
Declarative programming

I Logic programming is a declarative style of programming.

The programmer says what they want to compute, but does
not explicitly specify how to compute it.

It is up to the interpreter (compiler/implementation) to figure
out how to perform the computation requested.

Examples: Logic programming (Prolog), database query
languages (SQL), functional programming (Haskell)

I In contrast, in a procedural style of programming, the program
explicitly describes the individual steps of computation.

Examples: Imperative programming (C), object-oriented
programming (Java)

Declarative programming

I Logic programming is a declarative style of programming.

The programmer says what they want to compute, but does
not explicitly specify how to compute it.

It is up to the interpreter (compiler/implementation) to figure
out how to perform the computation requested.

Examples: Logic programming (Prolog), database query
languages (SQL), functional programming (Haskell)

I In contrast, in a procedural style of programming, the program
explicitly describes the individual steps of computation.

Examples: Imperative programming (C), object-oriented
programming (Java)

Declarative programming

I Logic programming is a declarative style of programming.

The programmer says what they want to compute, but does
not explicitly specify how to compute it.

It is up to the interpreter (compiler/implementation) to figure
out how to perform the computation requested.

Examples: Logic programming (Prolog), database query
languages (SQL), functional programming (Haskell)

I In contrast, in a procedural style of programming, the program
explicitly describes the individual steps of computation.

Examples: Imperative programming (C), object-oriented
programming (Java)

Declarative programming

I Logic programming is a declarative style of programming.

The programmer says what they want to compute, but does
not explicitly specify how to compute it.

It is up to the interpreter (compiler/implementation) to figure
out how to perform the computation requested.

Examples: Logic programming (Prolog), database query
languages (SQL), functional programming (Haskell)

I In contrast, in a procedural style of programming, the program
explicitly describes the individual steps of computation.

Examples: Imperative programming (C), object-oriented
programming (Java)

Logic programming — idealistically

I A logic program is given as a collection of assumed properties
(stated as logical formulas) about the world (or rather about
the world of the program)

I The user supplies a logical formula stating a property that
might or might not hold in the world as a query

I The system determines whether the queried property is a
consequence of the assumed properties in the program.

One declarative aspect is that the user does not specify the
method by which the system determines whether or not the
query is a consequence of the program.

Another is that whether or not the query is indeed a
consequence is independent of the method chosen by the
system.

Logic programming — idealistically

I A logic program is given as a collection of assumed properties
(stated as logical formulas) about the world (or rather about
the world of the program)

I The user supplies a logical formula stating a property that
might or might not hold in the world as a query

I The system determines whether the queried property is a
consequence of the assumed properties in the program.

One declarative aspect is that the user does not specify the
method by which the system determines whether or not the
query is a consequence of the program.

Another is that whether or not the query is indeed a
consequence is independent of the method chosen by the
system.

Logic programming — idealistically

I A logic program is given as a collection of assumed properties
(stated as logical formulas) about the world (or rather about
the world of the program)

I The user supplies a logical formula stating a property that
might or might not hold in the world as a query

I The system determines whether the queried property is a
consequence of the assumed properties in the program.

One declarative aspect is that the user does not specify the
method by which the system determines whether or not the
query is a consequence of the program.

Another is that whether or not the query is indeed a
consequence is independent of the method chosen by the
system.

Logic programming — idealistically

I A logic program is given as a collection of assumed properties
(stated as logical formulas) about the world (or rather about
the world of the program)

I The user supplies a logical formula stating a property that
might or might not hold in the world as a query

I The system determines whether the queried property is a
consequence of the assumed properties in the program.

One declarative aspect is that the user does not specify the
method by which the system determines whether or not the
query is a consequence of the program.

Another is that whether or not the query is indeed a
consequence is independent of the method chosen by the
system.

Example logic program

chicago → windy

edinburgh → windy

edinburgh → scotland

scotland → rainy

windy ∧ rainy → insideOutUmbrella

edinburgh

Example query

Does insideOutUmbrella hold?

Let’s try this in Sicstus Prolog

Program:

windy :- chicago.
windy :- edinburgh.
scotland :- edinburgh.
rainy :- scotland.
insideOutUmbrella :- windy, rainy.
edinburgh.

Query:

| ?- insideOutUmbrella.

! Existence error in user:chicago/0
! procedure user:chicago/0 does not exist
! goal: user:chicago/0

Let’s try this in Sicstus Prolog

Program:

windy :- chicago.
windy :- edinburgh.
scotland :- edinburgh.
rainy :- scotland.
insideOutUmbrella :- windy, rainy.
edinburgh.

Query:

| ?- insideOutUmbrella.

! Existence error in user:chicago/0
! procedure user:chicago/0 does not exist
! goal: user:chicago/0

Slightly modified Sicstus Prolog code

Program:

windy :- chicago.
windy :- edinburgh.
scotland :- edinburgh.
rainy :- scotland.
insideOutUmbrella :- windy, rainy.
edinburgh.
chicago :- false.

Query:

| ?- insideOutUmbrella.
yes

We avoid this quirk, by working with idealized Prolog

Program:

windy :- chicago.
windy :- edinburgh.
scotland :- edinburgh.
rainy :- scotland.
insideOutUmbrella :- windy, rainy.
edinburgh.

Query:

| ?- insideOutUmbrella.
yes

Key points to address

I Why is this the correct answer?

(Logical consequence) — today’s lecture

I How Prolog computes the answer

(Proof search) — Lecture 2

I But Prolog does not always find the correct answer

(Incompleteness of Prolog’s search procedure) — Lecture 2

In Lectures 1–2 we restrict attention to propositional logic.

From Lecture 3 we shall look at predicate logic.

Key points to address

I Why is this the correct answer?

(Logical consequence) — today’s lecture

I How Prolog computes the answer

(Proof search) — Lecture 2

I But Prolog does not always find the correct answer

(Incompleteness of Prolog’s search procedure) — Lecture 2

In Lectures 1–2 we restrict attention to propositional logic.

From Lecture 3 we shall look at predicate logic.

Key points to address

I Why is this the correct answer?

(Logical consequence) — today’s lecture

I How Prolog computes the answer

(Proof search) — Lecture 2

I But Prolog does not always find the correct answer

(Incompleteness of Prolog’s search procedure) — Lecture 2

In Lectures 1–2 we restrict attention to propositional logic.

From Lecture 3 we shall look at predicate logic.

Key points to address

I Why is this the correct answer?

(Logical consequence) — today’s lecture

I How Prolog computes the answer

(Proof search) — Lecture 2

I But Prolog does not always find the correct answer

(Incompleteness of Prolog’s search procedure) — Lecture 2

In Lectures 1–2 we restrict attention to propositional logic.

From Lecture 3 we shall look at predicate logic.

Key points to address

I Why is this the correct answer?

(Logical consequence) — today’s lecture

I How Prolog computes the answer

(Proof search) — Lecture 2

I But Prolog does not always find the correct answer

(Incompleteness of Prolog’s search procedure) — Lecture 2

In Lectures 1–2 we restrict attention to propositional logic.

From Lecture 3 we shall look at predicate logic.

Key points to address

I Why is this the correct answer?

(Logical consequence) — today’s lecture

I How Prolog computes the answer

(Proof search) — Lecture 2

I But Prolog does not always find the correct answer

(Incompleteness of Prolog’s search procedure) — Lecture 2

In Lectures 1–2 we restrict attention to propositional logic.

From Lecture 3 we shall look at predicate logic.

Propositional logic (recap)

(Recall notes on logic from Inf 1 - Computation and Logic.
Alternatively use on-line references (e.g., Wikipedia).)

Grammar of formulas:

form ::= atom | ¬form | form ∧ form | form ∨ form | form→ form

The formulas in our example logic program all have very simple
structure. (We shall see later this is no coincidence.)

An example of a more complex propositional formula:

scotland ∧ ¬windy → glasgow ∨ perth

Interpretations
An interpretation is a function assigning truth values true, false to
atoms.

For example, if the atoms are poor, happy then

{poor 7→ false, happy 7→ true}

is an interpretation.

A formula F is true under an interpretation I, notation

I |= F ,

iff the truth value of the formula comes out as true using the
standard truth tables.

For example,

{poor 7→ false, happy 7→ true} |= poor→ happy

Logical consequence

A formula G is said to be a logical consequence of formulas
F1, F2, . . . , Fn, notation

F1, . . . , Fn |= G ,

iff, for all interpretations I,

if I |= F1 and . . . and I |= Fn then I |= G .

Don’t get confused! The symbol |= is used in two different ways:

I |= F

F1, . . . , Fn |= G

In the first the left-hand-side is an interpretation, in the second it
is a sequence (or set) of formulas.

Examples

A logical consequence:

poor→ happy, ¬happy |= ¬poor

We look at all (four!) interpretations. Every time both formulas on
the left are true, so is the formula on the right.

A non consequence:

poor→ happy, ¬poor 6|= ¬happy

The interpretation that assigns ‘false’ to poor and ‘true’ to happy
makes both formulas on the left true, but ¬happy is false.

Idea of a (propositional) logic program

A logic program is given by a list of (propositional) formulas

F1, F2, . . . , Fn .

A goal is given by another formula

G .

The task of the system is to determine whether

F1, . . . , Fn |= G .

If so, the system returns ‘yes’. Otherwise the system returns ‘no’.

Checking logical consequence semantically

In principle, the system can check the logical consequence by
constructing a truth table, with one row for every possible
interpretation.

When the program and query contain n different atoms, the
resulting truth table will have

2n

rows.

This method is so computationally expensive as to be infeasible.
(Exponential time.)

Million dollar open question.
Is it possible to find a better method of deciding propositional
logical consequence that works in time polynomially bounded
in the size of the program and query?

Equivalently, does P = NP hold?
(Clay Mathematics Institute — Millenium Prize Problems)

Checking logical consequence semantically

In principle, the system can check the logical consequence by
constructing a truth table, with one row for every possible
interpretation.

When the program and query contain n different atoms, the
resulting truth table will have 2n rows.

This method is so computationally expensive as to be infeasible.
(Exponential time.)

Million dollar open question.
Is it possible to find a better method of deciding propositional
logical consequence that works in time polynomially bounded
in the size of the program and query?

Equivalently, does P = NP hold?
(Clay Mathematics Institute — Millenium Prize Problems)

Checking logical consequence semantically

In principle, the system can check the logical consequence by
constructing a truth table, with one row for every possible
interpretation.

When the program and query contain n different atoms, the
resulting truth table will have 2n rows.

This method is so computationally expensive as to be infeasible.
(Exponential time.)

Million dollar open question.
Is it possible to find a better method of deciding propositional
logical consequence that works in time polynomially bounded
in the size of the program and query?

Equivalently, does P = NP hold?
(Clay Mathematics Institute — Millenium Prize Problems)

Checking logical consequence semantically

In principle, the system can check the logical consequence by
constructing a truth table, with one row for every possible
interpretation.

When the program and query contain n different atoms, the
resulting truth table will have 2n rows.

This method is so computationally expensive as to be infeasible.
(Exponential time.)

Million dollar open question.
Is it possible to find a better method of deciding propositional
logical consequence that works in time polynomially bounded
in the size of the program and query?

Equivalently, does P = NP hold?
(Clay Mathematics Institute — Millenium Prize Problems)

Route to feasibility

I Restrict formulas in logic programs to definite clauses

I Use proof search to determine logical consequence.

(That is, use syntactic methods rather than the semantic
method of checking truth tables.)

This methodology is effective and flexible.

In later lectures we shall see that it extends to predicate (i.e.,
first-order) logic (and beyond!)

(Indeed Prolog implements predicate logic, not only propositional
logic.)

Propositional definite clauses

A definite clause is a formula of one of the two shapes below

q (a Prolog fact q .)

p1 ∧ · · · ∧ pk → q (a Prolog rule q :- p1, . . . , pk .)

where p1, . . . , pk , q are all atoms (that is, atomic statements).

A logic program is a list F1, . . . , Fn of definite clauses

A goal is a list g1, . . . , gm of atoms.

The job of the system is to ascertain whether the logical
consequence below holds.

F1, . . . , Fn |= g1 ∧ · · · ∧ gm .

Main points today

propositional logic

logical consequence

definite clauses

Next time

inference systems

propositional Prolog proof search procedure

properties of Prolog proof search

