DESIGN OF EXPERIMENTS

How To Analyze
A Split-Plot
Experiment

by Kevin J. Potcner and Scott Vl. Kowalski

any quality improvement projects of the resulting product. A materials engineer may
M require some form of experimentation run a plastic injection molding process using differ-

on a process. A chemical engineer may ent grades of raw material to determine which pro-
wish to determine the settings for certain process duces the least variability in breaking strength.
variables to optimize a critical quality characteristic The deliberate changing of input process vari-

ables with the intention of studying their effect on
output variables is referred to as a designed experi-
ment. Typically, statisticians identify a designed

In 5?_ Words experiment by describing two primary components:
Or Less 1. One component, referred to as the treatment
structure, details the different factors (input

* Experiments with simple design structures, variables) the experiment will incorporate and

the different settings (levels) for those factors.

UL AT b B L For example, a 2° full factorial treatment struc-

realistic in the real world. ture means five factors will be used in the
experiment, each studied at two levels, and all
¢ Typically an experiment will have some form of 2x2x2x2x2 =32 treatment combinations

are to be run.

randomization restriction, and the split-plot 2. The other component is referred to as the

method is a solution. experimental or design structure of the experi-
ment. This component illustrates how the
e The analysis of a split-plot experiment involves experimental runs are to be carried out—for

example, defining the experimental and obser-
vational units, selecting the experimental units
and assigning them to the treatment combina-
tions, choosing the randomization scheme and

two error variances.
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deciding how the treatment combinations will
be changed throughout the experiment.

In a previous article in Quality Progress, we illus-
trated the features of the split-plot design, how
common the features are in industrial experimenta-
tion and how the practitioner can recognize this sit-

In many real experimental
situations, a restriction is
typically placed on the
randomization of the runs.

uation.! We will now illustrate the proper analysis
of this particular type of design structure.

Example of a Split-Plot Design

Consider an experiment involving the water resis-
tant property of wood. Two types of wood pretreat-
ment (one and two) and four types of stain (one,
two, three and four) have been selected as variables
of interest. A graphical representation of this type of
treatment design is shown in Figure 1.

Conducting this experiment in a completely
randomized fashion would require eight wood
panels for each full replicate of the design. Each

@ETTEED Factors That Affect Wood's
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wood panel would be randomly assigned a partic-
ular pretreatment and stain combination. But it
turns out to be very difficult to apply the pretreat-
ment to a small wood panel.

The easiest way would be to apply each of the
pretreatment types (one and two) to an entire board,
then cut each board into four smaller pieces and
apply the four stain types to the smaller pieces. This
is shown in Figure 2.

So how exactly will the experiment be conduct-
ed? For example, how many boards will be used
for each treatment combination? How many repli-
cates of each treatment combination will be run? In
what order will the experimental runs be conduct-
ed? How many measurements will be made on
each small piece? These decisions should be based
on both statistical and practical considerations.

Suppose the experimenter has decided to run three
replicates of the pretreatment factor. This results in six
boards and 3 x 2 x 4 = 24 total observations. To pro-
duce an experimental run for this process, you must
first pretreat a board. After one of the randomly
selected pretreatments has been applied, the board is

CETTEED Treatment Application
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cut into four pieces and then stained using one of the

four stains selected at random.
The reader should recognize this is a split-plot

design for four reasons:

1. For the pretreatment factor, an experimental

unit is the entire board or a set of four pieces of

the board after they are cut. For the stain fac-

tor, an experimental unit is an individual piece

of the board. Having unequal sized experi-

mental units for the different factors is one key
element of a split-plot design.

2. Each factor uses a different randomization
scheme. In contrast, a complete randomized

design would use one randomization scheme

for all 24 experimental runs.
3. Note for a single run at one level of pretreat-

@D Data for Wood Example
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@LEITED Whole-Plot Analysis Using
The Averages of Resistance

In Each Whole Plot

Analysis of variance for the average resistance

Source DF SS MS F P
Pretreat 1 195.51 195.51 403 0.115
Error 4 193.84 48.46

Total 5 389.35

DF = degrees of freedom
SS = sums of squares
MS = mean square

F = F-statistic

P = p-value

ment, four separate runs are conducted for the
stains. As a result, pretreatment could be
thought of as a hard-to-change factor, while
stain could be considered an easy to change
factor.

4. The number of experimental replicates is not
the same for each factor. Pretreatment has only
three experimental replicates for each of the
two factor levels, while stain has six experi-
mental replicates for the stain factor levels.

Because of these features, we would say the
experimenter has run a 2 x 4 full factorial treatment
structure within a split-plot design structure. Each
of the six whole-plots (entire boards) has four sub-
plots (smaller pieces of board), resulting in three
replicates at the whole-plot level and six replicates
at the subplot level.

How To Analyze the Experiment

The simplest experiment from a statistical analy-
sis perspective is what's called a completely ran-
domized design structure. This, however, would
require all 8 x 3 = 24 experimental runs to be con-
ducted in a completely random order. For the exper-
iment to be run in this way, each of the 24 runs
would need to be a “true” experimental run. This
would include a complete preparation and setup of
the experimental materials and equipment.

As you can imagine, this experimental approach
is not always efficient, practical or at times even
possible to run. In many real experimental situa-
tions, a restriction is typically placed on the ran-
domization of the runs. Such restriction, however,
affects the statistical analysis.

QUALITY PROGRESS | DECEMBER 2004



DESIGN OF EXPERIMENTS

@ZTFED Incorrect Completely

Randomized Design Analysis
For Water Resistance of Wood

Source DF SS MS F P
Pretreat 1 782.04 782.04 13.49  0.002
Stain 3 266.00 88.67 153 0.245
Pretreat x Stain 3 62.79 20.93 036 0782
Error 16 927.88 57.99

Total 23 2038.72

DF = degrees of freedom
SS = sums of squares
MS = mean square

F = F-statistic

P = p-value

An example illustrates the correct analysis of split-
plot experiments. Consider the previously described
experiment involving the water resistant property of
wood. Two types of wood pretreatment (one and
two) and four types of stain (one, two, three and
four) have been selected as variables of interest.

A graphical representation of the experiment is
shown in Figure 2 on p. 68 (for each pretreatment
the stains have been randomly assigned to the four
panels). Table 1 (p. 69) gives the design as it was
carried out: First a randomly selected pretreatment
is applied, then the wood is cut into four panels
and the stains are applied in random order.

The null hypothesis for all factors is H: There is
no effect due to the factor. A test statistic is neces-
sary to test this hypothesis. In this paper, the test
statistics are all F-statistics, which are the ratio of
the mean square (MS) for the factor of interest to
the correct mean square error

MS

F = Factor

MS

CorrectError

Once the F-statistic has been calculated, a p-
value can be computed and used to test the null
hypothesis (we typically reject H, if the p-value <
0.05). The p-value is the probability the test statistic
will take on a value at least as extreme as the ob-
served value of the statistic, assuming the null
hypothesis is true.

It is sometimes easier to think of the analysis of a
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Correct Split-Plot Analysis
For Water Resistance of Wood

Analysis of variance for resistance, using adjusted SS for tests

Source DF SS MS F P
Pretreat 1 782.04 782.04 403 0.115
WP (pretreat) 4 775.36 193.84 15.25 *
Stain 3 266.01 88.67 6.98  0.006
Pretreat x stain 3 62.79 20.93 1.65  0.231
Error 12 152.52 1211

Total 23 2038.72

WP = whole-plot errors
DF = degrees of freedom
SS = sums of squares
MS = mean square

F = F-statistic

P = p-value

split-plot experiment as two separate experiments
corresponding to the two levels of the split-plot
experiment: the whole-plot (WP) level and the sub-
plot level.

Whole-Plot Level Only

Again, suppose the experiment is carried out
using three replicates of the pretreatment factor.
This involves six boards (three for pretreatment
number one and three for pretreatment number
two). For now, let’s focus on only these six boards
(before they are cut and the stains are applied) and
break down the degrees of freedom (df).

Because these six boards are randomly assigned
a pretreatment level, this part of the experiment is
essentially a completely randomized design with
one 2-level factor (pretreatment) and three repli-
cates. Therefore, there is 6 — 1 = 5 total df for this
whole-plot level of the experiment.

Because the only factor has two levels, pretreat-
ment has 1 df. This leaves 4 df for the error term at
the whole-plot level. Notice how thinking of the
experiment in this manner clearly shows the pre-
treatment variable has its own error term, “whole-
plot error.” The split-plot design simply exploits
the fact that each of the six pretreated boards can
be cut into four pieces and another factor (stain)
can also be studied.

Once all the data are collected, we could write
the model as:

Average response =
pretreatment factor + WP error



in which average response is the mean of the four
different stain responses in each whole plot, and
WP error is the error term for the whole-plot factor
(pretreatment).

The whole-plot experimental error is estimated
by examining the variability that occurs between
the three whole plots within each of the two pre-
treatment settings. Using these six averages will
yield the correct F-test for pretreatment (pretreat-
ment is not significant with p = 0.115, as shown in
Table 2, p. 69). However, the sums of squares will
not be the same as the correct overall split-plot
analysis (they will be off by a factor of 4 = the num-
ber of subplots in each whole-plot).

Incorrect Completely Randomized
Design Analysis

If the 24 pieces involving the four stains are incor-
rectly viewed as their own completely randomized
experiment, then there would be 24 — 1 = 23 total df.
This would involve 2 - 1= 1 df for pretreatment, 4 - 1
= 3 df for stain and (2 - 1)(4 - 1) = 3 df for the pre-
treatment by stain interaction. Therefore, there
would be 23 -7 = 16 df for error. The incorrect com-
pletely randomized model is:

Response = pretreatment + stain + pretreatment
x stain interaction + error.

Notice, however, this analysis is incorrect
because it does not remove the sums of squares and
4 df for whole-plot error discussed above (this is
viewing the experiment only at the subplot level).
The error term in this model is the sum of the
whole-plot error and the subplot error.

When the whole-plot error is not removed from
the completely randomized analysis, the error
term used for testing the subplot factors is inflat-
ed. Therefore, the F-test for all terms in the model
would use the wrong error term. This can result
in F-tests that are insignificant for some subplot
factors while overstating significance for the
whole-plot factor.

Table 3 shows the analysis. Notice the pretreat-
ment factor is incorrectly identified as significant
(p = 0.002), while the stain factor is insignificant (p
= 0.245). We have seen in the earlier whole-plot
analysis that pretreatment is not significant, and
we will see later in the correct split-plot analysis
that stain is significant.

Correct Split-Plot Analysis

The split-plot model is:
Response = pretreatment + WP error + stain +
pretreatment x stain interaction + SP error

in which SP error is the error for the subplot factor
(stain) and the whole-plot by subplot interaction
(pretreatment x stain). To get the correct analysis of
variance table with all sources of variation includ-
ing the two error terms involves removing the sums
of squares and df for the whole-plot error from the
reported error term in the incorrect completely ran-
domized analysis. This can be done manually, but
then all F-tests and p-values will have to be gener-
ated manually as well. Fortunately, many software
packages can be tricked to do this for you automati-
cally by using a nested model:

Response = pretreatment + WP (pretreatment) +
stain + pretreatment x stain interaction + SP error,

The limitations and
challenges of experimenting
in the real world result in
these simple experiments
being the exception rather
than the norm.

in which WP is a variable that goes from one to six
indicating each whole-plot and must be declared as
a random factor.

Specifying the model in this way allows the cre-
ation of two separate estimates of experimental
error, an ingredient of the split-plot design. The
nested term WP (pretreatment) comes from the fact
the whole plots are nested within pretreatment.2

This term will be the correct error term for the
pretreatment factor, and most software packages
will correctly use this term for the F-test of pre-
treatment. The df will also be correctly calculated
as 2(3 - 1) = 4 in which 2 represents the number of
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levels for the pretreatment factor and 3 represents
the number of replicates at the pretreatment level
of the experiment.

The other estimate of experimental error, called
the subplot error, is estimated by examining the vari-
ation that occurs between the 12 pairs of experimen-
tal runs that have the same pretreatment and stain
setting minus the whole-plot experimental error.

The whole-plot experimental error is used to test
the significance of the whole-plot factor, pretreat-
ment. The subplot experimental error is used to
test the significance of the subplot factor, stain and
pretreatment by stain interaction. Therefore, the
tests use a different mean square error in the de-
nominator of the F-ratio.

Table 4 (p. 70) shows the F-statistic for the effect
of pretreatment, the whole-plot factor, is:

Mean square

pretreatment

_ 782.04

= =4.03.
193.84

~ Mean square

WP (pretreatment)

Note the p-value of 0.115 indicates this factor is
not significant. The F-test for the effect of stain, the
subplot factor, is:

M
F = ean Squargtain = 88'67 = 6.98-
Mean square 1271

Note the p-value of 0.006 indicates this factor is
significant. The F-test for the effect of the pretreat-
ment by stain interaction is:

_ Mean Squarepretreatxstain _ 2093

= = =1.65.
Mean square 12.71

Note the p-value of 0.231 indicates the interac-
tion effect is not significant. Notice for both pre-
treatment and stain, these are different conclusions
from the analysis assuming a completely random-
ized design.

Many experiments in industry involve two-level
factors. In the wood experiment, the four stains
could actually be a 22 in stain type and amount. All
this does is add a little more structure to the experi-
ment and the breakdown of the degrees of freedom.
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For example, the previous 3 df for stain can now
be broken down into 1 df for stain type, 1 df for
amount and 1 df for the stain type by amount inter-
action. This is also true for the previous pretreat-
ment by stain interaction, which is now 1 df for
pretreatment by stain type interaction, 1 df for pre-
treatment by amount interaction and 1 df for the
pretreatment by stain type by amount interaction.

Another Example

Consider another example with one hard-to-
change factor (Z), three easy-to-change factors (A, B,
C) and all factors at two levels. The hard-to-change
factor is replicated so there are four whole plots,
each with eight subplots.

Table 5 gives the design as it was carried out:
First a level for Z is randomly selected, then the
eight combinations of A, B and C are carried out in
random order. The correct and incorrect analyses
are shown in Table 6. Notice the incorrect analysis
indicates Z is significant, while the Zx A and A x B
interactions are shown as not significant.

Extensions on the Split-Plot

An astute reader can probably now surmise the
split-plot framework can be expanded to even
more complicated experiments. Several extensions
that can be made to the split-plot scenario are:

e It can have more than one hard-to-change fac-
tor. (Make sure the extra factor(s) is really hard
to change and not just inconvenient to change.)

e The whole-plot level design may involve blocks
instead of being completely randomized.

¢ There may be several easy-to-change factors,
which may necessitate using a fractional facto-
rial design at the subplot level (you must be
very careful because the alias structure is much
more complicated in split-plot designs).

® More factors could be added that are subplots
for one factor while at the same time whole
plots for other factors. This results in a split-
split-plot design.?

The design and analysis of industrial experi-
ments involves understanding not only the treat-
ment structure but also the three principles of the
design structure: randomization, replication and
controlling for known sources of variation (typical-
ly through blocking).

The experimenter should be made aware of an



@) Data for the Second Example Summary for Second Example

Z A B c WP Response Correct split-plot analysis
1 -1 1 1 1 108.4 Source  DF SS MS F P
! ! g ! ! 1316 z 1 5013 5913 294 0228
1 - -1 -1 L 124.0 WP(z) 2 4017 2008 683 *
1 1 -1 -1 1 134.9 A 1 59772 59772 20313  0.000
1 -1 1 -1 1 103.7 B 1 1226.36  1226.36  416.77 0.000
1 1 1 -1 1 112.9 c 1 1.49 1.49 0.51 0.486
1 1 1 1 1 113.4 ZxA 1 14.72 14.72 5.00 0.038
I B R - € 1 am am 1w om
X . . . .
g - = = - — AxB 1 1313 1313 446 0048
al I I al J A AxC 1 081 081 028 0605
- 1 L 1 3 123.0 BxC 1 1.16 116 040 0537
-1 1 -1 1 3 121.9 Error 19 55.91 2.94
-1 -1 1 1 3 117.3 Total 31 2299.32
o o - 1 3 1209
o 1 1 o 3 129.9 Incorrect completely randomized analysis
-1 -1 L -1 8 1154 Source  DF ss MS F P
! g ! ! 2 1008 z 1 59.13 5913 1292 0.002
1 I I = 2 I A 1 59772 59772 13065  0.000
1 1 - 1 2 132.8 B 1 122636 122636  268.05  0.000
1 1 -1 -1 2 131.4 c 1 1.49 1.49 033 0575
1 -1 -1 -1 2 118.4 ZxA 1 14.72 14.72 3.22 0.087
1 1 1 4 D) 104.4 ZxB 1 285.01 285.01 62.30 0.000
: . . . 5 " Zxc 1 371 371 081 0378
AxB 1 13.13 13.13 2.87 0.105
: : : : i :?;; AxC 1 0.81 0.81 018 0678
BxC 1 1.16 1.16 0.25 0.619
-1 -1 L -1 4 128 Error 21 96.08 458
-1 -1 1 1 4 122 Total 31 2299.32
-1 1 -1 1 4 121.7
al l l el 4 (L, Z = hard-to-change factors
-1 1 1 1 4 120.9 A, B and C = easy-to-change factors
-1 1 -1 -1 4 127.0 WP = whole-plot errors
-1 -1 = 1 4 119.4 DF = degrees of freedom
SS = sums of squares
Z = hard-to-change factors MS = mean square
A, B and C = easy-to-change factors F = F-statistic
WP = whole-plot errors P=p-value
important point about the experimental replication Getting Beyond Academics
in a split-plot design. The effect of the whole-plot Many practitioners of experimentation are
factor, which will have the least number of experi- beginning to incorporate the principles and
mental replicates, is estimated less precisely than methodology of designed experiments developed
the subplot factors, which will have more experi- in the statistical literature over the last 75 years.
mental replicates. Thus, if allowed a choice when The first experiments learned in typical statistical
planning a split-plot experiment, the experimenter and quality methodology training courses are
should try to put the most important factors at the those with simple design structures, such as the
subplot level. completely randomized design.
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In practice, however, the limitations and chal-
lenges of experimenting in the real world result in

some form of a restriction on the randomization. We
fear that more often than not, these features are not

these simple experiments being the exception rather being incorporated into the planning and analysis of
than the norm. Typically, an experiment will contain the experiment.
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With the recent growth and
interest in the use of the statistical
sciences in today’s businesses,
however, we expect the sophistica-
tion and understanding of experi-
mentation will increase, and
designs such as the split plot will
become more readily recognized
and properly analyzed.
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