
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Logic Programming:
Term manipulation, Meta-Programming

Alan Smaill

Oct 22, 2015

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 1/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Reminder of term manipulation predicates

var/1, functor/2 etc

Meta-programming

call/1
symbolic programming
Prolog in Prolog

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 2/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Recall

var/1 holds if argument is Prolog variable, when called.

nonvar/1 holds if argument is not a variable when called
(ground, or partially instantiated)

None of these affect binding.

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 3/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Other term properties

number/1: -89, 1.007

integer/1: -89, 6000

float/1: 0.1, 67.6543

atom/1: a,f,g1567

atomic/1: a,f,g1567,1.007,-89

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 4/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Structural equality

Can test for whether terms are identical:

The ==/2 operator tests whether two terms are exactly
identical,

Including variable names! (No unification!)

?- X == X.
yes
?- X == Y.
no

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 5/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Structural comparison

\==/2: tests that two terms are not identical

?- X \== X.
no
?- X \== Y.
yes

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 6/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Recall: breadth-first search

Keep track of all possible solutions, try shortest ones first

Maintain a “queue” of solutions

bfs([[Node|Path],_], [Node|Path]) :-
goal(Node).

bfs([Path|Paths], S) :-
extend(Path,NewPaths),
append(Paths,NewPaths,Paths1),
bfs(Paths1,S).

bfs_start(N,P) :- bfs([[N]],P).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 7/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

A difference list version

Here is a more efficient way, using difference lists —
the first two arguments to bfs dl/2 are thus a (difference) list of
lists, and the associated difference list variable.

bfs_dl([[Node|Path]|_], _, [Node|Path]) :-
goal(Node).

bfs_dl([Path|Paths], Z, Solution) :-
extend(Path,NewPaths),
append(NewPaths,Z1,Z),
Paths \== Z1, %% (Paths,Z1) is not empty DL
bfs_dl(Paths,Z1,Solution).

bfs_dl_start(N,P) :- bfs_dl([[N]|X],X,P).

\== checks if terms Paths,Z1 are identical as terms

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 8/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Why more efficient?

For the \==/2 test, recall that the empty difference list is
represented as a pair X/X with two occurrences of the same
variable.

Notice that, although the new version uses the usual append/3, its
first argument is the list of new paths, not the list of current paths,
which is usually much larger.

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 9/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

meta-Programming: call/1

call/1:

Given a Prolog term G, solve it as a goal

?- call(append([1],[2],X)).
X = [1,2].

?- read(X), call(X).
|: member(Y,[1,2]).
X = member(1,[1,2])

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 10/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

call with =..

. . . allows some devious things.

callwith(P,Args) :-
Atom =.. [P|Args], call(Atom).

map(P,[],[]).
map(P,[X|Xs],[Y|Ys]):-

callwith(P,[X,Y]), map(P,Xs,Ys)

plusone(N,M) :- M is N+1.

?- map(plusone,[1,2,3,4,5],L).
L = [2,3,4,5,6].

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 11/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Symbolic programming

Propositions

prop(true).
prop(false).
prop(and(P,Q)) :- prop(P), prop(Q).
prop(or(P,Q)) :- prop(P), prop(Q).
prop(imp(P,Q)) :- prop(P), prop(Q).
prop(not(P)) :- prop(P).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 12/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Formula Simplification

simp(and(true,P),P).
simp(or(false,P),P).
simp(imp(P,false), not(P)).
simp(imp(true,P), P).
simp(and(P,Q), and(P1,Q)) :- simp(P,P1).
simp(and(P,Q), and(P,Q1)) :- simp(Q,Q1).
...

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 13/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Satisfiability checking

Given a formula, find a satisfying assignment for the atoms in
it;

Assume atoms given [p1,...,pn].

A valuation is a list [(p1,true|false),...].

gen([],[]).
gen([P|Ps], [(P,V)|PVs]) :-

(V=true;V=false),
gen(Ps,PVs).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 14/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Evaluation

sat(V,true).
sat(V,and(P,Q)) :- sat(V,P), sat(V,Q).
sat(V,or(P,Q)) :- sat(V,P) ; sat(V,Q).
sat(V,imp(P,Q)) :- \+(sat(V,P))

; sat(V,Q).
sat(V,not(P)) :- \+(sat(V,P)).
sat(V,P) :- atom(P),

member((P,true),V).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 15/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Satisfiability

Generate a valuation

Test whether it satisfies Q

satisfy(Ps,Q,V) :- gen(Ps,V),
sat(V,Q).

On failure, this backtracks & tries another valuation.

This exploits logic programming search in a useful and concise way.

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 16/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Prolog in Prolog

Represent definite clauses

rule(Head,[Body,....,Body]).

A Prolog interpreter in Prolog:

prolog(Goal) :- rule(Goal,Body),
prologs(Body)

prologs([]).
prologs([Goal|Goals]) :- prolog(Goal),

prologs(Goals).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 17/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example

rule(p(X,Y), [q(X), r(Y)]).
rule(q(1),[]).
rule(r(2),[]).
rule(r(3),[]).

?- prolog(p(X,Y)).
X = 1
Y = 2

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 18/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

So what?

Prolog interpreter already runs programs. . .

Self-interpretation is interesting because we can examine or
modify behaviour of interpreter.

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 19/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

rules with “justifications”!

rule_pf(p(1,2), [], rule1).
rule_pf(p(X,Y), [q(X), r(Y)],rule2(X,Y)).
rule_pf(q(1),[],rule3).
rule_pf(r(2),[],rule4).
rule_pf(r(3),[],rule5).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 20/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Witnesses

Now we can produce proof trees showing which rules were used:

prolog_pf(Goal,[Tag|Proof]) :-
rule_pf(Goal,Body,Tag),
prologs_pf(Body,Proof).

prologs_pf([],[]).
prologs_pf([Goal|Goals],[Proof|Proofs]) :-

prolog_pf(Goal,Proof),
prologs_pf(Goals,Proofs).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 21/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Witnesses

“Is there a proof of p(1,2) that doesn’t use rule 1?”

?- prolog_pf(p(1,2),Prf),
\+(in_proof(rule1,Prf)).

Prf = [rule2,[rule3, rule4]].

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 22/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Other applications

Iterative deepening interpreter:
as we saw for general search, we can:
– search exhaustively to a given depth;
– if no solution found, increase depth bound and recurse.

This way, we are assured to find a solution if there is one.

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 23/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Iterative deepening meta-interpreter

Prolog implementations allow inspections of the internal knowledge
base of facts and rules.

To make use of this, need to make relevant predicates “dynamic”,
e.g. by having a directive:

:- dynamic(foo/2).

foo(a,1).
foo(b,Y) :- foo(a,X), Y = X + 1.

The clause/2 predicate then allows us to inspect clauses
matching a given head pattern:

returns an explicit true for an empty body (head is a fact).

returns body as atom, or as compound term made up of pairs
(X,Y).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 24/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Iterative deepening meta-interpreter/2

We can query for clause information:

| ?- clause(foo(X,Y),Body).
X = a,
Y = 1,
Body = true ? ;
X = b,
Body = (foo(a,_A),Y=_A+1) ;
no

We can even query with more instantiated pattern:

| ?- clause(foo(c,Y), Body).
no
| ?- clause(foo(a,Y), Body).
Y = 1,
Body = true ?

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 25/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Iterative Deepening Meta-Interpreter/3

We can give depth-bounded search for goals tagged with a depth
bound, as follows:

solve(true/_) :- !. %% base case
solve((A,B)) :- solve(A), solve(B).%% pair of goals
solve(Q/N) :- 0<N, M is N-1,

%% unify with head of a clause;
%% note change of depth.

clause(Q, Body),
tag(Body,M,Tagged),
solve(Tagged).

%% tag(+,+,?) distributes depth label to subgoals

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 26/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Iterative Deepening Meta-Interpreter/4

Now use iterative deepening wrapper:

idsolve(Query) :- idsolve(Query,0).
idsolve(Query,N) :-

tag(Query,N,QQ), solve(QQ),
write(’Solution found during search to depth ’),
write(N).

idsolve(Query,N) :-
M is N+1, write(’Searching at depth ’),
write(M),nl,
idsolve(Query,M).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 27/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Iterative Deepening Meta-Interpreter/5

Now look at cases where depth-first execution may be problematic,
and compare ?- Query. with ?- idsolve(Query).

Where looping occurs, so losing solutions (incompleteness):
iterative deepening search will find solutions (given enough
resources).

Where solutions with short derivations are found only after
solutions with longer derivations:
iterative deepening will the former before the latter.

BUT iterative deepening itself will loop if there is no solution!

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 28/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

More applications

Tracing
Can implement trace/1 this way

Declarative debugging

Given an error in output, “zoom in” on input rules that were
used
These are likely to be the ones with problems

For more on this, see LPN, ch. 9, and Bratko, ch. 23

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Oct 22, 2015 29/1

