aula 06

torção

Resistência dos Materiais

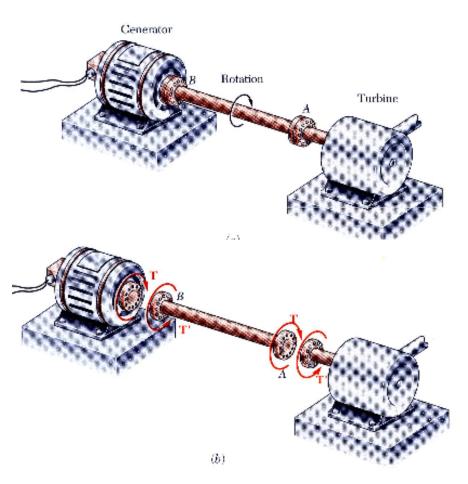
Prof. João Adriano Rossignolo

Prof. Holmer Savastano Júnior

Torção

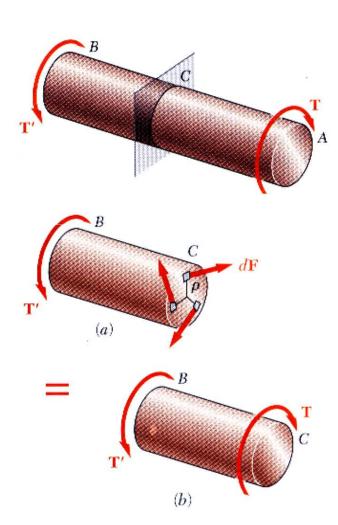
- ✓ Esforços internos de torção
- ✓ Equação matemática para cálculo das tensões tangenciais
- ✓ Distribuição das tensões tangenciais nos corpos solicitados
- ✓ Ângulo de torção
- ✓ Momento polar de Inércia

Torção em Eixos de Seção Circular



- A turbina exerce sobre o eixo de transmissão o momento torçor T.
- O eixo transmite o momento T ao gerador.
- O gerador reage, exercendo sobre o eixo um momento igual e contrário T'.

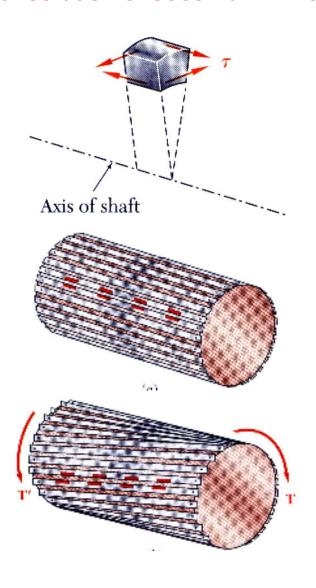
Análise das Tensões num Eixo



 O momento torçor T tem a mesma intensidade que a soma dos momentos dF, em relação ao centro:

$$T = \int \rho \, dF = \int \rho (\tau \, dA)$$

Análise das Tensões num Eixo



- O momento torçor produz tensões tangenciais nas faces perpendiculares ao eixo da barra.
- Condições de equilíbrio requerem a existência de tensões tangenciais nas duas faces formadas pelos planos que passam pelo eixo.
- Considerando o eixo constituído por lâminas finas, verifica-se o deslizamento das lâminas devido à aplicação de momentos, com a mesma intensidade e sentidos opostos, nas extremidades da peça.

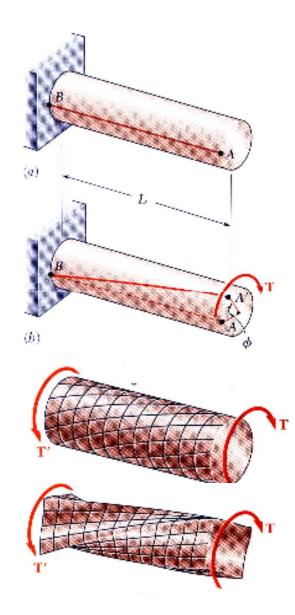
Deformações nos Eixos de Secção Circular

O ângulo de torção é proporcional a T e ao comprimento L do eixo:

$$\phi \propto T$$
$$\phi \propto L$$

$$\phi \propto L$$

 Nos eixos circulares, as secções transversais mantêm-se planas e não se deformam.

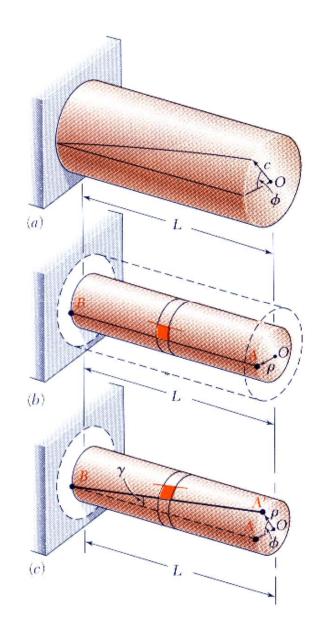


Deformações nos Eixos de Secção Circular

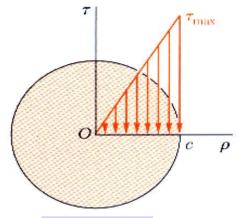
 A distorção numa barra circular varia linearmente com a distância ao eixo da barra.

$$L\gamma = \rho\phi$$
 ou $\gamma = \frac{\rho\phi}{L}$

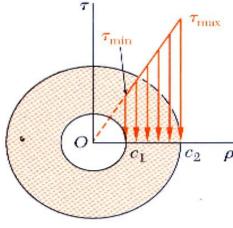
$$\gamma_{\text{max}} = \frac{c\phi}{L}$$
 e $\gamma = \frac{\rho}{c}\gamma_{\text{max}}$



Tensões no Regime Elástico



$$J = \frac{1}{2}\pi c^4$$



$$J = \frac{1}{2}\pi \left(c_2^4 - c_1^4\right)$$

Aplicando a lei de Hooke, $\tau = G\gamma$, vem:

(G = módulo de deformação transversal)

$$\tau = \frac{\rho}{c} \tau_{\text{max}}$$

A tensão tangencial varia linearmente com a distância ao eixo da barra.

Fórmulas de torção no regime elástico:

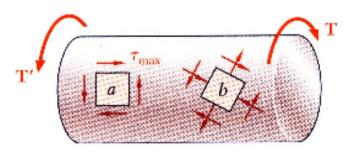
$$\tau_{\text{max}} = \frac{Tc}{J} \quad \text{e} \quad \tau = \frac{T\rho}{J}$$

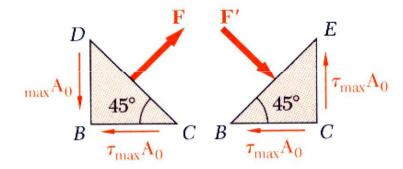
[J = momento de inércia polar]

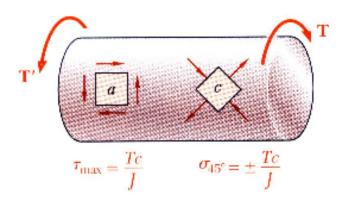
Tensões no Regime Elástico

• Considerar um elemento que forme um ângulo de 45° com o eixo da barra,

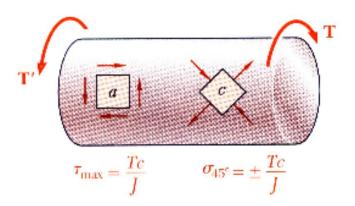
$$F = 2(\tau_{\text{max}} A_0) \cos 45 = \tau_{\text{max}} A_0 \sqrt{2}$$
$$\sigma_{45^0} = \frac{F}{A} = \frac{\tau_{\text{max}} A_0 \sqrt{2}}{A_0 \sqrt{2}} = \tau_{\text{max}}$$







Modos de Falha Torcionais

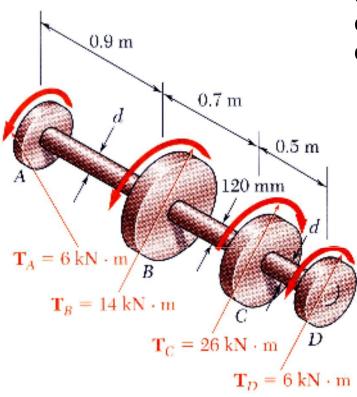


 Os materiais ductéis geralmente rompem por tensões tangenciais.

Material dúctil.

Material frágil.

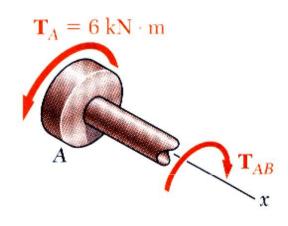
Exercício Resolvido 1



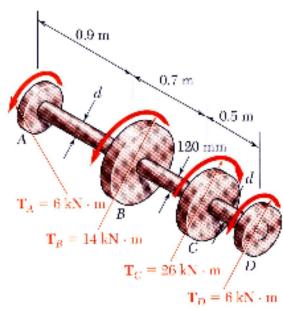
O eixo circular *BC* é oco e tem diâmetros de 90mm e 120mm, respectivamente interno e externo. Os eixos *AB* e *CD* são maciços, com diâmetro *d*. Determinar:

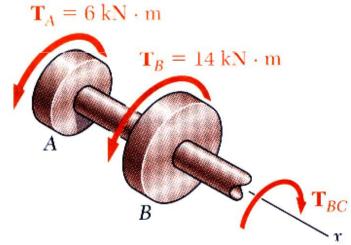
- a) O valor máximo e mínimo da tensão tangencial no eixo BC;
- b) O diâmetro necessário nos eixos *AB* e *CD*, se a tensão admissível no material for de 65 MPa.

• Considerar secções transversais nos eixos AB e BC, e recorrer ao equilíbrio estático:



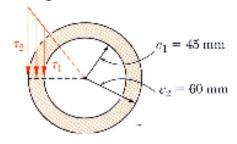
$$\sum M_x = 0 = (6 \text{ kN} \cdot \text{m}) - T_{AB}$$
$$T_{AB} = 6 \text{ kN} \cdot \text{m} = T_{CD}$$





$$\sum M_x = 0 = (6 \,\mathrm{kN \cdot m}) + (14 \,\mathrm{kN \cdot m}) - T_{BC}$$
$$T_{BC} = 20 \,\mathrm{kN \cdot m}$$

 Aplicar as fórmulas de torção no regime elástico, para determinar as tensões tangenciais no eixo BC:



$$J = \frac{\pi}{2} \left(c_2^4 - c_1^4 \right) = \frac{\pi}{2} \left[(0.060)^4 - (0.045)^4 \right]$$
$$= 13.92 \times 10^{-6} \,\text{m}^4$$

$$\tau_{\text{max}} = \tau_2 = \frac{T_{BC}c_2}{J} = \frac{(20 \text{ kN} \cdot \text{m})(0.060 \text{ m})}{13.92 \times 10^{-6} \text{ m}^4} = 86.2 \text{ MPa}$$

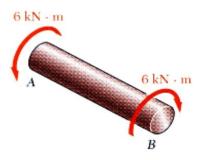
$$\frac{\tau_{\min}}{\tau_{\max}} = \frac{c_1}{c_2} \qquad \frac{\tau_{\min}}{86.2 \,\text{MPa}} = \frac{45 \,\text{mm}}{60 \,\text{mm}}$$

$$\tau_{\text{max}} = 86.2 \,\text{MPa}$$

$$\tau_{\min} = 64.7 \,\mathrm{MPa}$$

$$\tau_{\min} = 64.7 \,\mathrm{MPa}$$

 Aplicar a fórmula de torção no regime elástico e determinar o diâmetro necessário:



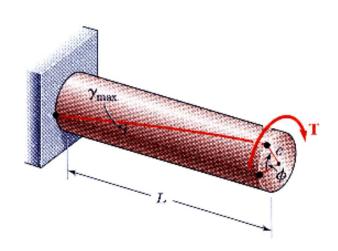
$$\tau_{\text{max}} = \frac{Tc}{J} = \frac{Tc}{\frac{\pi}{2}c^4}$$

$$65MPa = \frac{6 \text{ kN} \cdot \text{m}}{\frac{\pi}{2}c^3}$$

$$c = 38.9 \times 10^{-3} \,\mathrm{m}$$

$$d = 2c = 77.8 \,\mathrm{mm}$$

Ângulo de Torção no Regime Elástico



$$\mathbf{T}_{B}$$
 \mathbf{T}_{C}
 \mathbf{T}_{C}
 \mathbf{T}_{A}

$$\gamma_{\text{max}} = \frac{c\phi}{L}$$

· Aplicando a Lei de Hooke,

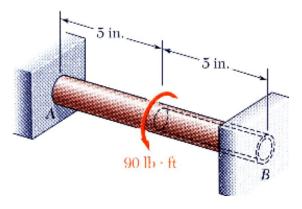
$$\gamma_{\text{max}} = \frac{\tau_{\text{max}}}{G} = \frac{Tc}{JG}$$

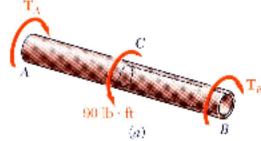
Igualando as expressões e resolvendo em ordem ao ângulo,

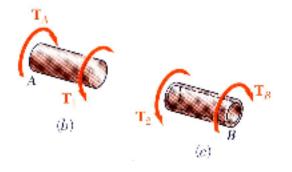
$$\phi = \frac{TL}{JG}$$

$$\phi = \frac{TL}{JG} \qquad \qquad \phi = \sum_{i} \frac{T_{i}L_{i}}{J_{i}G_{i}}$$

Eixos Estaticamente Indeterminados







- Dadas as dimensões e o momento torçor aplicado, determinar as reacções ao momento em A e B.
- · A partir do diagrama de corpo livre,

$$T_A + T_B = 90 \,\mathrm{lb} \cdot \mathrm{ft}$$

Conclui-se que o problema é estaticamente indeterminado.

 Dividir o eixo em duas secções, as quais devem ter deformações compatíveis,

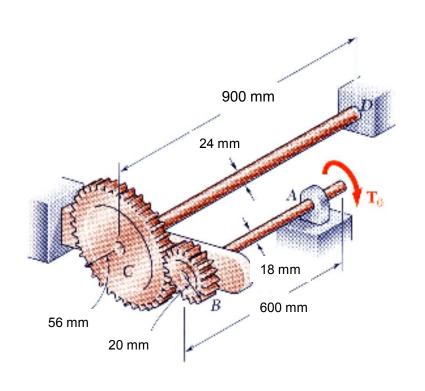
$$\phi = \phi_1 + \phi_2 = \frac{T_A L_1}{J_1 G} - \frac{T_B L_2}{J_2 G} = 0$$
 $T_B = \frac{L_1 J_2}{L_2 J_1} T_A$

• Substituir na equação de equilíbrio inicial,

$$T_A + \frac{L_1 J_2}{L_2 J_1} T_A = 90 \,\text{lb} \cdot \text{ft}$$

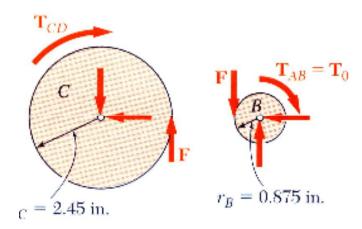
Exercício Resolvido 2

Dois eixos maciços são ligado por duas engrenagens como mostra a figura. Para uma tensão de cisalhamento admissível de 55MPa e G = 80MPa. Calcular:



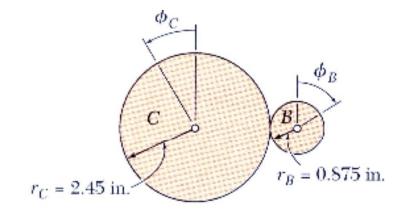
- a) O maior momento torçor T₀ que pode ser aplicado à extremidade do eixo AB.
- b) O ângulo de torção da extremidade *A* do eixo *AB*.

- Procede-se ao equilíbrio estático dos dois veios de modo a obter o momento torçor no veio CD em função do momento torçor aplicado T:
- Relações cinemáticas de rotação das duas engrenagens:



$$\sum M_B = 0 = F(0.875 \text{ in.}) - T_0$$

 $\sum M_C = 0 = F(2.45 \text{ in.}) - T_{CD}$
 $T_{CD} = 2.8 T_0$

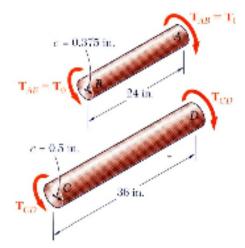


$$r_B \phi_B = r_C \phi_C$$

$$\phi_B = \frac{r_C}{r_B} \phi_C = \frac{2.45 \text{ in.}}{0.875 \text{ in.}} \phi_C$$

$$\phi_B = 2.8 \phi_C$$

Cálculo do máximo momento torçor T₀.



$$\tau_{\text{max}} = \frac{T_{AB}c}{J_{AB}}$$
 8000 psi = $\frac{T_0(0.375 \,\text{in.})}{\frac{\pi}{2}(0.375 \,\text{in.})^4}$

$$T_0 = 663 \, \text{lb} \cdot \text{in}.$$

$$\tau_{\text{max}} = \frac{T_{CD}c}{J_{CD}}$$

$$8000 psi = \frac{2.8 T_0 (0.5 \text{ in.})}{\frac{\pi}{2} (0.5 \text{ in.})^4}$$

$$T_0 = 5611b \cdot in.$$

$$T_0 = 561 \,\mathrm{lb} \cdot \mathrm{in}$$

 Cálculo do ângulo de torção na extremidade A do eixo AB.

$$\phi_{A/B} = \frac{T_{AB}L}{J_{AB}G} = \frac{(5611b \cdot in.)(24in.)}{\frac{\pi}{2}(0.375in.)^4(11.2 \times 10^6 \text{ psi})}$$

$$= 0.387 \text{ rad} = 2.22^{\circ}$$

$$\phi_{C/D} = \frac{T_{CD}L}{J_{CD}G} = \frac{2.8(5611b \cdot in.)(24in.)}{\frac{\pi}{2}(0.5in.)^4(11.2 \times 10^6 \text{ psi})}$$

$$= 0.514 \text{ rad} = 2.95^{\circ}$$

$$\phi_B = 2.8\phi_C = 2.8(2.95^{\circ}) = 8.26^{\circ}$$

$$\phi_A = \phi_B + \phi_{A/B} = 8.26^{\circ} + 2.22^{\circ} = 10.48^{\circ}$$

$$\phi_A = 10.48^{\circ}$$

Projecto de Eixos de Transmissão

- As principais especificações a serem consideradas são:
 - potência;
 - velocidade de rotação.
- O projectista deverá seleccionar materiais e dimensões adequadas, de modo a não exceder a tensão tangencial admissível.

Determinar o momento torçor,

$$P = T\omega = 2\pi f T$$

$$T = \frac{P}{\omega} = \frac{P}{2\pi f}$$

Determinar a secção do eixo,

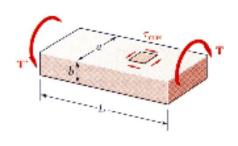
$$\tau_{\text{max}} = \frac{Tc}{J}$$

$$\frac{J}{c} = \frac{\pi}{2}c^3 = \frac{T}{\tau_{\text{max}}} \quad \text{(eixos maciços)}$$

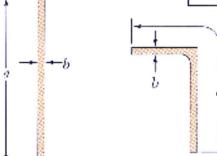
$$\frac{J}{c_2} = \frac{\pi}{2c_2} \left(c_2^4 - c_1^4\right) = \frac{T}{\tau_{\text{max}}} \quad \text{(eixos vazados)}$$

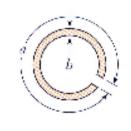
Torção em Barras de Secção Não Circular

TABLE 3.1. Coefficients for Rectangular Bars in Torsion



a/b	c ₁	¢ ₂
1.0	0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
TXX:	0.333	0.333



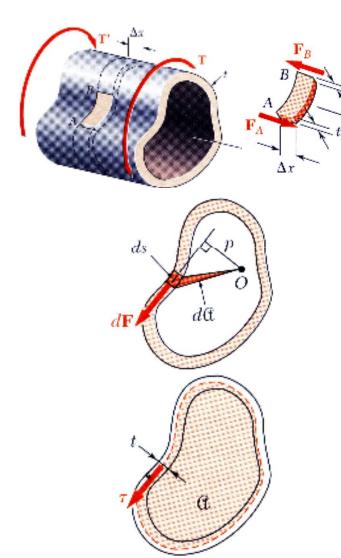


- As secções transversais de barras de secção não circular não permanecem planas.
- Para barras de secção rectangular constante,

$$\tau_{\text{max}} = \frac{T}{c_1 a b^2} \qquad \phi = \frac{TL}{c_2 a b^3 G}$$

 Para valores elevados de a/b, a tensão tangencial máxima e o ângulo de torção são os mesmos que para uma barra de secção rectangular.

Tubos de Paredes Finas



 Somando as forças aplicadas na porção AB, na direcção do eixo x,

$$\sum_{x} F_{x} = 0 = \tau_{A} (t_{A} \Delta x) - \tau_{B} (t_{B} \Delta x)$$
$$\tau_{A} t_{A} = \tau_{B} t_{B} = \tau t = q$$

A tensão tangencial varia inversamente com a espessura.

$$dM_0 = p dF = p \tau(t ds) = q(pds) = 2q dA$$

$$T = \oint dM_0 = \oint 2q dA = 2qA$$

$$\tau = \frac{T}{2tA}$$

Ângulo de torção,

$$\phi = \frac{TL}{4A^2G} \oint \frac{ds}{t}$$

Exercício de Esforços Internos de Torção

Para o carregamento indicado e considerando que os apoios A e B permitem ao eixo girar livremente, represente o diagrama de esforços internos de torção.

