
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Logic Programming:
Parsing. Difference Lists, DCGs

Alan Smaill

Oct 15 2015

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 1/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Context Free Grammars (review)

Parsing in Prolog

Definite Clause Grammars (DCGs)

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 2/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Context Free Grammars

A simple CFG:

S -> NP VP
NP -> DET N
VP -> VI | VT NP
DET -> the
N -> cat | dog | food
VI -> meows | barks
VT -> bites | eats

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 3/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Recognising grammatical sentences

Yes:

“the cat meows”
“the cat bites the dog”
“the dog eats the food”

No

“cat the cat cat”
“dog bites meows”

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 4/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Generation Example

This uses a proof tree, rather than a search tree.

S -> NP VP
NP -> DET N
VP -> VI | VT NP
DET -> the
N -> cat | dog | food
VI -> meows | barks
VT -> bites | eats

S

NP

DET

the

N

cat

VP

VI

meows

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 5/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

A simpler CFG

T -> c
T -> aTb

In Prolog, with lists of characters:

t([c]).
t(S) :- t(S1),

append([a],S1,S2),
append(S2,[b],S).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 6/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Using append to parse

s(L) :- np(L1), vp(L2), append(L1,L2,L).

np(L) :- det(L1), n(L2), append(L1,L2,L).

vp(L) :- vi(L) ;
vt(L1), np(L2), append(L1,L2,L).

det([the]). det([a]).
n([cat]). n([dog]). n([food]).
vi([meows]). vi([barks]).
vt([bites]). vt([eats]).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 7/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

A better way?

Clearly, we need to guess when we’re generating –

but also guess when we’re parsing an unknown sequence

This is inefficient — lots of backtracking!

Reordering goals doesn’t help much

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 8/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

An even simpler CFG (again)

T -> c
T -> aTb

In Prolog, with accumulators:

t([c|L],L).

t([a|L1],M) :- t(L1,[b|M])

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 9/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

using accumulator version

?- t(L,[]).

L = [c].
L = [a,c,b].
L = [a,a,c,b,b].
...

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 10/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference Lists

A difference list is a pair (t,X), where

t is a list term with the shape [t1,t2,..tn|X], and

X is a variable.

Difference lists correspond to normal lists as follows:

normal list difference list

[t1, t2, . . . , tn] ([t1, t2, . . . , tn|X], X)

Here we need to be careful that different difference lists use
different Prolog variables!

Difference lists are important because they allow much more
efficient list operations.

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 11/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference lists cdt

Some examples:

Empty difference list: (X,X)

n-element difference list: ([a1,a2,..an|X],X),

Appending difference lists (t,X) and (u,Y):

— simply unify X and u
— yields (t[u/X],Y)

eg, append ([1,2|X],X) to ([3,4|Y],Y);
unify X=[3,4|Y], and obtain ([1,2,3,4|Y],Y).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 12/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference Lists ctd

Sometimes, people work with just the first part of the difference
list (above, [t1,t2,..tn|X]); need to be careful that the variable
really is a variable when called.

We can write append of difference lists simply by using a different
representation. Let’s take Z/X for a difference list (where
Z=[t1,t2,..tn]) above; here / is already available as an infix
operator. Then difference list append is simply:

dl_append(X/Y, Y/Z, X/Z).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 13/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference Lists ctd

This is correct and efficient when we really are dealing with
difference lists, and the first and second are inputs.
Because there is a single clause, there can only be one solution, if
there is any solution;
so this will not give all solutions in mode dl append(-,-,+).

?- dl_append([1,2|Y]/Y,[3,4|Z]/Z,Ans).
Y = [3,4|Z],
Ans = [1,2,3,4|Z]/Z;
no

?- dl_append(A, B, [1,2,3]/Z).
A = [1,2,3]/_A,
B = _A/Z ? ;
no

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 14/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference lists reverse

Compare:

%% basic reverse, no optimisation

naive_reverse([],[]).
naive_reverse([X|Xs],Ys) :- naive_reverse(Xs,Rs),

append(Rs,[X],Ys).

%% difference lists used in second argument
%% of reverse_dl

reverse_dl([],T\T).
reverse_dl([X|Xs],Rs\T) :- reverse_dl(Xs,Rs\[X|T]).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 15/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

An even simpler CFG (again)

T -> c
T -> aTb

In Prolog, with difference lists:

t(L,M) :- L = [c|M].

t(L,M) :- L = [a|L1],
t(L1,M1),
M1 = [b|M]

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 16/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Definite Clause Grammars

Parsing using DCGs is so useful that Prolog has built-in syntax for
it:

t --> [c].

t --> [a], t, [b].

translates to:

t(L,M) :- L = [c|M].

t(L,M) :- L = [a|L1],
t(L1,M1),
M1 = [b|M].

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 17/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

DCG syntax

Rules have the form nonterm --> body

Body terms are:

terminal lists [t1,...,tn] (may be [])
nonterminals s,t,u . . .
sequential composition body1,body2
alternative choice body1; body2

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 18/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Using DCG version

DCG is translated to difference lists version, so used in the same
way.

?- t(L,[]).

L = [c].
L = [a,c,b].
L = [a,a,c,b,b]

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 19/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

using DCG ctd

We can also use the built-ins phrase/2, phrase/3:
when the first argument is a non-terminal from the grammar, this
generates corresponding examples (in difference list form in the
second case).

?- phrase(t,L).
L = [c].
L = [a,c,b].

?- phrase(t,L,M).

L = [c|M].
L = [a,c,b|M].

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 20/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

larger example revisited

s --> np, vp.
np --> det, n.
vp --> vi ; vt, np.

det --> [the] ; [a].
n --> [cat] ; [dog] ; [food].
vi --> [meows] ; [barks].
vt --> [bites] ; [eats].

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 21/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

DCGs with tests

DCG clause bodies can also contain tests, written as an arbitrary
Prolog goal in curly brackets: {Goal}
Example:

n --> [Word], {noun(Word)}.

noun(dog). noun(cat).

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 22/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

DCGs with recursion

Left recursion, as usual, leads to non-termination:

exp --> exp,[+],exp

Avoid by using right recursion and fall-through

exp --> simple_exp,[+],exp.

exp --> simple_exp.

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 23/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

DCGs with parameters

Non-terminals in DCGs can have parameters:

t(0) --> [c].

t(succ(N)) --> [a], t(N), [b]

Can keep track of depth of nesting in terms.

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 24/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

DCGs and parameters > CFGs

With parameters, we go outside the expressiveness of CFGs.

u(N) --> n(N,a),
n(N,b),
n(N,c).

n(0,X) --> [].

n(succ(N),X) --> [X], n(N,X).

This characterises a set of expressions that has no CFG description.
(what set?)

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 25/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Parsing with parse trees

“the cat meows”

S(NP(DET (the), N (cat)),
VP (VI (meows)))

“the cat bites the dog”

S(NP (DET (the), N(cat),
VP (VT (bites),

NP(DET(the), N(dog)))

Can build parse trees using parameters
– look for this as a tutorial exercise.

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 26/26

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Further Reading

LPN, chs 7–8: more difference list examples and translation of
DCGs to Prolog

Next time:

search techniques:

depth-first, iterative deepening, breadth-first, best-first.

Alan Smaill Logic Programming: Parsing. Difference Lists, DCGs Oct 15 2015 27/26

