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Inviscid potential flow past an array of cylinders. The mathematics of potential theory, pre-
sented i1n this chapter, is both beautiful and manageable, but results may be unrealistic when
there are solid boundaries. See Figure 8.13b for the real (viscous) flow pattern. (Courtesy of
Tecquipment Lid., Nottingham, England)
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Introduction

e In analyzing fluid motion,
we might take one of two
paths:

1. Seeking an estimate of
gross effects (mass flow,
induced force, energy
change) over a finite
region or control volume
or

2. Seeking the point-by-

point details of a flow
pattern by analyzing an
infinitesimal region of
the flow.
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e
Introduction

e The control volume technique 1s useful when we are
interested in the overall features of a flow, such as mass
flow rate into and out of the control volume or net forces
applied to bodies.

e Differential analysis, on the other hand, involves
application of differential equations of fluid motion to any
and every point in the flow field over a region called the
flow domain.

* When solved, these differential equations yield details
about the velocity, density, pressure, etc., at every point
throughout the entire flow domain.
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The Acceleration Field of a Fluid

* Velocity 1s a vector function of position and time and thus
has three components u, v, and w, each a scalar field in
itself.

V(r, 1) = iulx, y, z, 1) + julx, y, 2, 1) + kw(x, vy, z, 1)
e This 1s the most important variable in fluid mechanics:

Knowledge of the velocity vector field 1s nearly equivalent
to solving a fluid flow problem.

* The acceleration vector field a of the flow 1s derived from
Newton’s second law by computing the total time
derivative of the velocity vector:

av du dv dw

a= = i— + k—
dt dt dt dt




The Acceleration Field of a Fluid

* Since each scalar component (¢, v, w) 1s a function of
the four variables (x, y, z, ¢), we use the chain rule to
obtain each scalar time derivative. For example,

du(x,y,z,t)  du N ou dx N a_ud_) N %@
dt of oxdt dydt 0z df

e But, by definition, dx/dt is the local velocity
component u, and dy/dt =v , and dz/dt = w.

e The total time derivative of # may thus be written as
follows, with exactly similar expressions for the time
derivatives of v and w:

(-,
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The Acceleration Field of a Fluid

@ % ou ou ou ou

a, = = +u—+v—+w—=—+4+ (V- V)u
d o ox 9y 9z ot
d 0 d ov ov ov
ay=—v =—v+u—v+v—+w—=—+(V~V)v
d o ax 9y 9z ot
d 0 ow ow ow ow
az=—w=—w+u—+v—+w—=—+(V-V)w
dt ot 0x ay 07 ot

e Summing these into a vector, we obtain the total

dV \" V V \" oV |
LA R TR A I LR
dt ot dx Jy 9z ot

Local Convective




The Acceleration Field of a Fluid

» The term 0V/ot is called the local acceleration, which
vanishes 1f the flow 1s steady-that 1s, independent of time.

e The three terms 1n parentheses are called the convective
acceleration, which arises when the particle moves through
regions of spatially varying velocity, as in a nozzle or

diffuser.
* The gradient operator V 1s given by:

0 0 0
V=i—+j—+k—
0x ay 07

0 0 0
u—+v—+w—=V-V
0X ay 07
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The Acceleration Field of a Fluid

e The total time derivative—sometimes called the
substantial or material derivative— concept may be
applied to any variable, such as the pressure:

d
p=ap+ua—p+va—p+wa—p=a—p+(V°V)p

dt ot 0X oy 0z  df

* Wherever convective effects occur in the basic laws
involving mass, momentum, or energy, the basic
differential equations become nonlinear and are
usually more complicated than flows that do not
involve convective changes.




Example 1. Acceleration field

Given the eulerian velocity vector field
V =3+ xzj + v’k

find the total acceleration of a particle.

Solution

» Assumptions: Given three known unsteady velocity components, u = 3¢, v = xz, and

w = 1y’
» Solution step 1: First work out the local acceleration 9V/r:

oV ou v ow 0 ) 0

—=i—+j—+k—=i=0C3)+j=-02 + k=% =3i +0j +yk

or ot Yt or e OD TG DTk ) S
Solution step 2: In a similar manner, the convective acceleration

terms, are




Solution step 2: In a similar manner, the convective acceleration
terms, are

A% d
ua = (3t)a(3ti + xzj + ty’k) = (30)(0i + zj + Ok) = 3tz

v% = (x2) aiy (34 + xzj + °k) = (x2)(0i + 0j + 21yk) = 2txyzk
w% = (tyz)a%(&‘i + xzj + k) = (y*)(0i + xj + 0k) = my? j

» Solution step 3: Combine all four terms above into the single “total” or “substantial”
derivative:

dv 9V oV oV oV
— =—+u— +v— +w— = 3i + yk) + 31zj + 2txyzk + 0%
iy P "ay o ( yK) | xy xXy’)

=3i + Bz + mA)j + (O + 22k Ans.

» Comments: Assuming that V is valid everywhere as given, this total acceleration vector
dV/dt applies to all positions and times within the flow field.

(- y
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Example 2. Acceleration field

* An idealized velocity field 1s given by the formula
V = 4mxi — 2t%yj + 4xzk
e Is this flow field steady or unsteady? Is 1t two- or three

dimensional? At the point (x, y, z) = (1, 1, 0), compute the
acceleration vector.

Solution

* The flow 1s unsteady because time ¢ appears explicitly in the
components.

* The flow is three-dimensional because all three velocity
components are nonzero.

e Evaluate, by differentiation, the acceleration vector at (x, y, z)
=(—1,+1, 0).
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Example 2. Acceleration field

cclilt1 = (;u +u g: + V%+ W% = 4x +4tx(40) - 2t°y(0) + 4x2(0) = 4x + 16t°x

L A, L S —4ty + 4tx(0)— 2t2y(—2t%) + 4xz(0) = —4ty + 4ty
dt ot oJx dy dJz

ivtv = ?:/ + u%Jf V%N + W(;_‘Z = 0+ 4tx(4z)— 2t°y(0) + 4xz(4x) = 16txz +16x"z

or: % =(4x + l6t2x)i +(HAty + 4t4y)j +(16txz + l6x22)k

at (x, y, z) = (-1, +1, 0), we obtain %:-4(1+4t2)i—4t(1—t3)j+0k

o
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Exercise 1

e The velocity 1n a certain two-dimensional flow field 1s given
by the equation
V = 2xfi — 2yi1j
where the velocity 1s in m/s when x, y, and ¢ are in meter and
seconds, respectively.

1. Determine expressions for the local and convective
components of acceleration in the x and y directions.

2. What is the magnitude and direction of the velocity and the
acceleration at the point x =y = 2 m at the time ¢t = 0?
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The Differential Equation of Mass Conservation

e Conservation of mass, often called the continuity relation,
states that the fluid mass cannot change.

* We apply this concept to a very small region. All the basic
differential equations can be derived by considering either
an elemental control volume or an elemental system.

* We choose an infinitesimal fixed control volume (dx, dy,
dz), as in shown 1n fig below, and use basic control volume
relations.

* The flow through each side of the element 1s approximately
one-dimensional, and so the appropriate mass conservation
relation to use here 1s

f p doV + 2 (p:A out E (plA )in = O
cv Of
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The Differential Equation of Mass Conservation

y

T /Control volume
|

|

|

|

pu dy dz ot [pu+ ai(pu) dx) dy dz
X

Z
* The element is so small that the volume integral simply

reduces to a differential term:

J a—Pd°V ~ a—pdxdydz
CV ot ot

(-
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The Differential Equation of Mass Conservation

* The mass flow terms occur on all six faces, three inlets and
three outlets.

e Using the field or continuum concept where all fluid
properties are considered to be uniformly varying functions
of time and position, such as p=p (x, y, z, ).

e Thus, 1f T is the temperature on the left face of the element,
the right face will have a slightly different temperature

T + (0T/0x) dx.

e For mass conservation, if pu is known on the left face, the
value of this product on the right face 1s pu + (dpu/dx) dx.
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The Differential Equation of Mass Conservation
Face Inlet mass fiw Outlet mass fiw
X pu dy dz :pu+%(pu)dx: dy dz
y pv dx dz :pv - aiy(pv) dy: dx dz
Z pw dx dy [pw +a%(pW) dz: dx dy

 Introducing these terms into the main relation

™~

p 9 9 9
—dxdydz + — dxdy dz + — dxdy dz + — dxdydz =0
Py dy dz Py (pu) dx dy dz P (pv) dx dy dz P (pw) dx dy dz

o Simplifying gives

p 9 5 :
+ +—(pv) + — (pw) = 0
or T ax P T 5y ) o (W)

equation of continuity

/
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The Differential Equation of Mass Conservation

* The vector gradient operator

0 0 0
Vzi'—-i-j'—-l‘k'—
0x ay 07

* enables us to rewrite the equation of continuity in a
compact form

i( u) + 2
axp oy

* so that the compact form of the continuity relation 1s

0
| —( =V - (pV
(pv) + . (pw) =V - (pV)

dp

L vV =
ar T (V) =0
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The Differential Equation of Mass Conservation

Continuity Equation in Cylindrical Coordinates

e Many problems in fluid mechanics are more conveniently
solved 1n cylindrical coordinates (7 6, z) (often called
cylindrical polar coordinates), rather than in Cartesian

coordinates.
J Uy
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The Differential Equation of Mass Conservation

e Continuity equation in cylindrical coordinates is given
by
op 1 0

0
LR + —— (py) + — (pv,) = 0
ot r or (rpv,) r 90 (pvy) 0z (pv:)

Steady Compressible Flow

o If the flow is steady /9t = 0 and all properties are
functions of position only and the continuity equation
reduces to

0 0 0
Cartesian: —(pu) + —(pv) + —(pw) = 0
0X ay 0z
Cylindrical la( )+18( )+8( ) =20
indrical: ——(rpv,) + —— — —
y rar pv r 90 PYg 9z PV,
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The Differential Equation of Mass Conservation

Incompressible Flow

* A special case that affords great simplification 1s
incompressible flow, where the density changes are
negligible. Then dp/dt = 0 regardless of whether the
flow 1s steady or unsteady,

e The result
V:-V=0
e 1s valid for steady or unsteady incompressible flow. The
two coordinate forms are

: ou Jov ow
Cartesian: + + —=0
ox dy 02
1 o 1 o 0
indrical: - + —— + — =0
Cylindrical Py (rv,) ppY: (vp) (v)

(-




The Differential Equation of Mass Conservation

 The criterion for incompressible flow is Ma = 0.3

e where Ma = V/a 1s the dimensionless Mach number of
the flow.

e For air at standard conditions, a flow can thus be

considered incompressible if the velocity 1s less than
about 100 m/s.
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Example 3

* Consider the steady, two-dimensional velocity field given by
V=(u2)=(13+28)i + (15— 28y)j
e Verify that this flow field 1s incompressible.

Solution

e Analysis. The flow is two-dimensional, implying no z component of
velocity and no variation of u or v with z.

* The components of velocity in the x and y directions respectively are

u=13+28x v=15-2.38y

* To check if the flow 1s incompressible, we see 1f the
incompressible continuity equation is satisfied:

—+—+ =0 or 28-28=0

ox

28 3§ Osimce2D
So we see that the incompressible continuity equation is indeed

satisfied. Hence the flow field 1s incompressible.




Example 4

e Consider the following steady, three-dimensional velocity
field in Cartesian coordinates:

V= (u 2w =(@xy?—b)i + cy] + dxyk
where a, b, ¢, and d are constants. Under what conditions is
this flow field incompressible?

Solution

Condition for incompressibility:

ou 8\ 8\/
ay’ +3cy’ =0
ox 8}?
" 3g7 0

* Thus to guarantee incompressibility, constants a and ¢ must
satisfy the following relationship:

a=—3c




Example 5

e An 1dealized incompressible flow has the proposed three-
dimensional velocity distribution

V=40 + )] -
* Find the appropriate form of the function f(y) which satisfies
the continuity relation.

e Solution: Simply substitute the given velocity components
into the incompressible continuity equation:

o"u&vﬁwé’ 2o"fo"

df >
4 . =0
oy o e g t o= oy
or: d—f=—3y2. Integrate: f(y)= j (—3y )dy:—y3+constant Ans.

dy




4 Example 6

e For a certain incompressible flow field it is suggested that the
velocity components are given by the equations

u=2xy v=—-xy w=0
Is this a physically possible flow field? Explain.

Any /ohysl'ca//g possible /kcam/oresszlle_ Fhow Freld
must Safisﬁ_, Conseva tiwn OFf mess es expressed by

tthe velatwnsh, )o

Tl T R - Z
For The velocity distribatior given,
28 . v 2 d wr-
s = e = == X e 2 €

Jubstituton 17t Eg (1) Shows thad
2y -x*+o0 # 0
a Thus, This is el @ phgsléa//y ,oo.ssfé/e fhe freld &i

.
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Example 7

e For a certain incompressible, two-dimensional flow field
the velocity component in the y direction 1s given by the
equation

v = x* + 2xy

e Determine the velocity in the x direction so that the
continuity equation is satisfied.




Example 7 - solution

To satisfy the contrnuity €4 uation,

Py oV _
2?7& E—O <7)

men /7‘0/;7 Eg (7)

E 5144,{/'0/; €2) Cgn be /;72‘\.’7”15(4 with Ns,oecz[ fo X Jo obtasy

fd“ = —ﬁxdx * ;C(_f;)

U= —x=*4 76(_7)

or

where  F(y) is an  undetermined Fynedic, of .




: Example 8

e The radial velocity component 1n an incompressible, two
dimensional flow field (= () 1s

v, = 2r + 3r° sin 6
* Determine the corresponding tangential velocity component, vy,
required to satisfy conservation of mass.
Solution.

e The continuity equation for incompressible steady flow in
cylindrical coordinates 1s given by

! 2 (Fy)

J 2Vp o5
F 3F T FE 3B * 5% =
Srnce V3 =0
oUp . _ o(ruyp) )




: Example 8 A

and wilth
ri,. = 2F2 +3F s @
11 follows Thgt

20%) - 44 # Gris, o

or
777(15/ EZ.(/) becomes
%_Z'Z, - /6‘/‘ + s 8) ¢2)

Eguaé/bn(v Con  be i1ntegrated wilh re.s/oecz’ o @ o obtus
fd'l/é s ‘f(f';‘kf- U*s5in6)de + FUF)

or 7@: -lf;—g—-?/"cosé + £ )

LJAe re [( ) IS ah an/eéer/n/t'vpd ﬁmcrf'/o'n o;[ r.

(- y




The Stream Function

e Consider the simple case of incompressible, two-dimensional
flow 1n the xy-plane.

e The continuity equation in Cartesian coordinates reduces to
ou AV
— 4+ — =0
X dy (1)

* A clever variable transformation enables us to rewrite this

equation (Eq. 1) 1n terms of one dependent variable () instead
of two dependent variables (z and v).

e We define the stream function y as

0 0
_ ¥ and z/=——¢’

YT oy x @

(-
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The Stream Function

o Substitution of Eq. 2 into Eq. 1 vields

o [ oY +a o\ Y a%p_o
dx \ 9y gy \ ox/) oxay dyox

» which 1s identically satisfied for any smooth function w(x, ).

What have we gained by this transformation?

 First, as already mentioned, a single variable (y) replaces two
variables (u and v)—once y is known, we can generate both u
and v via Eq. 2 and we are guaranteed that the solution
satisfies continuity, Eq. 1.

e Second, it turns out that the stream function has useful
physical significance . Namely, Curves of constant y are
streamlines of the flow.
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The Stream Function

 This 1s easily proven by
considering a streamline 1n
the xy-plane

Point (x + dx, y + dy)

Streamline

[ y Point (x, y)

X

(-

b=,y

[y Streamlines

X

Curves of constant stream function
represent streamlines of the flow

/
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The Stream Function

e The change 1n the value of vy as
we move from one point (x, y) to
a nearby point (x + dx, y + dy) 1s o
given by the relationship: v
) ) ,
dfp = (,—djdx + (,—llldv = —vdx + udy

ox C )y ] Streamlines

* Along a line of constant y we
have dy = 0 so that

—vdx +udy =20

e and, therefore, along a line of
constant y

dv v

dx u
(- y
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The Stream Function

* Along a streamline.

dy v
—=—- =  —vdx+tudy=90
dx U —— —

oY/ dx oYr/dy

e where we have applied Eq. 2, the definition of . Thus along a
streamline:
dd dx + ihid dy =0
0x dy
» But for any smooth function y of two variables x and y, we
know by the chain rule of mathematics that the total change of
w from point (x, y) to another point (x + dx, y + dy) some
infinitesimal distance away i1s
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The Stream Function

» Total change of y:

0 0
d¢=—¢dx+—¢dy
0X Jy

* By comparing the above two equations we see that dy = 0
along a streamline;
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The Stream Function

 In cylindrical coordinates the continuity equation for
incompressible, plane, two dimensional flow reduces to

l("(f"vr) N 1('"’00 _
rooor r 00
* and the velocity components, v, and ¥y can be related to
the stream function, (r, #). through the equations

U :law
T T8, 1 o o
v, = ——— Vp = —
Y o or
_ oy 4
l»’g——'a7
I
e 6




The Differential Equation of Linear Momentum

e Using the same elemental control volume as in mass
conservation, for which the appropriate form of the linear
momentum relation 1s

Vp d°V) + 2 (M;V)oue — z (m;V Din

T

sr-2(]

Cv

/ Control volume

pu dy dz [ou + ai(pu) dx] dy dz
X

X
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The Differential Equation of Linear Momentum
e Again the element is so small that the volume integral
simply reduces to a derivative term:
0 0
— (VpdV) = —(pV)dxdyd
at(p ) at(;o) y az
* The momentum fluxes occur on all six faces, three inlets
and three outlets.
Faces Inlet momentum fix Outlet momentum fix
X puV dy dz puV + ai (puV) dx | dy dz
- x -
y pvV dx dz pvV + ai (pvV) dy | dx dz
! y _
Z pwV dx dy pwV + 9 (pwV) dz | dx dy
@ 0z _
N /




The Differential Equation of Linear Momentum

 Introducing these terms
0 0 0 0
> F = dxdy dz[— (pV) + —(puV) + —(pvV) + — (pwV)}
] ot 0X oy 07

e A simplification occurs if we split up the term in brackets
as follows:

0 0 s P
— (pV) + — (puV) + — (pvV) + — (pwV
Py (pV) Py (puV) P (pvV) ™ (pwV)

0 oV oV oV oV
=V{—p+V°(pV):| +p(—+u—+v—+w—)
ot ot 0X oy 07
e The term in brackets on the right-hand side is seen to be the

equation of continuity, which vanishes identically

(-




e

The Differential Equation of Linear Momentum

e The long term 1n parentheses on the right-hand side 1s the
total acceleration of a particle that instantaneously occupies
the control volume:

oV oV oV oV  dV
— 4t u—+v—+w—=
ot 0xX ay 07 dt

e Thus now we have

dV
F=p—dxdyd
e This equation points out that the net force on the control
volume must be of differential size and proportional to the

element volume.
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The Differential Equation of Linear Momentum

» These forces are of two types, body forces and surface
forces.

e Body forces are due to external fields (gravity, magnetism,
electric potential) that act on the entire mass within the
clement.

e The only body force we shall consider is gravity.

» The gravity force on the differential mass p dx dy dz within
the control volume 1s

ngrav — Pg dx d)-" dZ

* The surface forces are due to the stresses on the sides of the
control surface. These stresses are the sum of hydrostatic
pressure plus viscous stresses t; that arise from motion with
velocity gradients

(-
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The Differential Equation of Linear Momentum

< direction on a face
normal to  axis
—p + T Tyx Tox
O = U —p t+ T Ty

@ Ty Ty —p + 7,




The Differential Equation of Linear Momentum

00,
(Oy+ —— dy) dxdz
ay

/

— = R

O dy d7 —=—

(Opx + 00y dx) dy dz
ax

Fig. Elemental Cartesian fixed
(O + 90 dz) dx dy control volume showing the surface
0z forces in the x direction only.
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The Differential Equation of Linear Momentum

* The net surface force in the x direction is given by

0 0 0
de,surf:[a_(o-)_i__( )+_(0) dxa’ydz

e Splitting into pressure plus viscous stresses

dF 0 0 0 0
= By S+ a_v(Tyx) + a—Z(Tu)

V. ox  ox
e where dv =dx dy dz.

o Similarly we can derive the y and z forces per unit volume
on the control surface

dF, ap 0 0 0
)y _ _ _|_ — _|_ -
= et ) o)
dF,  op ) :
—z- L +—(1,) + —
av T oz T\ gy T ()
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The Differential Equation of Linear Momentum

e The net vector surface force can be written as

(). e (8
doV surf B P doV viscous

where the viscous force has a total of nine terms:

(dF) , (67‘xx T, afru)
— =1 + +
dv viscous 0x a)’ 07
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The Differential Equation of Linear Momentum

* In divergence form

dF
(d_OV)viscous - V . TU

T Ty Txn
Ti = | Ty Ty Ty
| Ty Ty Ty

* 1s the viscous stress tensor acting on the element

* The surface force is thus the sum of the pressure gradient
vector and the divergence of the viscous stress tensor
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The Differential Equation of Linear Momentum

e The basic differential momentum equation for an
infinitesimal element 1s thus

dV
pg = Vp + V- 7;=p—-

dV oV oV oV oV
= tu—+v—+w—
dt ot 0x oy 07

where

e In words

Gravity force per unit volume + pressure force per unit volume
+ viscous force per unit volume = density X acceleration




e

» the component equations are

The Differential Equation of Linear Momentum

G e R ou ou ou ou
Py — — + — +——=p|l—F+uUu—+v—+w—
0X 0x dy 07 ot ox oy 07
0 0 0Ty 0 0 0 0 0
og, — 2L 4 T | 9T &:p(_vﬂ_vﬂ_vw_v)
dy oxX ay 07 ot ox ay 07
d 0T, oT oT ow ow aw aow
pgz L p + Z < + i — p(_ + U— _|_ v— + w —)
07 0X oy 07 ot 0xX oy 0%

(-

* This 1s the differential momentum equation 1n its full glory,
and 1t 1s valid for any fluid in any general motion, particular
fluids being characterized by particular viscous stress

terms.
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Inviscid Flow: Eulers’ Equation

e For Frictionless flow t; =0, for which

dV
—Vp = p—
PE P pdt

e This 1s Eulers’equation for inviscid flow
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Newtonian Fluid: Navier-Stokes Equations

* For a newtonian fluid, the viscous stresses are proportional
to the element strain rates and the coefficient of viscosity.

ou ov ow
Tox = 20— Ty = 2 — T, = 20—
Hox T Py TeT R,
(au N av) (aw N au)
Ty =Ty =l —+— | 7, =T, = p|l — + —
» = T R ay ax) T 7 Hlax oz

(av N aw)
7' p— T p—
e = Ty T M 9z 9y

e where | is the viscosity coefficient

e Substitution gives the differential momentum equation for a
newtonian fluid with constant density and viscosity:

(-




e

Newtonian Fluid: Navier-Stokes Equations

e These are the incompressible flow Navier-Stokes
equations named after C. L. M. H. Navier (1785-1836) and
Sir George G. Stokes (1819—1903), who are credited with
their derivation.

TN
o 9x x> 9 97 dt
op v v o dv

T aE) TP

ox* 9y a7

ap (82w d*w azw) dw
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Inviscid Flow

e Shearing stresses develop in a moving fluid because of the
viscosity of the fluid.

* We know that for some common fluids, such as air and
water, the viscosity is small, therefore it seems reasonable
to assume that under some circumstances we may be able
to simply neglect the effect of viscosity (and thus shearing
stresses).

* Flow fields in which the shearing stresses are assumed to
be negligible are said to be inviscid, nonviscous, or
frictionless.

e For fluids in which there are no shearing stresses the
normal stress at a point 1s independent of direction—that 1s

O,y = 0,, = O,,.

(-




Inviscid Flow

Euler’s Equations of Motion

e For an inviscid flow in which all the shearing stresses are
zero and the Euler’s equation of motion 1s written as

op ou ou ou ou
pgx — ——=p\—tu—+v—+w_—
0x ot 0x Ay 0z

ap v v v oV
Pg, — =P a—t—l-ua—+v—+w—

X Y 0z
ap ow ow ow ow

pg. — —=p\—Ftu—+v—+w—
0z ot 0x Ay 0z

 In vector notation Euler’s equations can be expressed as

ot

pg—Vp=p{ﬂ+(V'V)V}
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Vorticity and Irrotationality

e The assumption of zero fluid angular velocity, or
irrotationality, is a very useful simplification.

» Here we show that angular velocity 1s associated with the
curl of the local velocity vector.

o The differential relations for deformation of a fluid element
can be derived by examining the Fig. below.

e Two fluid lines AB and BC, initially perpendicular at time t,
move and deform so that at t + dt they have slightly different
lengths A’B’ and B’C’ and are slightly off the perpendicular
by angles do and dp.

(-




Vorticity and Irrotationality

ou
—dvydt
P y

o_l O Line 1

a B dx C
.
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Vorticity and Irrotationality

* We define the angular velocity o, about the z axis as the
average rate of counterclockwise turning of the two lines:

_lcﬁ_l@)
“To\ar
e But from the fig. da and df are each directly related to

velocity derivatives in the limit of small dt.
_, (lax)dxdt | v

da = lim |t = —dt
= a5 ! an dx + (oulox)dxdt| ox
[ ouloy)ydydt |1 o

d8 = lim | tan~! — 240 &y - 2
dt—0 | dy + (ov/dy)dydt] dy

e Substitution results

I (av au)
wz - -\ — —
@ 2\ox dy




Vorticity and Irrotationality

In exactly similar manner we determine the other two rates:
1 (aw 6v> 1 (au aw)
W, — _\ . — W, — —
2\ 9y 9z Y 2\9z ox

e The vector w = iw, + jw, + kw, is thus one-half the curl of
the velocity vector

i j K
l 1lo o o

— —(curl V) = -
@ =7 V) =7 lax 3 oz
u v W

* A vector twice as large 1s called the vorticity
{=2w =curl V
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Vorticity and Irrotationality

* Many flows have negligible or zero vorticity and are called

irrotational.
curl V=0

e Example. For a certain two-dimensional flow field the

velocity is given by the equation

V=(—»)i-20j

e Is this flow irrotational?
Solution.
» For the prescribed velocity field

u=x>—3y  v=—2xy

w=20




Vorticity and Irrotationality

and therefore
1/ ow
wx:_(l_a_”)zo
2\ady oz
1/ o ow
R TL
2\ oz ox
1/ov ou 1
= —-1— — — —_= — —27——2) :0
o= (2 - 2) L2 - (o)

Thus, the flow 1s 1rrotational.
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Velocity Potential

e The velocity components of irrotational flow can be
expressed in terms of a scalar function ¢(x, y, z, ¢) as

I 9o b
_ — vV = — w = —

dx Jy dz

u

» where ¢ 1s called the velocity potential.

* In vector form, it can be written as

V=Vé

* so that for an irrotational flow the velocity 1s expressible as
the gradient of a scalar function ¢.

* The velocity potential 1s a consequence of the irrotationality
of the flow field, whereas the stream function is a
consequence of conservation of mass
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Velocity Potential

e It 1s to be noted, however, that the velocity potential can be
defined for a general three-dimensional flow, whereas the

stream function i1s restricted to two-dimensional flows.

e For an incompressible fluid we know from conservation of
mass that

V-Vv=0
 and therefore for incompressible, irrotational flow (with
V = V¢) it follows that
Vi =0
where V*( ) = V - V() is the Laplacian operator. In Cartesian coordinates

()2cb ()2¢ 0’

=0
()\'2 9y* ():2

@ y




Velocity Potential

e This differential equation arises in V24 =0
many different areas of engineering
and physics and 1s called Laplace’s Streamlines
equation. Thus, inviscid,
incompressible, 1rrotational flow
fields are governed by Laplace’s
equation.

e This type of flow 1s commonly called
a potential flow.

» Potential flows are 1rrotational flows.
That 1s, the vorticity 1s zero
throughout. If vorticity 1s present
(e.g., boundary layer, wake), then the
flow cannot be described by Laplace’s

equation.
o y

Vorticity contours




/
Velocity Potential

e For some problems it will be convenient to use cylindrical
coordinates, r,0, and z. In this coordinate system the
gradient operator 1s

o), L 180 A0)

V() = é ¢
) P Y R
so that
(')d) ()d) ()qb
Vd):._ r+__90+_e:
dr d0 0z

where ¢ = ¢(r, 0, z). Since
V = v,€, + 1,8, + v.€,

it follows for an irrotational flow (with V = V¢)

o 1 06 o
V,=—  vp=— v, =—
@ T or Y 2 s
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Velocity Potential

Also, Laplace’s equation in cylindrical coordinates is

1 9 ) 1 92 )
—((r(¢)+ (¢+(¢—

=0
¥ or ¥ 00> 072

ar




Example 1

e The two-dimensional flow of a nonviscous, incompressible fluid
in the vicinity of the corner of Fig. is described by the stream
function .

Y = 2r? sin 20

» where y has units of m?/s when r is in meters. Assume the fluid
density is 103 kg/m? and the x—y plane is horizontal that is, there
1s no difference 1n elevation between points (1) and (2).

FIND

a) Determine, 1f possible, the corresponding velocity potential.

b) If the pressure at point (1) on the wall 1s 30 kPa, what 1s the
pressure at point (2)?

o

™~




Example 1

y

T: (2)

0.5m

Solution

* The radial and tangential velocity components can be
obtained from the stream function as
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(-

Solution

and

Since

it follows that

10
v, = _f'_dl = 4r cos 260
r o0
d
Vg = _'_ll’ = —4r s 26
aor
a
vV, = —
ar
)
ﬁ = 4r cos 260

or




and therefore by integration

¢ = 21 cos 260 + f£,(6) (1)
where f(6) 1s an arbitrary function of 6. Similarly

Vg = %% = —4y sin 26
and integration yields

¢ = 2r? cos 20 + £5(r) (2)

where f5(7) 1s an arbitrary function of 7. To satisfy both Eqs. 1 and
2, the velocity potential must have the form

¢ = 2r’cos20 + C (Ans)

where C'1s an arbifrary constant. As 1s the case for stream functions,
the specific value of C is not important, and it 1s customary to let
C = 0 so that the velocity potential for this corner flow 1s

¢ = 2r* cos 26 (Ans)




(b) Since we have an urotational flow of a nonviscous, incom-
pressible fluid, the Bernoulli equation can be applied between any
two points. Thus, between points (1) and (2) with no elevation

change
D + V% =P2 + V%
Y 22 v 28
or
_ p 2 2
Pr»=p + E(Vl - Vz)
Since

V: =02 + v}
it follows that for any point within the flow field

V? = (4r cos 20)* + (—4r sin 20)
= 16r*(cos®26 + sin’ 26)
= 16r°

3)




This result indicates that the square of the velocity at any point
depends only on the radial distance, 7, to the point. Note that the
constant, 16, has units of s~2. Thus,

Vi = (16 s7%)(1 m)* = 16 m*/s’
and

73 = (16s7%)(0.5 m)* = 4m’/s’
Substitution of these velocities into Eq. 3 gives

0*kg/m’
zg/m (16 m*/s* — 4 m’/s?)

= 36 kPa (Ans)

p, = 30 X 10° N/m* +
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Basic Plane Potential Flows

e For simplicity, only plane (two-dimensional) flows will be
considered. In this case, by using Cartesian coordinates

dd do
U= —_— V= —
ox ay
or by using cylindrical coordinates
I 10
vV, = V=~
T or o r o0

e Since we can define a stream function for plane flow, we

can also let
ol o 1 oY ol

U . .
dy ox ’ r a0 or

@




Uniform Flow

e The simplest plane flow 1s one for which the streamlines
are all straight and parallel, and the magnitude of the
velocity is constant. This type of flow 1s called a uniform

flow.

e For example, consider a uniform flow in the positive x

direction as 1s illustrated in Fig a.

Jl },'
—U> } =y, \
|
—- : ¢=¢2 U/ \\
— i Y =yY3
—— :
|
I
I
I

ll ———— —— — ——— —— ] —— ——
A
I
=
RSy

°

I
-
°

(a) (5)




Uniform Flow

e In this instance, u = U and v = 0, and in terms of the
velocity potential

) )

ox ady

0

* These two equations can be integrated to yield

¢=Ux+C
e where C 1s an arbitrary constant, which can be set equal to
Zero.

e Thus, for a uniform flow in the positive x direction
¢ = Ux
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Uniform Flow

e The corresponding stream function can be obtained in a
similar manner, since

) )

dy 0x

0

e and, therefore,
¢ = Uy

e These results can be generalized to provide the velocity
potential and stream function for a uniform flow at an angle
o with the x axis, as in Fig. b. For this case

¢ = U(xcos a + ysin a)
* and

Y = U(y cos @ — x sin a)

@




Source and Sink

e Consider a fluid flowing radially outward from a line
through the origin perpendicular to the x—y plane as 1s
shown 1n Fig. Let m be the volume rate of flow emanating
from the line (per unit length), and therefore to satisfy
conservation of mass

y
y = constant et —— ¢ = constant (27T}‘)’Ur — m
\\ e I /
X A
/ \\ A \ Of

/ 4 r .
/ \ om
[ \9 \ v, =
| - - | 27Tr
\ |
\ / :

\~——""




Source and Sink

* A source or sink represents a purely radial flow.

Since the flow 1s a purely radial flow, vy = 0., the
corresponding velocity potential can be obtained by
integrating the equations

dg m 1 dp
- — o 4 — O
ar 21Tr r 06
It follows that
m
= —1
¢ - nr

If m 1s positive, the flow is radially outward, and the flow 1s
considered to be a source flow. If m is negative, the flow is
toward the origin, and the flow 1s considered to be a sink
flow. The flowrate, m, 1s the strength of the source or sink.
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Source and Sink

e The stream function for the source can be obtained by
integrating the relationships

1 Y m P
fvr = — /Uo = —= — O
r 00 29Tr ar
e To yield
m
= —0
v 29T

e The streamlines (lines of y = constant ) are radial lines, and
the equipotential lines (lines of ¢ = constant) are concentric
circles centered at the origin.
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Example 2

* A nonviscous, incompressible fluid flows between wedge-
shaped walls into a small opening as shown in Fig. The
velocity potential (in ft/s?), which approximately describes
this flow 1s

¢=—-2Inr

e Determine the volume rate of flow (per unit length) into the
opening.
y




SoLuTION
The components of velocity are
o 2 14
V,=— = —— fvoz—’—:()
ar r r o6

which indicates we have a purely radial flow. The flowrate per
unit width, ¢, crossing the arc of length R#/6 can thus be ob-
tained by integrating the expression

/6 /6 2
g = L v,.Rdf = —L (E)Rdf)

_ —% = —1.05 /s (Ans)

The negative sign indicates that the flow 1s toward the opening,
that 1s, 1in the negative radial direction
(-
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Vortex

e We next consider a flow field in which the streamlines are
concentric circles—that is, we interchange the velocity

potential and stream function for the source. Thus, let
y

y = constant 4) = K6

and
Yy =—Klnr

where K 1s a constant. In this
case the streamlines are
concentric circles with v, = 0
and

¢ = constant — l% — _(')_gli _ 5
V9= —"—"= T =
r 06 ar v

This result indicates that the tangential velocity varies inversely
with the distance from the origin

(-
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Circulation

* A mathematical concept commonly associated with vortex
motion 1s that of circulation. The circulation, I, 1s defined
as the line integral of the tangential component of the
velocity taken around a closed curve 1n the flow field. In
equation form, I, can be expressed as

I‘=q5 V - ds
C

where the integral sign
means that the integration
1s taken around a closed

V curve, C, in the
counterclockwise
direction, and ds is a
differential length along

@ the curve

Arbitrary
curve C
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Circulation

e For an 1rrotational flow
V=V¢sothat V- ds = 64) - ds = d¢ and, therefore,

F:S{S dp = 0

e This result indicates that for an irrotational flow the circulation
will generally be zero.

o However, for the free vortex with vg = K/r , the circulation
around the circular path of radius 7 is

2 K
I' = J —(rdf) = 2K
o T
e which shows that the circulation 1s nonzero.

* However, for irrotational flows the circulation around any path

that does not include a singular point will be zero.
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Circulation

» The velocity potential and stream function for the free
vortex are commonly expressed in terms of the circulation

as
I
¢ =—0
and 2
I
y=—nr

29T




Doublet

* Doublet 1s formed by combining a source and sink in a
special way. Consider the equal strength, source—sink pair
shown. The combined stream function for the pair 1s

m

Yy = _;(91 — 0,)

y

Source Sink




Doublet

e which can be rewritten as

27 tan #, — tan 6
tan(— l){j) = tan(6, — 0,) = l -
m 1 + tan 0, tan 6,

e From the Fig. above it follows that

¥ sin 6
tan 6, =
rcos@ —a
* And 7 sin 0
tan 6, =
rcos + a

* These results substitution gives

2wy 2ar sin 0
tan| — i 5

m r—a




e

88

.

Doublet
e So that m t _1(2(1r sin 9)
= —tan
4 2qr ¥ — a®
o For small values of the distance a
. m 2ar sin 6 __ _mar sin 6
2T ¥ — a° w(r* — a)

since the tangent of an angle
approaches the value of the angle for
small angles

3 purce

— ‘ Sink ’ S— X
&.) A doublet is formed by letting a source

and sink approach one another.

/




Doublet

The so-called doublet 1s formed by letting the source and
sink approach one another (a — 0) while increasing the
strength m (m — =) so that the product ma/m remains
constant. In this case, since r/(r* — aa) — 1.

K sin 6
V

ll/:_

where K, a constant equal to ma/mr, is called the strength of
the doublet.

The corresponding velocity potential for the doublet 1s

~ Kcos 0
>

¢




Doublet

* Plots of lines of constant y reveal that the streamlines for a
doublet are circles through the origin tangent to the x axis
as shown 1n fig below.
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Summary of Basic, Plane Potential Flows

N

(-

Description of Velocity
Flow Field Velocity Potential Stream Function Components
Uniform flow at ¢ = Ulxcosa + ysina) Y = Ulycosa — xsina) u = Ucos a
angle a with the x v=Usha
axis
Source or sink m m m
=—Inr =—20 vV, = —
¢ 2 2 " 2mr
m > 0 source Ve = 0
m < 0 sink o
Free vortex I I
=—26 —Inr v,=0
2 2
>0 I
counterclockwise Vg =~
) 2mr
motion
I'<o
clockwise motion
Doublet K cos 6 Ksin @ K cos 6
= S V.= —
r F " 72
K sin 6
Vg — — 3
r
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Rankine Ovals

» To study the flow around a closed body, a source and a sink
of equal strength can be combined with a uniform flow as
shown in Fig. below.

— Source Smk

(a)




Rankine Ovals
e The stream function for this combination is

Y = Ursin @ —%(91 — 6,)

and the velocity potential is

¢ = Urcos @ — z%(hlrl — Inr,)

Stagnation Stagnation
point y =\O point
\
\




Rankine Ovals

e Using the stream function for the source—sink pair, the
stream function for Rankine Ovals can be written as

W = Ursin 0 m tan-1 (201' Sin 0)
= Ursin @ — —tan
29T 2 — a?

b= U m_ _1( 2ay )
= Uy — —tan
) 2T ¥ + y2 — a*

» The corresponding streamlines for this flow field are
obtained by setting y = constant. If several of these
streamlines are plotted, 1t will be discovered that the
streamline y =0 forms a closed body as shown 1n fig.
above.
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Rankine Ovals

e Stagnation points occur at the upstream and downstream
ends of the body. These points can be located by
determining where along the x axis the velocity is zero.

e The stagnation points correspond to the points where the
uniform velocity, the source velocity, and the sink velocity
all combine to give a zero velocity.

» The locations of the stagnation points depend on the value
of a, m, and U.

e The body half-length, € (the value of |x| that gives V = 0
* When y= 0), can be expressed as

| 1/2 ¢ - 1/2
€=(ﬂ+a2> or —=( +1)
U a wUa

(-




(-

Rankine Ovals

e The body half-width, h, can be obtained by determining the
value of y where the y axis intersects the y = 0 streamline.

with ¢ = 0,x = 0, and 1 = B, it follows that

W — a 2 Uh
h = tan

. Or 2a

=3[ )

e both €/a and h/a are functions of the dimensionless
parameter, 7w Ua/m.. A large variety of body shapes with
different length to width ratios can be obtained by using
different values of Ua/m,

m
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Rankine Ovals

Large Ua/m

Small Ua/m
—
= —
—7 N\ —

—\
———

e ———

* As this parameter becomes large,
flow around a long slender body is
described, whereas for small values
of the parameter, flow around a more
blunt shape 1s obtained
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Flow around a Circular Cylinder

e When the distance between the source—sink pair
approaches zero, the shape of the Rankine oval becomes
more blunt and in fact approaches a circular shape.

e Since the Doublet was developed by letting a source—sink
pair approach one another, it might be expected that a
uniform flow in the positive x direction combined with a
doublet could be used to represent flow around a circular
cylinder.

e This combination gives for the stream function

Ksiné
B

Y = Ursin @ —
 and for the velocity potential

Kcos 6
¢ = Urcos@ +

(- "




e

Flow around a Circular Cylinder

 In order for the stream function to represent flow around a
circular cylinder it 1s necessary that i = constant for » = a,

where a 1s the radius of the cylinder.

K
g = (U— —,)rsin()
2
it follows that y = 0 for » = a if

K

U——=0
(12

e which indicates that the doublet strength, K, must be equal

to Ua?. Thus, the stream function for flow around a circular
cylinder can be expressed as

a\
@ P = Ur(l —r—z)smO
.
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Flow around a Circular Cylinder

 and the corresponding velocity potential 1s

2
¢ = Ur(l + a—Z)COSO

v

» The velocity components are

) 10 72
) =£=—£— U(l —a—z)cos()

T o r o0

10 ) 2
Vy =—i— —i= —U(l + & )sin()

r o0 or 2

* On the surface of the cylinder ( = a) it follows v, = 0 and

Vg = —2U sin 6

@
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@

Flow around a Circular Cylinder

2U

A
N

e
|

Fig. The flow around a circular cylinder.
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Solved Problems

1. The velocity potential for a certain flow field 1s ¢ = 4xy.
Determine the corresponding stream function.

For The qiven Ve Joci#y /Do{‘?ﬂﬁﬂ./ ;

3¢ - - = é_?:#
L{’-;-f -‘)‘7 and v oY X

From the detinstion of The stramm funchon,

ré_%=‘7‘ &/
U 3y 4 J

.&feymle 55,()) Lt n Vcs/oecz‘ o Y ko 2btrin

fa’{ﬂ = /"‘.‘7‘/.‘/

or Y= 2y 2 4 ,(: (x) where f(x)is an arbitrary,,,
Function of X.

@




Similarly

..o _
Ve o- 2—)—;‘ *‘/‘X
and fdw;. - f‘l‘XdX
o Y= -2x + £ 09) wheref(y)is an 5,

arbifrary function of y.

7o satisfy both Egs. (z) and (3) [(x)={ () foral/Xandy.

=4 = ﬂ-"tanl‘.
7%05)75 {2. co w;— 2 (jz_xz,) +C

Where C 15 a Constant .

@




2. The stream function for an incompressible, two
dimensional flow field is

W = ay2 —bx
Where a and b are constants. Is this an irrotational flow?
Explain.

For 7he How to be wotationa) (.

_ L[ duy =
wg‘z 2 X ﬁlg)—o

and Aor The stream tanction o iven

:3¢:- 7
7 3% @ 4

u-:-é.'&=b

J




24
a—-:." 2 . 3__1{'_._._0

2y o X

/ = —
wz:z[0- /24')] &=

Since co, 0 Flow is not Irrota tiom/

(un/es.s a =0) , Mo .




3. The stream function for a given two dimensional flow filed
1s
v =5x"y—(5/3)y

Determine the corresponding velocity potential.

u=2% _2¢ _ 5x2_5y” tr)
0y X

_Zangrafe 10/.777 l’e"jf?aL f x o 06/‘4/;7
/'519; = f/fxz_syz) dx

or ¢: g_-x.?_ ijz+ 7[:[3) (2)
Srm,larly,
- _ 0% _ 2% _ _ ( 2
1 ﬁ = 28 = —Joxy
and




or

%: *5’)(52—# 1[;//<)

lo Satiste both £gs.(2) 4na (4)

¢:/£)X3—5ij + C
=L=====-==-=—=="

lohere C 15 an arb:*rnr, Constant.
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4. Determine the stream function corresponding to the
velocity potential ¢ = x3 — 3xy?. Sketch the streamline
= 0, which passes through the origin.
- ¥ _ o¢ _ .
U= %_; 2 .é-f s 3x%34%
Inkfm;‘e wih rf_r/oecf o 4y fo obte1r
fd'-l' = [(3;(’—39") dy
o g = 30y~ L)+ Lo Z
Similarly
’ N e 9_,‘_? = a—é - -
A T exs
and integmbiiy with respect T x  yields
fo’ § = /éx_y ax
- y= X%y + £
&




To satisty bolh £9S. (1) andg (2)
Y= 3xy-474 C

™~

Where C is an  arbitrary Comstent . Sipce e stremmlie (=0
passes Through 7he origiy (X=0,y=0) /¥ follws That- C=0 Guu

h= Fx2y~y>
The. éﬁuaﬁfan of The streamline

passing through The origin is found by =0
.Se#lhj (,!/=a 1 Ez,(.i) +o
eld
9’ g (.B’Xz-g?')-‘-'o
which is satished For Y=o p
and = f}/;)(
A sketlch of The =0 skemhres
are shown 11 The figure.
\ Y,

{3)




5. The velocity potential for a certain inviscid,
incompressible flow field is given by the equation

> 20 3
p=2x"y (3)y

Where ¢ has the units of m?/s when x and y are in meters.
Determine the pressure at the point x =2 m, y = 2m if the
pressure at X = 1 m, y = 1 m 1s 200 kPa. Elevation
changes can be neglected and the fluid 1s water.

Since The £low /S /’;roéa,é/a'/m/)

+f VLE
—

+ _! s
¢ Zg & s
) 7h Vi=u*+v ™ For The veloc: 1y potental qivem,

2

o 2
@ “EC 57
.
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At /00/1.17[ / et X=lm ana j=11’" S0 Thet

w = #000) = #F vis 2m)t- 20)" =0
ancl 2 m™
v s (4 2)" = 16 °a
At Pofnf i X 2m and j-’zm' So That
U, = 4(2)(2) = /L%" 11;:2(2)"-2(2) =0

771615) ﬁ’om EZ.U}
//3'3' 'f’, * ’Z' [V;Z‘sz)

3 N

(9.90x10° =5) m3 -

= Zoo,(/oB—’\-/-z -+ 7 m?> (IL"S",’ 25"_{;
” 2 (9.8 %)

1
(V)
=

&=
20




6. Water is flowing between wedge-shaped walls into a small
opening as shown 1n the Fig. below.

The velocity potential with units m?/s for this flow is

¢=-2lnr with r in meters.

Determine the pressure differential between points A and B.

@




>
A Y
onsg The  hor- -
onymia/.s fz
Urrace //)
V- 28 el
So 77147‘.‘ ar:——% o{
}-
lhus 'Zf;’--—:'
V-
A_-i-
0.5-_4%"’1
_ 2
VB-'-T';_:—ai_.”!‘.
S

and £
rom Eg¢ (1)

$oge L
A 7b/3 —[B"VA]
- q?DK/D—'s
e GEREE)

= —T/o+4 R




7. An ideal fluid flows between the inclined walls of a two

dimensional channel into a sink located at origin. The
velocity potential for this flow field is

m
= —Inr
¢ 2ar
where m 1s a constant. (a) Determine the corresponding stream
function. Note that the value of the stream function along the wall

OA 1s zero. (b) Determine the equation of the streamline passing
through the point B, locatedatx = 1,y = 4.




4 N
(e) . 0¥ _ o¢ . m /
/If;’ T F o6 2F 27 F €l
Lnteqrate Eg .U) with vespect 1o 6 fo obtorn
s M
Jap = [22 10
or
pe m s g
Since PY =Y (2
2 PR LT i, o )
Ve 57 7 F do &
L/—’ t\'s net a -Aunc-/wbn o?c ¥ So E’g.{l) becomes
Al A
ol 77
Where C 15 a ceonstant. Also, V=0 for 67
Jo 7hat -
L= ~F
Qn d & /
Y= m (27 "2 ) i
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N

(L) J+ B  fans - 7" so et O =1 33 racd. From Eg.(3)
the value of ¢ passing Through s pornt 1S
W= m izi”i-——‘{): 0.06‘5‘0@
and  Therefore The eguation of The s/veamline passing Through B
b 0.04‘50m=/m/£,-2/)
e O = (33 rad

(,{/o,l:; ZZ can be seen trom £y . (3) Thet The Stvegmhnes
avre a/l Straight lines passing Through The origri. )




End of Chapter 4

Next Lecture

Chapter 5: Dimensional Analysis And
Similitude




