Cognitive Systems

2020 edition

TT

T4

Marcio Lobo Netto João E. Kogler Jr.

1. See

PSI 3560 – COGNITIVE SYSTEMS

class T4

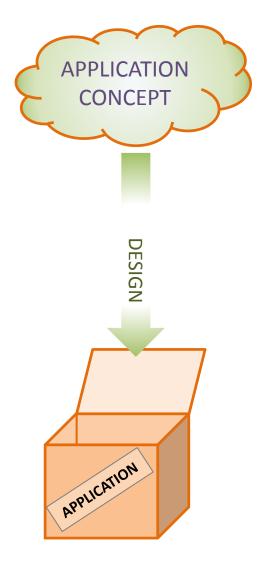
Marcio Lobo Netto João Eduardo Kogler Junior

Polytechnic School of the University of São Paulo Department of Electronic Systems Engineering © 2019 – University of São Paulo

MODELLING COGNITION

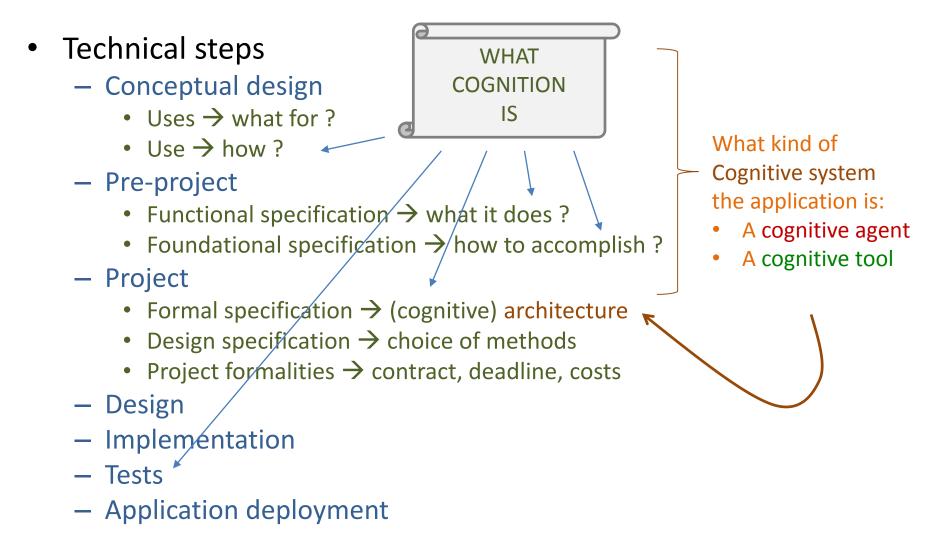
The computational approach to cognitive modelling, representation and processes, the nature of the cognitive problem, autonomy, knowledge and conceptual systems

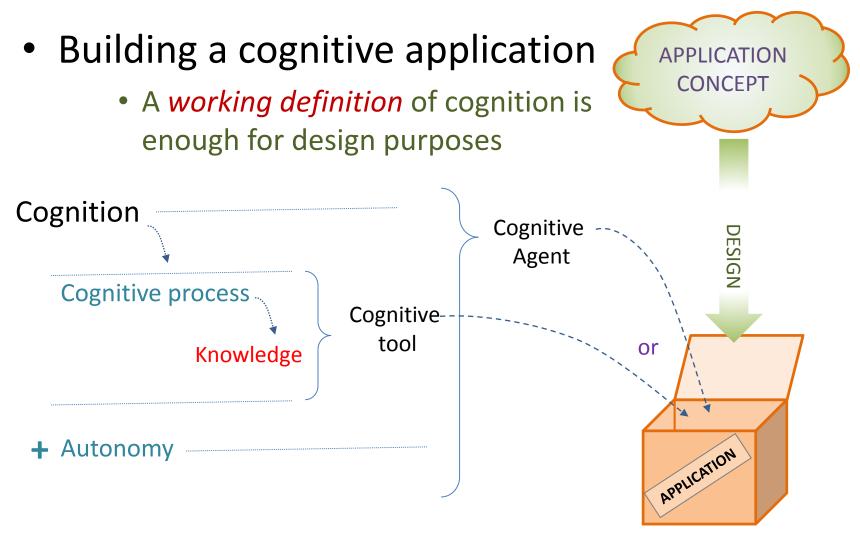
Session T4


Summary

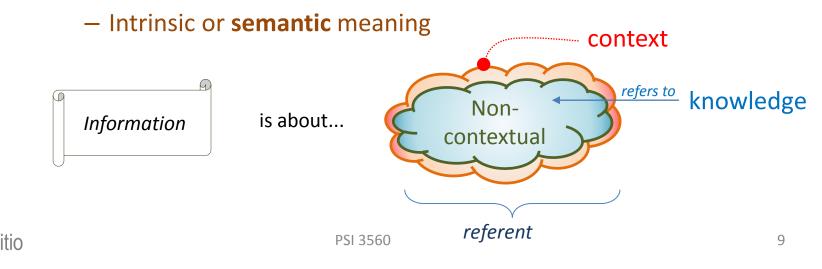
Second session (9:20 - 11:00)

- Setting the scenario
- The computational approach to modelling
 - Extending Marr's computational theory
- The nature of the *cognitive problem*
 - Knowledge and conceptual systems
 - Representation and processes
 - The issue of autonomy

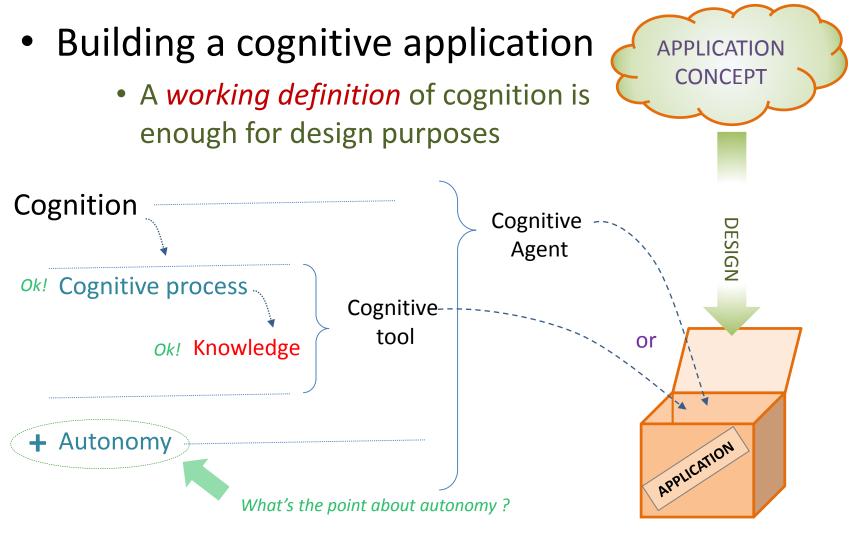



- Building an application
 - Conceptual design
 - Specifications
 - Project formalization
 - Design
 - Tests
 - Application deployment
- Building a **cognitive** application
 - Requires the <u>notion of cognition</u> in several of the above steps

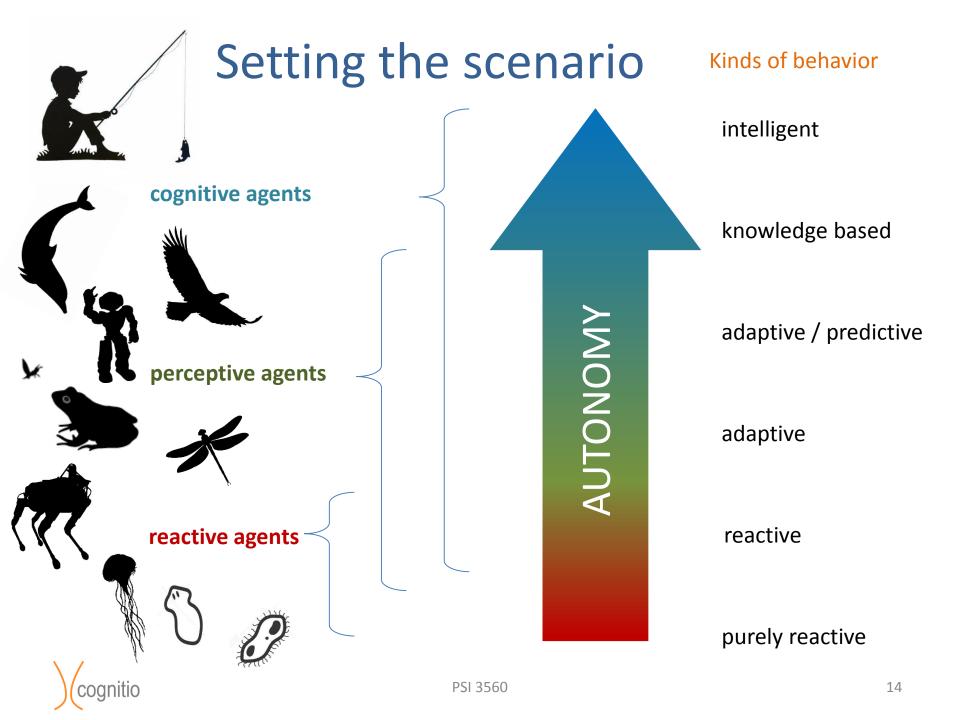
Building cognitive applications



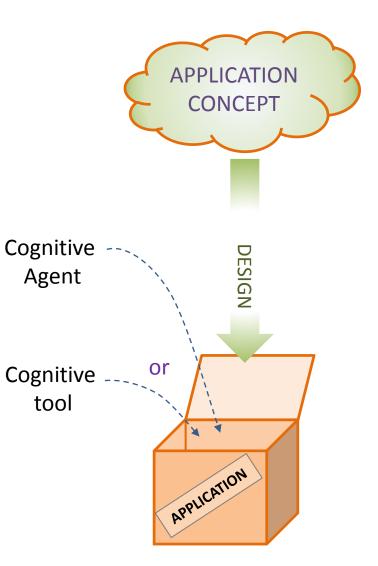
- A working definition for *cognition*
 - Cognition is based on cognitive processes
 - A cognitive process is a process that builds knowledge from information
 - Knowledge is information
 - Knowledge is information with meaning
 - Meaning associated to the *non-contextual* referent of the information
 - Intrinsic or **semantic** meaning


- Cognitive processes
 - A cognitive process is a process that builds knowledge from information
 - Knowledge is information
 - Knowledge is information with meaning
 - Meaning associated to the *non-contextual* referent of the information

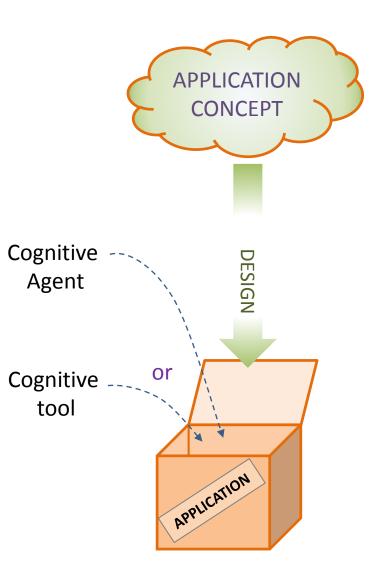
- So, rephrasing our working definition of cognitive process:
 - A cognitive process is a process that builds **knowledge** from the pieces of information that are not context-dependent.
 - i.e., those that have Intrinsic or semantic meaning
 - Some advanced remarks :
 - » Obs.1: this definition is arguable, and someone prefer to say that cognitive processes build knowledge from non-derived content (Adams & Aizawa 2005,2010; Fodor 1987,1990 ; Dretske 1981, 1988; Searle 1980,1984).
 - » Obs.2: Since we are looking for just a working definition enough for cognitive systems design, we'll adopt our <u>proposed definition</u> (Kogler 2015, 2017, 2019 *in preparation*) which is correct, although arguable.
 - A question for further concerning: how does one <u>specify and</u> <u>implement</u> a cognitive process ?
 - We'll come back to this question later.



- Autonomy is related with how the action is triggered
 - Reaction \rightarrow action following a (fixed) rule
 - Adapted action \rightarrow action following a flexible, modifiable scheme
 - Scheme → composed (re)action
 - Requires perception to accomplish a proper composition
 - Perception \rightarrow kind of predictive process
 - » Uses context-dependent mechanisms to make predictions
 - Complex action → capable of innovation, respected to changes of environment.
 - Uses knowledge → information that doesn't refer to a specific environment
 - A generalization over the environments
 - Constrained by the agent's own goals
 - The intrinsic specific ways of the agent to make actions


- Cognitive process
 - A cognitive process is a process that builds **knowledge** from the pieces of information that are not context-dependent.
- Agent
 - Entity capable of deciding and generating its own actions
- Autonomous action
 - Action based on autonomous decisions → the agent set its own goals
 - Goal setting
 - by the constitutive capacity of performing actions
 - by the possibilities of adaptations resulting from predictions
 - by simulating and planning scenarios of action using knowledge
 - » Obs.: Not required that the goal setting be conscious

- Cognitive process
 - A cognitive process is a process that builds **knowledge** from the pieces of information that are not context-dependent.
- Cognition and cognitive agent
 - Cognition is a <u>system of cognitive processes</u> organized to improve the agent's autonomy.
 - Cognition is an agent's feature \rightarrow it presupposes an agent.
 - Such agent is called a cognitive agent.
- Cognitive tool
 - Any application whose operation involves some cognitive process is a cognitive tool.
- Cognitive systems are of two types:
 - Cognitive agents
 - Cognitive tools



- How to build a cognitive application ?
 - 1. Conceptual analysis
 - 2. Design phase
 - Conceptual analysis:
 - What the application does ?
 - » It is a cognitive system that does... ?
 - How does it do that ?
 - » Agent or tool ?

- Conceptual analysis:
 - What the application does ?
 - » It is a cognitive system that does... ?
 - How does it do that ?
 - » Agent or tool ?
- After the <u>formal statement</u> of what the application does,
- Then comes the problem of modelling the cognitive system

Cognitive system modelling

- David Marr's approach
 - Extending the Marr's approach of perception (1975-1980) to model cognitive systems
 - Marr's computational theory
 - Three levels of analysis
 - 1. Computational model
 - 2. Algorithmic specification
 - 3. Physical implementation

Cognitive system modelling

- David Marr's approach
 - Marr's computational theory
 - Three levels of analysis
 - Computational model
 - » What kind of computations are required ?
 - Filtering, interpolations, extrapolations, detections, predictions, estimation, decision making, planning ?
 - » What is the nature of the computations ?
 - Logical, statistical, both?
 - Algorithmic model
 - » Representation \rightarrow how to encode the data
 - » Algorithm \rightarrow how to transform the encoded data into the solution
 - Physical implementation

- From the definition:
 - Cognition is a system of processes that build knowledge from pieces of information that are not context-dependent, organized to improve the agent's autonomy
 - We have two computational problems:
 - How to devise a cognitive process, or
 - » To build knowledge from pieces of information that are not context-dependent
 - How to organize this system of processes in order to improve the agent's autonomy

- The first computational problem:
 - How to devise a cognitive process, or
 - » To build knowledge from pieces of information that are not context-dependent
- This problem consists in understanding:
 - How information is presented
 - How knowledge is presented
 - How to identify the pieces of information that are not context-dependent
 - How to assemble these pieces as knowledge

The two first points are questions of representation

- How information is presented
- How knowledge is presented

And the two following ones are procedural issues

- i.e., refer to the nature of the processes that operate on the representations
 - How to identify the pieces of information that are not contextdependent
 - How to assemble these pieces as knowledge

- Knowledge and conceptual systems
 - A brief metaphysical prelude (ontology)
 - Ontology = theory about the world
 - World = objects + relations
 - World configuration = relations among objects
 - Event = change in the world configuration
 - Phenomenon = observation of the event
 - When observed by an agent, the agent registers data about the phenomenon
 - Data is the result of encoding in the representational basis of the agent, of the registration of the phenomenon

- Knowledge and conceptual systems
 - A brief metaphysical prelude (ontology)
 - Phenomenon = observation of the event
 - When observed by an agent, the agent registers data about the phenomenon
 - Data is the result of encoding in the representational basis of the agent, of the registration of the phenomenon
 - Information = corresponds to the effect produced in the observer by encoding the data
 - This effect *can be measured* and is called **information** measure.
 - » Ex.: Shannon's information measure

- Coming back to the two first points that we considered as questions of representation
 - How information is presented
 - How knowledge is presented
 - To the first question we can say that the information is presented as data.
 - So, knowledge is not data.
 - Knowledge is built from data.
 - Knowledge is encoded in the state of the cognitive system.

And there are two remaining questions

- How to identify the pieces of information that are not contextdependent
- How to assemble these pieces as knowledge
- These are procedural issues
 - i.e., they refer to the nature of the processes that operate on the representation
 - The processes can be of logical or statistical nature, or both
 - They are going to be explored on the next two items of the syllabus:
 - » Artificial Intelligence (classes T5-T6)
 - » Machine Learning (classes T7-T8)

Course project

- Technical steps
 - Conceptual design
 - Uses \rightarrow what for ?
 - Use \rightarrow how ?
 - Pre-project
 - Functional specification \rightarrow what it does ?
 - Foundational specification \rightarrow how to accomplish ?
 - Project
 - Formal specification → (cognitive) architecture
 - Design specification \rightarrow choice of methods
 - Project formalities → contract, deadline, costs
 - Design
 - Implementation
 - Tests
 - Application deployment

What kind of

- Cognitive system the application is:
- A cognitive agent
- A cognitive tool

This is all for today.

See you next week !

