
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Logic Programming:
Non-logical features

Alan Smaill

Oct 1 2015

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 1/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Note

Several predicates seen so far or today are built-in in sicstus,
maybe with different names.

append/3
member/2
length/2

It is good to know how to define them from scratch, if
necessary.

LPN “predicate index” lists all the built-ins you are expected
to know, and more . . .

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 2/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Nonlogical features

So far we have worked mostly in pure Prolog.
This provides:

solid logical basis

elegant solution to symbolic problems

But various practical things become inconvenient:
arithmetic and I/O.

And standard proof search is not always efficient.

Can we control proof search better?

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 3/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today’s agenda

Nonlogical features

Expression evaluation
I/O
“Cut” — pruning the search space
Negation as failure

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 4/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Expression evaluation

Prolog has built-in syntax for arithmetic expressions;

But it is uninterpreted – simply syntax.

?- 2 + 2 = 4.

no.

?- X = 2+2.

X=2+2

?- display(2+2).

+(2,2)

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 5/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Expression evaluation

We can define unary arithmetic operations ourselves:

add(M,N,P)

and define evaluation ourselves:

eval(+(X, Y), V) :-
eval(X, N), eval(Y, M), add(M, N, V).

but this is painfully slow —
and floating point would be worse.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 6/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

evaluation predicate “is”

?- X is 2+2.

X=4.

?- X is 6*7.

X=42.

?- X is 2+Y.
! Instantiation error in argument 2 of is/2
! goal: _107 is 2+_111

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 7/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Machine Arithmetic with “is”

Addition (+), subtraction(-)

X is 2+(3-1).

X=4

multiplication (*), division(/), mod:

?- X is 42 mod 5, Y is 42 / 5.

X = 2,
Y = 8.4

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 8/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Warning

WARNING

Unlike “=”, “is” is not symmetric.

needs the mode (?,+)
so requires RHS to be ground (no variables):

?- 2+(3-1) is X.

! Instantiation error i...

Further, the RHS must be an arithmetic expression:

?- X is foo(z).

! Domain error ...

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 9/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Lists and arithmetic

length of a list:
possible definition:

len([], 0).
len([_|L], N) :- len(L, M), N is M+1.

Only works in mode (+,?)

The built-in (in sicstus) length/2 works in both directions.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 10/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Arithmetic comparisons

There are several binary relations built-in as goals, written infix:

less than (<), greater than (>)

less or equal (=<), greater or equal (>=)

arithmetic equality (=:=), inequality (=/=)

All of these have mode (+,+):
both arguments must be ground.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 11/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example

Maximum predicate (3rd arg is max of other two)

max(X, Y, Y) :- X =< Y.
max(X, Y, X) :- X > Y.

Works in mode (+X, +Y, ?M)

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 12/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Basic Input/Output

read(?X) reads in a term, by default from standard input;
– the term must be followed by a “.”

write(+X) prints out its argument as a term;
– if X is not ground, variable names are not preserved.

nl/0 prints a newline.

Expression calculator, taking input from terminal:
note non-terminating loop!

calc :- read(X),
Y is X,
write(X = Y), nl,
calc.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 13/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Backtracking through I/O

How do backtracking and I/O interact?

Short answer: backtracking is possible, but cannot undo I/O.

?- write(foo), fail; write(bar).

foobar

As is normal, any binding is undone on backtracking:

?- read(X), fail; X=1.

|: foo.

X=1.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 14/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Cut

Sometimes, we have reason to believe we have reached the
right / only possible answer

so no back-tracking is needed

in Pure Prolog, we cannot take advantage of this

Introduce a special “cut” predicate to allow this to be
expressed.

Cut just written by exclamation mark: !

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 15/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example

The “member of a list” predicate:

member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

If this is used in mode (+,+), and X is found in L, there is no point
in backtracking and looking for other solutions.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 16/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example

So, insert a cut in the first clause:

member(X, [X|_]) :- !.
member(X, [_|L]) :- member(X, L).

When a goal that matches member(X,Y) is called, if the first
clause succeeds, the second will not be used on backtracking.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 17/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

How it works

Recall that there is a choice point any time there are alternative
clauses for using a clause for a particular (atomic) goal.

Suppose there is a cut in the body of some clause of predicate
pred/2; and an attempt to solve sub-goal pred(T1,T2) has
reached the cut. Then:

as a goal, the cut succeeds

and, while solving pred(T1,T2), it cuts out (“prunes”) any
remaining choice points:

earlier in the body of that clause, and
cuts out all later clauses of pred/2.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 18/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

How it works

without cut member(1,[1,2,1])

member(1,[2,1])

member(1,[1])

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 19/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

How it works

with cut member(1,[1,2,1])

! member(1,[2,1])

member(1,[1])

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 20/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

examples (1)

p(X,Y):-
q(X),r(X,Y).

p(X,X):- a(X).

q(X):- a(X).

r(X,Y):-
b(X),c(Y).

a(1). a(3).
b(1). b(2).
c(2). c(3).

?- p(X,Y).

p(X,Y)

q(X),r(X,Y)

a(X),r(X,Y)

r(1,Y)

b(1),c(Y)

c(Y)
Y=2 Y=3

X=1

r(3,Y)

b(3),c(Y)

X=3

a(X)
X=1 X=3

Y=X

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 21/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

examples (2)

p(X,Y):-
q(X),r(X,Y), !.

p(X,X):- a(X).

q(X):- a(X).

r(X,Y):-
b(X),c(Y).

a(1). a(3).
b(1). b(2).
c(2). c(3).

?- p(X,Y).

p(X,Y)

q(X),r(X,Y),!

a(X),r(X,Y),!

r(1,Y),!

b(1),c(Y),!

c(Y),!

!
Y=2 Y=3

X=1
r(3,Y)

b(3),c(Y)

X=3

a(X)
X=1 X=3

Y=X

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 22/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

examples (3)

p(X,Y):-
q(X),!,r(X,Y).

p(X,X):- a(X).

q(X):- a(X).

r(X,Y):-
b(X),c(Y).

a(1). a(3).
b(1). b(2).
c(2). c(3).

?- p(X,Y).

p(X,Y)

q(X),!,r(X,Y)

a(X),!,r(X,Y)

!,r(1,Y)

!

b(1),c(Y)

c(Y)
Y=2 Y=3

X=1
r(3,Y)

b(3),c(Y)

X=3

a(X)
X=1 X=3

Y=X

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 23/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

examples (4)

p(X,Y):-
q(X),r(X,Y).

p(X,X):- a(X).

q(X):- a(X), !.

r(X,Y):-
b(X),c(Y).

a(1). a(3).
b(1). b(2).
c(2). c(3).

?- p(X,Y).

p(X,Y)

q(X),r(X,Y)

a(X),!,r(X,Y)

!,r(1,Y)

!

b(1),c(Y)

c(Y)
Y=2 Y=3

X=1
r(3,Y)

b(3),c(Y)

X=3

a(X)
X=1 X=3

Y=X

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 24/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

examples (5)

p(X,Y):-
q(X),r(X,Y).

p(X,X):- a(X).

q(X):- a(X).

r(X,Y):-
b(X),!,c(Y).

a(1). a(3).
b(1). b(2).
c(2). c(3).

?- p(X,Y).

p(X,Y

q(X),r(X,Y)

a(X),r(X,Y)

r(1,Y)

b(1),!,c(Y)

!

c(Y)
Y=2 Y=3

X=1
r(3,Y)

b(3),c(Y)

X=3

s(X)
X=1 X=3

Y=X

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 25/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Max

Our earlier implementation:

max(X, Y, Y) :- X =< Y.
max(X, Y, X) :- X > Y.

It is pointless to backtrack –

if the first clause succeeds, then the second must fail.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 26/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Max using cut

So stop backtracking:

max(X, Y, Y) :- X =< Y, !.
max(X, Y, X) :- X > Y.

It is pointless to backtrack –

if the first clause succeeds, then the second must fail.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 27/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

But what about . . .

Do we need the test in the second clause at all ?
Let’s try dropping it:

max(X, Y, Y) :- X =< Y, !.
max(X, Y, X).

This is (slightly) more efficient, but

it damages transparency — not the right logical
characterisation.

max(1,2,1) and max(1,2,2) both succeed! (Why?)

clause order matters!

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 28/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Safe use of cut

Cut can make programs more efficient

by avoiding pointless backtracking

But as we have just seen with max/3, cuts can change the
meaning of the program (not just efficiency).

“Green” cuts are those that preserve meaning of the program;

“Red” cuts don’t.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 29/30



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Forthcoming attractions

More about cut and negation

Further reading: LPN chs 5 & 10.

Alan Smaill Logic Programming: Non-logical features Oct 1 2015 30/30


