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» Problem representation
» Search

» Depth First
» lterative Deepening
» Breadth First

» AND/OR (alternating/game tree) search
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Many classical Al/CS problems can be formulated as search
problems.

Examples:
» Graph searching
» Blocks world
b Missionaries and cannibals

» Planning (e.g. robotics)
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Search Spaces
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Given by:
b Set of states s1, 5, ...

» Goal predicate goal(X)

» Step predicate s(X, Y) that says we can go from state X to
state Y

» A start state (or states)

» A solution is a path leading from the S to a goal state G
satisfying goal(G).
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Example: Blocks world
p School Of"ics ;@;
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Take configuration of blocks as a list of three towers, each tower
being a list of blocks in a tower from top to bottom.

[[c,b,al, ], [c]]
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Example: Blocks world
p School Of"ics ;@;
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Move a block from top of a tower to top of another tower:

[[b,al, [], [c]]
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Example: Blocks world P
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Next move:

([al, [b], [c]]
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Example: Blocks world P
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Then —

(J, [a,b], [c]]
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Prolog representation
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p State is a list of stacks of blocks:
[[a,b,c],[],[]]

» Transitions move a block from the top of one stack to the top
of another:

s([[A|As],Bs,Cs], [As,[A|Bs],Cs]).
s([[AlAs],Bs,Cs], [As,Bs,[AlCs]]).

» Can specify particular goal position:

goal([[],[],[a,b,cl]).
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An abstract problem space

Think of the graph generated by these

s(a,b). declarations.

s(b,c). _

s(c,a). In this case:
s(c,f(d)). » the graph is infinite

s(£(N),£(g(N))). » thereis a loop near the top of the graph
s(£(g(X)),X).

goal(d).
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abstract space ctd
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roblem 1: cycles
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We can already see in the blocks world example and in the abstract
search space that it is easy to follow actions around in cycles, and
not find the goal, even if there is a path to the goal.

There are two main approaches to deal with this:
b remember where you've been; OR . ..
» work with depth bound
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Solution 1: remember where you've been o oot
rmatics @

% dfs( PathSoFar, CurrentNode, PathToGoal )

dfs_noloop(Path,Node, [Node|Path]) :-
goal (Node) .

dfs_noloop(Path,Node,Pathl) :-
s(Node,Nodel),
\+ member (Nodel,Path),
dfs_noloop([Node|Path],Nodel,Pathl).
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Problem 2: Infinite State Space et . 4B
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Compare the graph from the abstract search space.
Depth First Search has similar problems to Prolog proof search:

» We may miss solutions because state space is infinite;

b Even if state space is finite, may wind up finding “easy”
solution only after a long exploration of pointless part of
search space
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Solution 2: depth bounding
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b Keep track of depth, stop if bound exceeded
» Note: does not avoid loops (can do this too)

dfs_bound(_,Node, [Node]) :-
goal (Node) .

dfs_bound(N,Node, [Node|Path]) :-
N> o0,
s (Node,Nodel),
M is N-1,
dfs_bound (M,Nodel,Path)
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Problem 3: what is a good bound?
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» In general, we just don't know in advance:

» Too low? —
Might miss solutions
» Too high? — Might spend a long time searching pointlessly
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Solution 3: iterative deepening
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Use the following with some small start value for N

dfs_id(N,Node,Path) :-
dfs_bound (N,Node,Path)

M is N+1,
dfs_id(M,Node,Path).

NB: if there is no solution, this will not terminate.
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Breadth first search
School of I‘ics Z@J

Keep track of all possible solutions, try shortest ones first;
do this by maintaining a “queue” of solutions

bfs([[Node|Path]|_], [Nodel|Path]) :-
goal(Node) .

bfs([Path|Paths], S) :-
extend (Path,NewPaths),
append (Paths,NewPaths,Pathsl),
bfs(Pathsi,S).

bfs_start(N,P) :- bfs([[N]],P).
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extending paths
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extend([Node|Path] ,NewPaths) :-
bagof ([NewNode,Node |Path],
(s (Node,NewNode) ,
\+ (member (NewNode, [Node|Path]))),
NewPaths),
|
%% if there are no next steps,
%% bagof will fail and we’ll fall through.

extend(_Path,[]).
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Problem: speed

o g schootof e BN
informatics @

» Concatenating new paths to end of list is slow

» Avoid this using difference lists?
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AND/OR search
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b So far we've considered graph search problems
» Just want to find some path from start to end
» Other problems have more structure
b e.g. 2-player games
» AND/OR search is a useful abstraction
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Example: Noughts and Crosses
P g informatics @

MAX (x)

MIN (0)

MAX (x)

MIN (0)

TERMINAL

Utility
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Representation
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» or(S,Nodes)

» Sis an OR node with possible next states Nodes
» “Our move”

» and(S,Nodes)

» Sis an AND node with possible next states Nodes
» “Opponent moves"

b goal(S)
» Sisa “win” for us
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Example: A simple game
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and(a, [b,c]).
or(b, [d,a]).
or(c,[d,el).
goal(e).

What is the graph here?
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Basic Idea

andor (Node) :- goal(Node).
andor (Node) :-
or (Node,Nodes) ,
member (Nodel,Nodes),
andor (Nodel) .
andor (Node) :-
and (Node,Nodes),
solveall(Nodes) .

solveall (Nodes) :-
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Solutions @

b For each AND state, we need solutions for all possible next
states

» For each OR state, we just need one choice

» A “solution” is thus a tree, or strategy

» Can adapt previous program to produce solution tree;

» Can also incorporate iterative deepening, loop avoidance, BFS.

» heuristic measures of “good” positions leads to algorithms like
MiniMax.
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Noughts and crosses via minimax
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See
http:
// wuww. emse. fr/ ~picard/ cours/ at/minimaz/

with acknowledgements to EMSE.
This provides alongside an implementation of minimax,

instantiation to noughts and crosses (= tic-tac-toe), and a basic
interface for playing the game.
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Further Reading
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» Bratko, Prolog Programming for Artificial Intelligence

» ch. 8 (difference lists), ch. 11 (DFS/BFS)
» also Ch. 12 (BestFS), 13 (AND/OR)
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