
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Logic Programming:
Search Strategies

Alan Smaill

Oct 19, 2015

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 1/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Problem representation

Search

Depth First
Iterative Deepening
Breadth First

AND/OR (alternating/game tree) search

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 2/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Search Problems

Many classical AI/CS problems can be formulated as search
problems.

Examples:

Graph searching

Blocks world

Missionaries and cannibals

Planning (e.g. robotics)

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 3/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Search Spaces

Given by:

Set of states s1, s2, . . .

Goal predicate goal(X)

Step predicate s(X , Y) that says we can go from state X to
state Y

A start state (or states)

A solution is a path leading from the S to a goal state G
satisfying goal(G).

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 4/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example: Blocks world

Take configuration of blocks as a list of three towers, each tower
being a list of blocks in a tower from top to bottom.

A

B

C

[[c,b,a],[],[c]]

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 5/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example: Blocks world

Move a block from top of a tower to top of another tower:

A

B

C

[[b,a],[],[c]]

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 6/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example: Blocks world

Next move:

A B C

[[a],[b],[c]]

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 7/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example: Blocks world

Then —

A

B C

[[],[a,b],[c]]

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 8/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Prolog representation

State is a list of stacks of blocks:

[[a,b,c],[],[]]

Transitions move a block from the top of one stack to the top
of another:

s([[A|As],Bs,Cs], [As,[A|Bs],Cs]).
s([[A|As],Bs,Cs], [As,Bs,[A|Cs]]).
...

Can specify particular goal position:

goal([[],[],[a,b,c]]).

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 9/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

An abstract problem space

s(a,b).
s(b,c).
s(c,a).
s(c,f(d)).
s(f(N),f(g(N))).
s(f(g(X)),X).

goal(d).

Think of the graph generated by these
declarations.

In this case:

the graph is infinite

there is a loop near the top of the graph

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 10/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

abstract space ctd

a

b

c

f(d)

f(g(d))

f(g(g(d)))

... g(d)

d

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 11/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

problem 1: cycles

We can already see in the blocks world example and in the abstract
search space that it is easy to follow actions around in cycles, and
not find the goal, even if there is a path to the goal.

There are two main approaches to deal with this:

remember where you’ve been; OR . . .

work with depth bound

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 12/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Solution 1: remember where you’ve been

% dfs(PathSoFar, CurrentNode, PathToGoal)

dfs_noloop(Path,Node,[Node|Path]) :-
goal(Node).

dfs_noloop(Path,Node,Path1) :-
s(Node,Node1),
\+ member(Node1,Path),
dfs_noloop([Node|Path],Node1,Path1).

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 13/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Problem 2: Infinite State Space

Compare the graph from the abstract search space.
Depth First Search has similar problems to Prolog proof search:

We may miss solutions because state space is infinite;

Even if state space is finite, may wind up finding “easy”
solution only after a long exploration of pointless part of
search space

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 14/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Solution 2: depth bounding

Keep track of depth, stop if bound exceeded

Note: does not avoid loops (can do this too)

dfs_bound(_,Node,[Node]) :-
goal(Node).

dfs_bound(N,Node,[Node|Path]) :-
N > 0,
s(Node,Node1),
M is N-1,
dfs_bound(M,Node1,Path)

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 15/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Problem 3: what is a good bound?

In general, we just don’t know in advance:

Too low? –
Might miss solutions
Too high? – Might spend a long time searching pointlessly

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 16/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Solution 3: iterative deepening

Use the following with some small start value for N

dfs_id(N,Node,Path) :-
dfs_bound(N,Node,Path)

;
M is N+1,
dfs_id(M,Node,Path).

NB: if there is no solution, this will not terminate.

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 17/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Breadth first search

Keep track of all possible solutions, try shortest ones first;
do this by maintaining a “queue” of solutions

bfs([[Node|Path]|_], [Node|Path]) :-
goal(Node).

bfs([Path|Paths], S) :-
extend(Path,NewPaths),
append(Paths,NewPaths,Paths1),
bfs(Paths1,S).

bfs_start(N,P) :- bfs([[N]],P).

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 18/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

extending paths

extend([Node|Path],NewPaths) :-
bagof([NewNode,Node|Path],

(s(Node,NewNode),
\+ (member(NewNode,[Node|Path]))),
NewPaths),

!.
%% if there are no next steps,
%% bagof will fail and we’ll fall through.

extend(_Path,[]).

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 19/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Problem: speed

Concatenating new paths to end of list is slow

Avoid this using difference lists?

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 20/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

AND/OR search

So far we’ve considered graph search problems

Just want to find some path from start to end

Other problems have more structure

e.g. 2-player games

AND/OR search is a useful abstraction

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 21/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example: Noughts and Crosses

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 22/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Representation

or(S,Nodes)
S is an OR node with possible next states Nodes

“Our move”

and(S,Nodes)
S is an AND node with possible next states Nodes
“Opponent moves”

goal(S)
S is a “win” for us

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 23/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example: A simple game

and(a,[b,c]).
or(b,[d,a]).
or(c,[d,e]).
goal(e).

What is the graph here?

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 24/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Basic Idea

andor(Node) :- goal(Node).
andor(Node) :-

or(Node,Nodes),
member(Node1,Nodes),
andor(Node1).

andor(Node) :-
and(Node,Nodes),
solveall(Nodes).

solveall(Nodes) :- ...

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 25/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Solutions

For each AND state, we need solutions for all possible next
states

For each OR state, we just need one choice

A “solution” is thus a tree, or strategy

Can adapt previous program to produce solution tree;
Can also incorporate iterative deepening, loop avoidance, BFS.
heuristic measures of “good” positions leads to algorithms like
MiniMax.

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 26/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Noughts and crosses via minimax

See
http:

// www. emse. fr/ ~ picard/ cours/ ai/ minimax/

with acknowledgements to EMSE.

This provides alongside an implementation of minimax,
instantiation to noughts and crosses (= tic-tac-toe), and a basic
interface for playing the game.

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 27/28

http://www.emse.fr/~picard/cours/ai/minimax/
http://www.emse.fr/~picard/cours/ai/minimax/

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Further Reading

Bratko, Prolog Programming for Artificial Intelligence

ch. 8 (difference lists), ch. 11 (DFS/BFS)
also Ch. 12 (BestFS), 13 (AND/OR)

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 28/28

