® o Schoolof .o
informatics @

Logic Programming:
Terms, unification and proof search

Alan Smaill

Sep 24 2015

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 1/23

Today

® . Schoolof o AQEN:
informatics {&):

» Compound terms
» Equality and unification

» How Prolog searches for answers

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 2/23

Terms e School of K = F,ﬂ\;ﬁ
informatics @

So far we have seen ...

» Atoms: homer marge ’Mr. Burns’
» Variables: X Y Z MR_BURNS

We also have ...
» Numbers: 1 2 3 42 -0.12435
» Complex terms

b Additional constants and infix operators

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 3/23

Complex terms

o ¢ Schoolof . BN
informatics @

b A complex term is of the form

f(t1,...,tn)

» where f is an atom and ti,...,t, are (maybe complex) terms

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 4/23

Comp/ex terms ° School of _ e 5,00“‘”'»%
informatics \G)

b A complex term is of the form
f(t1,...,tn)

» where f is an atom and ti,...,t, are (maybe complex) terms

Examples:

£(1,2) node (leaf,leaf) cons (42, cons (43,nil))
household (homer, marge, bart, lisa, maggie)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 4/23

More about lists

o g schootof e BN
informatics @

Lists are built-in (and very useful) data structures.

Syntax:

[1,2,3,4]
[a, [1,2,3],42, forty-two’]
[a,b,c|Xs]

Lots more on this next week . ..

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 5/23

Infix operators -
informatics \&Y:

Prolog has built-in constants and infix operators.

Examples:
» Equality: t = u (or =(t,u))
» Pairing: (t,u) (or ,(t,u))
» Empty list: []
b cons: list given by first element and rest: [X|Y] (or . (X,Y))

You can also define your own infix operators!

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 6/23

Unification .
School of _e N ’
informatics @

The equation t = u is a basic goal
with a special meaning

What happens if we ask:

- X =c.
7- f(xyg(YsZ)) = f(C,g(X,Y))-
7- £X,g(Y,£(X))) = f(c,g(X,Y)).

And how does it do that?

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 7/23

Unification Il

o g schootof e BN
informatics @

- X =c.
X=c
yes

7- £X,g(Y,2)) = £(c,g(X,Y)).
X=c
Y=c
Z=c
yes

7 £(X,g(Y,£(X)) = £(c,g(X,V)).
no

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 8/23

Unification Il

® o School of Lo K
informatics

b A substitution is a mapping from variables to terms
Y Xi=t,..., X, =t

» Given two terms t and u
» with free variables Xi,..., X,,

b a unifier is a substitution that makes t and u identical when
applied to t and w.

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 9/23

Examp/e l School of _ e 5@?&
tics NGY:

informa

f(X,g(Y,2)) = £f(c,g(X,Y))

X=c

=Y

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 10/23

Example I: apply the substitution

Alan Smaill

f(X,g(Y,2)) = £(c,g(X,Y))

Logic Programming: Terms, unification and proof search

inf

vvvvv
3

School of _ e ;@ \:
ormatics (&)

Sep 24 2015

11/23

Example 11

o g schoolof . DN
informatics @

£(X,g(Y,£(X))) = f(c,g(X,Y))

X=c
Y=X

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 12/23

o School of _ e =z o
informatics :

Example II: apply partial substitution ®

fX,g(Y,£(X))) = f(c,gX,Y))

Xsc =~ =l . -
Y=c

Y=f (X)

f(X)=c?77?

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 13/23

Robinson's algorithm

® . Schoolof o AQEN:
informatics (&)

» Consider a general unification problem

ti=u, to=up, ..., th=u

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 14/23

Robinson's algorithm

o ¢ Schoolof . BN
informatics @

» Consider a general unification problem

ti=uy, to=1up, ..., *tn

Up

» Reduce the problem by decomposing each equation into one
or more ‘“smaller” equations

b Succeed if we reduce to a “solved form", otherwise fail.

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 14/23

Robinson's algorithm ctd .
informatics @

» Two function applications unify if the head symbols are equal,
and the corresponding arguments unify:

f(tl,...,t,,):f(ul,...,u,,), P =
ti=u, ..., tp=up, P

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 15/23

Robinson's algorithm ctd .
informatics @

» Two function applications unify if the head symbols are equal,
and the corresponding arguments unify:

f(tl,...,t,,):f(ul,...,u,,), P =
ti=u, ..., tp=up, P

» Must have same name, and equal number of arguments:

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 15/23

Robinson’s algorithm ctd

» Otherwise, a variable X unifies with a term t, provided X
does not occur in t:

b proceed by substituting t for X in P:
X=t, P = P[t/X]

occurs check: provided X does not occur in t

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015

o g schootof e BN
informatics @

16/23

L] School of
informa

Occurs check .
tics @

» What happens if we try to unify X with something that
contains X7

7- X =£f(X).

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 17/23

Occurs check

o ¢ schootof e (D
informatics @

» What happens if we try to unify X with something that
contains X7

7- X =£f(X).

» Logically this should fail
there is no (finite) unifier!

» Most Prolog implementations skip this check for efficiency
reasons

» can use unify with_occurs_check/2

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 17/23

o School of
informa

Execution model
tics @

The query is run by trying to find a solution to the goal using the
clauses:

» Unification is used to match goals and clauses
b There may be zero, one, or many solutions

b Execution may backtrack

The formal model is called SLD resolution, which you'll see in the
theory lectures

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 18/23

Depth-first search .
informatics @

Basic Idea:

To solve atomic goal A:
» If B is a fact in the program, and there is a substitution 6
such that §(A) = 6(B), then return answer 6;
> else,
if B :-Gi,..., Gy is a clause in the program,
and 6 unifies A with B,
then solve 0(G1),...,0(Gp)
b else give up on this goal:
» backtrack to last choice point

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015

19/23

Depth-first search

o g Schoolof .. AGON
informatics (&)

Basic Idea:

To solve atomic goal A:

» If B is a fact in the program, and there is a substitution 6
such that (A) = 0(B), then return answer 0;

> else,
if B :-Gi,..., Gy is a clause in the program,
and 6 unifies A with B,
then solve 0(G1),...,0(Gp)

b else give up on this goal:
» backtrack to last choice point

» Clauses are tried in declaration order

» Compound goals are tried in left-right order

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 19/23

Depth-first search .
informatics @

Prolog tries clauses in order of appearance in the program.
We look at a couple of search trees for query execution.
Assume: foo(a). foo(b). foo(c).

then:

7- foo(X).

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 20/23

Depth-first search .
informatics @

Prolog tries clauses in order of appearance in the program.
We look at a couple of search trees for query execution.
Assume: foo(a). foo(b). foo(c).

then:

?7- foo(X).
X=a

O

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 20/23

orma

Depth-first search
p inf School of I‘ics ;@;

Prolog tries clauses in order of appearance in the program.
We look at a couple of search trees for query execution.
Assume: foo(a). foo(b). foo(c).

then:

?7- foo(X).
X=a ;
X=b

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 20/23

School of

Depth-first search .
informatics Gy

Prolog tries clauses in order of appearance in the program.
We look at a couple of search trees for query execution.
Assume: foo(a). foo(b). foo(c).

then:

?7- foo(X).
X=a ;
X=b ;
X=c [X=a| / [X=b\ |X=c]

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 20/23

Depth-first search .
informatics @

Prolog tries clauses in order of appearance in the program.
We look at a couple of search trees for query execution.
Assume: foo(a). foo(b). foo(c).

then:

?7- foo(X).
X=a ;
X=b ;
X=c ; [X=a| / [X=b\ \ |X=c]

" e

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 20/23

o School of _ e z %
informatics :

Depth first search ctd ®

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?7- bar(X) ,baz(X). _

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23

Depth first search ctd

® g Schoolof o (QEAN:
informatics (&)

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?7- bar(X) ,baz(X).

baz(b)

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23

Depth first search ctd ot ®

L] . B “
informatics

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?7- bar(X) ,baz(X).

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23

Depth first search ctd ot ®

L] . B “
informatics

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?7- bar(X) ,baz(X).

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23

Depth first search ctd ot @

L] . B “
informatics

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?7- bar(X) ,baz(X).

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23

Depth first search ctd ot @

L] . B “
informatics

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?7- bar(X) ,baz(X).

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23

Depth first search ctd ot @

L] . B “
informatics

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?7- bar(X) ,baz(X).

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23

Depth first search ctd ot @

L] . B “
informatics

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?7- bar(X) ,baz(X).
X=c

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23

Depth first search ctd

informatics @
Prolog backtracks to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?7- bar(X) ,baz(X).
X =c;

no

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 21/23

“Generate and test”

® o School of Lo K
informatics

» Common Prolog programming idiom:
find(X) :- generate(X), test(X).
where:

» generate(X) produces candidates on backtracking
» test(X) succeeds or fails on candidates

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 22/23

o School of
informa

“Generate and test”
tics @

» Common Prolog programming idiom:
find(X) :- generate(X), test(X).
where:

» generate(X) produces candidates on backtracking
» test(X) succeeds or fails on candidates

» Use this to constrain (maybe infinite) search spaces;

» Can use different generators to get different search strategies
besides depth-first.

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 22/23

Coming Attractions

o g schootof e BN
informatics @

» Recursion
» Lists

» Trees, data structures

For further reading, see LPN ch. 2.

Alan Smaill Logic Programming: Terms, unification and proof search Sep 24 2015 23/23

