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Analytic solutions to the Navier-Stokes equations

Some illustrative Examples
A. Couette tlow

B. Poiseuille flow

C. Flow 1n a circular pipe

D. Flow near an Oscillating Plate




A. Flow between a Fixed and a Moving Plate: Plane Couette Flow

Applications: Lubricating

o Lubrication o Geological systems \ oil

o Painting, cleaning etc. (thin-film applications) Rotating shaft I
/Housing

Journal Bearing




A. Flow between a Fixed and a Moving Plate: Plane Couette Flow

* Two-dimensional

* Incompressible

* Plane

* Viscous flow

* Between parallel plates a distance 2h
apart

* Assume that the plates are very wide
and very long, so that the flow is
essentially axial

* The upper plate moves at velocity V
but there is no pressure gradient

* Neglect gravity effects

The continuity equation
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or

u = u(y) only




A. Flow between a Fixed and a Moving Plate: Plane Couette Flow

Thus there is a single nonzero axial-velocity component which varies only across the channel.
The flow is said to be fully developed (far downstream of the entrance).

The Navier-Stokes momentum equation for two-dimensional (X, y) flow:

) ) ) u |0’
uﬂ-l-vﬂ: (p-l-pgr-i-u(u-i-('z
dx dy dx dy

2
p(0+0)=0+0+ (0+Z—)
)?

Aty = +h: u=V=_Ch+ G

The no-slip condition

Aty = —h: u=0=C/(-h + G




A. Flow between a Fixed and a Moving Plate: Plane Couette Flow

The solution for the flow between plates with a moving upper wall, is:

This 1s Couette flow due to a moving wall: a linear velocity profile with no-slip at

each wall, as anticipated.




B. Flow due to Pressure Gradient between Two Fixed Plate:
Plane Poiseuille Flow (Channel Flow)

* Poiseuille flows are driven by pumps that forces the fluid to flow by modifying the pressure.

* Fluids flow naturally from regions of high pressure to regions of low pressure.

* Typical examples are cylindrical pipe flow and other duct flows.

* Figure below illustrates a fully developed plane channel flow.

* Fully developed Poiseuille flows exists only far from the entrances and exits of the ducts, where the flow is aligned
parallel to the duct walls.

Fixed
Assumptions:
* Both plates are fixed. -
* The pressure varies in the x direction. -

* The gravity is neglected.
* The x-momentum equation changes only because
the pressure is variable:
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B. Flow due to Pressure Gradient between Two Fixed Plate:
Plane Poiseuille Flow (Channel Flow)
ap ap _
The y- and z-momentum equations lead to: )_\ =0 and ) = () or p = p(x) only
ay 0Zg
Th h di is th 1 and onl di . dzl,l d])
us the pressure gradient 1s the total and only gradient: n 5 = —— = const < 0
dy” dx
The solution 1s accomplished by double integration: | dp \’2
P Y . u= P . + Cy + G
modx
The constants are found from the no-slip condition at each wall:
dp h*
Aty = *h: u=10 or C, =90 and G, = - =
dx 2u




B. Flow due to Pressure Gradient between Two Fixed Plate:
Plane Poiseuille Flow (Channel Flow)

Thus the solution to the flow in a channel due to pressure gradient, is:

| dx 2u h*

The flow forms a Poiseuille parabola of constant negative curvature. The maximum velocity occurs at the centerline:

dp h*

dx 2u
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C. Flow in circular pipe

If we assume the flow is in the x-direction, then the

velocity vector is u(y, z, t) = (u(y, z, t), 0, 0) and Navier-
Stokes equations can be simplified to

Ju = vV%u — Ldp

ot pdx’

v d du 1 dp
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For a steady cylindrical pipe flow with radius rO the solution is found a (r d_u> — d_p’
simply by integrating twice and applying boundary conditions: & 7d 2 de
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C. Flow in circular pipe

where C'; and (', are integration constants. The constant C'; must be zero for the flow at the
center of the pipe to remain finite. The condition at the wall u(rg) = 0 gives

rg Op

C2 = _@(‘)m’

which leads to the final expression for the pipe flow

1 0
u(r) = —@8_2 (r6 —7)




D. Flow near an Oscillating Plate

Consider that special case of a viscous fluid near a wall that is set suddenly in motion as shown in
Figure 1. The unsteady Navier-Stokes reduces to:

ou 0’u
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Figure 2. Schematics of flow near an oscillating wall.

The boundary conditions are:

u=U,cosot at y=10

o u=~0 at y =0




D. Flow near an Oscillating Plate

Let
u=U,e ™ cos(ot —ay).
Then
% = -oU e ™ sin(ot - ay)
C

;ﬂ = U,e ™ (~kcos(ot —ay)+asin(ot —ay))
dy

> = Uue"""(k2 cos®—2kasinf—-a” cosG), 0 = ot — ay




D. Flow near an Oscillating Plate

Substituting the last two equations into the reduced Navier-stokes equation, it follows that

~ wsin® = v((k* —a Jcos 0 — 2aksin6)

a =k
o = 2akv = 2k’v
k = £=a

2v

Thus, the velocity profile i1s given as

u=U,e ™ cos(ot —ky). k=,—.




