Logic Programming:
Term manipulation, Meta-Programming

Alan Smaill

Oct 22, 2015

Alan Smaill Logic Pi ing: Term ipulation, Meta-Programming Oct 22, 2015

® o Schoolof .o
informatics @

1/1

Today

® o School of Lo K
informatics

» Reminder of term manipulation predicates
» var/1, functor/2 etc
» Meta-programming
» call/1
» symbolic programming
» Prolog in Prolog

Alan Smaill Logic Pro, i Term ipulation, Meta-Programming Oct 22, 2015 2/1

Recall

o ¢ schootof e (D
informatics @

» var/1 holds if argument is Prolog variable, when called.

» nonvar/1 holds if argument is not a variable when called
(ground, or partially instantiated)

» None of these affect binding.

Alan Smaill Logic Pro, i Term ipulation, Meta-Programming Oct 22, 2015 3/1

Other term properties

Alan Smaill

v v Vv Vv Vv

number/1: -89, 1.007
integer/1: -89, 6000

float/1: 0.1, 67.6543

atom/1: a,f,gl567

atomic/1: a,f,g1567,1.007,-89

Logic Pro, i Term ipulation, Meta-Programming

inf

School of
orma

tics @

Oct 22, 2015

4/1

Structural equality — @
nrormarics - 4

Can test for whether terms are identical:

b The ==/2 operator tests whether two terms are exactly
identical,

» Including variable names! (No unification!)

7- X == X
yes
7- X ==Y
no

Alan Smaill Logic Pro, i Term ipulation, Meta-Programming Oct 22, 2015 5/1

Ve

Structural comparison .
School of _e N .
informatics @

b \==/2: tests that two terms are not identical

7- X \== X.
no
7- X \==Y.
yes

Alan Smaill Logic Pro, i Term ipulation, Meta-Programming Oct 22, 2015 6/1

o School of
informa

Recall: breadth-first search
tics @

b Keep track of all possible solutions, try shortest ones first

» Maintain a “queue” of solutions

bfs([[Node|Path],_], [Node|Path]) :-
goal(Node) .
bfs([Path|Paths], S) :-
extend (Path,NewPaths),
append (Paths,NewPaths,Pathsl),
bfs(Pathsi,S).
bfs_start(N,P) :- bfs([[N]],P).

Alan Smaill Logic Pro, i Term ipulation, Meta-Programming Oct 22, 2015

A difference list version

o g schootof e BN
informatics @
Here is a more efficient way, using difference lists —

the first two arguments to bfs_d1/2 are thus a (difference) list of
lists, and the associated difference list variable.

bfs_dl1([[Nodel|Path]l|_], _, [NodelPath]) :-
goal (Node) .
bfs_dl([Path|Paths], Z, Solution) :-
extend (Path,NewPaths),
append (NewPaths,Z1,Z),
Paths \== Z1, %% (Paths,Z1) is not empty DL
bfs_dl(Paths,Z1,Solution).

bfs_dl_start(N,P) :- bfs_d1([[N]I[X],X,P).

\== checks if terms Paths,Z1 are identical as terms

Alan Smaill Logic Pro, i Term ipulation, Meta-Programming Oct 22, 2015

8/1

Why more efficient?

o ¢ schootof e (D
informatics @

For the \==/2 test, recall that the empty difference list is
represented as a pair X/X with two occurrences of the same

variable.

Notice that, although the new version uses the usual append/3, its
first argument is the list of new paths, not the list of current paths,
which is usually much larger.

Oct 22, 2015 9/1

Alan Smaill Logic Pro, i Term ipulation, Meta-Programming

meta-Programming: call/1

informatics (@)
call/1:
» Given a Prolog term G, solve it as a goal

?7- call(append([1],[2],X)).
X =1[1,2].

?7- read(X), call(X).
| : member (Y, [1,2]).
X = member(1,[1,2])

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 10/1

call with =..

o g schootof e BN
informatics @
... allows some devious things.

callwith(P,Args) :-
Atom =.. [P|Args], call(Atom).

map(P, [1,[]1).
map (P, [XI1Xs], [Y|Ys]):-
callwith(P, [X,Y]), map(P,Xs,Ys)

plusone(N,M) :- M is N+1.

?- map(plusone, [1,2,3,4,5],L).
L = [2’3:4,5;6]'

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 11/1

Symbolic programming

o g schootof e BN
informatics @

Propositions

prop(true) .

prop(false).

prop(and(P,Q)) :- prop(P), prop(Q).
prop(or(P,Q)) :- prop(P), prop(Q).
prop(imp(P,Q)) :- prop(P), prop(Q).
prop(not(P)) :- prop(P).

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 12/1

Formula Simplification .
School of e g L
informatics @

simp(and(true,P),P).
simp(or(false,P),P).

simp(imp(P,false), not(P)).

simp (imp (true,P), P).

simp(and(P,Q), and(P1,Q)) :- simp(P,P1).
simp(and(P,Q), and(P,Q1)) :- simp(Q,Q1).

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 13/1

Satisfiability checking

o g schootof e BN
informatics @

» Given a formula, find a satisfying assignment for the atoms in
it;
b Assume atoms given [pl,...,pn].

» A valuation is a list [(pl,truelfalse),...].

gen([1,[1).

gen([P|Ps], [(P,V)|PVs]) :-
(V=true;V=false),
gen(Ps,PVs).

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 14/1

Evaluation .
School of e 3 L
informatics @

sat (V,true).

sat(V,and(P,Q)) :- sat(V,P), sat(V,Q).
sat(V,or(P,Q)) :- sat(V,P) ; sat(V,Q).
sat(V,imp(P,Q)) :- \+(sat(V,P))

; sat(V,Q).
sat(V,not(P)) :- \+(sat(V,P)).
sat(V,P) :- atom(P),

member ((P,true),V).

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 15/1

Satisfiability st

b Generate a valuation
b Test whether it satisfies Q

satisfy(Ps,Q,V) :- gen(Ps,V),
sat(V,Q).

» On failure, this backtracks & tries another valuation.

This exploits logic programming search in a useful and concise way.

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 16/1

Prolog in Prolog o s @

b Represent definite clauses
rule(Head, [Body,....,Bodyl).

» A Prolog interpreter in Prolog:
prolog(Goal) :- rule(Goal,Body),

prologs (Body)
prologs([1).
prologs([Goal|Goals]) :- prolog(Goal),
prologs(Goals) .

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 17/1

Example

o g schootof e BN
informatics @

rule(p(X,Y), [Q(X), r(V)]).
rule(q(1),[1).
rule(r(2),[1).
rule(r(3),[1).

?- prolog(p(X,Y)).

X=1
Y =2

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 18/1

SO What? e School of “* %'1
informatics @

b Prolog interpreter already runs programs. ..

b Self-interpretation is interesting because we can examine or
modify behaviour of interpreter.

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 19/1

rules with “justifications”! Y
informatics @

rule_pf(p(1,2), [1, rulel).
rule_pf(p(X,Y), [qX), r(Y)],rule2(X,Y)).
rule_pf(q(1), [],ruled).
rule_pf(r(2),[],ruled).
rule_pf(r(3),[],ruleb).

Oct 22, 2015 20/1

Alan Smaill Logic Pi ing: Term ipulation, Meta-Pr

Witn €55€5 School of 5,00“‘ vm’ﬁ
tics @

L]
informa

Now we can produce proof trees showing which rules were used:

prolog_pf (Goal, [Tag|Proof]) :-
rule_pf (Goal,Body,Tag),
prologs_pf (Body,Proof) .
prologs_pf ([1,[1).
prologs_pf ([Goal|Goals], [Proof |Proofs]) :-
prolog_pf (Goal,Proof),
prologs_pf (Goals,Proofs).

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 21/1

Witn esses e School of 4 S m’i
informatics @

“Is there a proof of p(1,2) that doesn't use rule 17"

?7- prolog_pf(p(1,2),Prf),
\+(in_proof (rulel,Prf)).

Prf = [rule2, [rule3, rule4]l].

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 22/1

Other applications
infotimatics ()

b lterative deepening interpreter:
as we saw for general search, we can:

— search exhaustively to a given depth;
— if no solution found, increase depth bound and recurse.

This way, we are assured to find a solution if there is one.

Oct 22, 2015 23/1

Alan Smaill Logic Pi ing: Term ipulation, Meta-Pr

Iterative deepening meta-interpreter

® o Schoolof zo
informatics °

Prolog implementations allow inspections of the internal knowledge
base of facts and rules.

To make use of this, need to make relevant predicates “dynamic”,
e.g. by having a directive:

:= dynamic(foo/2).

foo(a,1).
foo(b,Y) :- foo(a,X), Y =X + 1.

The clause/2 predicate then allows us to inspect clauses
matching a given head pattern:

b returns an explicit true for an empty body (head is a fact).

b returns body as atom, or as compound term made up of pairs

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 24/1

Iterative deepening meta-interpreter/2 o soaer . g
informatics @
We can query for clause information: ‘

| ?- clause(foo(X,Y),Body).

X = a,

Y=1,

Body = true 7 ;

X =D,

Body = (foo(a,_A),Y=_A+1) ;
no

We can even query with more instantiated pattern:

| ?- clause(foo(c,Y), Body).
no

| ?- clause(foo(a,Y), Body).
Y=1,

Body = true 7

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015

25/1

Iterative Deepening Meta-Interpreter/3 o et . AR
informatics @

We can give depth-bounded search for goals tagged with a depth
bound, as follows:

solve(true/_) :- !. %% base case
solve((A,B)) :- solve(d), solve(B).%% pair of goals
solve(Q/N) :- O<N, M is N-1,

%% unify with head of a clause;
%% note change of depth.
clause(Q, Body),
tag(Body,M,Tagged) ,
solve(Tagged).

%k tag(+,+,7?) distributes depth label to subgoals

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 26/1

Iterative Deepening Meta-Interpreter/4 o et . AR
informatics @

Now use iterative deepening wrapper:

idsolve(Query) :- idsolve(Query,0).

idsolve (Query,N) :-
tag(Query,N,QQ), solve(QQ),
write(’Solution found during search to depth ’),
write(N).

idsolve(Query,N) :-
M is N+1, write(’Searching at depth ’),
write(M),nl,
idsolve (Query,M) .

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015 27/1

Iterative Deepening Meta-Interpreter/5 o et . AR
informatics Gy

Now look at cases where depth-first execution may be problematic,
and compare 7- Query. with 7- idsolve(Query) .
» Where looping occurs, so losing solutions (incompleteness):
iterative deepening search will find solutions (given enough
resources).

» Where solutions with short derivations are found only after
solutions with longer derivations:

iterative deepening will the former before the latter.

BUT iterative deepening itself will loop if there is no solution!

Alan Smaill Logic Pi ing: Term ipulation, Meta-Pr

Oct 22, 2015 28/1

More applications N @
tics @)

informa

» Tracing
Can implement trace/1 this way
b Declarative debugging

» Given an error in output, “zoom in” on input rules that were
used
» These are likely to be the ones with problems

For more on this, see LPN, ch. 9, and Bratko, ch. 23

Alan Smaill Logic P ing: Term ipulation, Meta-Pr i Oct 22, 2015

29/1

