Alan Smaill

Logic Programming:
Search Strategies

Alan Smaill

Oct 19, 2015

Logic Programming: Search Strategies Oct 19, 2015

o g schootof e BN
informatics @

1/28

TOday o ¢ schootof e (D
informatics \&Y:

» Problem representation
» Search

» Depth First
» lterative Deepening
» Breadth First

» AND/OR (alternating/game tree) search

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 2/28

L] School of
informa

Search Problems s
tics @

Many classical Al/CS problems can be formulated as search
problems.

Examples:
» Graph searching
» Blocks world
b Missionaries and cannibals

» Planning (e.g. robotics)

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 3/28

Search Spaces

o o Schoolof .o DN
informatics (&)

Given by:
b Set of states s1, 5, ...

» Goal predicate goal(X)

» Step predicate s(X, Y) that says we can go from state X to
state Y

» A start state (or states)

» A solution is a path leading from the S to a goal state G
satisfying goal(G).

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 4/28

Example: Blocks world
p School Of"ics ;@;

L]
informa

Take configuration of blocks as a list of three towers, each tower
being a list of blocks in a tower from top to bottom.

[[c,b,al,], [c]]

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 5/28

Example: Blocks world
p School Of"ics ;@;

L]
informa

Move a block from top of a tower to top of another tower:

[[b,al, [], [c]]

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 6/28

Example: Blocks world P
p School Of"ics ;@;

informa

Next move:

([al, [b], [c]]

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 7/28

Example: Blocks world P
p School Of"ics é@;

informa

Then —

(J, [a,b], [c]]

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 8/28

Prolog representation

Alan Smaill

p State is a list of stacks of blocks:
[[a,b,c],[],[]]

» Transitions move a block from the top of one stack to the top
of another:

s([[A|As],Bs,Cs], [As,[A|Bs],Cs]).
s([[AlAs],Bs,Cs], [As,Bs,[AlCs]]).

» Can specify particular goal position:

goal([[],[],[a,b,cl]).

Logic Programming: Search Strategies Oct 19, 2015

o ¢ schootof e (D
informatics @

9/28

An abstract problem space

Think of the graph generated by these

s(a,b). declarations.

s(b,c). _

s(c,a). In this case:
s(c,f(d)). » the graph is infinite

s(£(N),£(g(N))). » thereis a loop near the top of the graph
s(£(g(X)),X).

goal(d).

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015

o ¢ schootof e (D
informatics @

10/28

abstract space ctd

o School of
informa

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 11/28

roblem 1: cycles
p -y School Of"ics ;@

L]
informa

We can already see in the blocks world example and in the abstract
search space that it is easy to follow actions around in cycles, and
not find the goal, even if there is a path to the goal.

There are two main approaches to deal with this:
b remember where you've been; OR . ..
» work with depth bound

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 12/28

informa

Solution 1: remember where you've been o oot
rmatics @

% dfs(PathSoFar, CurrentNode, PathToGoal)

dfs_noloop(Path,Node, [Node|Path]) :-
goal (Node) .

dfs_noloop(Path,Node,Pathl) :-
s(Node,Nodel),
\+ member (Nodel,Path),
dfs_noloop([Node|Path],Nodel,Pathl).

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 13/28

Problem 2: Infinite State Space et . 4B
rmatics @

L]
informa

Compare the graph from the abstract search space.
Depth First Search has similar problems to Prolog proof search:

» We may miss solutions because state space is infinite;

b Even if state space is finite, may wind up finding “easy”
solution only after a long exploration of pointless part of
search space

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 14/28

Solution 2: depth bounding

o g schootof e BN
informatics @

b Keep track of depth, stop if bound exceeded
» Note: does not avoid loops (can do this too)

dfs_bound(_,Node, [Node]) :-
goal (Node) .

dfs_bound(N,Node, [Node|Path]) :-
N> o0,
s (Node,Nodel),
M is N-1,
dfs_bound (M,Nodel,Path)

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 15/28

Problem 3: what is a good bound?

® o School of Lo K
informatics

» In general, we just don't know in advance:

» Too low? —
Might miss solutions
» Too high? — Might spend a long time searching pointlessly

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 16/28

Solution 3: iterative deepening

School of

Use the following with some small start value for N

dfs_id(N,Node,Path) :-
dfs_bound (N,Node,Path)

M is N+1,
dfs_id(M,Node,Path).

NB: if there is no solution, this will not terminate.

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015

. . 4 N
informatics \&Y:

17/28

L]
informa

Breadth first search
School of I‘ics Z@J

Keep track of all possible solutions, try shortest ones first;
do this by maintaining a “queue” of solutions

bfs([[Node|Path]|_], [Nodel|Path]) :-
goal(Node) .

bfs([Path|Paths], S) :-
extend (Path,NewPaths),
append (Paths,NewPaths,Pathsl),
bfs(Pathsi,S).

bfs_start(N,P) :- bfs([[N]],P).

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015

18/28

extending paths

o ¢ schootof e (D
informatics @

extend([Node|Path] ,NewPaths) :-
bagof ([NewNode,Node |Path],
(s (Node,NewNode) ,
\+ (member (NewNode, [Node|Path]))),
NewPaths),
|
%% if there are no next steps,
%% bagof will fail and we’ll fall through.

extend(_Path,[]).

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 19/28

Problem: speed

o g schootof e BN
informatics @

» Concatenating new paths to end of list is slow

» Avoid this using difference lists?

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 20/28

AND/OR search

® o School of Lo K
informatics

b So far we've considered graph search problems
» Just want to find some path from start to end
» Other problems have more structure
b e.g. 2-player games
» AND/OR search is a useful abstraction

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 21/28

Example: Noughts and Crosses
P g informatics @

MAX (x)

MIN (0)

MAX (x)

MIN (0)

TERMINAL

Utility

Alan Smaill

orma

X X X
X X X
X X X
x|o x| [o] [x
[¢]

x[o x[o x]o

X X
x[0 x[o[x] [x][o[x e
[¢] o[o[x X
[¢] x[x]o] [x[o[o
-1 0 +1

Logic Programming: Search Strategies Oct 19, 2015 22/28

Representation

Alan Smaill

» or(S,Nodes)

» Sis an OR node with possible next states Nodes
» “Our move”

» and(S,Nodes)

» Sis an AND node with possible next states Nodes
» “Opponent moves"

b goal(S)
» Sisa “win” for us

Logic Programming: Search Strategies

o g schootof e BN
informatics @

Oct 19, 2015

23/28

Example: A simple game

o g Schoolof .. AGON
informatics (&)

and(a, [b,c]).
or(b, [d,a]).
or(c,[d,el).
goal(e).

What is the graph here?

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 24/28

Basic Idea

andor (Node) :- goal(Node).
andor (Node) :-
or (Node,Nodes) ,
member (Nodel,Nodes),
andor (Nodel) .
andor (Node) :-
and (Node,Nodes),
solveall(Nodes) .

solveall (Nodes) :-

Alan Smaill Logic Programming: Search Strategies

inf

School of _ e 5’00“‘ F%ﬁ
ormatics @

Oct 19, 2015

25/28

o School of _ e :
informatics °

Solutions @

b For each AND state, we need solutions for all possible next
states

» For each OR state, we just need one choice

» A “solution” is thus a tree, or strategy

» Can adapt previous program to produce solution tree;

» Can also incorporate iterative deepening, loop avoidance, BFS.

» heuristic measures of “good” positions leads to algorithms like
MiniMax.

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 26/28

Noughts and crosses via minimax

o g schoolol . DN
informatics @

See
http:
// wuww. emse. fr/ ~picard/ cours/ at/minimaz/

with acknowledgements to EMSE.
This provides alongside an implementation of minimax,

instantiation to noughts and crosses (= tic-tac-toe), and a basic
interface for playing the game.

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 27/28

http://www.emse.fr/~picard/cours/ai/minimax/
http://www.emse.fr/~picard/cours/ai/minimax/

Further Reading

o g schootof e BN
informatics @

» Bratko, Prolog Programming for Artificial Intelligence

» ch. 8 (difference lists), ch. 11 (DFS/BFS)
» also Ch. 12 (BestFS), 13 (AND/OR)

Alan Smaill Logic Programming: Search Strategies Oct 19, 2015 28/28

