
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Unification Algorithm and Occurs Check

Inference System of definite clause logic

General existence of least fixed points

Alan Smaill Logic Programming: Theory Nov 5, 2015 1/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Recall: Definite Clause Logic

Suppose we restrict the statements we consider as follows:

Drop quantifiers (but keep variables)

Drop ¬, ∨ (but keep ∧, →).

Only allow formulas of the shape p(t1, . . . , tn) for some
predicate p (ie an atomic statement), or

A1 ∧ · · · ∧ An → B

where each Ai is an atomic statement.

This defines the Definite Clauses.

Alan Smaill Logic Programming: Theory Nov 5, 2015 2/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Inference System for Definite Clause Logic

The given definite clauses are taken as axioms. We use a single
inference rule, Backchain:

p1θ, p2θ, . . . , pnθ, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

q′θ
where θ is mgu of q′, q

Given a query (∃X)r(X), see if r(X) unifies with the “head”
formula of a definite clause, with unifier θ. If so, top-down search
will look for justifications of p1θ, p2θ, . . . , pnθ.

Alan Smaill Logic Programming: Theory Nov 5, 2015 3/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification revisited

Recall that a most general unifier (mgu) of terms t1, t2 is a
substitution S such that

t1S = t2S (it’s a unifier),

and for any other substitution S ′, if t1S ′ = t2S ′, then S ′ 4 S
(ie, for some other substitution T , S ′ = S o T ;
S is most general).

Consider how to design an algorithm to compute an mgu for t1, t2;
we proceed by working through the term structure of the terms
involved, and building up a unifier incrementally, using the
composition of substitutions we saw earlier.

Alan Smaill Logic Programming: Theory Nov 5, 2015 4/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification ctd

Suppose the syntax of terms uses the following:

Term ::= Cst String | Var Int | Fn (String ,Term List)

Some cases are easy,

two constants unify with the identity subn if the are the same,
and otherwise do not unify.

two variables vm, vn always unify with unifier { vm/vn }.
a variable always unifies with a constant

What about unifying a variable vn with a term of the form
f(. . .)?

Alan Smaill Logic Programming: Theory Nov 5, 2015 5/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Occurs check

It’s tempting to think that the substitution { vn/t } will always
unify vn, t. But think of the case where vn occurs in t; is there a
unifier S such that

vn = f(vn)?

If we try S = { vn/f(vn) } on both sides we get:

f(vn) = f(f(vn))

– we end up with different terms. So the simple solution is not
right. In fact, with the standard understanding of the set of terms
as given by the grammar definition, there is no substitution that
makes these terms the same. In general, the unifier of vn, t is

{ vn/t } if vn does not occur in t

does not exist, if vn occurs in t

Alan Smaill Logic Programming: Theory Nov 5, 2015 6/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification ctd

What about unification of two terms both starting with function
symbols, f1(t1, . . . , tn), f2(u1, . . . , um)?

If f1 6= f2, or n 6= m, then unification fails.

Otherwise unify successively t1, u1 then t2, u2 . . . , at each
stage applying any substitution found to the remaining terms.

For example, how unify f(v1, f(v1)) = f(h(v2), v3)?
f is the same in both cases, so there are two problems to solve:

v1 = h(v2) has unifier { v1/h(v2) }; apply to second problem,
to get

f(h(v2)) = v3, with unifier { v3/f(h(v2)) }, which composes
with the first subn to give { v1/h(v2), v3/f(h(v2)) }.

Alan Smaill Logic Programming: Theory Nov 5, 2015 7/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification algorithm

It is tricky to get the unification algorithm right. However, it has
been done. A correct implementation, given t1, t2, returns either
failure, or a mgu.
Early algorithms were very inefficient – linear time algorithms are
known for computing mgus. The main problem is the occurs check;
terms involved can get very large when combining substitutions . . .
In practice, most Prolog implementations do not include the occurs
check in basic unification; but they usually have a version with the
occurs check also.

| ?- X = f(X).
X = f(f(f(f(f(f(f(f(f(f(...)))))))))) ?
yes
| ?- unify_with_occurs_check(X,f(X)).
no

Alan Smaill Logic Programming: Theory Nov 5, 2015 8/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification algorithm:

Rule-based version of algorithm
(following exposition of Temur Kutsia).

General form of rules:

P; ρ =⇒ Q; θ or

P; ρ =⇒ ⊥

where

⊥ is failure (non-unification)

ρ, θ are substitutions

P,Q are lists of pairs of expressions:
{ (E1,F1), . . . , (En,Fn) }

Alan Smaill Logic Programming: Theory Nov 5, 2015 9/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification Rules

Trivial:
{ (S , S) } ∪ P; θ =⇒ P; θ

Decomposition:

{ (f (s1, . . . , sn), f (t1, . . . , tn)) } ∪ P; ρ =⇒
{ (s1, t1), . . . , (sn, tn) } ∪ P; ρ

Symbol clash

{ (f (s1, . . . , sn), g(t1, . . . , tn)) } ∪ P; ρ =⇒ ⊥
if f 6= g

A similar case is needed if f can be used with different numbers of
arguments.

Alan Smaill Logic Programming: Theory Nov 5, 2015 10/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification rules (2)

Orient

{ (t, x) } ∪ P; ρ =⇒ { (x , t) } ∪ P; ρ

if t is not a variable

Occurs check

{ (x , t) } ∪ P; ρ =⇒ ⊥
if t occurs in t, and x 6= t

Variable elimination

{ (x , t) } ∪ P ′; ρ =⇒ P ′θ; ρ o θ

if x does not occur in t, and θ = { x/t }

Alan Smaill Logic Programming: Theory Nov 5, 2015 11/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification algorithm

To unify expressions E1,E2:

Start with { (E1,E2) }; { }
Apply unification rules successively.

Alan Smaill Logic Programming: Theory Nov 5, 2015 12/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification algorithm: properties

The algorithm always terminates, either with ⊥, or { }; ρ.

Soundness If the algorithm terminates with { }; ρ, then ρ is a
unifier of the input expressions.

Completeness If θ is a unifier for input expressions, then the
algorithm finds a unifier ρ such that θ 4 ρ.

MGU So: If input expressions are unifiable, then the algorithm
returns a Most General Unifier (MGU).

Alan Smaill Logic Programming: Theory Nov 5, 2015 13/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Unification: example

Can we unify p(X, f(X, Y), g(f(Y, X))) and p(c, Z, g(Z))?

{ p(X, f(X, Y), g(f(Y, X))), p(c, Z, g(Z)) }; { }
{ (X, c), (f(X, Y), Z), (g(f(Y, X)), g(Z)) }; { } Decomp
{ (f(X, Y), Z){ X/c }, (g(f(Y, X)), g(Z)){ X/c } }; { X/c } VarElim
{ (f(c, Y), Z) (g(f(Y, c)), g(Z)) }; { X/c } Apply subs
{ (Z, f(c, Y)) (g(f(Y, c)), g(Z)) }; { X/c } align
{ (g(f(Y, c)), g(Z)) }{ Z/f(c, Y) }; { X/c }o{ Z/f(c, Y) } VarElim
{ (g(f(Y, c)), g(f(c, Y))) }; { X/c, Z/f(c, Y) } Apply subs
{ (f(Y, c), f(c, Y)) }; { X/c, Z/f(c, Y) } Decomp
{ (Y, c), (c, Y) }; { X/c, Z/f(c, Y) } Decomp
{ (c, Y){ Y/c } }; { X/c, Z/f(c, Y) }o{ Y/c } VarElim
{ (c, c) }; { X/c, Y/c, Z/f(c, Y) } Apply subs
{ }; { X/c, Y/c, Z/f(c, Y) } Trivial

Alan Smaill Logic Programming: Theory Nov 5, 2015 14/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Fixed point revisited

To think of models of definite clause programs, we use a general
property monotone functions defined over P(X). Recall that a
fixed point of f : P(X)→ P(X) is a set Y ⊆ X such that
f (Y) = Y .
A least fixed point of f is a fixed point that is smaller than any
other fixed point of f , ie Y is a least fixed point (lfp) if

– it is a fixed point, and

– if Z is also a fixed point of f , then Y ⊆ Z .

There is a useful property of monotone functions defined as above:

Theorem: If f : P(X)→ P(X) is monotone,
then f has a least fixed point.

We will use this to characterise the true statements that follow
from a set of definite clauses.

Alan Smaill Logic Programming: Theory Nov 5, 2015 15/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

LFP continued

In the case where X is finite, it’s easy to see that successive
computation of f ({ }), f (f ({ })), f (f (f ({ }))), . . . will reach a
fixed point.

Even in the finite case, there may be many fixed points. For
example, given a simple program

a.
b :- c, a.
c :- d.

the corresponding f : P({ a, b, c , d })→ P({ a, b, c , d }) has the
lfp { a }.
Note that { a, b, c, d } is also a fixed point.

Alan Smaill Logic Programming: Theory Nov 5, 2015 16/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Consistency of definite clause programs

In fact, any set of definite clauses is logically consistent, that is
there is some model for the statements.

This is because we can interpret every atomic statement as being
true. Then every clause will also be true, as you can check.

However, this is usually not the intended interpretation of definite
clauses — think of definition of parent/2 for example. Thus it is
important to look at the least fixed point.

Alan Smaill Logic Programming: Theory Nov 5, 2015 17/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Proof of lfp property

We saw the intersection operation on sets before. It has the
following properties:

1. If Y is a set of sets, then for all Z ∈ Y ,
⋂

Y ⊆ Z .
(
⋂

Y is a lower bound for sets in Y)

2. If Y is a set of sets, and for every Z ∈ Y ,W ⊆ Z
(ie, W is a lower bound for sets in Y), then W ⊆

⋂
Y .

(Thus
⋂

Y is the greatest lower bound for sets in Y)

We use these properties to find the lfp of a given monotone f .

Alan Smaill Logic Programming: Theory Nov 5, 2015 18/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Proof of lfp ctd

Let Fix =
⋂
{ Y ∈ X | f (Y) ⊆ Y }.

First claim is that Fix is a fixed point of f ; show this in two parts,
part 1: f (Fix) ⊆ Fix , then part 2: Fix ⊆ f (Fix).
part 1.
Take some Z in the set { Y ∈ X | f (Y) ⊆ Y }.

We have Fix ⊆ Z by property 1 of
⋂

so f (Fix) ⊆ f (Z) since f is monotone
Also f (Z) ⊆ Z since Z ∈ { Y ∈ X | f (Y) ⊆ Y }
so f (Fix) ⊆ Z by transitivity of ⊆.

Since this holds for any Z in the set,
f (Fix) ⊆

⋂
{ Y ∈ X | f (Y) ⊆ Y } by property 2 of

⋂
.

Thus f (Fix) ⊆ Fix .

Alan Smaill Logic Programming: Theory Nov 5, 2015 19/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Proof of lfp property ctd

Part 2
Now that we have f (Fix) ⊆ Fix , since f is monotone, we get
f (f (Fix)) ⊆ f (Fix);
this means that f (Fix) is in the set { Y ∈ X | f (Y) ⊆ Y }, and so
Fix ⊆ f (Fix), by property 1 of

⋂
.

We now know that Fix is a fixed point of f .

Part 3
The final part of the claim is that Fix is the least fixed point of f .
This part is easy;
suppose Z is a fixed point: Z = f (Z). Then f (Z) ⊆ Z , and
Z ∈ { Y ∈ X | f (Y) ⊆ Y }, so that Fix ⊆ Z .

Alan Smaill Logic Programming: Theory Nov 5, 2015 20/21

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Summary

Unification Algorithm and Occurs Check

Inference System of definite clause logic

General existence of least fixed points

Alan Smaill Logic Programming: Theory Nov 5, 2015 21/21

