
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Logic Programming:
Terms, unification and proof search

Alan Smaill

Sep 24 2015

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 1/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Compound terms

Equality and unification

How Prolog searches for answers

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 2/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Terms

So far we have seen . . .

Atoms: homer marge ’Mr. Burns’

Variables: X Y Z MR BURNS

We also have . . .

Numbers: 1 2 3 42 -0.12435

Complex terms

Additional constants and infix operators

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 3/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Complex terms

A complex term is of the form

f(t1, . . . , tn)

where f is an atom and t1, . . . , tn are (maybe complex) terms

Examples:

f(1,2) node(leaf,leaf) cons(42,cons(43,nil))
household(homer, marge, bart, lisa, maggie)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 4/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Complex terms

A complex term is of the form

f(t1, . . . , tn)

where f is an atom and t1, . . . , tn are (maybe complex) terms

Examples:

f(1,2) node(leaf,leaf) cons(42,cons(43,nil))
household(homer, marge, bart, lisa, maggie)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 4/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

More about lists

Lists are built-in (and very useful) data structures.

Syntax:

[1,2,3,4]
[a,[1,2,3],42,’forty-two’]
[a,b,c|Xs]

Lots more on this next week . . .

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 5/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Infix operators

Prolog has built-in constants and infix operators.

Examples:

Equality: t = u (or =(t,u))

Pairing: (t,u) (or ,(t,u))

Empty list: []

cons: list given by first element and rest: [X|Y] (or .(X,Y))

You can also define your own infix operators!

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 6/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification

The equation t = u is a basic goal
with a special meaning

What happens if we ask:

?- X = c.
?- f(X,g(Y,Z)) = f(c,g(X,Y)).
?- f(X,g(Y,f(X))) = f(c,g(X,Y)).

And how does it do that?

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 7/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification II

?- X = c.
X=c
yes

?- f(X,g(Y,Z)) = f(c,g(X,Y)).
X=c
Y=c
Z=c
yes

?- f(X,g(Y,f(X))) = f(c,g(X,Y)).
no

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 8/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification III

A substitution is a mapping from variables to terms

X1 = t1, . . . ,Xn = tn

Given two terms t and u

with free variables X1, . . . ,Xn,

a unifier is a substitution that makes t and u identical when
applied to t and u.

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 9/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example I

f(X,g(Y,Z)) = f(c,g(X,Y))

X=c
Y=X
Z=Y

f

X g

Y Z

f

c g

X Y

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 10/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example I: apply the substitution

f(X,g(Y,Z)) = f(c,g(X,Y))

X=c
Y=c
Z=c

f

c g

c c

f

c g

c c

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 11/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example II

f(X,g(Y,f(X))) = f(c,g(X,Y))

X=c
Y=X

f

X g

Y f

X

f

c g

X Y

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 12/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example II: apply partial substitution

f(X,g(Y,f(X))) = f(c,g(X,Y))

X=c
Y=c
Y=f(X)
f(X)=c???

f

c g

c f

c

f

c g

c c

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 13/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Robinson’s algorithm

Consider a general unification problem

t1 = u1, t2 = u2, . . . , tn = un

Reduce the problem by decomposing each equation into one
or more “smaller” equations

Succeed if we reduce to a “solved form”, otherwise fail.

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 14/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Robinson’s algorithm

Consider a general unification problem

t1 = u1, t2 = u2, . . . , tn = un

Reduce the problem by decomposing each equation into one
or more “smaller” equations

Succeed if we reduce to a “solved form”, otherwise fail.

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 14/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Robinson’s algorithm ctd

Two function applications unify if the head symbols are equal,
and the corresponding arguments unify:

f (t1, . . . , tn) = f (u1, . . . , un), P ⇒
t1 = u1, . . . , tn = un, P

Must have same name, and equal number of arguments:

f (. . . ) = c , P ⇒ fail
f (. . . ) = g(. . . ), P ⇒ fail

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 15/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Robinson’s algorithm ctd

Two function applications unify if the head symbols are equal,
and the corresponding arguments unify:

f (t1, . . . , tn) = f (u1, . . . , un), P ⇒
t1 = u1, . . . , tn = un, P

Must have same name, and equal number of arguments:

f (. . . ) = c , P ⇒ fail
f (. . . ) = g(. . . ), P ⇒ fail

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 15/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Robinson’s algorithm ctd

Otherwise, a variable X unifies with a term t, provided X
does not occur in t:

proceed by substituting t for X in P:

X = t, P ⇒ P[t/X ]

occurs check: provided X does not occur in t

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 16/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Occurs check

What happens if we try to unify X with something that
contains X?

?- X = f(X).

Logically this should fail
there is no (finite) unifier!

Most Prolog implementations skip this check for efficiency
reasons

can use unify with occurs check/2

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 17/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Occurs check

What happens if we try to unify X with something that
contains X?

?- X = f(X).

Logically this should fail
there is no (finite) unifier!

Most Prolog implementations skip this check for efficiency
reasons

can use unify with occurs check/2

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 17/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Execution model

The query is run by trying to find a solution to the goal using the
clauses:

Unification is used to match goals and clauses

There may be zero, one, or many solutions

Execution may backtrack

The formal model is called SLD resolution, which you’ll see in the
theory lectures

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 18/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth-first search

Basic Idea:

To solve atomic goal A:

If B is a fact in the program, and there is a substitution θ
such that θ(A) = θ(B), then return answer θ;

else,
if B :- G1, ...,Gn is a clause in the program,
and θ unifies A with B,

then solve θ(G1), . . . , θ(Gn)

else give up on this goal:

backtrack to last choice point

Clauses are tried in declaration order

Compound goals are tried in left-right order

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 19/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth-first search

Basic Idea:

To solve atomic goal A:

If B is a fact in the program, and there is a substitution θ
such that θ(A) = θ(B), then return answer θ;

else,
if B :- G1, ...,Gn is a clause in the program,
and θ unifies A with B,

then solve θ(G1), . . . , θ(Gn)

else give up on this goal:

backtrack to last choice point

Clauses are tried in declaration order

Compound goals are tried in left-right order

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 19/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth-first search

Prolog tries clauses in order of appearance in the program.
We look at a couple of search trees for query execution.
Assume: foo(a). foo(b). foo(c).
then:

?- foo(X). foo(X)

X=a X=b X=c

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 20/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth-first search

Prolog tries clauses in order of appearance in the program.
We look at a couple of search trees for query execution.
Assume: foo(a). foo(b). foo(c).
then:

?- foo(X).
X=a

foo(X)

X=a X=b X=c

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 20/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth-first search

Prolog tries clauses in order of appearance in the program.
We look at a couple of search trees for query execution.
Assume: foo(a). foo(b). foo(c).
then:

?- foo(X).
X=a ;
X=b

foo(X)

X=a X=b X=c

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 20/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth-first search

Prolog tries clauses in order of appearance in the program.
We look at a couple of search trees for query execution.
Assume: foo(a). foo(b). foo(c).
then:

?- foo(X).
X=a ;
X=b ;
X=c

foo(X)

X=a X=b X=c

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 20/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth-first search

Prolog tries clauses in order of appearance in the program.
We look at a couple of search trees for query execution.
Assume: foo(a). foo(b). foo(c).
then:

?- foo(X).
X=a ;
X=b ;
X=c ;
no

foo(X)

X=a X=b X=c

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 20/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth first search ctd

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?- bar(X),baz(X). bar(X),baz(X)

X=b

baz(b)

X=c

baz(c)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth first search ctd

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?- bar(X),baz(X). bar(X),baz(X)

X=b

baz(b)

X=c

baz(c)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth first search ctd

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?- bar(X),baz(X). bar(X),baz(X)

X=b

baz(b)

X=c

baz(c)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth first search ctd

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?- bar(X),baz(X). bar(X),baz(X)

X=b

baz(b)

X=c

baz(c)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth first search ctd

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?- bar(X),baz(X). bar(X),baz(X)

X=b

baz(b)

X=c

baz(c)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth first search ctd

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?- bar(X),baz(X). bar(X),baz(X)

X=b

baz(b)

X=c

baz(c)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth first search ctd

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?- bar(X),baz(X). bar(X),baz(X)

X=b

baz(b)

X=c

baz(c)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth first search ctd

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?- bar(X),baz(X).

X = c
bar(X),baz(X)

X=b

baz(b)

X=c

baz(c)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Depth first search ctd

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?- bar(X),baz(X).
X = c ;

no

bar(X),baz(X)

X=b

baz(b)

X=c

baz(c)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

“Generate and test”

Common Prolog programming idiom:

find(X) :- generate(X), test(X).

where:

generate(X) produces candidates on backtracking
test(X) succeeds or fails on candidates

Use this to constrain (maybe infinite) search spaces;

Can use different generators to get different search strategies
besides depth-first.

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 22/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

“Generate and test”

Common Prolog programming idiom:

find(X) :- generate(X), test(X).

where:

generate(X) produces candidates on backtracking
test(X) succeeds or fails on candidates

Use this to constrain (maybe infinite) search spaces;

Can use different generators to get different search strategies
besides depth-first.

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 22/23



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Coming Attractions

Recursion

Lists

Trees, data structures

For further reading, see LPN ch. 2.

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 23/23


