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1- Context: Urban Mobility

(UNITED NATIONS 1, 2018)

Road infrastructure remained at 

the same level
(ANT, 2018)

Decision Factors to choose a 

mean o transportation: 

 Time

 Cost

 Safety

 Comfort

People need to

MOVE

Urbanization

(MADHUWANTHI et al., 2015)

São Paulo 

Home 
Work

≈ 45min

(PNAD, 2018) 

>1h (25% of population)

54,4

100,7

2008 2018

Vehicle Fleet in BR

2008 2018

+85%

(IBGE, 2019)
10y
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2- Research general objectives

Subtitles:
HDV: Human Driven Vehicles
AV: Autonomous Vehicles
CV: Connected Vehicles
CAV: Connected and Autonomous Vehicles

3

To measure the impacts of Autonomous Vehicles (AV) and 
Connected and Autonomous Vehicles (CAVs) on the traffic 

To assess the transition phases: mixed traffic/coexistence 
from HDVs, AVs and CAVs

Measure the traffic efficiency 
over Travel Time Measurement

Considering road and traffic characteristics from Brazilian 
metropolitan areas

X:XX

Tool

Microscopic Traffic Simulation

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam



3-3,5m

4

3.1 Key Concepts: Traffic Engineering

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Width:
Passenger Car≈1,75m
Bus≈2,6m

Source: Author
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Safe Speed: according to Gipps model the highest speed a vehicle

can drive on a accident-free model where the subject vehicle is

able to stop even on a sudden brake from the leading vehicle

(TREIBER & KESTING, 2013).

𝑣𝑆𝑎𝑓𝑒 = −𝑏𝑹𝑻 + 𝑏2𝑹𝑻
𝟐 + 𝑉𝑙

2 + 2𝑏 (𝑠 − 𝑠0) (2)                             

b: braking constant deceleration
(m/s²)

RT : Reaction Time (s)

Vl : Leading vehicle speed (m/s)

(s-so): Gd - gap distance (m)

Stopping Side Distance (SDD): the distance a

vehicle needs to full stop (FHWA, 1997):

SSD= 1,47V(RT) + 
𝑉²

2𝑔[𝑓±
𝐺

100
]

(1)

3.2. Key Concepts: Vehicle Dynamics

SSD (m)

V: Speed (km/h)

RT : Reaction Time (s)

g: gravity

f: friction coefficient

G: grade (%)

RT 
(s) SSD (m)

2 104,13

1 67,38

0,8 60,03

0,6 52,68

0,4 45,33

0,2 37,98

0 30,63

→90km/h

→9,8m/s²

→0,8

→0% (flat)

Gd=100m

RT (s)
Safe Speed

(km/h)

2 83,40
1 97,26

0,8 100,35
0,6 103,55
0,4 106,87
0,2 110,30
0 113,84

Gd= 10m
Safe Speed

(km/h)

14,91

22,25
24,37
26,79
29,51
32,58

36,00

→ 5m/s²

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam
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3.3. Key concepts: SAE J3016 - Automation Levels

Taxonomy for
Vehicles Driving
Automation

Lateral OR 
Longitudinal 
Active Control

Lateral AND 
Longitudinal 
Active Control

+ Fallback=systems+ Objects and 
events detection
(fallback=driver)

+ Operate 
autonomously in 
all conditions

SAE J3016 

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Source: Author
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3.4. Key concepts: AV ≠ CV ≠ CAV

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Source: adapted from Qualcomm (2016)

Subtitles:
LiDar: Light Detection and Ranging
ADAS: Advanced Driver Assistance Systems
DSRC: Dedicated Short Range Communication
HD: High Definition
LTE: Long Term Ethernet
V2V: Vehicle to Vehicle
V2X: Vehicle to Everything
V2N: Vehicle to Network
V2P: Vehicle to Person
IoT: Internet of Things

Source: Author



3.5. Key Concepts: CACC / Platooning / Automated Convoys

8

CACC: Cooperative Adaptive Cruise Control

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Source: Author

Source: Adapted from DIRT (2019) and

DAIMLER CASE (2019).



Intelligent Driver Model (IDM) 

9

4. Mathematical Models (AV)

Vehicle Acceleration →  𝛼𝐼𝐷𝑀 = 𝑎 1 −
𝑣

𝑣𝑜

𝛿
−

𝒔∗(𝑣,∆𝒗

𝑠

2
(3)

𝛼𝐼𝐷𝑀: Vehicle Acceleration (m/s²)

𝑎: comfortable acceleration rate;

𝑣: subject current vehicle speed (m/s);

𝑣0 : is the desired (safety) speed (m/s);

Δ𝑣 : speed difference between the subject vehicle and the leading vehicle (m/s);

s : distance from subject to leading vehicle (m);

ẟ: magnitude of acceleration decrease parameter depending on the vehicle speed;

s*: desired distance (safety gap) described as:

Safety Gap → 𝑠∗ 𝑣, ∆𝑣 = 𝑠𝑜 +𝑚𝑎𝑥 0, 𝑣𝑇 +
𝑣,∆𝑣

2 𝒂𝒃

2
(4)

s0 : minimum gap (m);

T : desired gap (m);

𝑎: comfortable acceleration rate

b: deceleration rate.

ACC is frequently used to model AVs 

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

(TREIBER & KESTING, 2013)
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MIXIC: Microscopic Model for 

simulation of Intelligent Cruise Control

rsafe =
𝑣2

2
∙

1

𝑑𝑝
−

1

𝑑
(11)

v: current vehicle speed,

d: deceleration capability subject vehicles

dp: deceleration capability of the leading

Following distance

rf = 𝑡𝑠𝑦𝑠𝑡𝑒𝑚 ∙ 𝑣 (13)

𝑣: subject vehicle speed 

tsystem : time headway → 

e.g.: 0,5 seconds if the leading vehicle has CACC 

function and 1,4 seconds, otherwise. 

Safe following distance

Van AREM et al., (2006) 

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

4. Mathematical Models (CV/CAV)- CACC is frequently used to
model CAVs
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𝑎𝑐 𝐴𝐶𝐶 = 𝑘𝑣 ∙ 𝑣𝑙 − 𝑣𝑠 + 𝑘𝑠 ∙ 𝑠 − 𝑣 ∙ 𝑡𝑑 7

𝑎 = max[𝑎𝑚𝑖𝑛, 𝑚𝑖𝑛 𝑎𝑐 , 𝑎𝑚𝑎𝑥 ] 8

𝑎𝑐 𝐶𝐴𝐶𝐶 = 𝒂𝒍 + 𝑘𝑣 𝑣𝑙 − 𝑣𝑠 + 𝑘𝑠 ∙ 𝑠 − 𝑣 ∙ 𝑡𝑑 9

𝑎 = max[𝑎𝑚𝑖𝑛, 𝑚𝑖𝑛 𝑎𝑐 , 𝑎𝑚𝑎𝑥 ] 10

a: acceleration in next step of subject vehicle,

𝒂𝒍: acceleration of the leading vehicle

𝑣𝑠: vehicle speed of subject vehicles

𝑣𝑙 : vehicle speed of leading vehicles

𝑎𝑚𝑎𝑥: maximum allowed acceleration

𝑎𝑚𝑖𝑛: maximum allowed deceleration

𝑘𝑣 and 𝑘𝑠: constant gain greater than zero ZHAO & SUN, (2013)

CACC: 

Accelerations of Vehicles 

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

4. Mathematical Models (CV/CAV)- CACC is frequently used to
model CAVs
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∆𝑋𝑛 = (𝑋𝑛−1- 𝑋𝑛 − 𝑙𝑛−1) 𝑣𝑛𝝉 +
𝑣𝑛−1
2

𝑎𝑎𝑛−1
𝑑𝑒𝑐𝑐 (13)

∆𝑋𝑛 = 𝑚𝑖𝑛(𝑺𝒆𝒏𝒔𝒐𝒓𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏𝑹𝒂𝒏𝒈𝒆, ∆𝑋𝑛) (14)

𝑣𝑚𝑎𝑥 = −2𝑎𝑖
𝑑𝑒𝑐𝑐∆𝑋 (15)

n : subject vehicle; n-1:leading vehicle;

Xn: position, ln:length, vn: vehicle speed, ԏ: reaction time,

𝑎𝑛
𝑑𝑒𝑐𝑐: maximum deceleration of the subject vehicle vehicle

Safe speed

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

4. Mathematical Models (CV/CAV)- CACC is frequently used to
model CAVs

TELEBPOUR & MAHMASSANI (2016)

MIXIC: Microscopic Model for simulation of 

Intelligent Cruise Control
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𝑑𝑎𝑛𝑡𝑖
𝐶𝐴𝑉

 

=  
𝑑 + 𝑣𝑎𝑛𝑡𝑖 , 𝑖𝑓 𝑣𝑙 𝒊𝒔 𝒂 𝑪𝑨𝑽

𝑑 + 𝑣𝑎𝑛𝑡𝑖 − 𝒃𝒅𝒆𝒇𝒆𝒏𝒔𝒆 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(19)

d : distance gap between subject and leading vehicle;

vanti is the expected speed of leading vehicle;

bdefense : randomization-deceleration rate under the defensive state

This equation is based on the worst case where a

CAV is following a HDV. As a HDV driving

behavior is unpredictable the CAV needs always

to drive on the defensive.

4. Mathematical Models (CAV)

YE & YAMAMOTO (2017)

Anticipation distance: based on the premise that CAVs can obtain the exact value of space gap

Safe Speed: connectivity characteristics of V2V

𝑣𝑎𝑛𝑡𝑖
𝐶𝐴𝑉  = min(𝑑𝑙 , 𝑣𝑙 + 𝑎 , 𝑣𝑚𝑎𝑥 , 𝒗𝒍𝒊 ) (20)

𝑣𝑙𝑖 : average speed of leading CV within the communication

distance range;

𝑣𝑙 : leading vehicle speed;

𝑑𝑙 : gap distance from leading vehicle

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam
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ACC / IDM CACC CACC 
+ 

Mixed Scenarios
+

Communication 
Technologies (CV)

MIXIC
+

Sensor 
Features

AVs CVs/ CAVs

YE & YAMAMOTO (2017)

ZHAO & SUN, (2013)Van AREM et al., (2006) 

TELEBPOUR 

& MAHMASSANI (2016)

MIXIC

Subtitles:
AV: Autonomous Vehicles
CAV: Connected and Autonomous Vehicles
IDM: Intelligent Driver Model
ACC: Adaptive Cruise Control
CACC: Cooperative Adaptive Cruise Control
MIXIC: Microscopic Model for simulation of Intelligent
Cruise Control

(TREIBER &

KESTING, 2013)

4. Mathematical Models (AV/CV/CAV)- Evolution

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam



5.  Traffic Simulation - Why to use microscopic Simulation?

15

Nanoscopic/

Sub-microscopic
Microscopic

Mesoscopic

Macroscopic

Macroscopic

Mesoscopic

Microscopic Nanoscopic/
Sub-microscopic

Bruno S. Paterlini / Poli-USP/ Master Qualification ExamSource: Author

Source: Author



5. VISSIM input Data: Microscopic Driving Behavior

Driving Behavior: “underlying logic” of a traffic simulation model (Gao; 2008)

16

Driver 
Behavior

Car-
following

Lane 
Change

Mesoscop
ic

Following

Lateral

W74 W99

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Source: Author

Leader Relative Speed (∆V)

Source: (TREIBER & KESTING, 2013)

SDV: the points at long distances where drivers perceive speed differences when they

are approaching slower vehicles

CLDV: the points at short distances where drivers perceive that their speeds are higher

than their lead vehicle speeds

OPDV: the points at short distances where drivers perceive that they are travelling at a

lower speed than their leader

SDX: The maximum following distance indicating the upper limit of car-following process

ABX: the minimum following distance which is considered as a safe distance by drivers

Driving regimes



Wiedemann 74 (W74)
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5. VISSIM input Data: Wiedemann Models

𝑢𝑛(𝑡 + ∆𝑡)

 

= 𝑚𝑖𝑛
𝑢𝑛 𝑡 + 3.6 ∙ 𝑪𝑪𝟖 +

𝑪𝑪𝟖−𝑪𝑪𝟗

80
𝑢𝑛 𝑡 ∆𝑡

3.6 ∙
𝑠𝑛 𝑡 −𝑪𝑪𝟎−𝐿𝑛−1

𝑢𝑛 𝑡

2 , 𝑢𝑓 (25)

𝑢𝑛(𝑡 + ∆𝑡)

 

= 𝑚𝑖𝑛
3.6 ∙

𝑠𝑛 𝑡 −𝐴𝑋

𝐵𝑋

2

3.6 ∙
𝑠𝑛 𝑡 −𝐴𝑋

𝐵𝑋∙𝐸𝑋

2 , 𝑢𝑓 (22)

𝑢𝑛 𝑡 + ∆𝑡 is the minimum between two speeds.

AX and BX are adjustable parameters expressed at

𝑑 = 𝐴𝑋 + 𝐵𝑋 (23)

AX is the standstill distance (m). BX is the safety distance 

(m) given by

𝐵𝑋 = (𝐵𝑋𝑎𝑑𝑑+𝐵𝑋𝑚𝑢𝑙𝑡 ∙ 𝑧 ) ∙ 𝑣 (24)

v :vehicle speed (m/s), 

𝑩𝑿𝒂𝒅𝒅 ∶ additive part of the safety distance

𝑩𝑿𝒎𝒖𝒍𝒕 : multiplicative part of the safety distance and 

z  is a value from 0-1 

(GAO, 2008) 

Wiedemann 99 (W99)

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

CC0 : standstill distance (m),

CC4: Negative following threshold (m/s)

CC5: Positive following threshold (m/s)

CC6: Speed dependency of oscillation (10^-4 rad/s)

CC8 : standstill acceleration (m/s²) and

CC9 : desired acceleration (m/s²) at a speed of 80 km/h

Δ𝑥: gap between subject and leading vehicles (m)

𝐿: lenght of leading vehicle (m)

𝐿𝑛−1: Lenght of subject vehicle (m)

(26)

(27)

VISSIM user manual recommendation:

 Wiedemann 74 (W74): urban traffic and merging areas 

 Wiedemann 99 (W99): freeways interactions 



5. VISSIM and CoEXist: Project partnership supported PTV on developing
features for AVs traffic simulation

18

 Class dependent safety
distance in following
behavior

 Use implicit stochastics behavior for human drivers

 Number of interaction: 
objects & vehicles

CoEXist is a European project (May 2017 – April 2020)

which aims at preparing the transition phase

Project supported the development of new  features 

applied at VISSIM 11

→ 4 different Driving Logic models were developed

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

(Coexist D2.4, 2018)
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5. Vissim and CoExist (Field Operational Trial): recommended of 
parameters for each Driving Logic

(Coexist D2.3, 2018)

Recommendations are based on:
• Analysis of empirical data collected in TASS

test track in Helmond – Netherlands + Co-
simulations (PreScan + VEDECOM) +

simulation VISSIM (Coexist D2.6, 2018):

Recommendation to use W99 to simulate AVs
because of more options to control the behavior
through driving parameters (Coexist D2.6, 2018)

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam



6. Research Proposal
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100% HDVs
+ Motorcycles

+ Bus Stops

Base Scenario Mixed traffic Mixed + CVs

Influence of
disturbance 

(break down vehicle)

Base Scenario

AVs
(no CVs features)

Mixed traffic

CAVs
(Platooning)

Rescue vehicles 
proposal 

(Attenuate disturbance)

Topics covered 
for Qualification 

Additional Topics for 
Final Dissertation

Source: Author

Source: Author



6.1. Characteristics from base model: why this segment was chosen?

21
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CET-SP (Traffic 
Engineering 
Company) report 
released in 2018

Bandeirantes Ave.

Nações Unidas Ave.

Nações Unidas Ave.

Bandeirantes Ave.

I- Nações Unidas ave.

II-Bandeirantes ave.

III-Dr. Cardoso de Melo ave.

3 points for data input

Source: Author Source: Author

Source: Author



6. VISSIM data outputs

Travel Time Measurement

1- Av. Nações Unidas
d=380m

3- Av. Bandeirantes -> End of Av. Nações Unidas
d=373m

2- Av. Bandeirantes->Break Down Vehicle
d=273m

22

 Each lane has its own Data Collection Point
 VISSIM gives many different outputs. The key output

element for this study is:
• Average vehicles speed
• Queue delay
• Occupation Rate

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Source: Author

Source: Author
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7. Methodology: Scenarios description

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Illustration of “Break Down” Scenarios

Driver Behavior Pen Rate

Scenario 1.1 / 1.2
(Baseline)

100%

Scenario 2.1/ 2.2

50%

50%

Scenario 3.1 / 3.2/ 3.3 100%

Scenario 4.1 / 4.2

33%

33%

33%

Scenario 5.1/5.2
50%

50%

Scenario 6.1/ 6.2/ 6.3 100%

Human Driven 
(CoEXist Normal)

Human Driven 
(CoEXist Normal)

AV 
(CoExist All Knowing)

AV 
(CoExist All Knowing)

AV 
(CoExist All Knowing)

CAV (Platooning)

Human Driven 
(CoEXist Normal)

AV 
(CoExist All Knowing)

CAV (Platooning)

CAV (Platooning)

Source: Author

Source: Author
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7. Partial Results: Comparison between W74 and W99

-25%

-14%

-10%

-24%

-9%

-14%

-30%

-25%

-20%

-15%

-10%

-5%

0%

Scenario 1.1: 100%
Human (no Break Down)

Scenario 1.2: 100%
Human + BREAK DOWN

Scenario 2.1: 50% Human
/ 50% AV (All_Knowing)

Scenario 2.2: 50% Human
/  50% AV (All_Knowing) +

BREAK Down
Scenario 3.1: 100% AV

(All_Knowing)

Scenario 3.2: 100% AV
(All_Knowing) + BREAK

Down

Ratio between (W99/W74) for each scenario

TRAVTM(W99/W74-100%)

Travel Time for W99 is 
25% faster than W74 

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Source: Author

Source: Author
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8. Partial Results: Comparison between Scenarios

-5%

-30%
-34%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

Scenario 2.1/1.1 (50% AV vs. 100HD) Scenario 3.1/2.1 (100%AV vs. 50%AV) Scenario 3.1/1.1  (100%AV vs. 100HD)

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Source: Author
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8. Partial Results: Comparison between Scenarios

-5%

-30%
-34%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

Scenario 2.1/1.1 (50% AV vs. 100HD) Scenario 3.1/2.1 (100%AV vs. 50%AV) Scenario 3.1/1.1  (100%AV vs. 100HD)

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Source: Author
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8. Partial Results: Comparison between Scenarios

-5%

-30%
-34%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

Scenario 2.1/1.1 (50% AV vs. 100HD) Scenario 3.1/2.1 (100%AV vs. 50%AV) Scenario 3.1/1.1  (100%AV vs. 100HD)

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Source: Author
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Scenario 2.1/1.1 (50%
AV vs. 100HD)

Scenario 3.1/2.1
(100%AV vs. 50%AV)

Scenario 3.1/1.1
(100%AV vs. 100HD)

TRAVTM Diference -5% -30% -34%

-5%

-30%

-34%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

TRAVTM Difference between scenarios
No Break Down (W74)

Scenario 2.2/1.2 (50%
AV vs. 100HD)

Scenario 3.2/2.2
(100%AV vs. 50%AV)

Scenario 3.2/1.2
(100%AV vs. 100HD)

TRAVTM Diference -11% -21% -30%

-11%

-21%

-30%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

TRAVTM Difference between scenarios
With Break Down (W74)

8. Partial Results: Comparison between Scenarios

 AVs even mixed with HDVs shows a small improvement on
traffic flow. For 50% AV/50% HDV the travel time reduced
just 5%

 The higher introduction of AVs brings much higher benefits 
to the traffic flow.

 The higher penetration of AVs improve the traffic flow 
for this disturbance application

 For 50% of AVs the improvement was up to 11%: AVs 
perform better on disturbance scenarios

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Source: Author Source: Author
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0

50

100

150

200

250

300

350

400

450

Sc 1.1
W74

Sc 1.1
W99

Sc 1.2
W74

Sc 1.2
W99

Sc 2.1
W74

Sc 2.1
W99

Sc 2.2
W74

Sc 2.2
W99

Sc 3.1
W74

Sc 3.1
W99

Sc 3.2
W74

Sc 3.2
W99

Tr
av

el
 T

im
e 

(s
)

TRAVTM Average Nac Unidas (s) TRAVTM Average Bandeirantes Ave (s)

Travel time comparison between Nacões Unidas and 

Bandeirantes avenue

8. Partial Results: Deep dive on simulated segments – Bandeirantes
Ave. is the bottleneck

Travel time difference between  Nac Unidas and Bandeirantes

avenues for all scenarios and driver behavior types

 The travel time for Nac. Unidas Ave has a much
lower variation when compared to Bandeirantes
Ave.

 Bandeirantes Ave. is the bottleneck

 Comparing the scenarios without break-down there
is a variation of -37% on travel time from base
scenario to 100% AV

Bruno S. Paterlini / Poli-USP/ Master Qualification Exam

Source: Author

Source: Author



Reference Simulator Application Results

BAILEY (2016) 

Modified IDM
AIMSUM Urban

20% AVs → ↓ 53% travel time 

100% AVs → ↓ 80% travel time

RIOS-TORRES et al. 

(2017): Optimal Control
AIMSUM Urban 100% AVs → ↓ 60% travel time

EVANSON (2017)

VISSIM +

Platooning 

(external)

Highway 100% CAVs → ↓ 11% travel time

BAZ (2018) VISSIM Urban

↓ 65% total delays in roundabouts

↓ 85% total delays on signalized 

intersections

TILG et al. (2018)

MATLAB 

+

Not 

mentioned

Highway 100% AVs → ↑ 15% traffic capacity

EVANSON (2017)

VISSIM +

Platooning 

(external)

Highway 100% CAVs → ↓ 11% travel time

ZHOU et al. (2019)
Not 

mentioned
Highway 100% CACC → ↑ 95% lane capacity
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Simulator Application Results

VISSIM+

Platooning 

(VISSIM 

integrated)

Urban

50% AVs → ↓ 5% travel time

100% AVs → ↓ 34% travel 

time

8. Partial Results: Comparison with literature

CAVs (CACC) shows promising results

 It was not found at the literature a similar research
using CoExist project outputs to measure traffic
flow impacts on metropolitan areas

Source: Author
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• AVs and CAVs allows lower standstill and safety distance due to its sensors
and reaction time

• AVs shows benefits to the traffic flow mainly for higher penetration rates

• AVs show better traffic performance on disturbances (e.g. vehicle
breakdown) even for mixed scenarios

• Results can have a high correlation for other big cities in Brazil and
worldwide

31

9. Partial Conclusions
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10. Next Steps

Timeline for final thesis mar/20 abr/20 mai/20 jun/20 jul/20 ago/20 set/20 out/20

Simulation for 2 additional tracks 
(already calibrated)

x x

Simulation of Platooning feature at 
Vissim 2020
(Scenarios 4.X, 5.X and 6.X)

x x x

Results evaluation and comparison x x x

Final dissertation text x x x

Thesis text delivery x

Preparation for thesis presentation x x

Final Thesis Presentation x

Paper for submission x x
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𝑎𝑐 𝐴𝐶𝐶 = 𝑘𝑣 ∙ 𝑣𝑙 − 𝑣𝑠 + 𝑘𝑠 ∙ 𝑠 − 𝑣 ∙ 𝑡𝑑 7

𝑎 = max[𝑎𝑚𝑖𝑛, 𝑚𝑖𝑛 𝑎𝑐, 𝑎𝑚𝑎𝑥 ] 8

𝑎𝑐 𝐶𝐴𝐶𝐶 = 𝒂𝒍 + 𝑘𝑣 𝑣𝑙 − 𝑣𝑠 + 𝑘𝑠 ∙ 𝑠 − 𝑣 ∙ 𝑡𝑑 9

𝑎 = max[𝑎𝑚𝑖𝑛, 𝑚𝑖𝑛 𝑎𝑐, 𝑎𝑚𝑎𝑥 ] 10

a: acceleration in next step of subject vehicle,

𝒂𝒍: acceleration of the leading vehicle

𝑣𝑠: vehicle speed of subject vehicles

𝑣𝑙 : vehicle speed of leading vehicles

𝑎𝑚𝑎𝑥: maximum allowed acceleration

𝑎𝑚𝑖𝑛: maximum allowed deceleration,

𝑘𝑣 and 𝑘𝑠: constant gain greater than zero.

ZHAO & SUN, (2013)

MIXIC: Microscopic Model for 

simulation of Intelligent Cruise Control

rsafe =
𝑣2

2
∙

1

𝑑𝑝
−

1

𝑑
(11)

v: current vehicle speed,

d: deceleration capability subject vehicles
dp: deceleration capability of the leading

Following distance

rsafe = 𝑡𝑠𝑦𝑠𝑡𝑒𝑚 ∙ 𝑣 (13)

𝑣: subject vehicle speed 

tsystem : time headway → 0,5 seconds if the 

leading vehicle has CACC function and 1,4 
seconds, otherwise. 

∆𝑋𝑛 = (𝑋𝑛−1- 𝑋𝑛 − 𝑙𝑛−1) 𝑣𝑛𝜏 +
𝑣𝑛−1
2

𝑎𝑎𝑛−1
𝑑𝑒𝑐𝑐 (13)

∆𝑋𝑛 = 𝑚𝑖𝑛(𝑺𝒆𝒏𝒔𝒐𝒓𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏𝑹𝒂𝒏𝒈𝒆, ∆𝑋𝑛) (14)

𝑣𝑚𝑎𝑥 = −2𝑎𝑖
𝑑𝑒𝑐𝑐∆𝑋 (15)

n : subject vehicle; n-1:leading vehicle;

Xn: position, ln:length, vn: vehicle speed, ԏ:
reaction time, 𝑎𝑛

𝑑𝑒𝑐𝑐: maximum deceleration of the

subject vehicle vehicle

4. Mathematical Models (CV/CAV)- CACC is frequently used to
model CAVs

Safe following distance

CACC: 

Accelerations of Vehicles 

Van AREM et al., (2006) 

TELEBPOUR & MAHMASSANI (2016)

Safe speed
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8.1. Scenarios X.3: Faster disturbance using V2V technologies –
to be assessed for final dissertation

Based on V2V technologies for 100% CAVs scenarios: “driver” will be asked for acceptance
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5. How to simulate CAVs
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Source: Author


