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Today
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» Recursion

» proof search
» practical concerns

b List processing

» Programming with terms as data structures.
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So far the rules we have seen have been (mostly) non-recursive.
This is a limit on what can be expressed.

Without recursion, we cannot define transitive closure
eg define ancestor/2 in terms of parent/2.
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Recursion ctd @

In recursive use, the same predicate is used in the head (lhs) of the
rule as in the body (rhs)
(in the second clause below):

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z),
ancestor(Z,Y).
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Recursion ctd @
In recursive use, the same predicate is used in the head (lhs) of the
rule as in the body (rhs)

(in the second clause below):

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z),
ancestor(Z,Y).

This is a fine declarative description of what it is to be an ancestor.

But watch out for the traps!!!
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Reminder: depth-first search N @
ties @Y

informa

Prolog searches depth-first in program order ( “top to bottom”):
» Regardless of context

b ...even if there is an “obvious” solution elsewhere in the
search space.
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Reminder: depth-first search
School of I‘ics Z@J

informa

Prolog searches depth-first in program order ( “top to bottom”):
» Regardless of context

b ...even if there is an “obvious” solution elsewhere in the
search space.

— the query will loop on the first clause, and fail to terminate.
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Recursion: order can matter
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Take the program for ancestor/2 with clauses in the opposite
order:

ancestor(X,Y) :- parent(X,Z),
ancestor(Z,Y).

ancestor (X,Y) :- parent(X,Y).
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o School of
informa

Recursion: order can matter
tics @

Take the program for ancestor/2 with clauses in the opposite
order:

ancestor(X,Y) :- parent(X,Z),
ancestor(Z,Y).

ancestor (X,Y) :- parent(X,Y).

This may be less efficient — looks for longest path first.
More likely to loop — if the parent/2 relation has cycles.

HEURISTIC: write base cases first (ie non-recursive cases).
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Rule order affects search ®

parent(a,b).
parent(b,c).

Z=b

Alan Smaill Logic Programming: Recursion, lists, data structures Sep 28 2015 7/28



o School of _ e z
informatics :

o

Rule order affects search ®

parent(a,b).
parent(b,a) .
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Recursion again o o B
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Goal order can matter!

ancestor3(X,Y) :- parent(X,Y).
ancestor3(X,Y) :- ancestor3(Z,Y),
parent (X,Z)
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Goal order can matter!

ancestor3(X,Y) :- parent(X,Y).
ancestor3(X,Y) :- ancestor3(Z,Y),
parent (X,Z)

This returns all solutions, then loops, eg with the following facts:

parent(a,b).
parent (b,c).
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More recursion
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Clause order can matter.

ancestor4(X,Y) :- ancestor4(Z,Y),
parent (X,Z).
ancestor4(X,Y) :- parent(X,Y).
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More recursion
tics @

Clause order can matter.

ancestor4(X,Y) :- ancestor4(Z,Y),
parent (X,Z).
ancestor4(X,Y) :- parent(X,Y).

This will always loop.
Heuristic: put non-recursive goals first.
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Goal order matters
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b Terms can be arbitrarily nested
» Example: unary natural numbers

nat(z).
nat(s(X)) :- nat(X).
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Recursion and terms
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b Terms can be arbitrarily nested
» Example: unary natural numbers

nat(z).
nat(s(X)) :- nat(X).

b To do interesting things, we need recursion.
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Addition, subtraction

» Addition:
add(z,N,N).

add(s(N),M,s(P)) :- add(N,M,P).
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Addition, subtraction
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» Addition:

add(z,N,N).
add(s(N),M,s(P)) :- add(N,M,P).

» Run in reverse to get all M,N that sum to P:
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» Addition:

add(z,N,N).
add(s(N),M,s(P)) :- add(N,M,P).

» Run in reverse to get all M,N that sum to P:

?7- add(X,Y,s(s(s(2)))).
X=z,Y=s(s(s(2)));
X=s(2),Y=s(s(2));
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Addition, subtraction

infotmatics @)
» Addition:

add(z,N,N).
add(s(N),M,s(P)) :- add(N,M,P).

» Run in reverse to get all M,N that sum to P:
7- add(X,Y,s(s(s(z)))).
X=z,Y=s(s(s(2)));

X=s(Z),Y=s(s(z));

» Use to define leq/2:
leq(M,N) :- add(M,_,N).
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Addition, subtraction

informatics (@)
» Addition:

add(z,N,N).
add(s(N),M,s(P)) :- add(N,M,P).

» Run in reverse to get all M,N that sum to P:

?7- add(X,Y,s(s(s(2)))).
X=z,Y=s(s(s(2)));
X=s(2),Y=s(s(2));

» Use to define leq/2:
leq(M,N) :- add(M,_,N).

Here “_" is a so-called anonymous variable;
use to avoid warning of singleton variable in Prolog programs.
Can also use, for example, _X, _Anon.
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Now define multiplication:

multiply(z,N,z). % or: multiply(z,_,z).

multiply(s(N),M,P) :-
multiply(N,M,Q), add(M,Q,P).

square(N,M) :- multiply(N,N,M).
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List Processing

» Recall built-in list syntax:

list([]).
list([XIL]) :- 1list(L).
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List Processing

School of

Alan Smaill

Recall built-in list syntax:

list([]).
list([XIL]) :- 1list(L).

Examples: list append

append([],L,L).
append ([X|L],M, [XIN]) :- append(L,M,N).
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append in action

» Forward direction:
?7- append([1,2],[3,4],X).

X = [1:2,334]
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append in action . B
informatics @
» Forward direction:
?- append([1,2],[3,4],X).

X = [1,2,3,4]

» Backward direction
?- append(X,Y,[1,2,3,4]).
X=[], Y=[1,2,3,4];
X=[1],Y=[2,3,4];
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Mode annotations @

These are recognised ways of indicating properties of Prolog
procedures.
» Notation: append(+,+,-)
» Expect to be called with the first two arguments ground, and

third a variable (which we normally expect to bound after the
call)
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Mode annotations @

These are recognised ways of indicating properties of Prolog
procedures.

» Notation: append(+,+,-)
» Expect to be called with the first two arguments ground, and
third a variable (which we normally expect to bound after the
call)

» Similarly, append (-,-,+)
» Call with last argument ground, first two as variables
(which we normally expect to be bound after the call).
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Mode annotations .
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These are recognised ways of indicating properties of Prolog
procedures.
» Notation: append(+,+,-)

» Expect to be called with the first two arguments ground, and
third a variable (which we normally expect to bound after the

call)
» Similarly, append (-,-,+)
» Call with last argument ground, first two as variables
(which we normally expect to be bound after the call).
» Not “code”, but often used in annotations

b “?" annotation used where any term may appear
— i.e. ground, variable, or compound term with variables.
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List Processing ctd

When is something a member of a list?

member (X, [X|_1).
member (X, [_|T]) :- member(X, T).
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List Processing ctd . A
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When is something a member of a list?

member (X, [X|_1).
member (X, [_|T]) :- member(X, T).

Typical modes:
member (+,+)
member (-, +)
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List processing ctd

» Removing an element of a list:

remove (X, [X|L], L).

remove (X, [YIL], [YIM]) :- remove(X, L, M).
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List processing ctd
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» Removing an element of a list:

remove (X, [X|L], L).
remove (X, [YIL], [YIM]) :- remove(X, L, M).

NB: removes one occurrence of X;
fails if X is not a member of the list.

b Typical mode:
remove (+,+,-)
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b Zip: pairing of corresponding elements of lists:
assumed to be of same length.

zip([1, 01, D).
zip([XIL], [YIM], [(X,Y)IN]) :- zip(L, M, N).

» Typical modes:

zip(+,+,-).
zip(-,-,+). % unzip
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List flattening
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b Write a flatten predicate flatten/2 that

» Given a list of (lists of ...)
» Produces a list of individual elements in the original order.
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List flattening

b Write a flatten predicate flatten/2 that

» Given a list of (lists of ...)
» Produces a list of individual elements in the original order.

» Examples:

?- flatten([[1,2],[3,4]1], L).
L = [1,2,3,4]

?7- flatten([[1,2],[3,[4,5]]1,6]1,L).
L=1[1,2,3,4,5,6]

?- flatten([3,X,[4,5]1],L).
L = [31X54:5]
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flatten([1, [1).

flatten([H|T], M) :- flatten(H, Hf),
flatten(T, Tf),
append (Hf, Tf, M).

flatten(X, [X]) :- 7?77
% non-list case; how treat variables?!?!
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» Can use terms to define data structures:

pb([entry(alan, ’156-675’),...]1).
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» Can use terms to define data structures:
pb([entry(alan, ’156-675’),...]1).

» and operations on them:

pb_lookup(pb(B), P, N) :-
member (entry(P,N), B).

pb_insert(pb(B), P, N, pb([entry(P,N) | Bl)).

pb_remove (pb(B), P, pb(B2)) :-
remove (entry(P,_), B, B2).
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We can define (binary) trees with data (at the nodes).

tree(leaf).
tree(node( Data, LT, RT )) :- tree(LT), tree(RT).
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We can define (binary) trees with data (at the nodes).

tree(leaf).
tree(node( Data, LT, RT )) :- tree(LT), tree(RT).

Data membership in a tree —
using “;"” for alternatives in the body of a clause.

mem_tree(X, node(X, _, _)).

mem_tree(X, node(_, LT, RT)) :-
mem_tree(X, LT) ;
mem_tree (X, RT).
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Preorder traversal .
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Pick up the data in a particular order:
start at root, traverse recursively left subtree, then right subtree.

preorder (leaf, [1).
preorder (node(X, LT, RT), [XIN]) :-
preorder (LT, LO),

preorder (RT, RO),
append( LO, RO, N).
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Pick up the data in a particular order:
start at root, traverse recursively left subtree, then right subtree.

preorder (leaf, [1).
preorder (node(X, LT, RT), [XIN]) :-
preorder (LT, LO),

preorder (RT, RO),
append( LO, RO, N).

What happens if we run this in reverse?
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Tutorials next week
tics @

b The tutorial questions are on the web page;
you should work through these before the tutorial.

b It's recommended to use the sicstus emacs mode to interact
with Prolog and edit source code. This mode is invoked
automatically when editing Prolog files (with suffix .pl) on
DICE.

(See sicstus documentation if you want to set this up for
yourself.)

You can find out about the mode by “C-h m" in emacs when
the mode is in use, or via sicstus documentation.
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» Non-logical features:
» Expression evaluation

» 1/0

b “cut” (pruning proof search)
» Further reading
> » Learn Prolog Now, ch 3-4

» Tutorial questions on web page.
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