
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Propositional definite clauses ctd

Monotone functions and power sets

Completeness of the inference system.

Forward chaining algorithm for derivability

Relation to Prolog, Prolog search trees

Alan Smaill Logic Programming: Theory Oct 29 2015 1/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Recall

We are interested in theories (as given by axioms), or equivalently
logic programs, where each statement is a definite clause.
We only allow formulas of the shape p for some proposition p (ie
an atomic statement), or

p1 ∧ · · · ∧ pn → q

where each pi , q is an atomic statement.
We have the notion of when a basic statement q follows logically
from set of such clauses S,

S |= q

defined by assignments of truth values to the atoms, and truth
tables for the connectives.

Alan Smaill Logic Programming: Theory Oct 29 2015 2/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Inference System

We also have a Inference System for these (propositional) definite
clauses. Given a set S of definite clauses, we have:

Axiom any statement in S.

Inference rules These allow us to infer the statement below
the line from statements above the line, matching the
patterns shown:

MP:
P P → Q

Q

andI:
P Q

P ∧ Q

These rules can be seen to be sound, using truth tables — if the
formulae above the line are true, then so is the formulae below.

Alan Smaill Logic Programming: Theory Oct 29 2015 3/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Completeness of Inference System

It’s surprising that this inference system is complete for the
problem of showing whether a goal follows from S.
The claim is that

if S |= q, then S ` q

– if q follows logically, then there is a derivation using this
inference system.

We’ll now look at why this is the case.

Alan Smaill Logic Programming: Theory Oct 29 2015 4/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Sets of sets

Given any set X , there is the corresponding set of (all) subsets of
X , the power set of X , written P(X).
Example: P({ 1, 2, 3 }) is a set of eight sets:

{ { }, { 1 }, { 2 }, { 3 }, { 1, 2 }, { 1, 3 }, { 2, 3 }, { 1, 2, 3 } }

We can consider the power set of an infinite set also.
Given any set of sets Y (not necessarily a power set), we define
the intersection of Y ,

⋂
Y , as the elements that belong to every

set in Y .

x ∈
⋂

Y if and only if ∀Z (Z ∈ Y → x ∈ Z)

Example
⋂
{ { 1, 2, 3 }, { 1, 3 }, { 2, 3 } } = { 3 }

Alan Smaill Logic Programming: Theory Oct 29 2015 5/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Monotone functions

The standard notion of one set being a subset of another (X ⊆ Y)
just means that everything that is in X is also in Y :

∀x x ∈ X → x ∈ Y .

Suppose that we have a function f : X → Y , where X ,Y are both
sets of sets. (The notation f : X → Y says that f is a function
that relates for any x ∈ X a unique corresponding f (x) ∈ Y).
Such a function f is said to be monotone just when the following
holds for every pair of sets X1,X2 ∈ X :

X1 ⊆ X2 → f (X1) ⊆ f (X2)

Alan Smaill Logic Programming: Theory Oct 29 2015 6/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Examples

Consider the following fi : P({ 1, 2, 3 })→ P({ 1, 2, 3 }).

f1(Y) = Y ∪ { 1 } is monotone
(A ∪ B is the set that collects all the elements of A and B)

f2(Y) =

{
{ 1 } if 1 ∈ Y

{ } otherwise
is monotone

f3(Y) =

{
{ } if 1 ∈ Y

{ 1 } otherwise
is not monotone

Alan Smaill Logic Programming: Theory Oct 29 2015 7/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Definite clauses and monotone functions

We can think of using our inference system to do forward inference.

Any unit clauses (atoms pi ∈ S) are given as true, and are
provable as axioms.

We can deduce that a new atom r is true whenever we have
deduced that p1, . . . , pn true, and p1 ∧ · · · ∧ pn → r is in S.
A derivation here uses andI n − 1 times and MP once.

So we can build larger and larger sets of atoms pi that follow
logically from the given S, and also have derivations.
Suppose that A is the set of the atoms p1, p2, . . . appearing in S.
Define f : P(A)→ P(A) as follows.

Alan Smaill Logic Programming: Theory Oct 29 2015 8/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Definite clauses and monotone functions

Let Base = { pi : pi ∈ S } be the set of all the atoms that appear
in unit clauses in S.
Then define

f (Y) = Y ∪ Base
∪ { a ∈ A : (s1 ∧ · · · ∧ sn → a) is in S,

s1 ∈ Y , . . . , sn ∈ Y }

That is, f (Y) adds to Y all the unit clause atoms, and also adds
the right hand side (using the logic representation of clause) of any
clauses in S where every atom in the left hand side is already in Y .

A check shows that f : P(A)→ P(A) is monotone.

Alan Smaill Logic Programming: Theory Oct 29 2015 9/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Using the function

We can now look for an interesting set of atoms.
Consider what happens when we look successively at

{ }, f ({ }), f (f ({ })), f (f (f ({ }))), . . .

At each application of f , the resultant set either get bigger, or
stays the same size (has the same number of elements).
Suppose there are exactly k atoms in the statements S. That
means that by the time we apply f k + 1 times, there must be some
place in the chain where the application of f returns the same set:

f (X) = X

Alan Smaill Logic Programming: Theory Oct 29 2015 10/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Least Fixed Point

Such an X is called a fixed point of the function f . If we apply f
successively until we find an X with this property, we have found
the least fixed point of f .
Example

Given:

cold → wet

wet ∧ wet → scotland

we get that f ({ }) = { }, and { } is the least fixed point.

This tells us that no atoms follow logically from these statements.)

Alan Smaill Logic Programming: Theory Oct 29 2015 11/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example

In Prolog syntax:

cold.
wet :- cold.
dry :- dry.
scotland:- wet, cold.

f ({ }) = { cold }
f ({ cold } = { cold ,wet }

f ({ cold ,wet }) = { cold ,wet, scotland }
f ({ cold ,wet, scotland } = { cold ,wet, scotland }

So the least fixed point is { cold ,wet, scotland }.

Alan Smaill Logic Programming: Theory Oct 29 2015 12/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Claim

Claim:

the least fixed point is the set of all atoms that follow
logically from the program/theory.

Proof: We have already seen that the function f preserves truth,
so each application of f gives a set of atoms that are true, if every
statement in S is true.

In the other direction, suppose that X is the least fixed point. We
want to show that if S |= q, then q ∈ X .
We can show this by showing the following:

if ¬(q ∈ X), then ¬(S |= q).

Alan Smaill Logic Programming: Theory Oct 29 2015 13/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Proof ctd

So, suppose ¬(q ∈ X). To show ¬(S |= q), we need to find an
interpretation I (an assignment of true, false to the atoms), such
that I makes everything in S true, and q false.
Use this interpretation:

I(p) =

{
T if p ∈ X

F otherwise

This makes q false. Now check that every statement in S is true,
on this interpretation (ie, I |= φ for every φ ∈ S). There are two
cases, depending on the form of the definite clause in question.

Alan Smaill Logic Programming: Theory Oct 29 2015 14/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Proof ctd

1. If p is a unit clause, then p ∈ X , so I |= p.

2. If φ = p1 ∧ · · · ∧ pn → r is in S, then:
either some pi is not in X , so I |= φ
or all pi are in X ; and then r ∈ f (X) = X , so I |= r , and thus
I |= φ.

This concludes the proof.

Alan Smaill Logic Programming: Theory Oct 29 2015 15/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Complete Inference System

Using this result, we get that

The inference system above is complete for showing
S |= q for atomic queries q.
This is because if S |= q, then q ∈ X where X is the
least fixed point. But we have seen that each application
of f gives a set of provable atoms; since the fixed point is
reached after finitely many applications, every a ∈ X has
a derivation.

This also suggests a forward chaining algorithm that will be
complete (as an inference procedure) to compute whether S ` q.

Alan Smaill Logic Programming: Theory Oct 29 2015 16/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Computing the fixed point

There is an obvious iterative algorithm that lets us compute the
sets { }, f ({ }), f (f ({ })),
For a given set Y , f (Y) is computed (after the first step, which is
easy) by looping through the clauses to find the set of extra
elements to add; add the extras after checking all the clauses.
Iterate this, until we find f (X) = X , and X is the fixed point.

To check if S ` q, compute the fixed point X , and return the truth
value of q ∈ X .

Alan Smaill Logic Programming: Theory Oct 29 2015 17/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Completeness of the inference procedure

We want to show that if S ` q, then the inference procedure will
give us a derivation.
The procedure we have described does not explicitly construct
derivations, however. So it is not complete in that sense. It is
complete in the sense that if S ` q, the procedure will return true.

Note that the procedure always terminates (why?). If S ` q, then
from soundness of the inference system S |= q, and so q ∈ X . If
we have correctly computed the fixed point, then we will have the
right answer.
In fact, the procedure is a decision procedure that decides whether
S ` q; it always terminates with the correct answer.

Alan Smaill Logic Programming: Theory Oct 29 2015 18/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Complexity of Inference

The algorithm as given above can be made more efficient. Suppose
the number of atoms is a, and the number of clauses is c .
The loop is executed at most a times. Inside the loop, for each
clause, we have at most a checks to do – make these constant
time checks – plus constant overhead. Checking X = f (X) can be
bounded by a. So, each loop is bounded by ac . Overall bound is
a2.c .

It is known that there is a decision procedure for S ` q that runs
in linear time with respect to the size of the program S (the
number of occurrences of atoms in S).
So this problem is much easier than the general problem of
deducibility in propositional logic.

Alan Smaill Logic Programming: Theory Oct 29 2015 19/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Backchaining algorithm

Recall that the Prolog algorithm uses backchaining, and is in fact
incomplete. This is not so surprising, since it was designed for use
in the more general situation, where we use predicate calculus, and
there are good pragmatic reasons to sacrifice completeness.
The Prolog backchaining algorithm can be altered to keep track of
possible looping, by keeping a record of atoms that have already
been seen. This also gives a decision procedure for the problem; a
linear-time version of backward chaining is also possible.

Alan Smaill Logic Programming: Theory Oct 29 2015 20/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example

Atoms derived at stage n are in red. Stage 0:

chicago → windy

edinburgh → windy

edinburgh → scotland

scotland → rainy

windy ∧ rainy → insideOutUmbrella

edinburgh

Alan Smaill Logic Programming: Theory Oct 29 2015 21/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example (2)

Atoms derived at stage n are in red. Stage 1:

chicago → windy

edinburgh → windy

edinburgh → scotland

scotland → rainy

windy ∧ rainy → insideOutUmbrella

edinburgh

Alan Smaill Logic Programming: Theory Oct 29 2015 22/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example (3)

Atoms derived at stage n are in red. Stage 2:

chicago → windy

edinburgh → windy

edinburgh → scotland

scotland → rainy

windy ∧ rainy → insideOutUmbrella

edinburgh

Alan Smaill Logic Programming: Theory Oct 29 2015 23/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example (4)

Atoms derived at stage n are in red. Stage 3:

chicago → windy

edinburgh → windy

edinburgh → scotland

scotland → rainy

windy ∧ rainy → insideOutUmbrella

edinburgh

Alan Smaill Logic Programming: Theory Oct 29 2015 24/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example (5)

Atoms derived at stage n are in red. Stage 4:

chicago → windy

edinburgh → windy

edinburgh → scotland

scotland → rainy

windy ∧ rainy → insideOutUmbrella

edinburgh

Nothing new appears after this. So chicago is not derivable from
the axioms; all the other atoms are.
This algorithm is not that used in Prolog – but we can use the
least fixed point idea to analyse the meaning of predicate definite
clause programs (pure Prolog).

Alan Smaill Logic Programming: Theory Oct 29 2015 25/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Notation

Goal g1, . . . , gm is a logical consequence of F1, . . . ,Fn:

F1, . . . ,Fn |= g1 ∧ · · · ∧ gm

Goal g1, . . . , gm is derivable from F1, . . . ,Fn:

F1, . . . ,Fn ` g1 ∧ · · · ∧ gm

i.e. there is some derivation of g1 ∧ · · · ∧ gm from axioms
F1, . . . ,Fn

Goal g1, . . . , gm is Prolog derivable from F1, . . . ,Fn:

F1, . . . ,Fn `Prolog g1 ∧ · · · ∧ gm

i.e. Prolog search succeeds.

Alan Smaill Logic Programming: Theory Oct 29 2015 26/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Fundamental Properties

Correctness of Prolog proof search

F1, . . . ,Fn `Prolog g1 ∧ · · · ∧ gm implies F1, . . . ,Fn ` g1 ∧ · · · ∧ gm

Soundness of Inference System
F1, . . . ,Fn ` g1 ∧ · · · ∧ gm implies F1, . . . ,Fn |= g1 ∧ · · · ∧ gm

Completeness of Inference System
F1, . . . ,Fn |= g1 ∧ · · · ∧ gm implies F1, . . . ,Fn ` g1 ∧ · · · ∧ gm

Incompleteness of Prolog proof search
F1, . . . ,Fn ` g1 ∧ · · · ∧ gm does not imply

F1, . . . ,Fn `Prolog g1 ∧ · · · ∧ gm

Alan Smaill Logic Programming: Theory Oct 29 2015 27/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Fundamental Properties 2

Correctness of Prolog proof search: straightforward, next lecture

F1, . . . ,Fn `Prolog g1 ∧ · · · ∧ gm implies F1, . . . ,Fn ` g1 ∧ · · · ∧ gm

Soundness of Inference System: not so hard, next lecture
F1, . . . ,Fn ` g1 ∧ · · · ∧ gm implies F1, . . . ,Fn |= g1 ∧ · · · ∧ gm

Completeness of Inference System: propositional case argued today
F1, . . . ,Fn |= g1 ∧ · · · ∧ gm implies F1, . . . ,Fn ` g1 ∧ · · · ∧ gm

Incompleteness of Prolog proof search:
take easy propositional example

F1, . . . ,Fn ` g1 ∧ · · · ∧ gm does not imply
F1, . . . ,Fn `Prolog g1 ∧ · · · ∧ gm

Alan Smaill Logic Programming: Theory Oct 29 2015 28/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Summary

Propositional definite clauses ctd

Monotone functions and power sets

Completeness of the inference system.

Forward chaining algorithm for derivability

Alan Smaill Logic Programming: Theory Oct 29 2015 29/1

