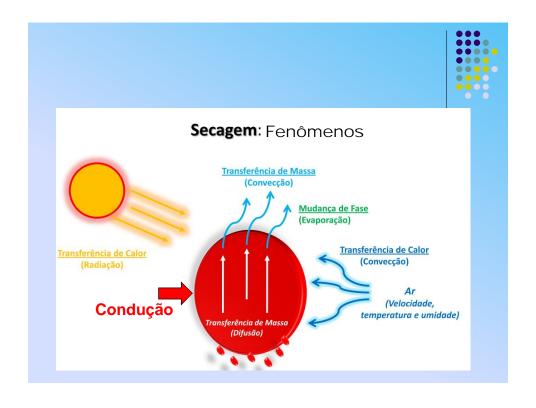
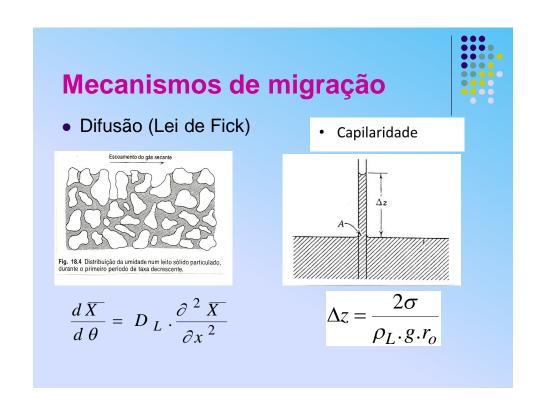
Farmacotécnica e Tecnologia de Medicamentos e Cosméticos Módulo II

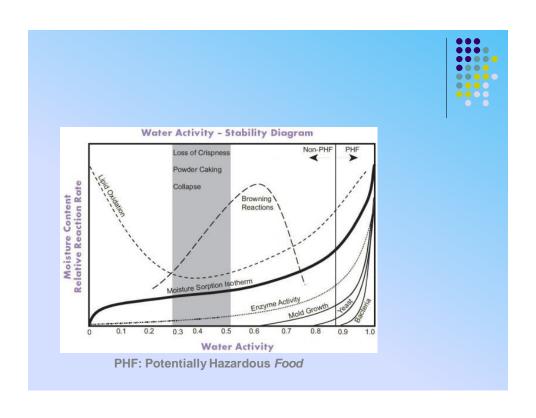

FORMAS FARMACÊUTICAS SÓLIDAS PÓS E MISTURAS

Tópicos: Secagem e Cominuição

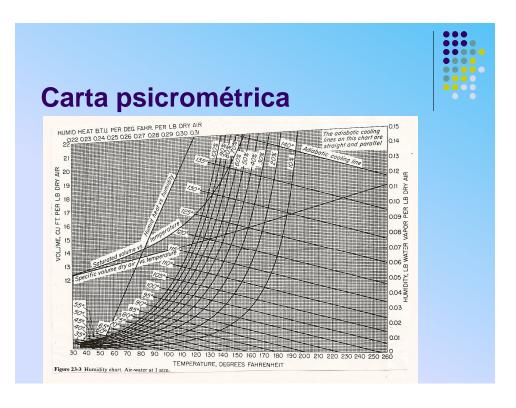

FCFRP/USP - 2020

Cinética e equilíbrio de secagem Durante a secagem de um sólido úmido por um gás a uma temperatura e umidade fixa, manifesta-se sempre um certo tipo de comportamento, representado na figura abaixo: Taxa de Teor de secagem Il Período de I Período de umidade secagem secagem dX dt Período de taxa constante X_{cr} **Tempo** Teor de umidade X=teor de umidade = Massa do Material - Massa de Sólidos Massa de Sólidos

• Atividade de água (-)


$$a_w \equiv p/p_0$$
 0 \leq a_w \leq 1.0

- Teor de umidade: (g/g ou %)
 massa H2O/massa produto
 obs.: base úmida ou base seca
- Propriedades físico-químicas: degradação
- Fluidez e tamanho de partícula


Conceitos importantes

- Água livre: é a água que está simplesmente adsorvida no material, e a mais abundante.
- Água ligada: É a água da constituição, que faz parte da estrutura do material, ligada a proteínas, açúcares e adsorvida na superfície de partículas coloidais, e necessita de níveis elevados de temperatura para sua remoção.

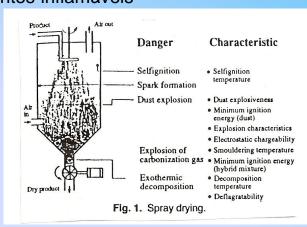
Medidas de umidade do ar

- Método psicrométrico: bulbos sêco e úmido
- Método do ponto de orvalho
- Método gravimétrico
- Psicrômetros comerciais: capacitância, condutividade.

Eficiência energética

• Definição
$$E(\%) = \frac{Q_{\text{sec}}}{Q_{gas}} = \frac{m_{evap}.\Delta H_{vap}}{m_g.Cp_g.\Delta T_g} \times 100$$

Importante devido ao custo energético.


Pode ser afetada por:

- perdas de calor para o ambiente;
- escolha inadequada das condições de operação;
- dimensionamento do equipamento.
- em geral mais baixas que eficiências de evaporação, por isto é recomendável sempre reduzir o solvente por evaporação antes da secagem.

Fatores de segurança

Solventes inflamáveis

• Faixa de inflamabilidade: Etanol (<3 ou >15 %)

Termosensibilidade

Microorganismos, substâncias de origem biológica (vegetal ou animal)

Bioquímicas	Enzimáticas	Químicas	Físicas
\	\downarrow	\downarrow	\downarrow
Atrofia de	Perda de	Queda do	Solubilidade
microorganis	atividade	valor nutritivo	Rehidratação
-mos		e atividade	Encolhimento
			Organo-
			lépticas
\downarrow	\downarrow	\downarrow	\downarrow
Leveduras	Enzimas	Proteinas	Todos os
Bacterias	Vitaminas	Carbohidratos	produtos
		Gorduras	biológicos
		Antibióticos	
		Aminoácidos	

Termosensibilidade

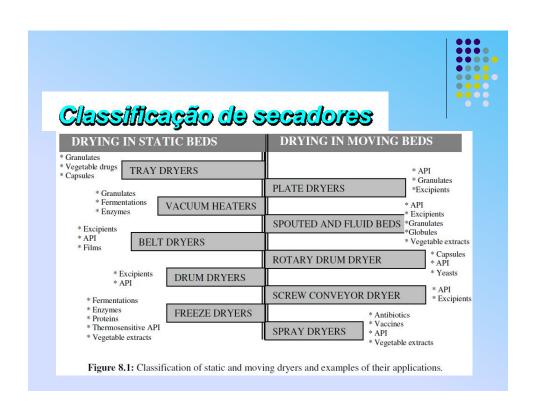
Sensíveis a que parâmetros da secagem?

- temperatura;
- duração; (tempo de residência)
- velocidade de aquecimento;
- umidade inicial do ar;
- taxa de secagem;
- umidade final o produto.

Termosensibilidade

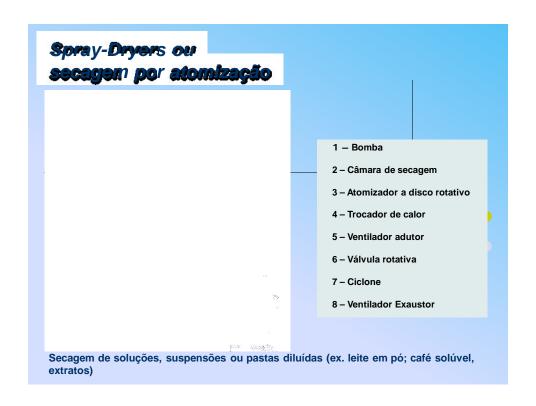
Degradação: índice de degradação da qualidade (ID)

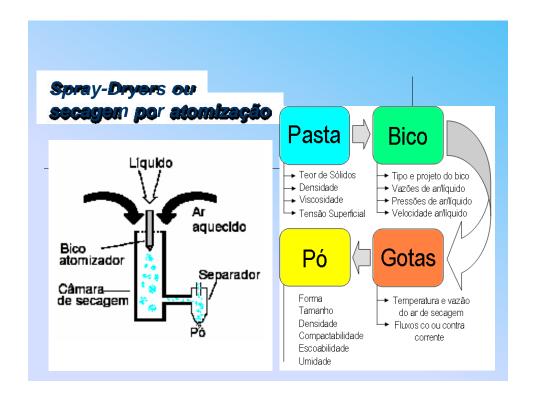
$$ID = \frac{iq(t)}{iq(0)}$$

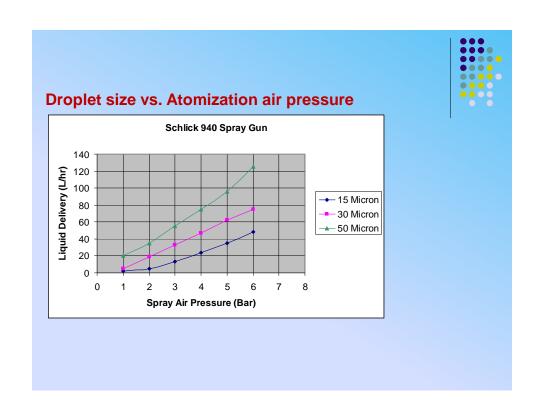

- Escolha de um indicador de qualidade (iq).
- Por exemplo:
- 1) número de organismos vivos, C
- 2) atividade enzimática, A
- 3) conteúdo de ativo, C

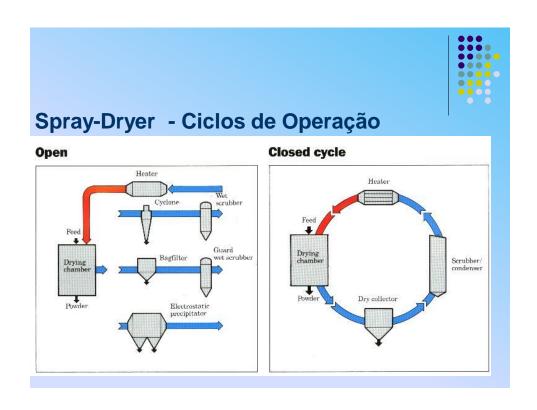
Secadores mais utilizados na indústria farmacêutica

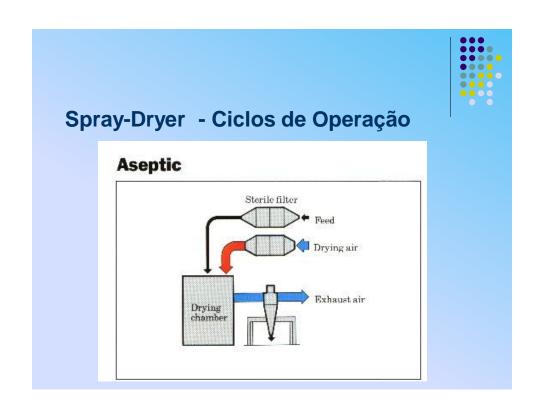
- 1. Secadores de bandejas
- 2. Secadores em túnel e esteiras transportadores
- 3. Sistemas de leito fluido
- 4. Secadores por atomização: spray dryer
- 5. Liofilizadores
- 6. Secagem por microondas
- 7. Sistemas de secagem híbridos

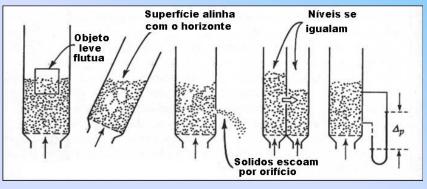





- Apesar de serem muito usados, esses equipamentos apresentam inúmeras desvantagens, como por ex.:
- aplicáveis somente à secagem de materiais estáveis;
- o produto pode permanecer úmido nos cantos das bandejas;
- pode ocorrer secagem desigual nas bandejas;
- aplicados somente para secagem de produtos sólidos;
- operação descontínua.







LEITOS FLUIIZADOS

→ O que é fluidização? Modificar um leito de partículas de maneira que este adquira propriedades físicas de fluido.



LEITOS FLUIDIZADOS

→ O que é fluidização? Modificar um leito de partículas de maneira que este adquira propriedades físicas de fluido.

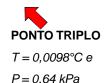
32

Figura . Leitos fluidizados e de jorro comercializados na área farmacêutica. a) leito com atomização no topo; b) leito tipo Wurster; c) leito fluidizado rotativo e d) leito de jorro bidimensional (GLATT).

• • • •

LEITOS FLUIDIZADOS

- * Aplicações gerais:
- reações catalíticas sólido-fluido;
- adsorção; combustão de carvão;
- -Farmacêutica: secagem, granulação e revestimento.
- * Aplicações na secagem:
- -- grânulos, ex. comprimidos, sementes, etc;
- -- pastas (duras e moles);
- -- suspensões e soluções.
- * Produtos obtidos:
- -- Pós finos dispersos ou grosseiros;
- -- grânulos.

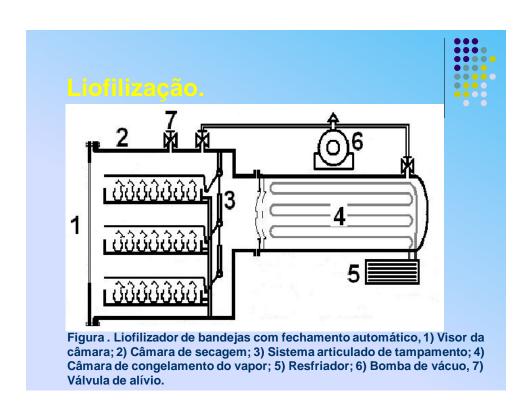

Liofilização.

É também denominada de secagem por sublimação. As etapas de uma liofilização são:

\$\infty\$ o congelamento do material,

\$\infty\$ fornecimento de calor sob condições controladas, que leva à sublimação do gelo.

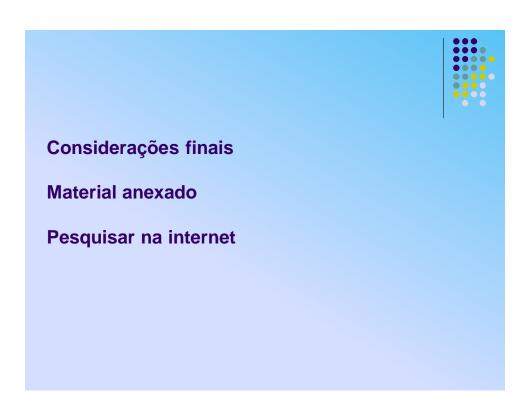
*Cuidados: Temperatura de colapso

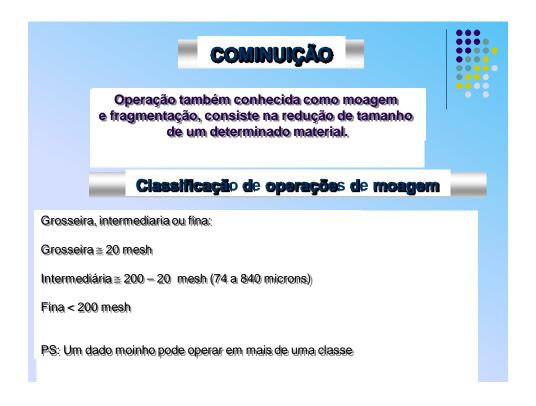

DIAGRAMA DE FASES PARA A ÁGUA

Liofilização.

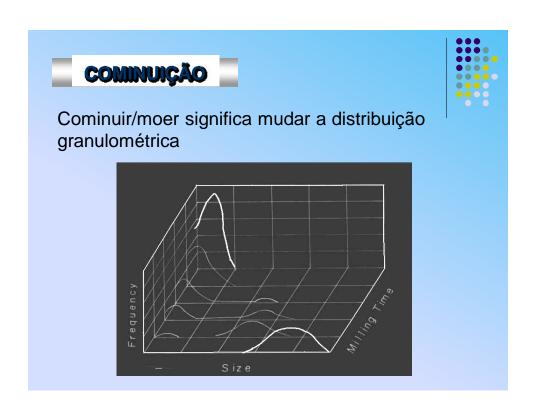
♦ Características do processo:

- Produtos de melhor qualidade;
- Custo elevado.
- * Parâmetros que afetam a qualidade do produto:
- 1) Temperatura do congelamento;
- 2) Taxa e técnica de resfriamento, que pode ser por *contato* ou *direto*.
- 3) Taxa de fornecimento de calor ao produto;
- 4) O vácuo da operação;
- 5) Tempo de secagem.


♦ Outros tipos de secadores.


Secadores a vácuo (secadores indiretos): Indicados para produtos que não podem entrar em contato com outros materiais;

Secadores de tambor rotativo; de esteira transportadora, entre outros.


Secadores de tambor rotativo



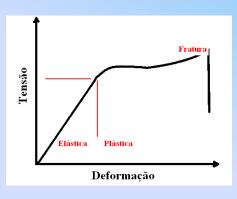
- Classificação é diversa: O pó muito fino pode receber a mesma definição que um pó grosseiro.
- 1) Solução: A British Pharmacopeia especifica um segundo número de peneira no qual não mais que 40% do material passa

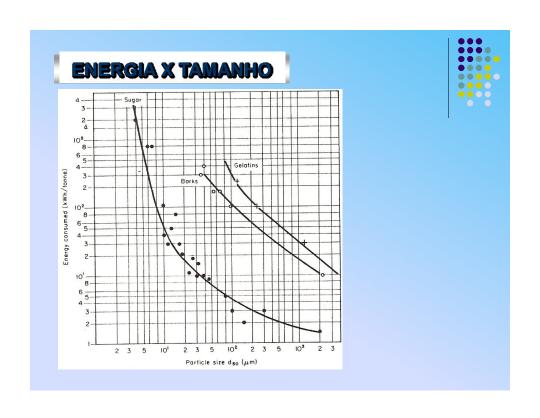
Grau de fineza	Nº da peneira em todas as partículas passam (Tyler)	Peneira em que menos de 40% passam (Tyler)
Grosseiro	10	44
Mod. Grosseiro	22	60
Mod. Fino	44	85
Fino	85	Não especificada
Muito fino	120	Não especificada

Fatores a serem considerados

- a) Dureza (Escala de Moh's: Grafite/Talco: 1; Diamante: 10)
- 1 = 3: Materiais moles -Riscados com a unha;
- 3 7: Materiais intermediários;
- 7-9: Materiais duros Riscados com uma faca.
- b) Elasticidade (Ex. borracha e giz)
 - c) Abrasividade
- d) Aderência

COMINUIÇÃO




- e) Temperatura de amolecimento do material
- f) Estrutura do material
- g) Efeito fisiológico do material
- h) A pureza do produto
- i) Relação Tamanho do prod/Tamanho Alimentado
- j) A densidade do material

COMINUIÇÃO

- Processo basicamente energético:
- Energia necessária para ruptura do material
- Deformação elástica-plástica-ruptura

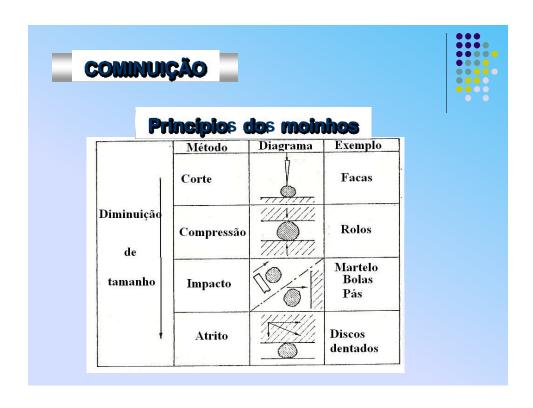
Consumo de Energia na Cominuição

- > 98% de Perdas:
- deformação do material sem fratura;
- deformações c/ fratura;
- distorções do equipamento,
- atrito partículas-partículas partícula/equipamento,
- aquecimento do material e equipamento,
- vibração,
- ruído, etc.

Lei de Bond

$$W = w_i \sqrt{\frac{100}{D_2}} \cdot \left(1 - \frac{1}{\sqrt{m}}\right)$$

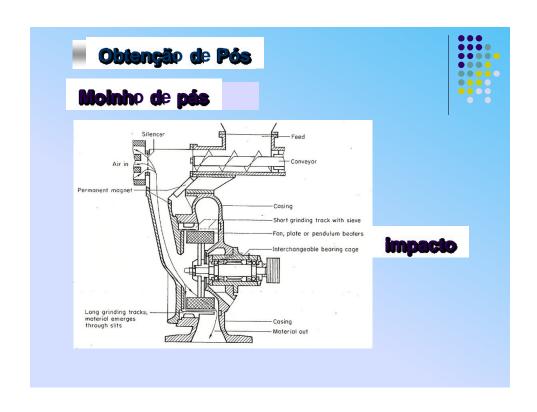
$$W_{t} = C \cdot W$$

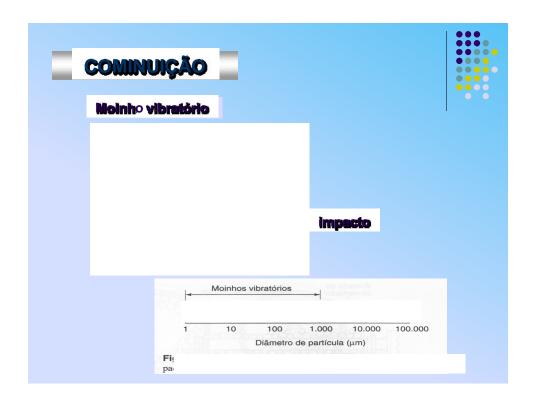

D₂ é dado em μm, e wi é o índice de trabalho do material, C = capacidade moagem (ton/h).

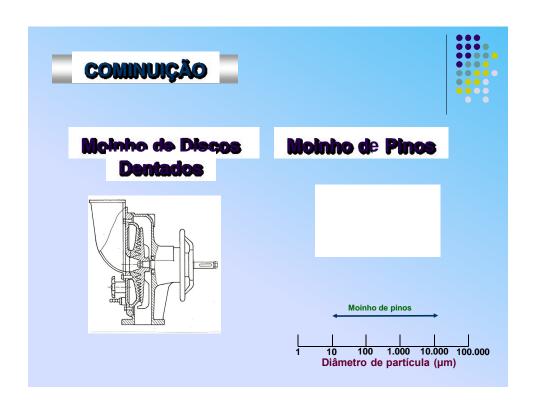
$$W = kWh/t$$

🄖 Índices de trabalho para moagens a úmido (kWh/t)-

🦠 Moagens a seco multiplicar por 1,34


Material	Densidade	Indice de trabalho
Argila	2,51	6,30
Ardosia	2,57	14,30
Arcia	2,65	16,46
Barita	4,28	6,24
Bauxita	2.20	8.78
Basalto	2,89	20,41
Blenda	3,68	12,42
Calcareo	2,66	12.74
Carbureto de silicio	2.73	26,17
Cascalho	2.63	15,87
Carvao	1,40	13,00
Cimento	2,67	10.57
Clinquer	3.09	13,49
Coque	1.31	15,13

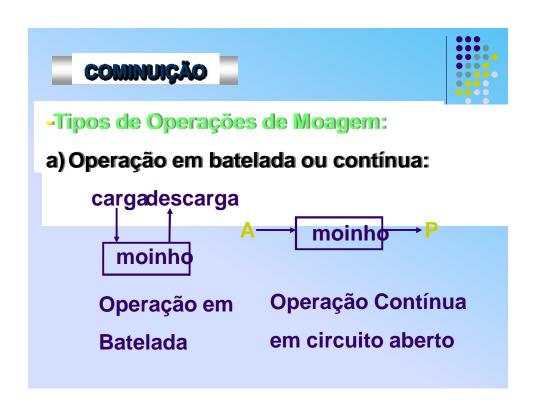


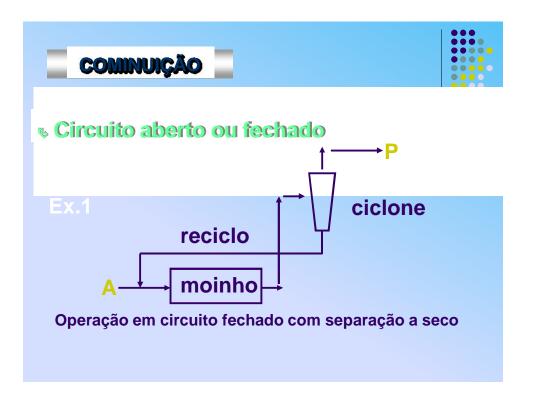


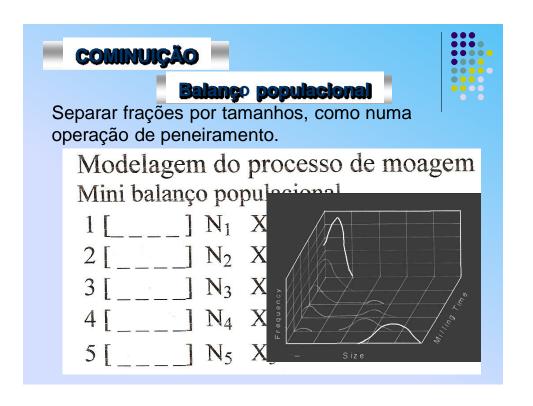
Rotação Crítica de Moinho de Bolas:

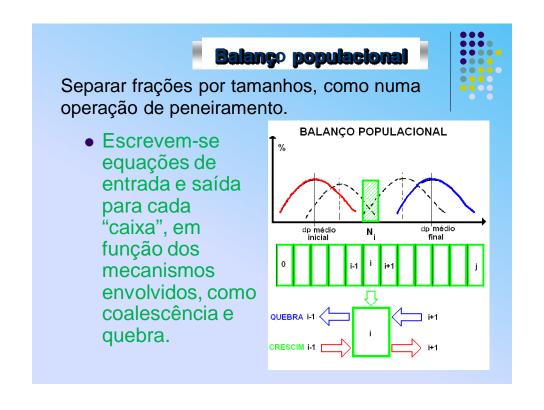
$$n_c = \frac{423}{\sqrt{D - D_b}}$$

D = diâmetro do moinho; D_b = diâmetro das bolas, ambas em cm; e n_c é dado em rpm.




Falxas de operação de moinhos de bolas


n_s moagem fina a úmido com suspensões viscosas;


4 70 a 75% de n_c moagem fina a úmido com suspensões pouco viscosas;

♥ 75 a €0% de n_e moagem a seco ou, a úmido de partículas grandes

Balango populacional

Cada fração Xi tem, durante a moagem, entrada e saída de material.

$$\begin{split} \frac{dX_i}{dt} &= -S_i X_i \\ \frac{dX_i}{dt} &= -S_i X_i + \sum_{i=1}^n X_{i-1} S_{i-1} \Delta B_{i,i-1} \\ B_{i,i-1} &= \left(\frac{d_i}{d_{i-1}}\right)^{\beta} \end{split}$$

Balanço populacional

• Exemplo de 5 frações:
$$\frac{dX_1}{dt} = -S_1X_1$$

$$\frac{dX_2}{dt} = -S_2X_2 + X_1S_1B_{2,1}$$

$$\frac{dX_3}{dt} = -S_3X_3 + X_1S_1B_{3,1} + X_2S_2B_{3,2}$$

$$\frac{dX_4}{dt} = -S_4X_4 + X_1S_1B_{4,1} + X_2S_2B_{4,2} + X_3S_3B_{4,3}$$

$$\frac{dX_5}{dt} = -S_5X_5 + X_1S_1B_{5,1} + X_2S_2B_{5,2}$$

$$+ X_3S_3B_{5,3} + X_4S_4B_{5,4}$$

Escolha do métodos de redução do tamanho de partícula

- Forma da partícula
- Uso do pó e tamanho de partícula requerido
- Custo do processo
- Conhecimento das influências relativas ao processo e variabilidade do material

Referências

- Ansel HC, Popovich NG, Allen Jr, LV. Formas farmacûticas e sistemas de liberação de fármacos. 6 ed., Willians & Wilkins, Baltimore, EUA. Tradução editorial Premier, 2000.
- LachmanL, Lieberman JHA, Kanic JL. The theory and practice of industrial pharmacy. 3 de., Lea & Febiger, Philadelphia, USA, 1976
- Yalkowsky SH, Bolton S. Particle size and content uniformity. Pharm. Res., 4: 962-966, 1990

