
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Higher order logic programming

Extending the logic
Extending the search
Examples

Examinable material.

Alan Smaill Logic Programming Nov 19 2015 1/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Recall:

definite clause logic is extended by adding:

A type structure: syntax items have user declared types; there
is a special type o of propositions; functions from type t1 to
type t2 have type t1 → t2. Predicates on objects of type t
have type t → o.

Implication as a new connective: G => H.

Universal quantification (in programs and queries).

Existential quantification (just in queries).

Alan Smaill Logic Programming Nov 19 2015 2/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Quantifiers

Use the following to express quantification:
for ∀x A, use a lambda term to express the binding of the variable,
and then a constant pi to quantify. Thus a goal

∀x x = x

becomes

pi (x\ (x = x))

and ∀P P(0) → P(0) becomes

pi (p\ ((p 0) => (p 0))).

Alan Smaill Logic Programming Nov 19 2015 3/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Search

What search operations are used to solve queries?
There are search operations associated with different connectives
in the goal; for example:

To solve D => G, add D to the program clauses, and solve G.

To solve pi (x\ G x), pick a new parameter c
(i.e. a constant that does not appear in the current problem),
and solve G c.

Analogously to Prolog, to solve atomic G, find a program
clause whose head can be unified with G, and solve the body
with the unifier applied.

Alan Smaill Logic Programming Nov 19 2015 4/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example (McCarthy)

Try to formalise the following:

Something is sterile if all the bugs in it are dead.
If a bug is in an object which is heated, then the bug is
dead.
This jar is heated.
So, the jar is sterile.

This is a natural and simple argument, and we want to express in
directly. We could use full predicate calculus (but search is hard
there).

In the language above, we get as follows.

Alan Smaill Logic Programming Nov 19 2015 5/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

kind i type.
type sterile (i -> o).
type in (i -> i -> o).
type heated (i -> o).
type bug (i -> o).
type dead (i -> o).
type j i.

sterile Jar :- pi x\ ((bug x) =>
(in x Jar) => (dead x)).

dead X :- heated Y, in X Y, bug X.
heated j.

?- sterile X.

X = j

Alan Smaill Logic Programming Nov 19 2015 6/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Using higher-order features.

Often we want to do similar things for different predicates we are
reasoning about. For example, the standard ancestor/2 predicate
is defined as a transitive extension of parent/2:

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Similarly, get less than from the successor relation, descendent
from child . . .
Now, do this once and for all:

Alan Smaill Logic Programming Nov 19 2015 7/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

type trans (A -> A -> o) -> (A -> A -> o).

trans Pred X Y :- Pred X Y.

trans Pred X Z :- Pred X Y, trans Pred Y Z.

and define ancestor via

ancestor X Y :- trans parent X Y.

Here the predicate parent is used as an argument to the trans
procedure.

Alan Smaill Logic Programming Nov 19 2015 8/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Map

We can exploit the higher-order features to write a map predicate;
this takes a list and a function, and returns the result of applying
the function to each member of the list.
Because we have relations available, we can also think of mapping
predicates (what could this mean?).

type mapfun (A -> B) -> list A -> list B -> o.

type mappred (A -> B -> o) -> list A -> list B -> o

type for_each (A -> o) -> list A -> o.

Alan Smaill Logic Programming Nov 19 2015 9/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

mapfun

Because we are in a relational, rather than functional, setting,
what is available with the typing A -> B is limited.
Here’s the definition of mapfun:

mapfun F nil nil.

mapfun F (X :: K) ((F X) :: L) :- mapfun F K L.

Notice the use of F as a variable for a function –
this goes beyond Prolog, and keeps reversibility.

Alan Smaill Logic Programming Nov 19 2015 10/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Running mapfun

We can query for “output” list, or “input” list:

?- mapfun (x\ x + x) (3 :: 4 :: 5 :: nil) Y.

Y = 3 + 3 :: 4 + 4 :: 5 + 5 :: nil

?- mapfun (x\ (x + x)) X ((3 + 3) :: (8 + 8) :: nil)

.

X = 3 :: 8 :: nil

and even query for the function:

?- mapfun F (3 :: 8 :: nil) ((3 + 3) :: (8 + 8) ::

nil).

F = x\ x + x

Alan Smaill Logic Programming Nov 19 2015 11/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

mappred

Here’s a definition for mappred;
again note the variable standing for a predicate:

mappred P nil nil.

mappred P (X :: L) (Y :: K) :- P X Y, mappred P L K.

What will happen on back-tracking?

Suppose we have some background predicate:

likes jane moses. likes john peter.

likes jane john. likes james peter.

Alan Smaill Logic Programming Nov 19 2015 12/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

mappred reversible

?- mappred likes (jane :: john :: nil) L.

L = moses :: peter :: nil ;

L = john :: peter :: nil ;

no more solutions

?- mappred likes X (john :: peter :: nil).

X = jane :: john :: nil ;

X = jane :: james :: nil ;

no more solutions

Alan Smaill Logic Programming Nov 19 2015 13/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

“Difference” lists in λProlog

Recall standard Prolog difference lists, which give an efficient way
to do some list operations — and also need care in use.

In a higher-order setting, we can achieve the same efficiency gain,
but remain declarative, and indeed retain reversibility.

The idea is that a normal list:

[1,3,5]

is represented by a function that maps any list to the list with
[1,3,5] prepended; in Haskell syntax:

\x -> (1 : 3 : 5 : x)

Alan Smaill Logic Programming Nov 19 2015 14/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference lists in λProlog (2)

We can define functions to convert between the normal
representation and this “difference” list version, and get an
efficient way to append lists. Here are the type declarations;
list T is a polymorphically typed list, and the difference lists have
type list T -> list T:

type mkDList list T -> (list T -> list T) -> o.

type append_dl

(list T -> list T) ->

(list T -> list T) ->

(list T -> list T) -> o.

Alan Smaill Logic Programming Nov 19 2015 15/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference lists in λProlog (2)

These are implemented as follows:

% mkDList /2 uses standard recursion

mkDList nil (x\ x).

mkDList (H::T) (x\ H::(T’ x)) :- mkDList T T’.

This works in both directions:

?- mkDList (1::3::5:: nil) L.

L = x\ 1 :: 3 :: 5 :: x

?- mkDList L (x\ 1::3::5::x).

L = 1 :: 3 :: 5 :: nil

Alan Smaill Logic Programming Nov 19 2015 16/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference list append

Now think a bit what corresponds to appending lists in this
representation:

append_dl L M (x\ L (M x)).

So append is done via unification; we get reversibility here (there
can be several unifiers, unlike in the usual Prolog situation).

Alan Smaill Logic Programming Nov 19 2015 17/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Reversible append

?- mkDList (1::3::5:: nil) L, append_dl L L Y.

L = x\ 1 :: 3 :: 5 :: x

Y = x1\ 1 :: 3 :: 5 :: 1 :: 3 :: 5 :: x1

Reverse direction:

?- mkDList (1::3::5:: nil) L, append_dl X Y L.

L = x\ 1 :: 3 :: 5 :: x

X = x1\ 1 :: 3 :: 5 :: x1

Y = x2\ x2 ;

L = x3\ 1 :: 3 :: 5 :: x3

X = x4\ 1 :: 3 :: x4

Y = x5\ 5 :: x5 ;

% and another two solutions

Alan Smaill Logic Programming Nov 19 2015 18/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Examinable material: Programming

Material covered in LPN, ch. 1-6:

Terms, variables, unification (+/- occurs check)

Arithmetic expressions/evaluation

Recursion, avoiding non-termination

Programming with lists and terms

Expect ability to solve problems similar to those in tutorial
programming exercises (or textbook exercises)

Alan Smaill Logic Programming Nov 19 2015 19/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Examinable material: Programming (2)

Material covered in LPN, ch. 7-11:

Definite clause grammars

Difference lists

Non-logical features (“is”, cut, negation, assert/retract)

Collecting solutions (findall, bagof, setof)

Term manipulation (var, =.., functor, arg, call)

Expect ability to explain concepts & use in simple Prolog
programs

Alan Smaill Logic Programming Nov 19 2015 20/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Examinable material: Programming (3)

Advanced topics (Bratko ch. 11-12, 14, 23)

Search techniques (DFS, IDS, BFS)

Symbolic programming & meta-programming

Expect understanding of basic ideas

not ability to write large programs from scratch under time
pressure.

Alan Smaill Logic Programming Nov 19 2015 21/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Some exam info

Programming exam: 2 hours

DICE machine with SICSTUS Prolog available

(Documentation won’t be, but exam will not rely on
memorizing obscure details)

Sample exam on course web page

Alan Smaill Logic Programming Nov 19 2015 22/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Examinable material: Theory

Definite clauses, syntax and semantics for the propositional
case

Backchain inference rule for propositional case

Soundness and completeness of inference system with respect
to logical consequence

Proof search as inference procedure, the Prolog search
procedure

Notion of decision procedure.

Monotone functions and fixed points, least fixed point

Least fixed point for propositional definite clauses

Alan Smaill Logic Programming Nov 19 2015 23/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Examinable material: Theory (2)

Completeness of inference procedure wrt inference system

predicate calculus, syntax, informal semantics, definite clauses

substitution, unification, most general unifier, occurs check

backchain inference rule, Prolog search and its properties

not general existence of lfp

the result that backchain is complete for definite clauses (not
the proof)

what Herbrand model is, and least Herbrand model.

result that complete decision procedure for inference in
definite clauses is impossible (not proof)

Alan Smaill Logic Programming Nov 19 2015 24/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Examinable material: Theory (2)

Algorithm for basic definite clause interpreter

object language vs meta-language distinction

Prolog meta-predicates and why they do not fit the
declarative reading

negation by failure and the closed world assumption

inference using CWA as a form of non-monotonic reasoning

Clark completion algorithm

Higher-order logic programming and dealing with the
extensions

Alan Smaill Logic Programming Nov 19 2015 25/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Summary

Higher order logic programming: λProlog

Higher-order predicates combined with search

Examinable material.

Alan Smaill Logic Programming Nov 19 2015 26/1

