Logic Programming:
Recursion, lists, data structures

Alan Smaill

Sep 28 2015

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015

o g schootof e BN
informatics @

1/28

Today

o ¢ Schoolof . BN
informatics @

» Recursion

» proof search
» practical concerns

b List processing

» Programming with terms as data structures.

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 2/28

Recursion .
School of _ e 2 L
informatics @

So far the rules we have seen have been (mostly) non-recursive.
This is a limit on what can be expressed.

Without recursion, we cannot define transitive closure
eg define ancestor/2 in terms of parent/2.

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 3/28

School of
informatics

Recursion ctd @

In recursive use, the same predicate is used in the head (lhs) of the
rule as in the body (rhs)
(in the second clause below):

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z),
ancestor(Z,Y).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015

4/28

School of
informatics

Recursion ctd @
In recursive use, the same predicate is used in the head (lhs) of the
rule as in the body (rhs)

(in the second clause below):

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z),
ancestor(Z,Y).

This is a fine declarative description of what it is to be an ancestor.

But watch out for the traps!!!

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 4/28

Reminder: depth-first search N @
ties @Y

informa

Prolog searches depth-first in program order (“top to bottom”):
» Regardless of context

b ...even if there is an “obvious” solution elsewhere in the
search space.

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 5/28

Reminder: depth-first search
School of I‘ics Z@J

informa

Prolog searches depth-first in program order (“top to bottom”):
» Regardless of context

b ...even if there is an “obvious” solution elsewhere in the
search space.

— the query will loop on the first clause, and fail to terminate.

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015

5/28

L] School of
informa

Recursion: order can matter
tics @

Take the program for ancestor/2 with clauses in the opposite
order:

ancestor(X,Y) :- parent(X,Z),
ancestor(Z,Y).

ancestor (X,Y) :- parent(X,Y).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 6/28

o School of
informa

Recursion: order can matter
tics @

Take the program for ancestor/2 with clauses in the opposite
order:

ancestor(X,Y) :- parent(X,Z),
ancestor(Z,Y).

ancestor (X,Y) :- parent(X,Y).

This may be less efficient — looks for longest path first.
More likely to loop — if the parent/2 relation has cycles.

HEURISTIC: write base cases first (ie non-recursive cases).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 6/28

o School of _ e z
informatics :

o

Rule order affects search ®

parent(a,b).
parent(b,c).

Z=b

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 7/28

o School of _ e z
informatics :

o

Rule order affects search ®

parent(a,b).
parent(b,a) .

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 8/28

Recursion again o o B
informatics \&Y:

Goal order can matter!

ancestor3(X,Y) :- parent(X,Y).
ancestor3(X,Y) :- ancestor3(Z,Y),
parent (X,Z)

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 9/28

Recursion again

o g schoolof o DN
informatics @

Goal order can matter!

ancestor3(X,Y) :- parent(X,Y).
ancestor3(X,Y) :- ancestor3(Z,Y),
parent (X,Z)

This returns all solutions, then loops, eg with the following facts:

parent(a,b).
parent (b,c).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 9/28

o School of _ e 2
informatics {&):

Goal order affects search ®

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 10/28

L] School of
informa

More recursion
tics @

Clause order can matter.

ancestor4(X,Y) :- ancestor4(Z,Y),
parent (X,Z).
ancestor4(X,Y) :- parent(X,Y).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 11/28

L] School of
informa

More recursion
tics @

Clause order can matter.

ancestor4(X,Y) :- ancestor4(Z,Y),
parent (X,Z).
ancestor4(X,Y) :- parent(X,Y).

This will always loop.
Heuristic: put non-recursive goals first.

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 11/28

Goal order matters

o School of _ e
informatics

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 12/28

L] School of
informa

Recursion and terms
tics @

b Terms can be arbitrarily nested
» Example: unary natural numbers

nat(z).
nat(s(X)) :- nat(X).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 13/28

Recursion and terms

o ¢ Schoolof . BN
informatics @

b Terms can be arbitrarily nested
» Example: unary natural numbers

nat(z).
nat(s(X)) :- nat(X).

b To do interesting things, we need recursion.

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 13/28

Addition, subtraction

» Addition:
add(z,N,N).

add(s(N),M,s(P)) :- add(N,M,P).

Alan Smaill Logic Programming: Recursion, lists, data structures

inf

School of _ e 5’00“ E%'i
ormatics @

Sep 28 2015

14/28

Addition, subtraction

o o Schoolof .o DN
informatics (&)

» Addition:

add(z,N,N).
add(s(N),M,s(P)) :- add(N,M,P).

» Run in reverse to get all M,N that sum to P:

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 14/28

Addition, subtraction R
informatics @

» Addition:

add(z,N,N).
add(s(N),M,s(P)) :- add(N,M,P).

» Run in reverse to get all M,N that sum to P:

?7- add(X,Y,s(s(s(2)))).
X=z,Y=s(s(s(2)));
X=s(2),Y=s(s(2));

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 14/28

Addition, subtraction

infotmatics @)
» Addition:

add(z,N,N).
add(s(N),M,s(P)) :- add(N,M,P).

» Run in reverse to get all M,N that sum to P:
7- add(X,Y,s(s(s(z)))).
X=z,Y=s(s(s(2)));

X=s(Z),Y=s(s(z));

» Use to define leq/2:
leq(M,N) :- add(M,_,N).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 14/28

Addition, subtraction

informatics (@)
» Addition:

add(z,N,N).
add(s(N),M,s(P)) :- add(N,M,P).

» Run in reverse to get all M,N that sum to P:

?7- add(X,Y,s(s(s(2)))).
X=z,Y=s(s(s(2)));
X=s(2),Y=s(s(2));

» Use to define leq/2:
leq(M,N) :- add(M,_,N).

Here “_" is a so-called anonymous variable;
use to avoid warning of singleton variable in Prolog programs.
Can also use, for example, _X, _Anon.

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 14/28

Multiplication .
informatics @

Now define multiplication:

multiply(z,N,z). % or: multiply(z,_,z).

multiply(s(N),M,P) :-
multiply(N,M,Q), add(M,Q,P).

square(N,M) :- multiply(N,N,M).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 15/28

List Processing

» Recall built-in list syntax:

list([]).
list([XIL]) :- 1list(L).

Alan Smaill Logic Programming: Recursion, lists, data structures

inf

Ve

School of _ e K %'1
ormatics @

Sep 28 2015

16/28

List Processing

School of

Alan Smaill

Recall built-in list syntax:

list([]).
list([XIL]) :- 1list(L).

Examples: list append

append([],L,L).
append ([X|L],M, [XIN]) :- append(L,M,N).

Logic Programming: Recursion, lists, data structures Sep 28 2015

. . 4 N
informatics \&Y:

16/28

append in action

» Forward direction:
?7- append([1,2],[3,4],X).

X = [1:2,334]

Alan Smaill Logic Programming: Recursion, lists, data structures

inf

Ve

School of _ e K %'1
ormatics @

Sep 28 2015

17/28

orma

append in action . B
informatics @
» Forward direction:
?- append([1,2],[3,4],X).

X = [1,2,3,4]

» Backward direction
?- append(X,Y,[1,2,3,4]).
X=[], Y=[1,2,3,4];
X=[1],Y=[2,3,4];

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 17/28

o School of _ e N
informatics °

Mode annotations @

These are recognised ways of indicating properties of Prolog
procedures.
» Notation: append(+,+,-)
» Expect to be called with the first two arguments ground, and

third a variable (which we normally expect to bound after the
call)

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 18/28

o School of _ e :
informatics °

Mode annotations @

These are recognised ways of indicating properties of Prolog
procedures.

» Notation: append(+,+,-)
» Expect to be called with the first two arguments ground, and
third a variable (which we normally expect to bound after the
call)

» Similarly, append (-,-,+)
» Call with last argument ground, first two as variables
(which we normally expect to be bound after the call).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 18/28

Mode annotations .
School of _ e 3)
informatics @

These are recognised ways of indicating properties of Prolog
procedures.
» Notation: append(+,+,-)

» Expect to be called with the first two arguments ground, and
third a variable (which we normally expect to bound after the

call)
» Similarly, append (-,-,+)
» Call with last argument ground, first two as variables
(which we normally expect to be bound after the call).
» Not “code”, but often used in annotations

b “?" annotation used where any term may appear
— i.e. ground, variable, or compound term with variables.

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015

18/28

List Processing ctd

When is something a member of a list?

member (X, [X|_1).
member (X, [_|T]) :- member(X, T).

Alan Smaill Logic Programming: Recursion, lists, data structures

inf

School of _ e K F%ﬁ
ormatics @

Sep 28 2015

19/28

List Processing ctd . A
informatics @

When is something a member of a list?

member (X, [X|_1).
member (X, [_|T]) :- member(X, T).

Typical modes:
member (+,+)
member (-, +)

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 19/28

List processing ctd

» Removing an element of a list:

remove (X, [X|L], L).

remove (X, [YIL], [YIM]) :- remove(X, L, M).

Alan Smaill Logic Programming: Recursion, lists, data structures

o ¢ Schoolof e DX
informatics @

Sep 28 2015

20/28

List processing ctd

o ¢ Schoolof e DX
informatics @

» Removing an element of a list:

remove (X, [X|L], L).
remove (X, [YIL], [YIM]) :- remove(X, L, M).

NB: removes one occurrence of X;
fails if X is not a member of the list.

b Typical mode:
remove (+,+,-)

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 20/28

List processing ctd

o g schootof e BN
informatics @

b Zip: pairing of corresponding elements of lists:
assumed to be of same length.

zip([1, 01, D).
zip([XIL], [YIM], [(X,Y)IN]) :- zip(L, M, N).

» Typical modes:

zip(+,+,-).
zip(-,-,+). % unzip

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 21/28

List flattening

L) School of _ e
informatics

b Write a flatten predicate flatten/2 that

» Given a list of (lists of ...)
» Produces a list of individual elements in the original order.

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 22/28

List flattening

b Write a flatten predicate flatten/2 that

» Given a list of (lists of ...)
» Produces a list of individual elements in the original order.

» Examples:

?- flatten([[1,2],[3,4]1], L).
L = [1,2,3,4]

?7- flatten([[1,2],[3,[4,5]]1,6]1,L).
L=1[1,2,3,4,5,6]

?- flatten([3,X,[4,5]1],L).
L = [31X54:5]

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015

o ¢ schootof e (D
informatics @

22/28

List flattening

o g schootof e BN
informatics @

flatten([1, [1).

flatten([H|T], M) :- flatten(H, Hf),
flatten(T, Tf),
append (Hf, Tf, M).

flatten(X, [X]) :- 7?77
% non-list case; how treat variables?!?!

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 23/28

Records e School of 5’00“\ vsm"ﬁ
informatics @

» Can use terms to define data structures:

pb([entry(alan, ’156-675’),...]1).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 24/28

Re Cords e School of 4 S m’i
informatics @

» Can use terms to define data structures:
pb([entry(alan, ’156-675’),...]1).

» and operations on them:

pb_lookup(pb(B), P, N) :-
member (entry(P,N), B).

pb_insert(pb(B), P, N, pb([entry(P,N) | Bl)).

pb_remove (pb(B), P, pb(B2)) :-
remove (entry(P,_), B, B2).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 24/28

Trees o g schootof e BN
informatics @

We can define (binary) trees with data (at the nodes).

tree(leaf).
tree(node(Data, LT, RT)) :- tree(LT), tree(RT).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 25/28

Trees

o g Schoolof .. AGON
informatics (&)

We can define (binary) trees with data (at the nodes).

tree(leaf).
tree(node(Data, LT, RT)) :- tree(LT), tree(RT).

Data membership in a tree —
using “;"” for alternatives in the body of a clause.

mem_tree(X, node(X, _, _)).

mem_tree(X, node(_, LT, RT)) :-
mem_tree(X, LT) ;
mem_tree (X, RT).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 25/28

Preorder traversal .
School of _ e p)
informatics \&Y:

Pick up the data in a particular order:
start at root, traverse recursively left subtree, then right subtree.

preorder (leaf, [1).
preorder (node(X, LT, RT), [XIN]) :-
preorder (LT, LO),

preorder (RT, RO),
append(LO, RO, N).

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 26/28

Preorder traversal

® o Schoolof o QI
informatics (&)

Pick up the data in a particular order:
start at root, traverse recursively left subtree, then right subtree.

preorder (leaf, [1).
preorder (node(X, LT, RT), [XIN]) :-
preorder (LT, LO),

preorder (RT, RO),
append(LO, RO, N).

What happens if we run this in reverse?

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 26/28

o School of
informa

Tutorials next week
tics @

b The tutorial questions are on the web page;
you should work through these before the tutorial.

b It's recommended to use the sicstus emacs mode to interact
with Prolog and edit source code. This mode is invoked
automatically when editing Prolog files (with suffix .pl) on
DICE.

(See sicstus documentation if you want to set this up for
yourself.)

You can find out about the mode by “C-h m" in emacs when
the mode is in use, or via sicstus documentation.

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 27/28

Coming Attractions o soter . R
informatics \&Y:

» Non-logical features:
» Expression evaluation

» 1/0

b “cut” (pruning proof search)
» Further reading
> » Learn Prolog Now, ch 3-4

» Tutorial questions on web page.

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 28/28

