
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Logic Programming: Theory

Alan Smaill

Nov 9, 2015

Alan Smaill Logic Programming: Theory Nov 9, 2015 1/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Completeness of the Backchain Inference System

Therefore there is a complete Inference Strategy

But there cannot be a decision procedure

Alan Smaill Logic Programming: Theory Nov 9, 2015 2/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Recall: Inference System for Definite Clause Logic

The given definite clauses are taken as axioms. We use a single
inference rule, Backchain:

p1θ, p2θ, . . . , pnθ, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

q′θ
where θ is mgu of q′, q

Given a query ∃X q(X), see if q(X) unifies with the “head”
formula of a definite clause, with unifier θ. If so, top-down search
will look for justifications of p1θ, p2θ, . . . , pnθ.
More generally, given goal ∃X q(X), r(X), s(X), look for unifier for
q(X), and now solve

p1θ, p2θ, . . . , pnθ, r(X)θ, s(X)θ

Alan Smaill Logic Programming: Theory Nov 9, 2015 3/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Completeness of Backchain Inference

We write T |= Q when Q is an atomic logical consequence of the
definite clauses in T , using the standard semantics for predicate
calculus, as described earlier.

We write T ` Q when there is a derivation of Q from the
statements in T using the Backchain inference system.

Alan Smaill Logic Programming: Theory Nov 9, 2015 4/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Completeness of Backchain Inference (2)

Claim: the backchain inference system is sound and complete for
queries Q without variables:

T |= Q if and only if T ` Q

The inference system is also sound and complete for queries that
contain variables in the following sense:

if ∃X q(X) is logical consequence of T , then there is a
derivation of q(X) Sb from T, where Sb is a substitution
that is computed from the derivation, and gives us a
value of X for which the query holds.

Alan Smaill Logic Programming: Theory Nov 9, 2015 5/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Soundness

To check that the backchain inference system is sound, we want to
check that any time the assumptions involved are true, then so is
the conclusion. So, assume all the statements in T are true, and
consider the possibilities:

Axiom: this is immediate since we supposed that everything in
T is true, and axioms are (unit) clauses in T .

p1θ, p2θ, . . . , pnθ, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

q′θ
where θ is mgu of q′, q

– p1 ∧ p2 ∧ . . . ∧ pn ⇒ q is true, because it’s in T
– So p1θ ∧ p2θ ∧ . . . ∧ pnθ ⇒ qθ is true

(substitution gives an instance of ∀ quantification)
– now use propositional reasoning with ∧,⇒.

Alan Smaill Logic Programming: Theory Nov 9, 2015 6/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Soundness ctd

If each rule application is sound, it follows that if we a complete
(finite) derivation tree, if the axioms at the leaves are true, then so
is the statement at the root of the tree.
This completes the argument.

We expect soundness to be easy to show.
Completeness is harder; in general we need to show that whenever
every choice of structure and interpretation I that makes T true
also make Q true, then there is a derivation T ` Q.
Things are a bit easier here; we build a particular structure and
interpretation H such that T ` Q iff Q is true in H –
it’s enough to look at a single structure.

Alan Smaill Logic Programming: Theory Nov 9, 2015 7/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Completeness

Completeness then follows: H is chosen to make everything in T
true; if T |= Q, then Q is true in every model of T , so it’s true in
H, and will be derivable if H has the property claimed above.

We will build a structure out of the syntax of the language at
hand; let L be the choice of constants, function symbols and
predicates under consideration. This must include the syntax of
the definite clauses (the program) and of possible queries Q.
We assume there is at least one constant – if not, add one in.

Alan Smaill Logic Programming: Theory Nov 9, 2015 8/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Completeness ctd

The domain for the interpretation is formed by taking the set T of
all the terms that can be formed from the constants and function
symbols (without variables):

term ::= constant

| fn symbol (term list)

term list ::= term

| term , term list

This set is called the Herbrand Universe, which we use as the set
underlying the model we describe.

Alan Smaill Logic Programming: Theory Nov 9, 2015 9/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Interpretations

Now we need to say how to interpret terms of the language.

interpret constant c as c (itself!);

interpret function symbol f as mapping arguments t1, . . . , tn
to f(t1, . . . , tn).

The latter means that no evaluation is going on —
the interpretation of the function + applied to constants 3, 4 is
3 + 4
(and not 7).

Alan Smaill Logic Programming: Theory Nov 9, 2015 10/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Herbrand models

Any model that uses the Herbrand universe as its domain of
interpretation is called a Herbrand model. For example, interpret
all predicates as being true everywhere; we saw earlier that this
makes any set of definite clauses true, so this is a model alright.

For a given language L, we define an ordering relation between
models of T :

M1 ≤ M2 is defined as:

for all predicates P and terms t1, . . . , tn,

if M1 |= P(t1, . . . , tn) then M2 |= P(t1, . . . , tn)

The model we are interested in is the least Herbrand model in this
ordering. At this stage, it’s not obvious that there is a least
Herbrand model (or that if there is one, it is unique).

Alan Smaill Logic Programming: Theory Nov 9, 2015 11/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Interpretation ctd

For the desired model H, we need to say how to interpret the
predicates.
For equality, we just use the equality at the level of syntax.
(So 3 + 4 6= 7 according to this notion of equality.)

We use a fixed point construction to define when the predicates
are true; for each predicate P with n arguments, we define a set
TP of tuples of terms (t1, . . . , tn) with the intention that
P(t1, . . . , tn) is true exactly when (t1, . . . , tn) ∈ TP .

Alan Smaill Logic Programming: Theory Nov 9, 2015 12/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example

Let’s take a simple case where the terms T are
z, s(z), s(s(z)), . . ., and there is only one predicate even, given by:

even(z).
even(s(s(X))) :- even(X).

Now define f : P(T)→ P(T) to build up the set of terms for
which even is true, if we use the clauses bottom-up (reasoning
forward).

Alan Smaill Logic Programming: Theory Nov 9, 2015 13/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example ctd

Include base case(s):
in this case: {z}.
successively add new terms that can be derived by one
inference step from existing terms,

This gives f (X) = { z } ∪ { s(s(t)) | t ∈ X },

Successive applications of f give
{ z },{ z, s(s(z)) }, { z, s(s(z)),s(s(s(s(z)))) }, . . .

The least fixed point then is an infinite set
(of terms where s is applied an even number of times).

Alan Smaill Logic Programming: Theory Nov 9, 2015 14/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Interpretation: general case

Here we will build up a set of atomic statements (like
even(s(s(z)))), with the intention of characterising the set of
atomic statements (without variables) that follow logically from
the definite clauses T . The set of such ground atomic statements
from language L is called BL, the Herbrand base for L.

Alan Smaill Logic Programming: Theory Nov 9, 2015 15/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Interpretation: general case (2)

A ground instance of a clause p(X) :- q(X,Y),r(Y). is just the
result of substituting bound terms for the variables in the clause,
eg p(s(a)) :- q(s(a),b), r(b). Define oneStep(P,X) for an
atomic formula P and set of atomic formulas X to mean that there
is a ground instance of a clause with head P, and such that every
atomic formula in the body is in X .

For a given set of clauses T in language L, define
f : P(BL)→ P(BL) by

f (X) = { P ∈ BL | oneStep(P,X) }

Alan Smaill Logic Programming: Theory Nov 9, 2015 16/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Least Herbrand Model

We can check that f is monotone, and so has a least fixed point.
We can now define the least Herbrand model by saying that the
true atomic statements are exactly those in the least fixed point of
the function f .
It can be shown that the fixed point in this case is just the union
of all the sets

f ({ }), f (f ({ })), f (f (f ({ }))), . . .

where f is applied finitely often.
This is not a computationally effective way to find out what is true
in H however, since the definition of f uses (possibly infinitely
many) instances of the program clauses.

Alan Smaill Logic Programming: Theory Nov 9, 2015 17/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Completeness ctd

Notice that if K is another Herbrand model for T , it must also
correspond to a fixed point for f :
if ground instances of the body of a clause are true, and the clause
is true, then the head instance must be true in K . So H ≤ K .

Claim: For ground Q, T ` Q if and only if H |= Q.

left to right is easy, since the inference system is sound.

For the harder direction, the full argument is only sketched
here.
Since Q appears in H, it is obtained after a finite number n of
applications of f . Show by induction on n that each formula
that appears has a derivation using backchain. (This depends
on properties of unification we have mentioned but not used
so far.)

Alan Smaill Logic Programming: Theory Nov 9, 2015 18/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Complete inference procedure

We have already seen that Prolog’s inference procedure is not
complete – it may fail to find a solution, even when there is a
solution.
However, the completeness result for the inference system using
backchain gives us a complete algorithm for finding whether a
query follows logically from a set of definite clauses.
Consider the search space generated by applying the inference rule
backwards. The branching factor is finite (why?). If the query
follows, then there will be a successful derivation at some depth.
So use a search strategy that is known to be complete in these
circumstances (eg iterative deepening, breadth first).

Alan Smaill Logic Programming: Theory Nov 9, 2015 19/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

No decision procedure

What we would like ideally would be a decision procedure that
could tell us for a given query whether it follows logically from the
given clauses. This is impossible.
We believe that no algorithm can be a decision procedure for this
problem.
One argument for this uses the standard result from the theory of
computability, which says that there is no algorithm that can
determine whether a Turing machine computation on a given input
terminates or not.

Alan Smaill Logic Programming: Theory Nov 9, 2015 20/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Halting problem

We can take the Turing machine as a general model of
computation. We work with a finite set of symbols and states
(with start and end state), an unbounded tape, and a head that
can read, write symbols and move to right or left on tape.
A program is given by a finite set of instructions, of the form:

in state q looking at symbol S, write symbol S2, move 1
step right, or left, or stay, and go into state q2.

It is known that there is no decision procedure for whether a given
Turing machine will terminate. (see Hopcraft and Ullman,
Introduction to Automata Theory . . .).

Alan Smaill Logic Programming: Theory Nov 9, 2015 21/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Turing machines in definite clause logic (Eriksson)

% tm(State, Left, Right, FinalLeft, FinalRight)
% args: current state, rev tape to left of head,
% (current symbol & tape to right), tape to left,
% & to right at end state.

% for each program statement:
% if no movement:

tm(state, Left, [symbol | Right], FinalL, FinalR) :-
tm(newstate, Left, [newsymbol | Right], FinalL, FinalR).

% If movement is r:
tm(state, Left, [symbol | Right], Final, Final) :-
tm(newstate, [newsymbol | Left], Right, Final, FinalR).

Alan Smaill Logic Programming: Theory Nov 9, 2015 22/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

TM in definite clause logic

% if movement is l, we define two clauses:

tm(state, [X | Left], [symbol | Right], FinalL, FinalR) :-
tm(newstate, Left, [X, newsymbol | Right], FinalL, FinalR).

tm(state, [], [symbol | Right], FinalL, FinalR) :-
tm(newstate, [], [empty, newsymbol | Right], FinalL, FinalR).

% and also
tm(State, Left, [], FinalL, FinalR) :-
tm(State, Left, [empty], FinalL, FinalR).

tm(stop, Left, Right, Left, Right).

% does it terminate?
?- tm(startstate, Left, Right, FinalL, FinalR).

Alan Smaill Logic Programming: Theory Nov 9, 2015 23/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

And so . . .

If we use the standard Prolog interpreter (noting that there are no
choice points, given a deterministic TM):

If the Turing machine halts, the query succeeds (given enough
time and memory).

If the Turing machine halts in a non-accepting state, the
query returns no.

If the Turing machine does not terminate, then the Prolog
query will not return an answer (given unlimited time and
memory).

Alan Smaill Logic Programming: Theory Nov 9, 2015 24/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

And so . . .

Is it possible that a different algorithm can be a decision procedure
for queries to definite clause programs?

If we had a decision procedure for definite clause logic, we could
decide whether the halting statement is true, for an arbitrary
Turing machine program.

But this is impossible: we cannot decide the halting problem.
Therefore there is no algorithm that will decide queries in definite
clause logic.

Alan Smaill Logic Programming: Theory Nov 9, 2015 25/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Summary

Completeness of the Backchain Inference System

Therefore there is a complete Inference Strategy

But there cannot be a decision procedure

Alan Smaill Logic Programming: Theory Nov 9, 2015 26/1

