
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

More on Closed World Assumption & Negation as Failure.

Clark completion

Higher-order logic programming

Alan Smaill Logic Programming: Theory Nov 16, 2015 1/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Reminder: Negation by failure

Prolog does not distinguish between being unable to find a
derivation, and claiming that the query is false; that is, it does not
distinguish between the “false” and the “unknown” values we have
above.
When we take a Prolog response of no. as indicating that a query
is false, we are making use of the idea of negation as failure: if a
statement cannot be derived, then it is false.
Clearly, this assumption is not always valid! If some information is
not present in the program, failure to find a derivation should not
let us conclude that the query is false – we just don’t have the
information to decide.

Alan Smaill Logic Programming: Theory Nov 16, 2015 2/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Logic and monotonic reasoning

It’s a basic feature of standard logic that it is monotonic: if we add
new assumptions to a theory, we never invalidate any conclusions
we could already make.
In other words, if Q follows logically from a set of statements KB,
and X is a set of statements, then Q follows from KB together
with X .

If T |= Q, then T ∪ X |= Q

Reasoning with the CWA does not have this property; we say it is
non-monotonic. Adding extra information can invalidate earlier
conclusions.

Alan Smaill Logic Programming: Theory Nov 16, 2015 3/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example

From our toy example, form a new KB by adding poor(fred) to get
the new T ′:

poor(jane)

poor(jane) → happy(jane)

happy(fred)

poor(fred)

Now ¬poor(fred) is not in XT ′ , and so we do not have
CWA[T ′] |= ¬poor(fred) any more.

Alan Smaill Logic Programming: Theory Nov 16, 2015 4/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Negation by Failure and Least Herbrand Model

How does negation by failure fit with the Least Herbrand model?
Suppose we have a ground query (i.e. with no variables)

?- p(t,v).

Recall that p(t,v) is true in the Least Herbrand model M if and
only if it is provable by Backchain inference. If Prolog returns “no”
to the query, that means that there is no Backchain derivation,
and so p(t,v). is false in M.

So negation by failure, for ground queries, gives the correct answer
according to the Least Herbrand model.
Negation by failure in general applies to goals which are not ground
as well, however, and in that case is not always sound in this sense.

Alan Smaill Logic Programming: Theory Nov 16, 2015 5/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Dealing soundly with negation as failure

Nagation as failure is more widely used in Prolog, however. What
needs to be done to get an interpreter that deals soundly with
negation as failure in general?

Negated goals should only be tested if they are ground (no
variables);

A goal with variables may become ground when later goals
succeed (if variables are shared between goals).

Can freeze goals with variables, and only call when and if they
become ground. This is a useful mechanism in general, and
more flexible than reordering clause bodies in the program
itself.

Alan Smaill Logic Programming: Theory Nov 16, 2015 6/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Coroutining

The ability to suspend goals until some property holds is useful
when the programmer has a good idea of how to achieve some
result computationally.
See sicstus on co-routining, and built-ins, eg

when(+Condition,:Goal)

Blocks Goal until the Condition is true, where

Condition is a goal with restricted syntax combining:

nonvar(X), ground(X), ?=(X,Y)

Here ?=/2 is a (sicstus) builtin:

?=(+Term1,+Term2)

Succeeds if Term1 and Term2 are identical terms, or

if they are syntactically non-unifiable.

Alan Smaill Logic Programming: Theory Nov 16, 2015 7/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Clark completion

When negation by failure is used with no restriction, we lose the
pretty picture we had before of the relationship between:

logical inference in predicate logic, from definite clauses; and

derivations in the Backchain inference system.

There is a way of starting from definite clauses S, and computing
an extended set of predicate calculus statements Comp(S), and
extending the Backchain inference system with negation by failure,
to recover the desired connection again.

Alan Smaill Logic Programming: Theory Nov 16, 2015 8/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Completion

Suppose that theory has a single formula foo(a)
– this formula is equivalent to ∀x (x = a → foo(x)).
This second form looks like one half of a definition. To complete
the predicate, we add the other half of the definition to the theory,
namely ∀x foo(x) → x = a.
We now describe a procedure to calculate the completion of a set
of definite clauses.

Alan Smaill Logic Programming: Theory Nov 16, 2015 9/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Completion procedure

Suppose start with a definite clause
∀y ((Q1(y) ∧ . . . ∧ Qn(y)) → p(t))
where t may be a tuple of terms; we assume that y is the only
variable in the body of the clause, if not quantify over all the
variables in the body.

Put this in the equivalent form
∀y ∀x ((x = t ∧ Q1(y) ∧ . . . ∧ Qn(y)) → p(x)).

Put this in the equivalent form
∀x (∃y (x = t ∧ Q1(y) ∧ . . . ∧ Qn(y)) → p(x)).

Alan Smaill Logic Programming: Theory Nov 16, 2015 10/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Completion ctd

This last equivalence follows since ∀y (f(y) → g) and
(∃y f(y)) → g are equivalent (if y does not occur in g).

Do the same for each clause of the predicate p. If the first
clause is now in the form ∀x E1 → p(x), this gives a number
of clauses

∀x .E1 → p(x)

∀x .E2 → p(x)
...

∀x .Em → p(x)

which can be combined to give

∀x .((E1 ∨ E2 ∨ . . . ∨ Em) → p(x))

Alan Smaill Logic Programming: Theory Nov 16, 2015 11/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Completion ctd

So far we have something equivalent to the original KB. Now
we replace these clauses with the completion formula:

∀x (p(x) ↔ (E1 ∨ E2 ∨ . . . ∨ Em)).

Alan Smaill Logic Programming: Theory Nov 16, 2015 12/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example

Take the clauses:

∀x (scottish(x) → british(x))
british(fred)

To take the completion, we get first:

∀x ((scottish(x) ∨ x = fred) → british(x)).

and so the completed program is given by the new formula:

∀x (british(x) ↔ (scottish(x) ∨ x = fred).

Note that from the completion, assuming dai 6= fred, we can
deduce ¬british(dai), which is not a logical consequence of the
initial clauses.

Alan Smaill Logic Programming: Theory Nov 16, 2015 13/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Clark Completion

The Clark completion works by replacing every predicate in this
way.
For predicates that do not appear in the head of any clause, we
add explicit negations; eg for foo/3 add

∀x ∀y ∀z ¬foo(x, y, z)

This gives a standard way of thinking about logic programs. Lloyd
says:

Even though a programmer only gives a logic
programming system the general program, the
understanding is that, conceptually, the general program
is completed by the system and that the programmer is
actually programming with the completion.

(Foundations of Logic Programming, p 71)

Alan Smaill Logic Programming: Theory Nov 16, 2015 14/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Properties of the Completion

S follows logically from Comp(S)
(since we built the completion as a stronger theory, by
replacing implication with equivalence)

the completion of a set of definite clauses is always consistent
(it always has a model).
(the reason for this will be a tutorial topic)

the completion adds no positive information: for atomic
statements A,

S |= A if and only if Comp(S) |= A

The completion lets us conclude new negative information, though,
justifying the closed world assumption.

Alan Smaill Logic Programming: Theory Nov 16, 2015 15/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Recall:

For pure Prolog (Prolog without meta-logical predicates), we have
a declarative reading of a program as a logical description of a
problem domain.

This uses definite clauses; in the program variables are (implicitly)
universally quantified (∀), and in queries existentially quantified
(∃). We search for a derivation that the the query follows logically
from the program.

Alan Smaill Logic Programming: Theory Nov 16, 2015 16/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Contrast:

Functional programming languages (Haskell, ML, LISP) are also
declarative, in a different way: the program specifies a meaning for
each function
These languages are higher order, in that the functions themselves
are first-class objects of the language, and can be passed around as
arguments.

This is not the case for Prolog (in the declarative reading), since it
corresponds to first-order logic. Some features of Prolog as a
programming language allow a bit more (eg call/1).

Is there something analogous we can do with a Logic Programming
approach?

Alan Smaill Logic Programming: Theory Nov 16, 2015 17/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

What Higher-Order Logic Programming is not

We have already seen that we can use Prolog as a meta-language
for Prolog, and so manipulate Prolog programs in Prolog.
This is not using higher-order ideas: it is mixing together two
separate first-order representations, one a representation of an
object domain, and another a representation of the syntax of the
first representation.
The logic here is called first-order because quantifiers are only used
over individual variables – we can’t quantify over functions, or
predicates in this logic.

Alan Smaill Logic Programming: Theory Nov 16, 2015 18/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

A richer logic

Suppose we allow quantifiers also over predicates: this takes us to
second-order logic. We extend the syntax of first order logic by
allowing variables for predicates as well as for individuals, and all
∀, ∃ quantifiers using these variables. The reading of these
quantifiers is just what you would expect . . .

Example:

∀P. P(0) ∧ ∀x (P(x) → P(suc(x))) → ∀y P(y)

This lets us express standard induction on the natural numbers as
a single statement about all properties P.

Alan Smaill Logic Programming: Theory Nov 16, 2015 19/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Note that if we tried to express this directly in definite clause logic,
there are three problems:

Prolog variables can’t appear in the “predicate” position
(since it’s first order).

One of the subgoals is an implication.

We want local quantification of the x .

Alan Smaill Logic Programming: Theory Nov 16, 2015 20/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

What would be good . . .

We’d like to be able to write something like:

P(Y) :- P(0), ∀x.(P(x) => P(suc(x))).

– read this as:

P(Y) :-
(
P(0), ∀x.(P(x) => P(suc(x)))

)
.

and have a programming language that made sense of this.

Alan Smaill Logic Programming: Theory Nov 16, 2015 21/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

λProlog

We outline a language that lets us do this sort of thing. It should
let us:

Search for derivations systematically;

Provide witnessing answers for query variables.

In the first-order case we have seen the unification algorithm that
is used in computing solution values for query variables within
definite clause logic; this has to be extended to deal with other
kinds of variables.

Alan Smaill Logic Programming: Theory Nov 16, 2015 22/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

λ-terms

Haskell, LISP and ML make use of λ-terms:

Haskell: \x -> x + 4

LISP: (lambda (x) (+ x 4))

ML: fn x => x + 4

and the evaluation of the applications of such terms is the main
computational mechanism of the languages.

λProlog includes such terms also, with the syntax

x\ (x + 4)

and the treatment of such terms has to let equivalent terms be
equal (and find solutions).

Alan Smaill Logic Programming: Theory Nov 16, 2015 23/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Examples

?- (x\ (x + 4)) = (y\ (y + 4)).

solved

?- (x\ (x + 4)) 3 = 3 + 4.

solved

?- F 3 = 3 + 4.

F = x\ 3 + 4 ;

F = x1\ x1 + 4 ;

no more solutions

Alan Smaill Logic Programming: Theory Nov 16, 2015 24/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Extending the language

definite clause logic is extended by adding:

A type structure: syntax items have user declared types; there
is a special type o of propositions; functions from type t1 to
type t2 have type t1 → t2. Predicates on objects of type t
have type t → o.

Implication as a new connective: G => H.

Universal quantification (in programs and queries).

Existential quantification (just in queries).

We use a curried style of syntax (as typical in Haskell), rather than
tuples (as in Prolog).

Alan Smaill Logic Programming: Theory Nov 16, 2015 25/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Quantifiers

Use the following to express quantification:
for ∀x A, use a lambda term to express the binding of the variable,
and then a constant pi to quantify. Thus a goal

∀x x = x

becomes

pi (x\ (x = x))

and ∀P P(0) → P(0) becomes

pi (p\ ((p 0) => (p 0))).

Both of these succeed as queries.

Alan Smaill Logic Programming: Theory Nov 16, 2015 26/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Examples

?- pi x\ (x = x).

solved

?- pi x\ (pi y\ (x = y)).

no

?- pi x\ (x = (Y x)).

Y = x\ x ;

no more solutions

Alan Smaill Logic Programming: Theory Nov 16, 2015 27/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Inferring with implications

An implication goal ?- P => Q is tackled by “adding P to the
program”, and trying to show Q. Standard Prolog clauses allow just
one implication (in the other direction).

a :- b.

b :- c.

?- c => a

Solved

Note that the statement added – here c – is added only locally in
the context of the implication query; so backtracking must keep
track of where assumptions are added, so that they are not in
scope if backtracking takes the context back before this query.

Alan Smaill Logic Programming: Theory Nov 16, 2015 28/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Inferring with implications ctd

More complex statements can get added too:

a :- b.

c.

?- (c => b) => a

Solved

Here c => b is added, so this is equivalent to querying ?- a.

with the program:

a :- b.

c.

b :- c.

?- a.

Solved

Alan Smaill Logic Programming: Theory Nov 16, 2015 29/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

This gives most of the expected properties of implication, e.g.

?- a => (b => a).

solved

?- (a => (b => c)) => (a => b) => (a => c).

solved

However, this is not implication as characterised by the standard
truth table. Consider:

?- ((a => b) => a) => a.

no

Alan Smaill Logic Programming: Theory Nov 16, 2015 30/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Summary

Closed World Assumption & Negation as Failure.

Clark completion

Higher-order logic programming

Alan Smaill Logic Programming: Theory Nov 16, 2015 31/1

