Logic Programming:
Parsing. Difference Lists, DCGs

Alan Smaill

Oct 15 2015

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015

o g schootof e BN
informatics @

1/26

Today

o ¢ Schoolof . BN
informatics @

» Context Free Grammars (review)
» Parsing in Prolog
» Definite Clause Grammars (DCGs)

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 2/26

L] School of
informa

Context Free Grammars
tics @

A simple CFG:

S -> NP VP

NP -> DET N

VP -> VI | VT NP

DET -> the

N -> cat | dog | food
VI -> meows | barks

VT -> bites | eats

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 3/26

Recognising grammatical sentences

® o School of Lo K
informatics

b Yes:
» ‘“the cat meows”
» ‘“the cat bites the dog”
» ‘“the dog eats the food”

» ‘cat the cat cat”
» ‘“dog bites meows'

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 4/26

Generation Example .
School of _ e 2 L
informatics @

This uses a proof tree, rather than a search tree.

S -> NP VP

NP -> DET N

VP -> VI | VT NP

DET -> the

N ->cat | dog | food
VI -> meows | barks
VI -> bites | eats

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 5/26

A simpler CFG

o g schootof e BN
informatics @

T ->c¢c
T -> aTb

In Prolog, with lists of characters:

t(Lc]).

t(8) :- t(S1),
append([a],S1,82),
append(S2, [b],S).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 6/26

Using append to parse
g pp p inf School of "ics ;@;

orma

s(L) :- np(L1), vp(L2), append(L1l,L2,L).
np(L) :- det(L1), n(L2), append(L1,L2,L).

vp(L) :- vi(L) ;
vt(L1), np(L2), append(L1,L2,L).

det([the]). det([al).
n([cat]). n([dogl). n([food]).
vi([meows]). vi([barks]).
vt([bites]). vt([eats]).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 7/26

A better way?

o ¢ Schoolof . BN
informatics @

» Clearly, we need to guess when we're generating —
» but also guess when we're parsing an unknown sequence

» This is inefficient — lots of backtracking!
» Reordering goals doesn’t help much

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 8/26

An even simpler CFG (again
p (g) inf School Ofi‘ics 2@;

orma

T ->c
T -> aTb

In Prolog, with accumulators:

t([cIL],L).

t([alL1],M) :- t(L1,[bIM])

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 9/26

using accumulator version

® o Schoolof .o
informatics @

7- t(L, D).

L = [c].
L = [a,c,b].
L = [a,a,c,b,b].

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 10/26

o School of
informa

Difference Lists
tics @

A difference list is a pair (t,X), where
b tis a list term with the shape [t1,t2,..tn|X], and

» X is a variable.

Difference lists correspond to normal lists as follows:

normal list difference list
[t1,t2,...,ta] ([t1,t2,...,tn]X],X)

Here we need to be careful that different difference lists use
different Prolog variables!

Difference lists are important because they allow much more
efficient list operations.

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 11/26

Difference lists cdt
infotmatics ‘@)

Some examples:
» Empty difference list: (X,X)
b n-element difference list: ([al,a2,..an|X],X),
» Appending difference lists (t,X) and (u,Y):

— simply unify X and u
— vyields (t[u/X],Y)

eg, append ([1,21X],X) to ([3,41Y],Y);
unify X=[3,41Y], and obtain ([1,2,3,41Y],Y).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 12/26

L]
informa

Difference Lists ctd
School of I‘ics Z@{

Sometimes, people work with just the first part of the difference
list (above, [t1,t2,..tn|X]); need to be careful that the variable
really is a variable when called.

We can write append of difference lists simply by using a different
representation. Let's take Z/X for a difference list (where
Z=[t1,t2,..tn]) above; here / is already available as an infix
operator. Then difference list append is simply:

dl_append(X/Y, Y/Z, X/Z).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 13/26

Difference Lists ctd

This is correct and efficient when we really are dealing with
difference lists, and the first and second are inputs.

Because there is a single clause, there can only be one solution, if
there is any solution;

so this will not give all solutions in mode d1_append(-,-,+).

?- dl_append([1,2]Y]1/Y,[3,41Z]1/Z,Ans).

Y = [3,41Z],
Ans = [1,2,3,4|2]/Z;
no

?- dl_append(A, B, [1,2,3]1/Z).

A =11,2,3]/_A,
B = _A/Z 7 ;
no

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015

o ¢ schootof e (D
informatics @

14/26

o School of
informa

Difference lists reverse
tics @
Compare:
%)% basic reverse, no optimisation
naive_reverse([],[]).
naive_reverse([X|Xs],Ys) :- naive_reverse(Xs,Rs),

append(Rs, [X],Ys).

%% difference lists used in second argument
%h of reverse_dl

reverse_dl1([],T\T).
reverse_dl1([X|Xs],Rs\T) :- reverse_dl(Xs,Rs\[XI|T]).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 15/26

An even simpler CFG (again)

o g schootof e BN
informatics @

T ->c¢c
T -> aTb

In Prolog, with difference lists:

t(L,M) :- L = [c|M].

t(L,M) :- L = [alL1],
t(L1,M1),
M1 = [b|M]

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 16/26

Definite Clause Grammars

School of
informatics @

Parsing using DCGs is so useful that Prolog has built-in syntax for
it:

t --> [c].

t -—> [al], t, [b].

translates to:

t(L,M) :- L = [c|M].

t(L,M) :- L = [alL1],
t(L1,M1),

[bIM].

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 17/26

DCG syntax

Alan Smaill

» Rules have the form nonterm --> body

» Body terms are:

»

»
»
»

terminal lists [t1,...,tn] (may be [1)
nonterminals s,t,u ...

sequential composition body1,body2
alternative choice bodyl; body2

Logic Programming: Parsing. Difference Lists, DCGs

inf

School of _ e 5’”“ F%'A
ormatics @

Oct 15 2015

18/26

Using DCG version

o ¢ Schoolof . BN
informatics @

DCG is translated to difference lists version, so used in the same
way.

7- t(L’ [])-

L = [c].
L = [a,c,b].
L = [a,a,c,b,b]

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 19/26

using DCG ctd
g School of I‘ics z@;

L]
informa

We can also use the built-ins phrase/2, phrase/3:

when the first argument is a non-terminal from the grammar, this
generates corresponding examples (in difference list form in the
second case).

7- phrase(t,L).
L = [c].
L = [a,c,b].

?- phrase(t,L,M).

L
L

[cIM].
[a,c,b|M].

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 20/26

larger example revisited

s -
np -->
vp -->
det -—>
n -=>
vi -——>
vt -->
Alan Smaill

np, vp.
det, n.
vi ; vt, np.

[thel ; [al.

[cat] ; [dog]l ; [food].
[meows] ; [barks].
[bites] ; [eats].

Logic Programming: Parsing. Difference Lists, DCGs

inf

School of _ e 5’00“\ "m;‘
ormatics @

Oct 15 2015

21/26

informa

DCGs with tests
School of I‘ics ;@;

DCG clause bodies can also contain tests, written as an arbitrary
Prolog goal in curly brackets: {Goal}
Example:

n --> [Word], {noun(Word)}.

noun(dog) . noun(cat).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 22/26

DCGs with recursion .
inf

School of _ e 5'00 %'AA
ormatics @

» Left recursion, as usual, leads to non-termination:

exp -—> exp, [+],exp

» Avoid by using right recursion and fall-through

exp --> simple_exp, [+],exp.

exp -—> simple_exp.

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs

Oct 15 2015

23/26

DCGs with parameters

o ¢ schootof e (D
informatics @

» Non-terminals in DCGs can have parameters:

t(0) ——> [c].

t(succ(N)) --> [a], t(N), [b]

» Can keep track of depth of nesting in terms.

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 24/26

DCGs and parameters > CFGs

o g schootof e BN
informatics @

With parameters, we go outside the expressiveness of CFGs.

u(N) --> n(N,a),
n(N,b),
n(N,c).

n(0,X) --> [I.

n(succ(N),X) --> [X], n(N,X).

This characterises a set of expressions that has no CFG description.
(what set?)

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 25/26

Parsing with parse trees o soter . R
informatics \&Y:

» “the cat meows”

» SC NP(DET (the), N (cat)),
VP (VI (meows)))

b “the cat bites the dog”

» S(NP (DET (the), N(cat),
VP (VT (bites),
NP(DET(the), N(dog)))

» Can build parse trees using parameters
— look for this as a tutorial exercise.

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 26/26

Further Readin
g inf School of "ics é@;

orma

» LPN, chs 7-8: more difference list examples and translation of
DCGs to Prolog

Next time:

» search techniques:

b depth-first, iterative deepening, breadth-first, best-first.

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 27/26

