
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Prolog interpreter algorithms

Beyond Pure Prolog: �meta�-predicates

Closed World Assumption & Negation as Failure.

Alan Smaill Logic Programming: Theory Nov 12, 2015 1/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Algorithms for de�nite clause interpreter

We have seen the outline of how inference in de�nite clause logic
can be automated. Let's spell out a bit more concretely some of
the key procedures involved.
These will be given by Haskell functions, with comments. Haskell is
a functional programming language � see overview material1.
An implementation of a basic Prolog interpreter in Haskell is also
available2.
Features in common with other languages, such as parsing, pretty
printing, input/output must be dealt with, but we concentrate on
the key steps in inference and search.
Acknowledgements to Mark Jones for the Haskell code.

1http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/#info
2http://darcs.haskell.org/nofib/real/prolog

Alan Smaill Logic Programming: Theory Nov 12, 2015 2/1

http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/#info
http://darcs.haskell.org/nofib/real/prolog
http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/#info
http://darcs.haskell.org/nofib/real/prolog

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Representing statements

For an interpreter, there is no need to make a distinction between
function symbols and predicates. Here are the basic data-types:

type I d = (In t , S t r i n g)
−− v a r i a b l e i d e n t i f i e r s , I n t a l l ow s renaming

type Atom = S t r i n g

−− f o r cons tant , fn symbol o r p r e d i c a t e
data Term = Var I d | S t r u c t Atom [Term]

−− Var , S t r u c t c o n s t r u c t o r s f o r
−− pa t t e r n matching

data Clause = Term :== [Term]
−− Clause i s w r i t t e n as "tm :== [tm , tm , . . .] "

data Database = Db [(Atom , [C l ause])]
−− The program

Alan Smaill Logic Programming: Theory Nov 12, 2015 3/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Substitutions

Since haskell is a functional language, in which functions are
�rst-class objects, substitutions can be treated directly as functions
from (some) variables to terms.

−−− S u b s t i t u t i o n s :

type Subst = Id −> Term

−− subsns taken as f n s mapping v a r i a b l e i d s to terms .
−−
−− app l y s e x t end s subsn s to take terms to terms
−− n u l l S u b s t i s i d e n t i t y subsn
−−
−− i −>> t maps the v a r i a b l e i d i to the term t ,
−− but o t h e rw i s e behaves l i k e n u l l S u b s t .
−− s1 @@ s2 i s the compos i t i on o f subsns s1 and s2

Alan Smaill Logic Programming: Theory Nov 12, 2015 4/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Substitution Operations

app l y : : Subst −> Term −> Term
app l y s (Var i) = s i
app l y s (S t r u c t a t s) = S t r u c t a (map (app l y s) t s)
−− app l y the s u b s t i t u t i o n r e c u r s i v e l y to e v e r y a rg

n u l l S u b s t : : Subst
n u l l S u b s t i = Var i

(−>>) : : I d −> Term −> Subst
(−>>) i t j | j==i = t −− ca se j==i

| o the rw i s e = Var j −− any o th e r ca s e

(@@) : : Subst −> Subst −> Subst
s1 @@ s2 = (app l y s1) . s2

−− " ." i s f u n c t i o n compos i t i on ;
−− (f . g) x = f (g (x))

Alan Smaill Logic Programming: Theory Nov 12, 2015 5/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Uni�cation with occurs check

success is a singleton list with mgu, failure is empty list.

u n i f y : : Term −> Term −> [Subst]
−− u n i f y t a k e s two terms , r e t u r n s l i s t o f subsns

u n i f y (Var x) (Var y)
= i f x==y then [n u l l S u b s t] e l s e [x−>>Var y]

u n i f y (Var x) t2
= [x −>> t2 | not (x ` elem ` v a r s I n t2)]

−− [] i f x i s i n t2 , o t h e rw i s e [x −>> t2]
u n i f y t1 (Var y)

= [y −>> t1 | not (y ` elem ` v a r s I n t1)]
u n i f y (S t r u c t a t s) (S t r u c t b s s)

= [u | a==b , u<− l i s t U n i f y t s s s]
−− [] i f a =/=b , o t h e rw i s e c a l l l i s t U n i f y on a r g s

Alan Smaill Logic Programming: Theory Nov 12, 2015 6/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Uni�cation ctd

l i s t U n i f y : : [Term] −> [Term] −> [Subst]

l i s t U n i f y [] [] = [n u l l S u b s t]
l i s t U n i f y [] (r : r s) = []

−− f a i l i f l i s t s o f d i f f e r e n t l e n g t h
l i s t U n i f y (t : t s) [] = []
l i s t U n i f y (t : t s) (r : r s) =

[u2 @@ u1 | −− compose subs u1 , u2 , where
u1<−u n i f y t r , −− u1 i s u n i f i e r o f t , r
u2<− l i s t U n i f y (map (app l y u1) t s)

(map (app l y u1) r s)]
−− app l y u1 to a l l r ema in i ng arguments ,
−− and c a l l r e c u r s i v e l y to ge t u2

Alan Smaill Logic Programming: Theory Nov 12, 2015 7/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

The Proof Search Space

data P r o o f t r e e = Done Subst | Cho ice [P r o o f t r e e]
−− Done [] i s f a i l u r e ,
−− Done [s] s u c e ed s w i th s u b s i t u t i o n s ,
−− Cho ice i s a l i s t o f open p o s s i b l e d e r i v a t i o n s
−− p r o o f t r e e g i v e s p r oo f s e a r c h t r e e f o r a g i v en goa l ;
−− s i n c e Ha s k e l l i s l a z y , doesn ' t expand t r e e s he r e .
p r o o f t r e e : : Database −> I n t −> Subst −> [Term]

−> Pro o f t r e e

Alan Smaill Logic Programming: Theory Nov 12, 2015 8/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Proof Search Space (2)

p r o o f t r e e db = pt
where pt : : I n t −> Subst −> [Term] −> Pro o f t r e e

−− p roo f depth , r e s u l t so f a r , l i s t o f
g o a l s

pt n s [] = Done s
pt n s (g : gs) = Cho ice

[pt (n+1) (u@@s) (map (app l y u) (tp++gs))
| (tm:==tp)<−r e nC l a u s e s db n g , u<−u n i f y g tm]

−− f o r each c l a u s e w i th head u n i f i a b l e w i th
−− 1 s t goa l , ge t new goa l l i s t : add c l a u s e body
−− at FRONT of g o a l s (to ge t depth f i r s t) , and
−− app l y u n i f i e r ; a l s o update accumulated subsn

Alan Smaill Logic Programming: Theory Nov 12, 2015 9/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Proof Search

−− do depth− f i r s t s e a r c h o f a p r oo f t r e e ,
−− p roduc i ng the l i s t o f s o l u t i o n s u b s t i t u t i o n s
−− as they a r e encounte r ed .
s e a r c h : : P r o o f t r e e −> [Subst]
s e a r c h (Done s) = [s] −− found a s o l u t i o n !
s e a r c h (Cho ice p t s) = [s | pt <− pts , s <− s e a r c h pt]

−− l o ok s u c c e s s i v e l y at each t r e e i n pts ,
−− c a l l s e a r c h r e c u r s i v e l y on i t

p rove : : Database −> [Term] −> [Subst]
−− i n i t i a l i s e the s e a r c h

prove db = sea r ch . p r o o f t r e e db 1 n u l l S u b s t

Alan Smaill Logic Programming: Theory Nov 12, 2015 10/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Meta-language

When we use one language to talk about another language, we say
that the meta-language is used to talk about the object language.

Examples

English as meta-language, with French as object language:

The word �poisson� is a masculine noun.

English as meta-language, with English as object-language:

It is hard to understand �Everything I say is false�.

Alan Smaill Logic Programming: Theory Nov 12, 2015 11/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Examples ctd

Prolog contains a mixture of object-level and meta-level statements.

father(a,b). object-level

functor(father(a,b),father,2). meta-level

var(X). meta-level

It is better to keep these uses conceptually distinct.
We have seen that var/1 does not function according to Prolog's
declarative semantics.

Alan Smaill Logic Programming: Theory Nov 12, 2015 12/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Prolog in Prolog

Take the program:

father(a,b).

ancestor(X,Y) :- father(X,Y).

ancestor(X,Y) :- father(X,Z), ancestor(Z,Y).

We can write a description of Prolog programs in Prolog:

clause(father(a,b), true).

clause(ancestor(X,Y), father(X,Y)).

clause(ancestor(X,Y),

(father(X,Z), ancestor(Z,Y))).

Alan Smaill Logic Programming: Theory Nov 12, 2015 13/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Status of meta-predicates

This treatment of Prolog in Prolog also breaks the declarative
reading.
The statement clause(father(a,b), true) cannot be parsed
in de�nite clause logic so that father is a predicate � it can only
be a function symbol.
One possibility is to consider that we are dealing with two
languages � an object language in which father is a predicate, and
a meta-language which talks about the object language, and where
clause is a predicate.
This make it hard to understand in a declarative way programs
where the two languages are mixed. The language Goedel3

developed a systematic approach to logic programming with two
interconnected languages.

3https://en.wikipedia.org/wiki/Gödel_(programming_language)
Alan Smaill Logic Programming: Theory Nov 12, 2015 14/1

https://en.wikipedia.org/wiki/G�del_(programming_language)
https://en.wikipedia.org/wiki/G�del_(programming_language)

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Negation by failure

Prolog does not distinguish between being unable to �nd a
derivation, and claiming that the query is false; that is, it does not
distinguish between the �false� and the �unknown� values we have
above.
When we take a Prolog response of no. as indicating that a query
is false, we are making use of the idea of negation as failure: if a
statement cannot be derived, then it is false.

Clearly, this assumption is not always valid! If some information is
not present in the program, failure to �nd a derivation should not
let us conclude that the query is false � we just don't have the
information to decide.

Alan Smaill Logic Programming: Theory Nov 12, 2015 15/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Knowing the answers

A good situation to be in is where we have enough information to
answer any possible query. If we know

poor(jane)

poor(jane) → happy(jane)

happy(fred)

we do not know enough to answer the query

?− poor(fred)

Alan Smaill Logic Programming: Theory Nov 12, 2015 16/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Complete Theories

We say a theory T is complete (for ground atoms) if and only if:

for every (ground atom) query (eg poor(fred)),
we can prove either poor(fred) or ¬poor(fred).

A ground atom is a statement of the form P(t1, . . . , tn) where
there are no variables in any ti ; so it is a basic statement about
particular objects.

NB, this is yet another di�erent use of the term complete
(compare complete inference system, complete search strategy).

Alan Smaill Logic Programming: Theory Nov 12, 2015 17/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Complete theories (2)

Our example T is not complete in this sense; we can extend it to
make a complete T using the Closed World Assumption (CWA).

The idea is to add in the negation of a ground atom whenever the
ground atom cannot be deduced from the KB.
This makes the assumption that

all the basic positive information about the domain

follows from what is already in T .

Here basic positive information refers to atomic ground statements.

Alan Smaill Logic Programming: Theory Nov 12, 2015 18/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

CWA as an augmented T

We can de�ne the e�ect of the CWA using the standard logic we
saw earlier. Given a T written in �rst-order logic, we augment T to
get a bigger set of formulas CWA(T); the extra formulas we add
are:

XT = { ¬p(t1, . . . , tn) : t1, . . . , tn ground ,not T ` p(t1, . . . , tn) }

Now we can de�ne what it is to follow from T using CWA:
a formula Q follows from T using the CWA i�

T ∪ XT |= Q

Alan Smaill Logic Programming: Theory Nov 12, 2015 19/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example

In the example, we can now conclude ¬poor(fred), since from the
original T we cannot show poor(fred). Thus we have ¬poor(fred)
is in XT .

In fact, in this case

XT = { ¬poor(fred) },

assuming there are no other constants in the language except
jane, fred . In this case, we can compute the set XT by looking at
all possibilities. In general though the set XT may be in�nite, so
this is not a computable way to realise the CWA.

One use of CWA is in looking at a failed Prolog query of the form

?- property(t1,t2).

as saying that the query is in fact false.

Alan Smaill Logic Programming: Theory Nov 12, 2015 20/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

CWA gives completeness for ground atoms

For any de�nite clause theory, the extended theory:

CWA(T) = T ∪ { ¬p(t1, . . . , tn) : t1, . . . , tn ground ,

not T ` p(t1, . . . , tn) }

is complete for ground atoms.

This is simply because for such a query Q, if Q is not a logical
consequence of T , then ¬Q is in the extended CWA(T), and so
¬Q is a consequence of CWA(Q).

Alan Smaill Logic Programming: Theory Nov 12, 2015 21/1

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Summary

Prolog interpreter algorithms

Beyond Pure Prolog: �meta�-predicates

Closed World Assumption

Alan Smaill Logic Programming: Theory Nov 12, 2015 22/1

