Chapter 11

Mechanical Properties: Fast Fracture

The careful text-books measure
( Let all who build beware!)

The load, the shock, the pressure
Material can bear.

So when the buckled girder

Lets down the grinding span.
The blame of loss, or murder,

Is laid upon the man.

Not on the stuff — the Man!

R. Kipling, “Hymn of the Breaking Strain”

11.1 Introduction

Sometime before the dawn of civilization, some hominid discovered that the
edge of a broken stone was quite useful for killing prey and warding off
predators. This seminal juncture in human history has been recognized by
archeologists who refer to it as the stone age. C. Smith'”® goes further by
stating, “Man probably owes his very existence to a basic property of
inorganic matter, the brittleness of certain ionic compounds.” In this context.
Kipling’s hymn and J. E. Gordon’s statement'’” that ““The worst sin in an
engineering material is not lack of strength or lack of stiffness, desirable as
these properties are, but lack of toughness, that is to say, lack of resistance
to the propagation of cracks’ stand in sharp contrast. But it is this contrast
that in a very real sense summarizes the short history of technical ceramics:
what was good enough for millennia now falls short. After all, the con-
sequences of a broken mirror are not as dire as those of, say, an exploding
turbine blade. It could be argued, with some justification, that were it not
for their brittleness, the use of ceramics for structural applications. especially

178 C. S. Smith, Science, 148:908 (1965).
179 J. E. Gordon, The New Science of Engineering Materials. 2d ed.. Princeton University Press.
Princeton. New Jersey. 1976.
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Figure 11.1 Typical stress—strain curves for (a) brittle solids and () ductile materials.

at elevated temperatures, would be much more widespread since they possess
other very attractive properties such as hardness, stiffness, and oxidation and
creep resistance.

As should be familiar to most, the application of a stress to any solid
will initially result in a reversible elastic strain that is followed by either
fracture without much plastic deformation (Fig. 11.1a) or fracture that is
preceded by plastic deformation (Fig. 11.156). Ceramics and glasses fall in
the former category and are thus considered brittle solids, whereas most
metals and polymers above their glass transition temperature fall into the
latter category.

The theoretical stress level at which a material is expected to fracture
by bond rupture was discussed in Chap. 4 and estimated to be on the
order of Y /10, where Y is Young’s modulus. Given that Y for ceramics
(see Table 11.1) ranges between 100 and 500 GPa, the expected ‘“‘ideal”
fracture stress is quite high — on the order of 10 to 50 GPa. For reasons
that will become apparent shortly, the presence of flaws, such as shown in
Fig. 11.2, in brittle solids will greatly reduce the stress at which they fail.
Conversely, it is well established that extraordinary strengths can be achieved
if they are flaw-free. For example, a defect-free silica glass rod can be
elastically deformed to stresses that exceed 5 GPa! Thus it may be concluded,
correctly one might add, that certain flaws within a material serve to promote
fracture at stress levels that are well below the ideal fracture stress.

The stochastic nature of flaws present in brittle solids together with the
flaw sensitivity of the latter has important design ramifications as well.
Strength variations of £25 percent from the mean are not uncommon and
are quite large when compared to, say, the spread of flow stresses in
metals, which are typically within just a few percent. Needless to say, such
variability, together with the sudden nature of brittle failure, poses a veritable
challenge for design engineers considering using ceramics for structural and
other critical applications.
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Figure 11.2 Surface cracks caused by the accidental contact of a glass surface with dust
particles or another solid surface can result in significant reductions in strength.

Flaws, their shape, and their propagation are the central themes of this
chapter. The various aspects of brittle failure are discussed from several
viewpoints. The concepts of fracture toughness and flaw sensitivity are
discussed first. The factors influencing the strengths of ceramics are dealt
with in Sec. 11.3.'*® Toughening mechanisms are dealt with in Sec. 11.4.
Section 11.5 introduces the statistics of brittle failure and a methodology
for design.

11.2 Fracture Toughness

11.2.1 Flaw Sensitivity

To illustrate what i1s meant by flaw or notch sensitivity, consider the
schematic of what occurs at the base of an atomically sharp crack upon
the application of a load F,,,. For a crack-free sample (Fig. 11.3a). each
chain of atoms will carry its share of the load F/n, where n is the number
of chains, i.e., the applied stress o,p, is said to be uniformly distributed.
The introduction of a surface crack results in a stress redistribution such
that the load that was supported by the severed bonds is now being carried
by only a few bonds at the crack tip (Fig. 11.35). Said otherwise. the presence
of a flaw will locally amplify the applied stress at the crack tip oyp. As 0upp
is increased, oy, increases accordingly and moves up the stress versus
interatomic distance curve, as shown in Fig. 11.3¢. As long as ojp < 0.
the situation is stable and the flaw will not propagate. However. if at any
time oy, exceeds op,,. the situation becomes catastrophically unstable (not

%0 The time-dependent mechanical properties such as creep and subcritical crack growth are
dealt with separately in the next chapter.
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unlike the bursting of a dam). Based on this simple picture, the reason why
brittle fracture occurs rapidly and without warning, with cracks propagating
at velocities approaching the speed of sound, should now be obvious.
Furthermore, it should also be obvious why ceramics are much stronger in
compression than in tension.

To be a little more quantitative in predicting the applied stress that
would lead to failure, oy, would have to be calculated and equated to oy,

(a) (b)

O max

Stress

Interatomic distance, nm
(¢)

Figure 11.3 (a) Depiction of a uniform stress. (b) Stress redistribution as a result of the
presence of a crack. (¢) For a given applied load, as the crack grows and the bonds are
sequentially ruptured, o;, moves up the stress versus displacement curve toward oy,,.
When oy, = 0y, catastrophic failure occurs. Note that this figure is identical to
Fig. 4.6, except that here the y axis represents the stress on the bond rather than the applied
force.
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Figure 11.4 (a) Surface crack of length ¢ and radius of curvature p. (b) Interior crack of
length 2¢. Note that from a fracture point of view. they are equivalent.

or Y /10. Calculating oy, is rather complicated (only the final result is given
here) and is a function of the type of loading, sample, crack geometry, etc.'®!
However, for a thin sheet, it can be shown that oy, 1s related to the applied

stress by
c
U,ip=2aapp\/; (11.1)

where ¢ and p are, respectively, the crack length and its radius of curvature'®
(Fig. 11.4).

Since, as noted above, fracture can be reasonably assumed to occur
when oy, = opax = Y/10, it follows that

X p
~20 Ve
where oy is the stress at fracture. This equation predicts that (1) o, is inversely
proportional to the square root of the flaw size and (2) sharp cracks. 1.e..

those with a small p, are more deleterious than blunt cracks. Both predictions
are in good agreement with numerous experimental observations.

11.2.2 Energy Criteria for Fracture — The Griffith Criterion

An alternate and ultimately more versatile approach to the problem of
fracture was developed in the early 1920s by Griffith.'®® His basic idea was

181 C. E. Inglis, Trans. Inst. Naval Archit., 55:219 (1913).

182 This equation strictly applies to a surface crack of length ¢, or an interior crack of length 2¢ in
a thin sheet. Since the surface of the material cannot support a stress normal to it, this condi-
tion corresponds to the plane stress condition (the stress is two-dimensional). In thick
components, the situation is more complicated. but for brittle materials the two expressions
vary slightly.

183 A. A. Griffith, Phil. Trans. R. Acad., A221:163 (1920).
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to balance the energy consumed in forming new surface as a crack propagates
against the elastic energy released. The critical condition for fracture, then,
occurs when the rate at which energy is released is greater than the rate at
which it is consumed. The approach taken here is a simplified version of
the original approach, and it entails deriving an expression for the energy
changes resulting from the introduction of a flaw of length ¢ in a material
subjected to a uniform stress o,py,.

Strain energy

When a solid is uniformly elastically stressed, all bonds in the material
elongate and the work done by the applied stress is converted to elastic
energy that is stored in the stretched bonds. The magnitude of the elastic
energy stored per unit volume is given by the area under the stress-strain
curve'® (Fig. 11.1a), or

1 1 agpp

Uclas - 5 EO0qypp = 5 Y

The total energy of the parallelopiped of volume V), subjected to a uniform
stress o, (Fig. 11.5a) increases to

(11.3)

2
VoOupp

U=Uy+ VoUeas = Uy + Y

(11.4)
where U, its free energy in the absence of stress.

In the presence of a surface crack of length ¢ (Fig. 11.56), it is fair to
assume that some volume around that crack will relax (i.e., the bonds in
that volume will relax and lose their strain energy). Assuming — it is not a
bad assumption, as will become clear shortly — that the relaxed volume is
given by the shaded area in Fig. 11.5b, it follows that the strain energy of
the system in the presence of the crack is given by

Usu'ain = UO +

Voaﬁpp B aﬁpp mctt (11.5)
2Y 2Y | 2 '

where ¢ is the thickness of the plate. The third term represents the strain
energy released in the relaxed volume.

"% When a bond is stretched, energy is stored in that bond in the form of elastic energy. This
energy can be converted to other forms of energy as any schoolboy with a slingshot can
attest; the elastic energy stored in the rubber band is converted into kinetic energy of the
projectile. If by chance a pane of glass comes in the way of the projectile, that kinetic
energy will in turn be converted to other forms of energy such as thermal, acoustic, and
surface energy. In other words, the glass will shatter and some of the kinetic energy will
have created new surfaces.
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Surface energy

To form a crack of length ¢, an energy expenditure of
Uit = 27yct (11.6)

is required, where  is the intrinsic surface energy of the material. The factor
2 arises because two (bottom and top) new surfaces are created by the
fracture event.

L
\| Material in

> shaded area
] 1s relaxed.
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Uiot [Eq. (11.7)]
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Figure 11.5 (a) Uniformly stressed solid. (b) Relaxed volume in vicinity of crack of length
c. (¢) Plot of Eq. (11.7) as a function of ¢. The top curve represents the surface energy term.
and the lower curve represents the strain energy release term. Curve labeled U, is sum of
the two curves. The critical crack length ¢, at which fast fracture will occur corresponds
to the maximum. (d) Plot of Eq. (11.7) on the same scale as in part (c) but for V2 times the
applied stress applied in (c). Increasing the applied stress by that factor reduces c.; by a
factor of 2.
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The total energy change of the system upon introduction of the crack is
simply the sum of Eqgs. (11.5) and (11.6), or

2 2
Vo0app _ Oapp Tt
2Y 2Y | 2

-

} + 2vyet (11.7)

Since the surface energy term scales with ¢ and the strain energy term
scales with ¢, Uy, has to go through a maximum at a certain critical crack
size ¢y (Fig. 11.5¢). This is an important result since it implies that extending
a crack that is smaller than c, consumes rather than liberates energy and is
thus stable. In contrast, flaws that are longer than c.; are unstable since
extending them releases more energy than is consumed. Note that increasing
the applied stress (Fig. 11.5d) will result in failure at smaller critical flaw
sizes. For instance, a solid for which the size of the largest185 flaw lies some-
where between those shown in Fig. 11.5¢ and d will not fail at the stress
shown in Fig. 11.5¢, but will fail if that stress is increased (Fig. 11.5d).

The location of the maximum is determined by differentiating Eq. (11.7)
and equating it to zero. Carrying out the differentiation, replacing o, by oy,
and rearranging terms, one can show that the condition for failure is

O/ TCeris = 20/7Y (11.8)

A more exact calculation yields

Ory/Terit 2 V27Y (11.9)

and is the expression used in subsequent discussions.'®® This equation
predicts that a critical combination of applied stress and flaw size is required
to cause failure. The combination oy/mc occurs so often in discussing fast
fracture that it is abbreviated to a single symbol K] with units MPa - m'/?,
and is referred to as the stress intensity factor. Similarly, the combination
of terms on the right-hand side of Eq. (11.9), sometimes referred to as the
critical stress intensity factor, or more commonly the fracture toughness, is
abbreviated by the symbol Kj.. Given these abbreviations, the condition
for fracture can be succinctly rewritten as

(1110

Equations (11.9) and (11.10) were derived with the implicit assumption
that the only factor keeping the crack from extending was the creation of new

83 The largest flaw is typically the one that will cause failure, since it becomes critical before

other smaller flaws (see Fig. 11.84).
86 Comparing Egs. (11.8) and (11.9) shows that the estimate of the volume over which the stress
is relieved in Fig. 11.5h was off by a factor of /2, which is not too bad.



364 Fundamentals of Ceramics

Table 11.1 Data for Young’s modulus Y, Poisson’s ratio, and Kj. values of selected

. . +
ceramics at ambient temperatures

Y. Poisson’s K, Vickers
(GPa) ratio MPa-m'~  hardness.
GPa
Oxides
Al,O; 390 0.20-0.25 2.0-6.0 19.0-26.0
Al,O; (single crystal, 1012) 340 22
Al,O4 (single crystal, 0001) 460 >6.0
BaTiO; 125
BeO 386 0.34 0.8-1.2
HfO, (monoclinic) 240
MgO 250-300 0.18 2.5 6.0-10.0
MgTi,04 250
MgAl,O4 248-270 1.9-2.4 14.0-18.0
Mullite [fully dense] 230 0.24 2.0-4.0 15.0
Nb,Os 180
PbT10, 81
SiO» (quartz) 94 0.17 12.0 (0O11)
SnO» 263 0.29
TiO, 282-300 100=1.0
ThO» 250 1.6 10.0
Y-0; 175 1.5 7.0-9.0
Y;AlLO, 180 1.0
ZnO 124 23+10
ZrSi10y (zircon) 195 0.25 ~15.0
Zr0O, (cubic) 220 0.31 3.0-3.6 12.0-15.0
Zr0O, (partially stabilized) 190 0.30 3.0-15.0 13.0
Carbides, Borides, and Nitrides and Silicides
AIN 308 0.25 12.0
B,C 417-450 0.17 30.0-38.0
BN 675
Diamond 1000
MoSi, 400
Si 107 0.27 10.0
SiC [hot pressed] 440 + 10 0.19 3.0-6.0 26.0-36.0
SiC (single crystal) 460 3.7
Si;N4 Hot Pressed (dense) 300-330 0.22 3.0-10.0 17.0-30.0
TiB, 500-570 0.11 18.0-34.0
TiC 456 0.18 3.0-5.0 16.0-28.0
wC 450-650 6.0-20.0
ZrB, 440 0.14 220
Halides and Sulfides
CaF, 110 0.80 1.800
KCl (forged single crystal) 24 ~0.35 0.120
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Table 11.1 Continued

Y, Poisson’s K. Vickers
(GPa) ratio MPa-m'/?  hardness,
GPa
MgF, 138 1.00 6.000
SrF, 88 1.00 1.400
Glasses and Glass Ceramics
Aluminosilicate (Corning 1720) &9 0.24 0.96 6.6
Borosilicate (Corning 7740) 63 0.20 0.75 6.5
Borosilicate (Corning 7052) 57 0.22
LAS (glass-ceramic) 100 0.30 2.00
Silica (fused) 72 0.16 0.80 6.0-9.0
Silica (96%) 66 0.70
Soda Lime Silica Glass 69 0.25 0.82 5.5

" The fracture toughness is a function of microstructure. The values given here are mostly for
comparison’s sake.

surface. This is only true, however, for extremely brittle systems such as
inorganic glasses. In general, however, when other energy dissipating
mechanisms, such a plastic deformation at the crack tip, are operative, K.
is defined as

K. = \/YG, (11.11)

where G, is the toughness of the material in joules per square meter. For
purely brittle solids,'®” the toughness approaches the limit G, = 2~y. Table
11.1 lists Young’s modulus, Poisson’s ratio, and K|, values of a number of
ceramic materials. It should be pointed out that since (see below) Kj, is a
material property that is also microstructure-dependent, the values listed in
Table 11.1 are to be used with care.

Finally it is worth noting that the Griffith approach, Eq. (11.10), can be
reconciled with Eq. (11.2) by assuming that p is on the order of 10ry, where r,
is the equilibrium interionic distance (see Prob. 11.3). In other words, the
Griffith approach implicitly assumes that the flaws are atomically sharp, a
fact that must be borne in mind when one is experimentally determining
K. for a material.

To summarize: fast fracture will occur in a material when the product of
the applied stress and the square root of the flaw dimension are comparable
to that material’s fracture toughness.

'87 Under these conditions, one may calculate the surface energy of a solid from a measurement
of Kj. (see the section on measuring surface energies in Chap. 4).
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WORKED EXAMPLE 11.1

(a) A sharp edge notch 120 pm deep is introduced in a thin magnesia plate. The
plate is then loaded in tension normal to the plane of the notch. If the applied
stress 1s 150 MPa, will the plate survive? (b) Would your answer change if the
notch were the same length but was as internal notch (Fig. 11.4b) instead of
an edge notch?

Answer

(a) To determine whether the plate will survive the applied stress, the stress
intensity at the crack tip needs to be calculated and compared to the fracture
toughness of MgO, which according to Table 11.1 is 2.5MPa - m'2.

K; in this case is given

K, = ov/mc = 1501/3.14 x 120 x 1076 = 2.91 MPa-m' >

Since this value is greater than K. for MgQO, it follows that the plate will fail.
(b) In this case, because the notch is an internal one, it is not as detrimental as a
surface or edge notch and

Ki =0, /wg = 150V/3.14 x 60 x 107 = 2.06 MPa-m'’’

172

Since this value is <2.5MPa-m"/- it follows that the plate would survive the

applied load.

Before one explores the various strategies to increase the fracture tough-
ness of ceramics, it is important to appreciate how K, is measured.

Experimental Details: Measuring K;,

There are several techniques by which K|, can be measured. The two most
common methods entail measuring the fracture stress for a given geometry
and known initial crack length and measuring the lengths of cracks emanat-
ing from hardness indentations.

Fracture Stress
Equation (11.9) can be recast in its most general form
VofacvVre > K, (11.12)

where ¥ is a dimensionless constant on the order of unity that depends on the
sample shape, the crack geometry, and its relative size to the sample dimensions.
This relationship suggests that to measure K. one would start with an atomic-
ally sharp crack [an implicit assumption made in deriving Eq. (11.10) — see
Prob. 11.3] of length ¢ and measure the stress at which fracture occurs. Given
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(a) (b)

Figure 11.6 (@) Schematic of single-edge notched beam specimen; (b) Chevron notch
specimen.

the sample and crack geometries, ¥ can be looked up in various fracture
mechanics handbooks, and then Kj, is calculated from Eq. (11.12). Thus, in
principle, it would appear that measuring K|, is fairly straightforward; experi-
mentally, however, the difficulty lies in introducing an atomically sharp crack.

Two of the more common test configurations are shown in Fig. 11.6. A
third geometry not shown here is the double torsion test, which in addition to
measuring Kj,. can be used to measure crack velocity versus K curves. This
test is described in greater detail in the next chapter.

Single-edge notched beam (SENB) test

In this test a notch of initial depth c is introduced, usually by using a diamond
wheel, on the tensile side of a flexure specimen (Fig. 11.6a). The sample is
loaded until failure, and c is taken as the initial crack length. Fracture tough-
ness Kj. is calculated from

3/c(S) — 82)€ Fray
2BW?

where Fy,; is the load at which the specimen failed and £ is a calibration
factor. The other symbols are defined in Fig. 11.6a. The advantage of this
test lies in its simplicity — its major drawback, however, is that the condition
that the crack be atomically sharp is, more often than not, unfulfilled, which
causes one to overestimate Kj,.

ch =

Chevron notch (CN) specimen'®®

In this configuration, shown schematically in Fig. 11.6b, the chevron notch
specimen looks quite similar to the SENB except for the vital difference that
the shape of the initial crack is not flat but chevron-shaped, as shown by the
shaded area. The constant widening of the crack front as it advances causes

"8 A chevron is a figure or a pattern having the shape of a V.
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crack growth to be stable prior to failure. Since an increased load is required to
continue crack extension, it is possible to create an atomically sharp crack in
the specimen before final failure, which eliminates the need to precrack the
specimen. The fracture toughness'® is then related to the maximum load at
fracture Fy,; and the minimum of a compliance function £*.

(81 = 85)€ Frai
- BWAR

General remarks

Unless care is taken in carrying out the fracture toughness measurements.
different tests will result in different values of K. There are three reasons
for this: (1) The sample dimensions were too small, compared to the process
zone (which is the zone ahead of the crack tip that is damaged). (2) The
internal stresses generated during machining of the specimens were not
sufficiently relaxed before the measurements were made. (3) The crack tip
was not atomically sharp. As noted above, if the fracture initiating the
flaw is not atomically sharp, apparently higher K;. values will be obtained.
Thus although simple in principle, the measurement of K. is fraught with
pitfalls, and care must be taken if reliable and accurate data are to be
obtained.

Hardness Indentation Method

Due to its simplicity, its nondestructive nature, and the fact that minimal
machining is required to prepare the sample, the use of the Vickers hardness
indentations to measure Kj. has become quite popular. In this method. a
diamond indenter is applied to the surface of the specimen to be tested.
Upon removal, the sizes of the cracks that emanate (sometimes) from the
edges of the indent are measured, and the Vickers hardness H in GPa of
the material is calculated. A number of empirical and semiempirical relation-
ships have been proposed relating K|, ¢, Y, and H, and in general the expres-

sions take the form
y )\ 04 |
K,(.:Q\/&H<——) f<5) (11.13)
H a
where ® is a geometric constraint factor and ¢ and a are defined in Fig. 11.7.

The exact form of the expression used depends on the type of crack that
emanates from the indent.'®® A cross-sectional view and a top view of the

139 For more information, see J. Sung and P. Nicholson. J. Amer. Cer. Soc.. 72 (6):1033-1036
(1989).

19 For more information, see G. R. Anstis, P. Chantikul, B. R. Lawn. and D. B. Marshall.
J. Amer. Cer. Soc., 64:533 (1981), and R. Matsumoto. J. Amer. Cer. Soc.. T0(C):366 (1987).
See also Problem 11.9.
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Figure 11.7 Crack systems developed from the Vickers indents. (@) Side and top views of a
median crack. (b) Top and side views of a Palmqvist crack.

two most common types of cracks of interest are shown in Fig. 11.7. At low
loads, Palmqvist cracks are favored, while at high loads fully developed
median cracks result. A simple way to differentiate between the two types
is to polish the surface layers away; the median crack system will always
remain connected to the inverted pyramid of the indent while the Palmqvist
will become detached, as shown in Fig. 11.75.

It should be emphasized that the Kj. values measured using this tech-
nique are usually not as precise as those from other more macroscopic tests.

11.2.3 Compressive and Other Failure Modes

Whereas it is now well established that tensile brittle failure usually propa-
gates unstably when the stress intensity at the crack tip exceeds a critical
value, the mechanics of compressive brittle fracture are more complex and
not as well understood. Cracks in compression tend to propagate stably
and twist out of their original orientation to propagate parallel to the
compression axis, as shown in Fig. 11.8b. Fracture in this case is caused
not by the unstable propagation of a single crack, as would be the case in
tension (Fig. 11.8a), but by the slow extension and linking up of many
cracks to form a crushed zone. Hence it is not the size of the largest crack
that counts, but the size of the average crack c,,. The compressive stress to
failure 1s still given by

K,

VTCay

but now Z is a constant on the order of 15.

(11.14)

Opait = Z
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Figure 11.8 (a) Fracture in ceramics due to preexisting flaws tested in tension. Failure
occurs by the unstable propagation of the worst crack that is also most favorably oriented.
(b) During compressive loading, many cracks propagate stably. eventually linking up and
creating a crush zone.'?!

Finally, in general there are three modes of failure, known as modes I,
I, and III. Mode I (Fig. 11.9a) is the one that we have been dealing with
so far. Modes II and III are shown in Fig. 11.96 and c¢, respectively. The
same energy concepts that apply to mode I also apply to modes II and III.
Mode I, however, is by far the more pertinent to crack propagation in brittle
solids.

11.2.4 Atomistic Aspects of Fracture

Up to this point, the discussion has been mostly couched in macroscopic
terms. Flaws were shown to concentrate the applied stress at their tip
which ultimately led to failure. No distinction was made between brittle
and ductile materials, and yet experience clearly indicates that the different
classes of materials behave quite differently — after all. the consequences

11 Adapted from M. F. Ashby and D. R. Jones. Engineering Materials. vol. 2. Pergamon Press.
New York. 1986.
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Y Y Y

Mode 1 Mode I Mode III
(a) (b) (¢)
Figure 11.9 The three modes of failure: (¢) opening mode, or mode I, characterized by
Ky, (b) sliding mode, or mode 11, Kj;,; (¢) tearing mode, or mode 111, Ky,

of scribing a glass plate are quite different from those of a metal one. Thus the
question is, what renders brittle solids notch-sensitive, or more directly, why
are ceramics brittle?

The answer is related to the crack tip plasticity. In the foregoing discus-
sion, it was assumed that intrinsically brittle fracture was free of crack-tip
plasticity, i.e., dislocation generation and motion. Given that dislocations
are generated and move under the influence of shear stresses, two limiting
cases can be considered:

I.  The cohesive tensile stress (= Y /10) is smaller than the cohesive
strength in shear, in which case the solid can sustain a sharp crack
and the Griffith approach is valid.

2. The cohesive tensile stress is greater than the cohesive strength in
shear, in which case shear breakdown will occur (i.e., dislocations will
move away from the crack tip) and the crack will lose its atomic
sharpness. In other words, the emission of dislocations from the crack
tip, as shown in Fig. 11.10a, will move material away from the crack
tip, absorbing energy and causing crack blunting, as shown in
Fig. 11.105.

Theoretical calculations have shown that the ratio of theoretical shear
strength to tensile strength diminishes as one proceeds from covalent to
ionic to metallic bonds. For metals, the intrinsic shear strength is so low
that flow at ambient temperatures is almost inevitable. Conversely, for
covalent materials such as diamond and SiC, the opposite is true: the
exceptionally rigid tetrahedral bonds would rather extend in a mode I type
of crack than shear.

Theoretically, the situation for ionic solids is less straightforward, but
direct observations of crack tips in transmission electron microscopy tend
to support the notion that most covalent and ionic solids are truly
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Figure 11.10 (a) Emission of dislocations from crack tip. (b) Blunting of crack tip due to
dislocation motion. (¢) Transmission electron micrograph of cracks in Si at 25°C. (d)
Another crack in Si formed at 500°C. where dislocation activity in vicinity of crack tip
is evident.'®>

brittle at room temperature (see Fig. 11.10c). Note that the roughly order-of-
magnitude difference between the fracture toughness of metals (20 to
100 MPa-m'/?) and ceramics is directly related to the lack of crack-tip
plasticity in the latter — moving dislocations consumes quite a bit of
energy.

The situation is quite different at higher temperatures. Since dislocation
mobility is thermally activated, increasing the temperature will tend to favor
dislocation activity, as shown in Fig. 11.10d, which in turn increases the
ductility of the material. Thus the condition for brittleness can be restated
as follows: Solids are brittle when the energy barrier for dislocation
motion is large relative to the thermal energy kT available to the system.
Given the large flow stresses required to move dislocations at elevated
temperatures in oxide single crystals (Fig. 11.11), it is once again not
surprising that ceramics are brittle at room temperatures. Finally. note
that dislocation activity is not the only mechanism for crack blunting. At
temperatures above the glass transition temperature viscous flow is also
very effective in blunting cracks.

192 B. R. Lawn, B. J. Hockey, and S. M. Wiederhorn. J. Mar. Sci.. 15:1207 (1980). Reprinted
with permission.
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Figure 11.11 Temperature dependence of flow stress for yttria-stabilized zirconia (YSZ),
sapphire, and equimolar spinel.'”’

11.3 Strength of Ceramics

Most forming methods that are commonly used in the metal and polymer
industries are not applicable for ceramics. Their brittleness precludes defor-
mation methods; and their high melting points, and in some cases (e.g.,
Si3Ny, SiC) decomposition prior to melting, preclude casting. Consequently,
as discussed in the previous chapter, most polycrystalline ceramics are
fabricated by either solid- or liquid-phase sintering, which can lead to
flaws. For example, how agglomeration and inhomogeneous packing
during powder preparation often led to the development of flaws in the
sintered body was discussed in Chap. 10. Inevitably, flaws are always present
in ceramics. In this section, the various types of flaws that form during
processing and their effect on strength are discussed. The subsequent section
deals with the effect of grain size on strength, while Sec. 11.3.3 deals briefly
with strengthening ceramics by the introduction of compressive surface
layers. Before one proceeds much further, however, it is important to briefly
review how the strength of a ceramic is measured.

Experimental Details: Modulus of Rupture

Tensile testing of ceramics is time-consuming and expensive because of the
difficulty in machining test specimens. Instead, the simpler transverse bend-
ing or flexure test is used, where the specimen is loaded to failure in either

9% A. H. Heuer, cited in R. Raj, J. Amer. Cer. Soc., 76:2147-2174 (1993).
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three- or four-point bending. The maximum stress or stress at fracture is
commonly referred to as the modulus of rupture (MOR). For rectangular
cross sections, the MOR in four-point bending is given by
OroR = 3(8 - Szﬂ)Ffail
2BW-
where Fp,; is the load at fracture and all the other symbols are defined in
Fig. 11.6a. Note that the MOR specimen is unnotched and fails as a result
of preexisting surface or interior flaws.

Once again a word of caution: Although the MOR test appears straight-
forward, it is also fraught with pitfalls.'®* For example, the edges of the
samples have to be carefully beveled before testing since sharp corners can
act as stress concentrators and in turn significantly reduce the measured
strengths.

(11.15)

11.3.1 Processing and Surface Flaws

The flaws in ceramics can be either internal or surface flaws generated during
processing or surface flaws introduced later, during machining or service.

Pores

Pores are usually quite deleterious to the strength of ceramics not only
because they reduce the cross-sectional area over which the load is applied.
but more importantly because they act as stress concentrators. Typically
the strength and porosity have been related by the following empirical rela-
tionship:

o, =aye ?F (11.16)

where P, 0,, and o are, respectively, the volume fraction porosity and the
strength of the specimen with and without porosity; B is a constant that
depends on the distribution and morphology of the pores. The exponential
dependence of strength on porosity is clearly demonstrated in Fig. 11.12
for reaction-bonded Si;Ny4, which is formed by exposing a St compact to a
nitrogen atmosphere at elevated temperatures. The large scatter in the results
mostly reflects the variability in the pore sizes, morphology, and distribution.

Usually, the stress intensities associated with the pores themselves are
insufficient to cause failure, and as such the role of pores is indirect. Fracture
from pores is typically dictated by the presence of other defects in their
immediate vicinity. If the pore is much larger than the surrounding grains.
atomically sharp cusps around the surface of the former can result. The
critical flaw thus becomes comparable to the dimension of the pores. If the

194 For a comprehensive review of the MOR test. see G. Quinn and R. Morrell. J. Am. Cer. Soc..
74(9):2037-2066 (1991).
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Figure 11.12 Functional dependence of strength on porosity for a reaction-bonded
SiyN,.'"*

pores are spherical, as in glasses, they are less detrimental to the strength.
Thus both the largest dimension of the pore and the smallest radius of curva-
ture at the pore surface are what determines their effect on the strength. A
typical micrograph of a pore that resulted in failure is shown in Fig. 11.13a.

Inclusions

Impurities in the starting powders can react with the matrix and form
inclusions that can have different mechanical and thermal properties from
the original matrix. Consequently, as a result of the mismatch in the thermal
expansion coefficients of the matrix «,, and the inclusions «;, large residual
stresses can develop as the part is cooled from the processing temperature.
For example, a spherical inclusion of radius R in an infinite matrix will
result in both radial (o.,4) and tangential (0y,,) residual stresses at a radial
distance r away from the inclusion/matrix interface given by

(a,, — ;) AT R )3
[(1=2)/Y: + (1 +v,)/2Y,,) (r + R

Orad = ”2Utan =

(11.17)

195

Data taken from O. Kamigaito, in Fine Ceramics, S. Saito, ed., Elsevier, New York, 1988.
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where v is Poisson’s ratio; m and i/ refer to the matrix and inclusion, respec-
tively; and AT is the difference between the initial and final temperatures
(1.e., it 1s defined as positive during cooling and negative during heating).
On cooling, the initial temperature is the maximum temperature below
which the stresses are not relaxed. (See Chap. 13 for more details.)

L gt

(R I 100 zem | '

(b)

Figure 11.13 (a) Large pore associated with a large grain in sintered a-SiC. (b) An
agglomerate with associated porosity in a sintered a-SiC 196

19 G. Quinn and R. Morrell. J. Am. Cer. Soc.. 74(9):2037-2066 (1991). Reprinted with permission.
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It follows from Eq. (11.17) that upon cooling, if o; < «,,, large tangen-
tial tensile stresses develop that, in turn, could result in the formation of
radial matrix cracks. Conversely, if a; > «,,, the inclusion will tend to
detach itself from the matrix and produce a porelike flaw.

Agglomerates and large grains

The rapid densification of regions containing fine particles (agglomerates)
can induce stresses within the surrounding compact. Voids and cracks
usually tend to form around agglomerates, as shown in Fig. 11.135. These
voids form as a result of the rapid and large differential shrinkage of the
agglomerates during the early stages of sintering. Since these agglomerates
form during the fabrication of the green bodies, care must be taken at that
stage to avoid them.

Similarly, large grains caused by exaggerated grain growth during
sintering often result in a degradation in strength. Large grains, if noncubic,
will be anisotropic with respect to such properties as thermal expansion and
elastic modulus, and their presence in a fine-grained matrix essentially can act
as inclusions in an otherwise homogeneous matrix. The degradation in
strength is also believed to be partly due to residual stresses at grain bound-
aries that result from thermal expansion mismatches between the large grains
and the surrounding matrix. The magnitude of the residual stresses will
depend on the grain shape factor and the grain size, but can be approximated
by Eq. (11.17). The effect of grain size on the residual stresses and sponta-
neous microcracking will be dealt with in greater detail in Chap. 13.

Surface flaws

Surface flaws can be introduced in a ceramic as a result of high-temperature
grain boundary grooving, postfabrication machining operations, or
accidental damage to the surface during use, among others. During grinding,
polishing, or machining, the grinding particles act as indenters that introduce
flaws into the surface. These cracks can propagate through a grain along
cleavage planes or along the grain boundaries, as shown in Fig. 11.14. In
either case, the cracks do not extend much farther than one grain diameter
before they are usually arrested. The machining damage thus penetrates
approximately one grain diameter from the surface. Consequently, according
to the Griffith criterion, the fracture stress is expected to decrease with increas-
ing grain size — an observation that is commonly observed. This brings up the
next important topic, which relates the strength of ceramics to their grain size.

11.3.2 Effect of Grain Size on Strength

Typically, the strength of ceramics shows an inverse correlation to the
average grain size G. A schematic of the dependence is shown in
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Figure 11.14 Schematic of cleavage and grain boundary cracks that can form on the
surface of ceramics as a result of machining. The flaws are usually limited to one grain
diameter, however, because they are deflected at the grain boundaries.

Fig. 11.15a, where the fracture strength is plotted versus G . The simplest

explanation for this behavior is that the intrinsic flaw size scales with the
grain size, a situation not unlike the one shown in Fig. 11.14. The flaws
form at the grain boundaries, which are weak areas to begin with, and
propagate up to about one grain diameter. Thus once more invoking
the Griffith criterion, one expects the strength to be proportional to G &
as is observed. It is worth noting that the strength does not keep on
increasing with decreasing grain size. For very fine-grained ceramics, fracture
usually occurs from preexistent process or surface flaws in the material,
and thus the strength becomes relatively grain-size-insensitive. In other
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Figure 11.15 (a) Schematic relationship between grain size and strength for a number of
ceramics. (b) Actual data for MgAl,O,4. Courtesy of R. W. Rice.
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words, the line shown in Fig. 11.15 becomes much less steep for smaller grain
sizes.

11.3.3 Effect of Compressive Surface Residual Stresses

The introduction of surface compressive layers can strengthen ceramics and
is a well-established technique for glasses (see Sec. 13.5 for more details). The
underlying principle is to introduce a state of compressive surface residual
stress, the presence of which would inhibit failure from surface flaws since
these compressive stresses would have to be overcome before a surface
crack could propagate. These compressive stresses have also been shown
to enhance thermal shock resistance and contact damage resistance.

There are several approaches to introducing a state of compressive
residual stress, but in all cases the principle is to generate a surface layer
with a higher volume than the original matrix. This can be accomplished
in a variety of ways:

e Incorporation of an outer layer having a lower coefficient of thermal
expansion, as in glazing or tempering of glass. These will be discussed
in greater detail in Chap. 13.

e Using transformation stresses in certain zirconia ceramics (see next
section).

e  Physically stuffing the outer layer with atoms or ions such as by ion
implantation.

¢ Jon-exchanging smaller ions for larger ions. The larger ions that go into the
matrix place the latter in a state of compression. This is similar to physical
stuffing and is most commonly used in glasses by placing a glass in a
molten salt that contains the larger ions. The smaller ions are exchanged
by the larger ions, which in turn place the surface in compression.

One aspect of this technique is that to balance the compressive surface
stresses, a tensile stress develops in the center of the part. Thus if a flaw
actually propagates through the compressive layer, the material is then
weaker than in the absence of the compressive layer, and the release of the
residual stresses can actually cause the glass to shatter. This is the principle
at work in the manufacture of tempered glass for car windshields which
upon impact shatter into a large number of small pieces that are much less
dangerous than larger shards of glass, which can be lethal.

11.3.4 Effect of Temperature on Strength

The effect of temperature on the strength of ceramics depends on many
factors, the most important of which is whether the atmosphere in which
the testing is being carried out heals or exacerbates preexisting surface
flaws in the material. In general, when a ceramic is exposed to a corrosive
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atmosphere at elevated temperatures, one of two scenarios is possible: (1) A
protective, usually oxide, layer forms on the surface, which tends to blunt
and partially heal preexisting flaws and can result in an increase in the
strength. (2) The atmosphere attacks the surface, either forming pits on the
surface or simply etching the surface away at selective areas; in either case,
a drop in strength is observed. For ceramics containing glassy grain bound-
ary phases, at high enough temperatures the drop in strength is usually
related to the softening of these phases.

11.4 Toughening Mechanisms

Despite the fact that ceramics are inherently brittle, a variety of approaches
have been used to enhance their fracture toughness and resistance to fracture.
The essential idea behind all toughening mechanisms is to increase the energy
needed to extend a crack, that is, G, in Eq. (11.11). The basic approaches are
crack deflection, crack bridging, and transformation toughening.

11.4.1 Crack Deflection

It is experimentally well established that the fracture toughness of a polycrys-
talline ceramic is appreciably higher than that of single crystals of the same
composition. For example, K;, of single-crystal alumina 1is about
2.2MPa-m'/?, whereas that for polycrystalline alumina is closer to
4MPa-m'/?. Similarly, the fracture toughness of glass is ~0.8 MPa-m' "
whereas the fracture toughness of a glass-ceramic of the same composition
is closer to 2MPa-m'/?. One of the reasons invoked to explain this effect
is crack deflection at the grain boundaries, a process illustrated in
Fig. 11.16a. In a polycrystalline material, as the crack is deflected along
the weak grain boundaries, the average stress intensity at its tip K,y is
reduced, because the stress is no longer always normal to the crack plane
[an implicit assumption made in deriving Eq. (11.9)]. In general, it can be
shown that Kj;, is related to the applied stress intensity K,,, and the angle
of deflection, # (defined in Fig. 11.16a), by

9
Kip = (cos3 -2-) Kapp (11.18)

Based on this equation, and assuming an average 6 value of. say, 45°. the
increase in fracture toughness expected should be about 1.25 above the
single-crystal value. By comparing this conclusion with the experimental
results listed above, it is clear that crack deflection by itself accounts for
some of, but not all, the enhanced toughening. In polycrystalline materials.
crack bifurcation around grains can lead to a much more potent toughening
mechanism, namely, crack bridging — the topic tackled next.
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Figure 11.16 (a) Schematic of crack deflection mechanism at grain boundaries. (b)
Schematic indicating deflection of crack front around rod-shaped particles.'®” (¢) Schematic
of ligament bridging mechanism with no interfacial debonding and (4) with debonding. Note
that in this case the strain on the ligaments is delocalized, and the toughening effect is
enhanced.

11.4.2 Crack Bridging

In this mechanism, the toughening results from bridging of the crack surfaces
behind the crack tip by a strong reinforcing phase. These bridging ligaments
(Fig. 11.16b and c) generate closure forces on the crack face that reduce Kj;;,.
In other words, by providing some partial support of the applied load, the
bridging constituent reduces the crack-tip stress intensity. The nature of
the ligaments varies but they can be whiskers, continuous fibers
(Fig. 11.16¢), or elongated grains (Fig. 11.166). A schematic of how these
elastic ligaments result in a closure force is seen in Fig. 11.16¢. A useful
way to think of the problem is to imagine the unbroken ligaments in the
crack wake as tiny springs that have to be stretched, and hence consume
energy. as the crack front advances.

197 Adapted from A. G. Evans and R. M. Cannon, Acta. Met., 34:761 (1986).
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It can be shown that the fracture toughness of a composite due to elastic
stretching of a partially debonded reinforcing phase at the crack tip with no
interfacial friction is given by'*®

Ky = | ¥.G, + o2 XL Xu (11.19
Ie — cm ! 12),'[7’. . )

where the subscripts ¢, m, and f represent the composite, matrix, and reinfor-
cement, respectively; Y, V, and o, are the Young’s modulus, volume frac-
tion, and strength of the reinforcement phases, respectively; r is the radius
of the bridging ligament, and G,, is the toughness of the unreinforced
matrix; and -y, /~,; represents the ratio of the fracture energy of the bridging
ligaments to that of the reinforcement/matrix interface. Equation (11.19)
predicts that the fracture toughness increases with

e Increasing fiber volume fraction of reinforcing phase

e Increasing Y /Y, ratio

e Increasing /v, ratio (i.e., the toughness is enhanced for weak fiber
matrix interfaces)

Comparing Fig. 11.16¢ and d reveals how the formation of a debonded
interface spreads the strain displacement imposed on the bridging reinforcing
ligament over a longer gauge length. As a result, the stress supported by the
ligaments increases more slowly with distance behind the crack tip. and
greater crack-opening displacements are achieved in the bridging zone.
which in turn significantly enhances the fracture resistance of the composite.
An essential ingredient of persistent bridge activity is that substantial pullout
can occur well after whisker rupture. The fiber bridging mechanism is thus
usually supplemented by a contribution of pullout of the reinforcement
from fibers that fail away from the crack plane (Fig. 11.16¢). As the ligaments
pull out of the matrix, they consume energy that has to be supplied to the
advancing crack, further enhancing the toughness of the composite.

That toughening contributions obtained by crack bridging and pullout
can yield substantially increased fracture toughness is demonstrated in
Fig. 11.17a for a number of whisker-reinforced ceramics. The solid lines
are predicted curves and the data points are the experimental results; the
agreement is quite good. A similar mechanism accounts for the high tough-
nesses achieved recently in Siz;N, with acicular grains (Fig. 11.17b). coarser
grain-sized aluminas, and other ceramics.

11.4.3 Transformation Toughening

Transformation-toughened materials owe their very large toughness to the
stress-induced transformation of a metastable phase in the vicinity of a

198 See. e.g.. P. Becher. J. Amer. Cer. Soc.. 74:255-269 (1991).
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propagating crack. Since the original discovery'®® that the tetragonal-to-
monoclinic (1 = m) transformation of zirconia (see Chap. 8) has the
potential for increasing both the fracture stress and the toughness of zirconia
and zirconia-containing ceramics, a large effort has been dedicated to
understanding the phenomenon.?*

To understand the phenomenon, it is useful to refer to Fig. 11.18, where
fine tetragonal zirconia grains are dispersed in a matrix. If these tetragonal
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Figure 11.17 (a) The effect of SiC whisker content on toughness enhancement in different

matrices.””! (b) Toughening is associated with crack bridging and grain pullout of
elongated matrix grains.

199 R. Garvie, R. Hannick, and R. Pascoe, Nature, 258:703 (1975).

200 See, e.g., A. G. Evans and R. M. Cannon, Acta. Metall.,34:761-800 (1986). For more recent
work, see D. Marshall, M. Shaw, R. Dauskardt, R. Ritchie, M. Ready, and A. Heuer, /.
Amer. Cer. Soc., 73:2659-2666 (1990).

20V P Becher, “Microstructural Design of Toughened Ceramics,” J. Amer. Cer. Soc., 74:255-269
(1991).
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Figure 11.18 (a) Transformation zone ahead and around crack tip. (b) Surface grinding
induces the martensitic transformation, which in turn creates compressive surface layers
and a concomitant increase in strength.

particles are fine enough, then upon cooling from the processing tempera-
tures, they can be constrained from transforming by the surrounding
matrix and consequently can be retained in a metastable tetragonal phase.
If, for any reason, that constraint is lost, the transformation — which is
accompanied by a relatively large volume expansion or dilatation (=4
percent) and shear strain (=7 percent) — is induced. In transformation
toughening, the approaching crack front, being a free surface. is the catalyst
that triggers the transformation, which in turn places the zone ahead of the
crack tip in compression. Given that the transformation occurs in the vicinity
of the crack tip, extra energy is required to extend the crack through that
compressive layer, which increases both the toughness and the strength of
the ceramic.

The effect of the dilation strains is to reduce the stress intensity at the
crack tip K,;, by a shielding factor K such that

Ktip =K, — K, (11.20)

It can be shown that if the zone ahead of the crack tip contains a
uniform volume fraction V, of transformable phase that transforms in a
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zone of width w, shown in Fig. 11.18a, from the crack surface, then the
shielding crack intensity factor is given by*%*

K,=AYVie VW (11.21)

where A4’ is a dimensionless constant on the order of unity that depends on
the shape of the zone ahead of the crack tip and ¢’ is the transformation
strain. A methodology to calculate 7 is discussed in Chap. 13.

Fracture will still occur when Kj;;, = K|, of the matrix in the absence of
shielding; however, now the enhanced fracture toughness comes about by the
shielding of K,;, by K. Careful microstructural characterization of crack-tip
zones in various zirconias has revealed that the enhancement in fracture
toughness does in fact scale with the product V,\/w, consistent with
Eq. (11.21).

It is unfortunate that the reason transformation toughening works so
well at ambient temperatures — mainly the metastability of the tetragonal
phase — is the same reason it is ineffective at elevated temperatures. Increas-
ing the temperature reduces the driving force for transformation and conse-
quently the extent of the transformed zone, leading to less tough materials.

It is worth noting that the transformation can be induced any time the
hydrostatic constraint of the matrix on the metastable particles is relaxed.
For example, it is now well established that compressive surface layers
are developed as a result of the spontaneous transformation. The process
is shown schematically in Fig. 11.185. The fracture strength can be
almost doubled by simply abrading the surface, since surface grinding has
been shown to be an effective method for inducing the transformation.
Practically this is important, because we now have a ceramic that, in prin-
ciple, becomes stronger as it is handled and small scratches are introduced
on its surface.

At this stage, three classes of toughened zirconia-containing ceramics
have been identified:

e Partially stabilized zirconia (PSZ). In this material the cubic phase is less
than totally stabilized by the addition of MgO, CaO, or Y,0Oj3. The cubic
phase is then heat-treated to form coherent tetragonal precipitates. The
heat treatment is such as to keep the precipitates small enough so they do
not spontaneously transform within the cubic zirconia matrix but only as
a result of stress.

o  Tetragonal zirconia polycrystals (TZPs). These ceramics contain 100
percent tetragonal phase and small amounts of yttria and other rare-
earth additives. With bend strength exceeding 2000 MPa, these ceramics
are among the strongest known.

22 R. M. McMeeking and A. G. Evans. J. Amer. Cer. Soc., 63:242-246 (1982).
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Figure 11.19 (a) Functional dependence of fracture toughness on flaw size for a ceramic
exhibiting R curve behavior (top curve) and one that does not (lower curve). (b) Effect of R
curve behavior on strength degradation as flaw size increases. Ceramics exhibiting R curve
behavior are more flaw-tolerant than those that do not.

e  Zirconia-toughened ceramics (ZTCs). These consist of tetragonal or
monoclinic zirconia particles finely dispersed in other ceramic matrices
such as alumina, mullite, and spinel.

11.4.4 R Curve Behavior

One of the important consequences of the toughening mechanisms described
above is that they result in what is known as R curve behavior. In contrast to a
typical Griffith solid where the fracture toughness is independent of crack
size, R curve behavior refers to a fracture toughness which increases as the
crack grows, as shown schematically in Fig. 11.19a. The main mechanisms
responsible for this type of behavior are the same as those operative
during crack bridging or transformation toughening, i.e., the closure forces
imposed by either the transformed zone or the bridging ligaments. For
example, referring once again to Fig. 11.16¢, one sees that as the number
of bridging ligaments increases in the crack wake, so will the energy required
to extend the crack. The fracture toughness does not increase indefinitely.
however, but reaches a plateau when the number of ligaments in the crack
wake reach a steady-state with increasing crack extension. Further away
from the crack tip, the ligaments tend to break and pull out completely
and thus become ineffective.

There are four important implications for ceramics that exhibit R curve
behavior:

1. The degradation in strength with increasing flaw size is less severe for
ceramics without R curve behavior. This is shown schematically in
Fig. 11.195.
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2. The reliability of the ceramic increases. This will be discussed in detail in
Sec. 11.5.

3.  On the down side, there is now an increasing body of evidence that
seems to indicate that ceramics that exhibit R curve behavior are
more susceptible to fatigue than ceramics that do not exhibit R curve
behavior. This is discussed in greater detail in Chap. 12.

4. There is some recent evidence to suggest that R curve behavior
enhances the thermal shock resistance of some ceramics. The evidence
at this point is not conclusive, however, and more work is needed in
this area.

To summarize, fracture toughness is related to the work required to
extend a crack and is determined by the details of the crack propagation
process. Only for the fracture of the most brittle solids is the fracture tough-
ness simply related to surface energy. The fracture toughness can be
enhanced by increasing the energy required to extend the crack. Crack brid-
ging and martensitic transformations are two mechanisms that have been
shown to enhance Kj,.

11.5 Designing With Ceramics

In light of the preceding discussion, one expects that the failure stress, being
as sensitive as it 1s to flaw sizes and their distributions, will exhibit consider-
able variability or scatter. This begs the question: Given this variability, is it
still possible to design critical load-bearing parts with ceramics? In theory, if
the flaws in a part were fully characterized (i.e., their size and orientation with
respect to the applied stresses) and the stress concentration at each crack tip
could be calculated, then given Kj,, the exact stress at which a component
would fail could be determined, and the answer to the question would be
yes. Needless to say, such a procedure is quite impractical for several reasons,
least among them the difficulty of characterizing all the flaws inside a
material and the time and effort that would entail.

An alternative approach, described below, is to characterize the beha-
vior of a large number of samples of the same material and to use a statistical
approach to design. Having to treat the problem statistically has far-reaching
implications since now the best that can be hoped for in designing with
brittle solids is to state the probability of survival of a part at a given
stress. The design engineer must then assess an acceptable risk factor and,
using the distribution parameters described below, estimate the appropriate
design stress.

Other approaches being taken to increase the reliability of ceramics are
nondestructive testing and proof testing. The latter approach is briefly
discussed in Sec. 11.5.2.
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Figure 11.20 (a) The effect of m on the shape of the Weibull distribution. As m increases,
the distribution narrows. (b) Truncation of Weibull distribution as a result of proof testing.

11.5.1 The Statistical Approach

Weibull distributions

One can describe the strength distribution of a ceramic in a variety of
formalisms. The one most widely used today is the Weibull distribution.?**
This two-parameter semiempirical distribution is given by

£(x) = m(x)" " exp(—x™) (11.22)

where f(x) is the frequency distribution of the random variable x and m is a
shape factor, usually referred to as the Weibull modulus. When Eq. (11.22) is
plotted (see Fig. 11.20a), a bell-shaped curve results, the width of which
depends on m; as m gets larger, the distribution narrows.

Since one is dealing with a strength distribution, the random variable x
is defined as o/, where o is the failure stress and oy is a normalizing
parameter, required to render x dimensionless and whose physical signifi-
cance will be discussed shortly.

Replacing x by o/0, in Eq. (11.22), one finds the survival probability,
i.e., the fraction of samples that would survive a given stress level. is simply

x o o
s=] (%))
S =exp [—(i)m] (11.23)
0o

203 W. Weibull, J. Appl. Mech., 18:293-297 (1951); Mar. Res. & Stds.. May 1962. pp. 405-411.

or
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Rewriting Eq. (11.23) as 1/S = exp(o/0y)” and taking the natural log of
both sides twice yields

lnln-l—:mlng—:mlna——mlnao (11.24)
S o

Multiplying both sides of Eq. (11.24) by —1 and plotting — InIn(1/S)
versus In o yield a straight line with slope —m. The physical significance of
o, is now also obvious: It is the stress level at which the survival probability
is equal to 1/e, or 0.37. Once m and o are determined from the set of experi-
mental results, the survival probability at any stress can be easily calculated
from Eq. (11.23) (see Worked Example 11.2).

The use of Weibull plots for design purposes has to be handled with
extreme care. As with all extrapolations, a small uncertainty in the slope
can result in large uncertainties in the survival probabilities, and hence to
increase the confidence level, the data sample has to be sufficiently large
(N > 100). Furthermore, in the Weibull model, it is implicitly assumed
that the material is homogeneous, with a single flaw population that does
not change with time. It further assumes that only one failure mechanism
is operative and that the defects are randomly distributed and are small rela-
tive to the specimen or component size. Needless to say, whenever any of
these assumptions is invalid, Eq. (11.23) has to be modified. For instance,
bimodal distributions that lead to strong deviations from a linear Weibull
plot are not uncommon.

WORKED EXAMPLE 11.2

The strengths of 10 nominally identical ceramic bars were measured and found
to be 387, 350, 300, 420, 400, 367, 410, 340, 345, and 310 MPa. (¢) Determine m
and g for this material. (b) Calculate the design stress that would ensure a survi-
val probability higher than 0.999.

Answer

(a) To determine m and o, the Weibull plot for this set of data has to be made.
Do as follows:

. Rank the specimens in order of increasing strength, 1,2.3,...,/, j+ 1,
..., N, where N is the total number of samples.

e  Determine the survival probability for the jth specimen. As a first approxima-
tion, the probability of survival of the first specimenis 1 — 1/(N + 1); for the
second, 1 — 2/(N + 1), for the jth specimen 1 — j/(N + 1), etc. This expres-
sion is adequate for most applications. However, an alternate and more
accurate expression deduced from a more detailed statistical analysis yields

Jj—03
N+04

Si=1- (11.25)
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e  Plot —InIn(1/S) versus In o. The least-squares fit to the resulting line is the
Weibull modulus.

The last two columns in Table 11.2 are plotted in Fig. 11.21. A least-squares fit of
the data yields a slope of 10.5, which is typical of many conventional as-finished
ceramics. From the table, 0y =~ 385MPa (i.e. when —Inln1/S = 0).

Table 11.2 Summary of data needed to find m from a set of experimental results

Rank j S; g; Ino; ~Inlin(lo;)
1 0.932 300 5.700 2.6532
2 0.837 310 5.734 1.7260
3 0.740 340 5.823 1.2000
4 0.644 345 5.840 0.8200
5 0.548 350 5.860 0.5080
6 0.452 367 5.905 0.2310
7 0.356 387 5.960 -0.0320
8 0.260 400 5.990 -0.2980
9 0.160 410 6.016 —0.6060

10 0.070 420 6.040 —-0.9780

S
4 0.982
0.951
0.873
0.692
5.0 5.5 6.0 6.5

In o

Figure 11.21 Weibull plot of data shown in Table 11.2. Slope of the line is the Weibull
modulus m. The actual survival probability is shown on the right-hand side. At low
stresses. S is large (left-hand corner of figure).”*

204 The reason that — InIn(1/S) is plotted rather than Inin(1/S) is aesthetic. such that the high
survival probabilities appear on the upper left-hand sides of the plots.
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(b) To calculate the stress at which the survival probability is 0.999, use

Eq. (11.23), or
o \I05

from which o = 200 MPa. It is worth noting here that the error in using the aver-
age stress of 366 MPa instead of o, changes the end result for the design stress only
slightly. For most applications, it is sufficient to simply use the average stress.

Factors affecting the Weibull modulus

Clearly, from a design point of view, it is important to have high m’s. Note
that m should not be confused with strength, since it is possible to have a
weak solid with a high m and vice versa. For instance, a solid with large
defects that are all identical in size would be weak but, in principle, would
exhibit large m. It is the uniformity of the microstructure, including flaws,
grain size, and inclusions, that is critical for obtaining large m values.

Interestingly enough, increasing the fracture toughness for a truly brittle
material will not increase m. This can be shown as follows: By recasting
Eq. (11.24), m can be rewritten as

. In ln(l/Smax) —In ln(]/Smin)
B ln(amax/gmin)

For any set of samples, the numerator will be a constant that depends only on
the total number of samples tested [that is, N in Eq. (11.25)]. The denomina-
tor depends on the ratio op.x/0min» Which is proportional to the ratio
Cmin/ €max> Which is clearly independent of K., absent R curve effects. Thus
toughening of a solid per se will often not result in an increase in its Weibull
modulus. However, it can be easily shown that if a solid exhibits R curve
behavior, then an increase in m should, in principle, follow (see Prob. 11.12).

(11.26)

Effect of size and test geometry on strength

One of the important ramifications of brittle failure, or weak-link statistics, as
it is sometimes referred to, is the fact that strength becomes a function of
volume: larger specimens will have a higher probability of containing a
larger defect, which in turn will cause lower strengths. In other words, the
larger the specimen, the weaker it is likely to be. Clearly, this is an important
consideration when data obtained on test specimens, which are usually small,
are to be used for the design of larger components.

Implicit in the analysis so far has been that the volumes of all the
samples tested were the same size and shape. The probability of a sample
of volume ¥, surviving a stress ¢ is given by

S(V,) :exp{ - F—}} (11.27)

0¢
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The probability that a batch of n such samples will all survive the same stress
is lower and is given by??’

Sbatch = [S( VO)]n (1 1.28)

Placing n batches together to create a larger body of volume V', where
V = nV,, one sees that the probability S(V') of the larger volume surviving
a stress o 1s identical to Eq. (11.28), or

S(V) = Sharen = [S(Vo))" = [S(Vp)])" /' (11.29)

which 1s mathematically equivalent to

ol R o

This is an important result since it indicates that the survival probability
of a ceramic depends on both the volume subjected to the stress and the
Weibull modulus. Equation (11.30) states that as the volume increases, the
stress level needed to maintain a given survival probability has to be reduced.
This can be seen more clearly by equating the survival probabilities of two
types of specimens — test specimens with a volume V., and component
specimens with volume V. Equating the survival probabilities of the
two types of samples and rearranging Eq. (11.30), one can easily show that

Ocomp _ ( Viest )l/m (11.31)

Otest Vcomp

A plot of this equation is shown in Fig. 11.22, where the relationship
between strength and volume is plotted. The salient point here is that as
either the volume increases or the Weibull modulus decreases, the more
severe the downgrading of the design stress required to maintain a given
survival probability.

An implicit assumption made in deriving Eq. (11.31) is that only one
flaw population (i.e., those due to processing rather than, say, machining)
is controlling the strength. Different flaw populations will have different
strength distributions and will scale in size differently. Also implicit in
deriving Eq. (11.31) is that volume defects are responsible for failure. If,
instead, surface flaws were suspected of causing failure, by using a derivation
similar to the one used to get to Eq. (11.31), it can be shown that

O'comp — ( Atest )1/’” (1]32)

O'test Acomp

in which case the strength will scale with area instead of volume.

205 An analogy here is useful: the probability of rolling a given number with a six-sided die is 1/6.
The probability that the same number will appear on n dice rolled simultaneously is (1/6)".



Mechanical Properties: Fast Fracture 393

1.0

0.8

0.6
Ocomp
O test

0.4

0.2

0.0 L :
1.0 1

]

§ ! i e
1 1 Vst
10 100 1000 Veomp

Figure 11.22 The effect of volume on strength degradation as a function of the Weibull
modulus. The strength decreases as J increases and is more severe for low m.

Finally, another important ramification of the stochastic nature of
brittle fracture is the effect of the stress distribution during testing on the
results. When a batch of ceramics is tested in tension, the entire volume
and surface are subjected to the stress. Thus a critical flaw anywhere in the
sample will propagate with equal probability. In three- or four-point flexure
tests, however, only one-half the sample is in tension, and the other one-half
is in compression. In other words, the effective volume tested is, in essence,
reduced. It can be shown that the ratio of the tensile to flexural strength
for an equal probability of survival is

O3-point bend — [2(11‘1 + 1)2]1/,;1 (1 133)
Otension
In other words, the samples subjected to flexure will appear to be stronger, by
a factor that depends on m. For example, for m = 5, the ratio is about 2,
whereas increasing m to 20 reduces the ratio to 1.4.

11.5.2 Proof Testing

In proof testing, the components are briefly subjected to a stress level opt
which is in excess of that anticipated in service. The weakest samples fail
and are thereby eliminated. The resulting truncated distribution, shown in
Fig. 11.205, can be used with a high level of confidence at any stress that is
slightly lower than opr.

One danger associated with proof testing is subcritical crack growth,
discussed in the next chapter. Since moisture is usually implicated in
subcritical crack growth, effective proof testing demands inert, i.e.,
moisture-free, testing environments and rapid loading/unloading cycles
that minimize the time at maximum stress.
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11.6 Summary

1.

Ceramics are brittle because they lack a mechanism to relieve the
stress buildup at the tips of notches and flaws. This makes them
notch-sensitive, and consequently their strength will depend on the
combination of applied stress and flaw size. The condition for failure is

KI = 0'/ Ve > Kl(‘

where Kj. is the fracture toughness of the material. The strength of
ceramics can be increased by either increasing the fracture toughness
or decreasing the flaw size.

Processing introduces flaws in the material that are to be avoided if high
strengths are to be achieved. The flaws can be pores, large grains in an
otherwise fine matrix, and inclusions, among others. Furthermore, since
the strength of a ceramic component decreases with increasing grain
size, it follows that to obtain a high-strength ceramic, a flaw-free. fine
microstructure is desirable.

It is possible to toughen ceramics by a variety of techniques, which all
make it energetically less favorable for a crack to propagate. This can
be accomplished either by having a zone ahead of the crack martensiti-
cally transform, thus placing the crack tip in compression, or by adding
whiskers or fibers or large grains (duplex microstructures) that bridge
the crack faces as it propagates.

Comparing the requirements for high strength (uniform, fine
microstructure) to those needed to improve toughness (nonhomo-
geneous, duplex microstructure) reveals the problem in achieving both
simultaneously.

The brittle nature of ceramics together with the stochastic nature of
finding flaws of different sizes, shapes, and orientations relative to the
applied stress will invariably result in some scatter to their strength.
According to the Weibull distribution, the survival probability is given

0

where m, known as the Weibull modulus, is a measure of the scatter.
Large scatter is associated with low m values, and vice versa.

If strength is controlled by defects randomly distributed within the
volume, then strength becomes a function of volume, with the survival
probability decreasing with increasing volume. However, if strength is
controlled by surface defects, strength will scale with area instead.
Proof testing, in which a component is loaded to a stress level higher
than the service stress, eliminates the weak samples, truncating the
distribution and establishing a well-defined stress level for design.
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Problems

11.1. (a) Following a similar analysis used to arrive at Eq. (11.7), show
that an internal crack of length ¢ is only v/2 as detrimental to
the strength of a ceramic as a surface crack of the same length.

(h) Why are ceramics usually much stronger in compression than in
tension?

(¢) Explain why the yield point of ceramics can approach the ideal
strength 0,0, Whereas the yield point in metals is usually much
less than oy,.,. How would you attempt to measure the yield
strength of a ceramic, given that the fracture strength of ceramics
in tension is usually much less than the yield strength?

11.2. (a) Estimate the size of the critical flaw for a glass that failed at 102
MPa if v = 1Jm” and Y = 70 GPa.

Answer: 4.3 pm

() What is the maximum stress this glass will withstand if the largest
crack is on the order of 100 um and the smallest on the order of
7 um?

Answer: 21 MPa

11.3. Show that Eqgs. (11.2) and (11.9) are equivalent, provided the radius of
curvature of the crack p ~ 14r,, where ry is the equilibrium inter-
atomic distance; in other words, if it is assumed that the crack is
atomically sharp. Hint: Find expressions for v and Y in terms of n,
m, and ry defined in Chap. 4. You can assume #n = 9 and m = 1.

11.4. Al O; has a fracture toughness K, of about 4 MPa - m'/2. A batch of
Al,O; samples were found to contain surface flaws about 30 um deep.
The average flaw size was more on the order of 10 um. Estimate (a) the
tensile strength and (b) the compressive strength.

Answer: 412 MPa, 10 GPa

11.5. To investigate the effect of pore size on the strength of reaction-
bonded silicon nitride, Heinrich?*® introduced artificial pores (wax
spheres that melt during processing) in his compacts prior to reaction
bonding. The results he obtained are summarized below. Are these
data consistent with the Griffith criterion? Explain clearly, stating
all assumptions.

206§ Heinrich, Ber. Di. Keram. Ges., 55 (1978).
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Wax grain size, pm Average pore size, pm Bend strength. MPa
0-36 48 140 + 12
63-90 66 119 £ 12
125-180 100 101 + 14

11.6. The tensile fracture strengths of three different structural ceramics are
listed below: hot-pressed silicon nitride (HPSN). reaction-bonded
silicon nitride (RBSN), and chemical vapor-deposited silicon carbide
(CVDSC), measured at room temperature.

(a) Plot the cumulative failure probability of these materials as a
function of fracture strength.

() Calculate the mean strength and standard deviation of the
strength distributions, and determine the Weibull modulus for
each material.

(¢) Estimate the design stress for each material.

(d) On the basis of your knowledge of these materials. why do you
think they behave so differently?

HPSN (MPa) 521, 505, 500, 490, 478, 474,471,453, 452, 448, 444.
441, 439, 430, 428. 422. 409. 398, 394. 372, 360.341.

279

CVDSC 386, 351, 332, 327, 308, 296, 290, 279, 269, 260. 248.
231, 219, 199, 178, 139

RBSN 132, 120, 108, 106, 103, 99, 97. 95. 93. 90. 89. 84. 83.

82, 80, 80, 78, 76

11.7. (a) When the ceramic shown in Fig. 11.23 was loaded in tension
(along the length of the sample), it fractured at 20 MPa. The

5cm Tensile stress

4 cm

Figure 11.23 Cross section of ceramic part loaded in tension as shown. The heavy lines
denote flaws.
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Figure 11.24 Optical photomicrograph of indentation in glass. 200x.

11.8.

11.9.

11.10.

heavy lines denote cracks (two internal and one surface crack).
Estimate Kj, for this ceramic. State all assumptions.

Answer: 3.5MPa-m'/?

For silicon nitride, Kj, is strongly dependent on microstructure, but
can vary anywhere from 3 to 10 MPa .m'/2. Which of the following
silicon nitrides would you choose, one in which the largest flaw size
is on the order of 50 um and the fracture toughness is 8 MPa - m'/2,
or one for which the largest flaw size was 25 um, but was only half

as tough. Explain.

Evans and Charles®®” proposed the following equation for the deter-

mination of fracture toughness from indentation:

N—15
Ky ~ 0.15(H+/a) (%)
[
where H is the Vickers hardness in Pa and ¢ and a were defined in
Fig. 11.7. A photomicrograph of a Vickers indention in a glass slide
and the cracks that emanate from it is shown in Fig. 11.24. Estimate
the fracture toughness of this glass if its hardness is ~5.5 GPa.

Answer: ~1.2 to 1.6 MPa -m'/? depending on size of crack calculated
A manufacturer wishes to choose between two ceramics for a certain

application. Data for the two ceramics tested under identical condi-
tions were as follows:

Ceramic Mean fracture stress Weibull modulus
A 500 MPa 12
B 600 MPa 8

207 A G. Evans and E. A. Charles, J. Amer. Cer. Soc., 59:317 (1976).
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The service conditions are geometrically identical to the test

conditions and impose a stress of 300 MPa. By constructing Weibull
graphs with S = 1/2 for mean fracture stress or any other method.
decide which ceramic will be more reliable and compare the
probabilities of failure at 300 MPa. At what stress would the two cera-
mics give equal performance?
Answer: Stress for equal performance = 349 MPa

11.11. The MORs of a series of cylindrical samples (/ = 25 mm and diameter
of Smm) were tested and analyzed using Weibull statistics. The
average strength was 100 MPa, with a Weibull modulus of 10. Esti-
mate the stress required to obtain a survival probability of 95 percent
for cylinders with diameters of 10 mm but the same length. State all
assumptions.

11.12. Show why ceramics that exhibit R curve behavior should. in principle.

also exhibit larger m values.

11.13. (a) In deriving Eq. (11.30) the flaw population was assumed to be
identical in both volumes. However, sometimes in the manu-
facturing of ceramic bodies of different volumes and shapes.
different flaw populations are introduced. What implications. if
any, does this statement have on designing with ceramics? Be
specific.

(b) In an attempt to address this problem, Kschinka et al %
measured the strength of different glass spheres in compression.
Their results are summarized in Table 11.3. where D, is the
diameter of the glass spheres, N is the number of samples
tested, m is the Weibull modulus, o, is the average strength.
and V is the volume of the spheres.

Table 11.3

Dy, cm N m ar (50%) V.cm?

0.368 47 6.19 143 261 x 107"

0.305 48 5.96 157 1.49 x 107-

0.241 53 5.34 195 733 x 1077

0.156 30 5.46 229 1.99 x 10°°

0.127 45 5.37 252 1.07 x 10°°

0.108 38 5.18 303 6.60 x 10°*

0.091 47 3.72 407 395 x10°*

0.065 52 4.29 418 1.44 x 107

0.051 44 6.82 435 6.95 x 10°°

%% B. A. Kschinka. S. Perrella, H. Nguyen. and R. C. Bradt. J. Amer. Cer. Soc.. 69:467 (1986).
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(i) Draw on one graph the Weibull plots for spheres of 0.051,
0.108, and 0.368 cm. Why are they different?

(i1) For the 0.051 cm spheres, what would be your design stress
to ensure a 0.99 survival probability?

(iii) Estimate the average strength of glass spheres of 1-cm
diameter.

(iv) If the effect of volume is taken into account, then it is
possible to collapse all the data on a master curve. Show
how that can be done. Hint: Normalize data to 0.156-cm
spheres, for example.

Additional Reading

1. R. W. Davidge, Mechanical Behavior of Ceramics, Cambridge University Press,
New York, 1979,
2. R. Warren, ed., Ceramic Matrix Composites, Blackie, Glasgow, Scotland, 1992.
3. B. Lawn, Fracture of Brittle Solids, 2d ed., Cambridge University Press, New York,
1993.
4. A. Kelly and N. H. Macmillan, Strong Solids, 3d ed., Clarendon Press, Oxford,
England, 1986.
5. G. Weaver, “Engineering with Ceramics, Parts 1 and 2, J. Mat. Ed., 5:767 (1983) and
6:1027 (1984).
. T. H. Courtney, Mechanical Behavior of Materials, McGraw-Hill, New York, 1990.
. A. G. Evans, “Engineering Property Requirements for High Performance Ceramics,”
Mat. Sci. & Eng., T1:3 (1985).
8. S. M. Weiderhorn, ““A Probabilistic Framework for Structural Design,” in Fracture
Mechanics of Ceramics, vol. 5, R. C. Bradt, A. G. Evans, D. P. Hasselman, and
F. F. Lange, eds., Plenum, New York, 1978, p. 613.
9. M. F. Ashby and B. F. Dyson, in Advances in Fracture Research, S. R. Valluri, D. M.
R. Taplin, P. Rama Rao, J. F. Knott, and R. Dubey, eds., Pergamon Press,
New York, 1984, p. 3.
10. P. F. Becher, “Microstructural Design of Toughened Ceramics,” J. Amer. Cer. Soc.,
74:225 (1991).

~ O



