
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Logic Programming:
Negation as failure, sets, terms

Alan Smaill

Oct 12 2015

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 1/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Non-logical features ctd

Negation as Failure

Collecting solutions (findall, setof, bagof)

Assert and retract

Processing terms

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 2/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Negation as Failure

We can use cut to define negation as failure

Recall first tutorial:

not(G) :- G, !, fail; true.

This tries to solve G:

if successful, fail;
otherwise succeed.

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 3/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

How it works

not(member(5,[2,1]))

member(5,[2,1]),!,fail

member(5,[1]),!,fail

member(5,[]),!,fail

true

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 4/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

How it works

not(member(1,[2,1]))

member(1,[2,1]),!,fail

member(1,[1]),!,fail

!,fail

fail

true

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 5/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Negation as Failure

Built-in syntax: \+ G

Example: people who are not teachers:

q(X) :- person(X),
\+ teach(X,Y).

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 6/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Behaviour

person(a).
person(b).
teach(a,b).

q(X) :-
person(X),

\+ teach(X,Y).

q(X)

person(X),\+ teaches(X,Y)

\+ teaches(a,Y)

teaches(a,Y)

Y=b

X=a

\+ teaches(b,Y)

teaches(b,Y)

X=b

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 7/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Behaviour

person(a).
person(b).
teach(a,b).

q(X) :-
\+ teach(X,Y),
person(X),

q(X)

\+ teaches(X,Y),person(X)

teaches(X,Y)

X=a Y=b

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 8/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Safe use of negation as failure

The second order above shows non-logical behaviour;
negation as failure is not logical negation.

Goal order matters

This order fails:

?- \+ X = Y, X = a, Y = b .

This order succeeds:

?- X = a, Y = b, \+ X = Y.

Since comma corresponds to conjunction, the declarative
reading would say that the two queries are logically equivalent;
so if one succeeds, the other cannot fail.

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 9/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Safe use of negation as failure

We can read \+ G as the logical “not G” only if G is ground
when we start solving it.

Any free variables are treated as “existentially quantified”:

?- \+ 1 = 2. is treated as ¬(1 = 2)
?- \+ X = Y. is treated as ¬(∃X ∃Y X = Y).

HEURISTIC: delay negation after other goals to allow negated
goals to become ground.

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 10/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Collecting Solutions

Sometimes we want to find all solutions for a given query,
eg collected as an explicit list –
which had better be finite.

Want something like alist(bart,X) to find X which lists all
the ancestors of bart.

Can’t do this in pure Prolog –
cut is not helpful.

Technically possible (but painful) using assert/retract.

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 11/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Collecting solutions declaratively

There are built-in procedures to do this:

findall/3 builds a list of solutions:

?- findall(Y, ancestor(Y, bart), L).
L = [homer,marge,abe,jacqueline]

?- findall((X,Y), ancestor(X,Y), L).
L = [(abe,homer), (homer,bart), (homer,lisa) | ...]

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 12/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

findall

Usage:

findall(?X, ?Goal, ?List)

On success, List is list of all substitutions for X for which
Goal succeeds.

The Goal can have free variables

but X is treated as “bound” in Goal

X can also be a pattern, as in second example above.

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 13/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

bagof

bagof/3 also computes a list of solutions:

?- bagof(Y, ancestor(Y, bart), L).
L = [homer,marge,abe,jacqueline]

It differs in treatment of free variables:
different instantiations lead to different answers:

?- bagof(Y, ancestor(Y, X), L).
L = [homer,marge,abe,jacqueline]
X = bart ? ;

L = [abe]
X = homer ? ...

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 14/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Quantification

In the goal part of bagof/3, we can write

X^G

to hide (existentially quantify) X.

?- bagof(Y, X^ancestor(Y, X), L).
L = [homer,bart,lisa,maggie,rod,

todd,ralph,bart|...]

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 15/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

setof

setof/3 is like bagof/3, except it both sorts and eliminates
duplicates.

| ?- bagof(Y,X^ancestor(X,Y),L).
L = [homer,bart,lisa,maggie,rod,

todd,ralph,bart,lisa,maggie|...]

| ?- setof(Y,X^ancestor(X,Y),L).
L = [bart,homer,lisa,maggie,marge,

patty,ralph,rod,selma,todd]

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 16/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Assert and retract

So far, we have statically defined facts and rules, usually in a
separate file.

It is also possible to add and remove clauses dynamically.

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 17/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

assert/1

?- assert(p).
yes.

?- p.
yes

?- assert(q(1)).
yes.

?- q(X).
X = 1.

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 18/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Fibonnacci, memoised

This can be useful when there is a lot of repeated computation.

:- dynamic memofib/2.
fib(N,K) :- memofib(N,K), !.

...
fib(N,K) :- N >= 2,

M is N-1, fib(M,F),
P is M-1, fib(P,G),
K is F+G,
assert(memofib(N,K)).

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 19/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

asserta.1, assertz/1

There is some control of where asserted statements appear in the
clause order:

asserta/1 adds to the beginning of the KB

assertz/1 adds to the end of the KB

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 20/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

retract/1

?- retract(p).
yes

?- p.
no.

?- retract(q(1)).
yes.

?- q(X).
no

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 21/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

dynamic predicates

If you assert or retract an unused predicate interactively,
Sicstus assumes it is dynamic.

If you want assert/retract in programs, you need to declare
the predicate as dynamic, as above for memofib/2.

Generally a good idea to avoid assert/retract, unless you have
good (efficiency) reason to use them.

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 22/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Predicates to manipulate terms

can test to see if a term is a variable when called:

var(X) holds
var(a) does not hold

Other tests, eg to see if term is atomic.

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 23/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

functor/3

This takes a term, and gives back the functor, and the arity (how
many arguments).

?- functor(a,F,N).
F = a
N = 0

?- functor(f(a,b),F,N).
F = f
N = 2

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 24/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

arg/3

Given a number N and a compound term T, return the Nth
argument to T:

?- arg(1,f(a,b),X).
X = a

?- arg(2,f(a,b),X).
X = b

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 25/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

=../2

The “universal” predicate =../2, that decomposes terms into their
constituents as a list; works in both directions:

?- f(a,f(b,c)) =.. X.
X = [f,a,f(b,c)]

?- F =.. [g,a,f(b,c)].
F = g(a,f(b,c))

Together these predicates allow term manipulation, eg systematic
generation.

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 26/27



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Also:

Further reading: LPN, chs 10, 11.

Next session:

Parsing in Prolog
“Difference lists” for efficiency
Definite Clause Grammars (DCGs)

Alan Smaill Logic Programming:Negation as failure, sets, terms Oct 12 2015 27/27


