph
which shows the concentration of substance in each compartment,
from time 0 to a few minutes past the point at which steady-state
oceurs.

- 14.2 Linear Diffusion Gradient

The following simulation is an elaboration of the two-compartment
model above. It provides a method for studying the pattern of concentrs-
tion which results when solutes diffuse across a boundary that is initislly
quite sharp. Such a boundary might oceur, for example, when a lump of
sugar is dropped into a cup of tea and allowed to dissalve without stirring.

B R e B o B B poaw B L
L -— -y - g g e S o g
1 2 3 i-1 i il 19 20
Compartment

Figure 14.2. Diffusive transport along a linear gradient of 20
compartments.

Assume that the diffusion system is represented by a series of compart-
ments (Figure 14.2). For simplicity in simulation, assume also that the
subcompartments are all of the same unit volume, i.e. V; = 1. The net

- flux from compartment i to adjacent compartment i + 1 will be described

by Equation 14.3, with slightly modified terminology:

Fy = k(Ci — Ciyy) (14.8)

~ where F; is net flux from compartment ¢ to i + 1, O and €4, are the

concentrations (()/V) in compartments ¢ and i + 1, and k is the diffusion
rate constant as above.
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The ditfusion along the gradient of compartments can be found with
two-stage Euler numerical integration. In stage one, all flows first are
found between all compartments with Equation 14.8. Then as the second
part of stage one, the net change is caleulated for each compartment with

AC; = (Fiq — F,) At (14.9)

For the second stage of the Euler procedure, concentrations in each com-
: p )
partment are found with the usual Euler equation for up-dating:

C; « Ci + AC; (14.10)

Exercise 14-2: Write and implement the simulation of diffusion along a
linear gradient of 20 compartments. Set k = 0.1. Use a At value
of 0.1, Begin your simulation with C; == 100 for values of ¢ from
Pto 10, and € = 0 for 1 = 11 to 20. Output should consist of
a graph showing compartment number (distance) on one axis and
concentration on the other. Show these plots of concentration after
U, 20, 40, 60, B0 and 100 time units. The equations above are set
up to permit easy use of subscripted variables. Set Fy = 0 and
Fiag = 0.

14.3 Osmotic Pressure Model

Osmosis is a special case of diffusion in which the solvent, usually wa-
ter, is the primary diffusing substance. The following model of osmotic
pressure is based on the classical osmosis experiment, illustrated in Figure
14.3. The movement of water during osmosis is sim ply diffusion along a
concentration gradient from high concentration of water towards a lower
concentration of water. Only water can pass through the membrane; the
large molecules of the solute are restricted to the osmometer chamber.
Rate of water diffusion into the chamber is described by the equation

Flow in = k, (W, — W;) (14.11)

The diffusion rate constant k; is a function of the properties of the mem-
brane, including its thickness and area. W, is the concentration of water
outside the compartment expressed as a mole fraction, usually 1.0, which
indicates pure water. W, is the mole fraction of water inside the mem-
brane. If w is the number of moles of water and s is the number of moles
of solute per unit volume inside the compartment, then

w

W, = o a (14.12)
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\, o

Figure 14.3. Diagram of the apparatus for the classic experiment
for determining osmotic pressure. Terminology is defined in the
text.

Substituting this into Equation 14.11 gives

w-t g

Flow in = k, (n S ) (14.13)

The backflow of water across the membrane is the result of a difference

in hydrostatic pressure, and is described by the equation

Flow out = &, (AF) (14.14)

L

where k), is a constant relating the fHow rate to the difference in hydrosts

pressure across the membrane (AF; see Figure 14.3). ky, will vary mh
the area, thickness, and porosity of the membrane and with the fuid
. viscosity. Pressure difference AP will partly depend on the geometr

rof

the manometer. Equation 14.14 may be simplified by basing the osutflow
on the amount of water in the chamber relative to the initial int,
which will be adjusted so that AP = 0. This will give the following:

Flow out = k,{w — wg) {14.1%)
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where w is the amount of water in the chamber at any time ¢, and Wy

I8 the initial amount of water when AP = 0. ko is ky, multiplied by a
proportionality constant.

Equations 14.13 and 14.15 can be combined to produce an equation for
net flow across the membrane as a result of two processes. The equation
in words is:

Net flow of water = flow in (by diffusion)

- flow out (due to hydrostatic tlow)
With the terms used above the equation is:

dw w

R O W :
= wk,(m M&) Ko(w — wp) (14.16)

This equation can be solved by the usual two-stage Euler procedure for

numerical integration. After the system reaches equilibrium, when net

flow is zero (flow in = fow out),

ky ( W, - w) = ky(w — wp) (14.17)

Exercise 14-3: Write and lmplement a program to simulate a determina-
tion of osmotic pressure using the model above. Use the following
constants and initial values:

Foi = 20 ko = 0.30 W, =1 wy = 55 5 =]

For the Euler integration, let At = 0.1, The backflow from Equa-

tion 14.15 may be converted to pressure (atmospheres) with mul-

tiplication by a factor of 62.199. This in turn may be converted to
inches of water with multiplication by a factor of 414, or to mmHg
by a factor of 760,

Run your simulation until the net flow across the membrane is
almost zero. At this point, the atmospheric pressure is the osmotic
pressure. As output, plot osmotic pressure and net flow from time
= 0 to equilibrivm.

14.4 Countercurrent Diffusion
Countercurrent diffusion has evolved in a nmber of species as an ef-

ficient mechanism to transport materials or heat from one fluid-carrying
vessel to another. One example is the special anatomical relationship
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between the loops of Henle in the kidney nephron and the medullary in-
terstitial fluid (Guyton 1971). Another example is the system that whales,
seals and birds use to transfer heat between arterial and venous circula-
tion in their feet and flippers. This system, called the rete mirabile, is
designed for the efficient conservation of heat. Both of these mechanisms
have two counter-flowing vessels close together, so that materials or heat
may be exchanged through simple diffusion. The countercurrent system
maximizes the intensity of the gradient at all points where diffusion is
occurring.

An effective model of countercurrent. diffusion may be based upon two
series of parallel compartments, separated by a membrane which perinits
transport. The A compartments represent one vessel through which fuid
passes and the B compartments represent another vessel parallel to A.

M-—-:J A, 'LAQ'LAa —LA4 L —LAQO L;*N
EEERED EL
T T T T . I "1

Figure 14.4. Conceptual diagram for a model to simulate coun-
tercurrent flow. The terminology is explained in the text.

Figure 14.4 illustrates the model system using terminology that simplifies
programming. The diffusion between any pair of compartments A; and
B; may be described by Fick’s Law, which states that the rate of diffusion
across a thin membrane is proportional to the area of the membrane, the
difference in concentrations, and a constant of permeability:
Fga=pa(A; — B;) (14.18)
where F' is the flow to compartment B; from compartment Ay, pis the
permeability constant, and a is the membrane ares. A, and B desig-
nate not only the compartments, but represent the concentrations of the
diffusing substance in the compartments. The simplifying assumptions
associated with the model are (1) membrane area and permeability con-
stants are the same for all compartments; (2) volume of each compartment
is constant and equal to unity, so that concentrations and amounts in each
compartment are equivalent.
~ Movement of fluid in the vessels is assumed to occur by plug flow. This
flow is modeled by having the material in each of the A compartments
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move one compartioent to the right for each time unit. Simultaneously
material in each B compartment moves one compartment to the left for
countercurrent How. Simulation of countercurrent flow involves two se ts
of equations, one set for calculating diffusion flow, and a second set for
the plug flow of fluids through the system. Diffusion may be simulated
with the usual two-stage Euler procedure. As part of the first stage the
ditfusion between each pair of compartments is found with Equation 14.15,
and then the changes in each compartment are found with

DA = —Fpa At {14.19)
&‘Bj = %}*WBAQQ (142{}|
“ach compartment is updated as usual with

Aj - Aj + AA (14.21)

Bj «— B, + AB, {14.22)

The procedure for programming plug flow involves the use of the folk)wmg
sequence for the A compartments:

N — 4, (14.23)
— A (14.24)
Ay M (14.25)

M represents the concentration of the input to the A compartments, and
N the concentration of the output. The countercurrent fow through the
B compartments will involve:

P B (14.26)
«BJ‘M; o 133 (li-l!
By~ Q (14.28)

(J is the pnt to the low concentration side, and P is the output. The
terminology for these procedures is given in Figure 14.4. =

In contrast with countercurrent flow, concurrent flow involves the flow
of the solution through the B compartments in the same direction as
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through the A compartments. In Figure 14.4, concurrent How through the
B compartments would be from left to right, A simulation of concurrent
flow would follow the same procedures as above, except that the sequence
of Equations 14.26-14.28 would be reversed:

Q — B, (14.29)
B, — Bj_, {14.30)
By« P {14.31)

Note that with concurrent flow, 2 becomes the output and P the input
for the B compartments.

Exercise 14-4: Program the model for countercurrent flow using a
~ system of 20 pairs of 4 and B compartments {(n = 20). Using
subscripted variables will make your program much shorter than
otherwise. This will allow you to write one FOR-NEXT loop to
solve Equations 14.18-14.20 for all 20 pairs of compartments, and
another loop to perform the updates with Equations 14.21-14.22,
Then, a loop may be set up for the sequence involved with Equation
14.24, and finally another loop for Equation 14.27. Use constants
of a = 1.0, and p = 0.1. Set M = 100 and @ == 0. For the Eu-
ler procedure let At = 1. Begin your simulation with 4, through
A, = 0, and B; through B,, = 0. Allow your simulation to pro-
ceed for about 40 time intervals, and shen plot concentration vs.
compartment number for both A and 8.

After you have produced the above output, modify your model to
simulate concurrent How, and run the simulation similarly. You can
then compare efficiency of two flow types for lowering concentration
of material in the A compartments.

14.5 A Model of Active Transport

- A simple model for the active transport of some metabolite, B, into
a cell may be developed from the following assurnptions based on the
diagram in Figure 14.5:

{1} Assume there are two compartments separated by a membrane
with different permeabilities for substance B and a closely related
compound €, with C having a higher permeability than B.
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i
i
bk
Bo 3 o > B,
|
i
kil lk, 1 kBI ka
i
bk,
Cm - 4 . > C%
1 L
outside i inside
i

Figure 14.5. Diagram for a simple model of active transport. The
terminology is explained in the text.

(2) Assume there is an enzyme on one side of the membrane which

{3) Assume there is another enzyme which catalyzes the conversion of

catalyzes the conversion of B to €. This might occur by a reaction
such as:
B+W o> (L. x

where W is an activating molecule, such as ATP. In this reaction,
the equilibrium lies far to the right, so that the equilibrium con-
stant K >> 1 and AG, << 0.

C to B. This might occur as:

C+Y T B+2Z
Again, the equilibrium is assumed to lie far to the right, and
AG, << 0.
Assume that concentrations of enzymes on each side of the mem-
brane remain constant.
Assume the two compartments have a unit volume and the separat-

ing membrane has a unit area. Following Equation 14.4, the rate :

of transport of B and ¢ from inside the cell to the outside com-
partment due to diffusion would be described by these equations
for the first stage of a two-stage Euler integration:

ABy = ky (B; — B,) At

A(}d i k(; ((:‘l o O‘/’) &t

where ky, and k. are diffusion rate constants, and B;, B,, C; and C,

(14.32)

(14.33)
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represent concentrations of the two compounds inside and outside
of the cell.

{6) Assume that the enzymatic reactions follow first-order kinetics,
which will be the case if the reactants other than B and C have
constant concentrations, and if the enzymes are well below satu-
ration by substrate. The reactions will alter the concentrations
of B and C inside and outside the cell according to the following
first-stage Euler equations:

AB; = (ksCi ~ kaB,) At (14.34)
ACi = (kg B; — ksC,) At (14.35)
AB, = (kiC, — k3 B,) At (24.36)
AC, = (kaB, — k1C,) At (14.37)

where ki, ko, k3, and k4 are the rate constants for the reactions.
In the system based on the above assumptions, the concentration of
and ¢ will be altered by diffusion and by the enzymatic reactions. The
update expressions for the Euler integration of the equations will be

B; «— B; + AB; ~ ABy (14.38)
By « By + AB, + ABy (14.39)

C; — Ci+ AC; - ACy (14.40)

Co = Co + AC, + ACy (14.41)
Exercise 14-5: Using the equations in Section 14.5, write and implemer

a program to simulate active transport of B against a dif
gradient. Use the following rate constants, all with units of min~":

ky = (.005
kq = 0.005

ky = 0.001 ke = 0.1

Begin your simulation with these initial values for concentration

(mM 171

B, =50 B; = 50 Oy =1 Cyo= 1
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Use a At value of 1.0 minute. Your output of the simnulation should

be a graph of the concentration of B; and B, against time. Allow
the simulation to proceed to near steady-state.

14.6 Simple Approach to Active Transport

In the previous section we discussed a possible mechanism for active

transport of a substance against a diffusion gradient. This resulted in

a steady-state concentration gradient across the membrane. This same
result could be obtained by simply employing different constants for the

diffusion rates in each direction across the membrane.

In this case, rate of diffusion is described by a modification of Equation
14.3;

transport is toward compartment i. At equilibrium the rates in each
direction are equal, so that

L9, @ 4 4
Ky v, = Ky v (14‘4\3}:
and -
«j 4 44
ks {14.44)

Thus, the ratio of the two constants is equal to the equilibrium or steady--

state ratio of the two concentrations, € and .

Neither of the active transport processes described above account for
mediated or facilitated transport processes. These are membrane trans-
port processes, either active or passive, that show saturation-type kineties

because only a limited number of transport sites exist. In addition, they

may show specificity for a particular chemical species being transported.
The distinction between simple diffusion and mediated-transport pro-
mses 15 seen in Figure 14.6. This shows graphically that the carrier
or transport sites of the mediated-transport system become saturated at

high concentrations of the diffusing substance, and that the rate does

not exceed Tyaye This may be represented with a model equation of the
Michaelis-Menten type:

K, +
where T, is the rate of carrier-mediated diffusion, Ty, 18 the maximum
rate, O is the concentration of diffusing substance, and K, is the half-
saturation constant.

i (14.42)

() and V' are defined as before, and ky is greater than ky if active
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Figure 14.6. Graph showing general relationship between rates of
transport and external concentration for mediated and unmedi-
ated (passive diffusion) transport processes. Based on a graph in
Lehninger (1975).

Conclusion

As part of the coverage of compartmental models in physiology, this
chapter has looked at simple models of diffusion. The modeling and sim-
ulation of diffusion can become quite complex; see Crank (1956) for ex-

ample. The next chapter considers some different physiological models of
fluid flow among compartments.
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