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Introduction

y In analyzing fluid motion, 
we might take one of two 
paths:

1. Seeking an estimate of 
gross effects (mass flow, 
induced force, energy 
change) over a finite 
region or control volume 
or 

2. Seeking the point-by-
point details of a flow 
pattern by analyzing an 
infinitesimal region of 
the flow.
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y The control volume technique is useful when we are 
interested in the overall features of a flow, such as mass 
flow rate into and out of the control volume or net forces 
applied to bodies.

y Differential analysis, on the other hand, involves 
application of differential equations of fluid motion to any 
and every point in the flow field over a region called the 
flow domain.

y When solved, these differential equations yield details 
about the velocity, density, pressure, etc., at every point 
throughout the entire flow domain.
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The Acceleration Field of a Fluid
y Velocity is a vector function of position and time and thus 

has three components u, v, and w, each a scalar field in 
itself.

y This is the most important variable in fluid mechanics: 
Knowledge of the velocity vector field is nearly equivalent 
to solving a fluid flow problem.

y The acceleration vector field a of the flow is derived from 
Newton’s second law by computing the total time 
derivative of the velocity vector:
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y Since each scalar component (u, v , w) is a function of 
the four variables (x, y, z, t), we use the chain rule to 
obtain each scalar time derivative. For example,

y But, by definition, dx/dt is the local velocity 
component u, and dy/dt =v , and dz/dt = w. 

y The total time derivative of u may thus be written as 
follows, with exactly similar expressions for the time 
derivatives of v and w:
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y Summing these into a vector, we obtain the total 
acceleration:
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y The term δV/δt is called the local acceleration, which 
vanishes if the flow is steady-that is, independent of time. 

y The three terms in parentheses are called the convective 
acceleration, which arises when the particle moves through 
regions of spatially varying velocity, as in a nozzle or 
diffuser. 

y The gradient operator      is given by:
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y The total time derivative—sometimes called the 
substantial or material derivative— concept may be 
applied to any variable, such as the pressure:

y Wherever convective effects occur in the basic laws 
involving mass, momentum, or energy, the basic 
differential equations become nonlinear and are 
usually more complicated than flows that do not 
involve convective changes.
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Example 1. Acceleration field

Given the eulerian velocity vector field 

find the total acceleration of a particle.
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Solution step 2: In a similar manner, the convective acceleration 
terms, are
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Solution step 2: In a similar manner, the convective acceleration 
terms, are



y An idealized velocity field is given by the formula

y Is this flow field steady or unsteady? Is it two- or three 
dimensional? At the point (x, y, z) =  (1, 1, 0), compute the 
acceleration vector.

Solution
y The flow is unsteady because time t appears explicitly in the 

components.
y The flow is three-dimensional because all three velocity 

components are nonzero.
y Evaluate, by differentiation, the acceleration vector at (x, y, z) 

= (−1, +1, 0).
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Exercise 1

y The velocity in a certain two-dimensional flow field is given 
by the equation

where the velocity is in m/s when x, y, and t are in meter and 
seconds, respectively. 

1. Determine expressions for the local and convective 
components of acceleration in the x and y directions. 

2. What is the magnitude and direction of the velocity and the 
acceleration at the point x = y = 2 m at the time t = 0?
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The Differential Equation of Mass Conservation

y Conservation of mass, often called the continuity relation, 
states that the fluid mass cannot change. 

y We apply this concept to a very small region. All the basic 
differential equations can be derived by considering either 
an elemental control volume or an elemental system. 

y We choose an infinitesimal fixed control volume (dx, dy, 
dz), as in shown in fig below, and use basic control volume 
relations. 

y The flow through each side of the element is approximately 
one-dimensional, and so the appropriate mass conservation 
relation to use here is
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y The element is so small that the volume integral simply 
reduces to a differential term:
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y The mass flow terms occur on all six faces, three inlets and 
three outlets.

y Using  the field or continuum concept where all fluid 
properties are considered to be uniformly varying functions 
of time and position, such as ρ= ρ (x, y, z, t).

y Thus, if T is the temperature on the left face of the element, 
the right face will have a slightly different temperature

y For mass conservation, if ρu is known on the left face, the 
value of this product on the right face is
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y Introducing these terms into the main relation

y Simplifying gives
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y The vector gradient operator

y enables us to rewrite the equation of continuity in a 
compact form

y so that the compact form of the continuity relation is
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Continuity Equation in Cylindrical Coordinates
y Many problems in fluid mechanics are more conveniently 

solved in cylindrical coordinates (r, θ, z) (often called 
cylindrical polar coordinates), rather than in Cartesian 
coordinates.
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y Continuity equation in cylindrical coordinates is given 
by

Steady Compressible Flow
y If the flow is steady    ,            and all properties are 

functions of position only and the continuity equation 
reduces to
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Incompressible Flow
y A special case that affords great simplification is 

incompressible flow, where the density changes are 
negligible. Then                      regardless of whether the 
flow is steady or unsteady,

y The result

y is valid for steady or unsteady incompressible flow. The 
two coordinate forms are
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y The criterion for incompressible flow is
y where Ma = V/a is the dimensionless Mach number of 

the flow.
y For air at standard conditions, a flow can thus be 

considered incompressible if the velocity is less than 
about 100 m/s.
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Example 3
y Consider the steady, two-dimensional velocity field given by 

y Verify that this flow field is incompressible.
Solution 
y Analysis. The flow is two-dimensional, implying no z component of 

velocity and no variation of u or v with z.
y The components of velocity in the x and y directions respectively are

y To check if the flow is incompressible, we see if the 
incompressible continuity equation is satisfied:

y So we see that the incompressible continuity equation is indeed 
satisfied. Hence the flow field is incompressible.24



Example 4 
y Consider the following steady, three-dimensional velocity 

field in Cartesian coordinates: 

where a, b, c, and d are constants. Under what conditions is 
this flow field incompressible?

Solution
Condition for incompressibility:

y Thus to guarantee incompressibility, constants a and c must 
satisfy the following relationship:

a = −3c
25



Example 5

y An idealized incompressible flow has the proposed three-
dimensional velocity distribution

y Find the appropriate form of the function f(y) which satisfies 
the continuity relation.

y Solution: Simply substitute the given velocity components 
into the incompressible continuity equation:
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Example 6
y For a certain incompressible flow field it is suggested that the 

velocity components are given by the equations

Is this a physically possible flow field? Explain.
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Example 7

y For a certain incompressible, two-dimensional flow field 
the velocity component in the y direction is given by the 
equation

y Determine the velocity in the x direction so that the 
continuity equation is satisfied.
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Example 8
y The radial velocity component in an incompressible, two 

dimensional flow field               is

y Determine the corresponding tangential velocity component,
required to satisfy conservation of mass.

Solution. 
y The continuity equation for incompressible steady flow in 

cylindrical coordinates is given by
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The Stream Function
y Consider the simple case of incompressible, two-dimensional 

flow in the xy-plane. 
y The continuity equation in Cartesian coordinates reduces to

(1)
y A clever variable transformation enables us to rewrite this 

equation (Eq. 1) in terms of one dependent variable (ψ) instead 
of two dependent variables (u and v). 

y We define the stream function ψ as

(2)
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y Substitution of Eq. 2 into Eq. 1 yields

y which is identically satisfied for any smooth function ψ(x, y).
What have we gained by this transformation? 
y First, as already mentioned, a single variable (ψ) replaces two 

variables (u and v)—once ψ is known, we can generate both u 
and v via Eq. 2 and we are guaranteed that the solution 
satisfies continuity, Eq. 1. 

y Second, it turns out that the stream function has useful 
physical significance . Namely, Curves of constant ψ are 
streamlines of the flow.
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y This is easily proven by 
considering a streamline in 
the xy-plane
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The Stream Function

Curves of constant stream function
represent streamlines of the flow



y The change in the value of ψ as 
we move from one point (x, y) to 
a nearby point (x + dx, y + dy) is 
given by the relationship:

y Along a line of constant ψ we 
have  dψ = 0 so that

y and, therefore, along a line of 
constant ψ
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y Along a streamline:

y where we have applied Eq. 2, the definition of ψ. Thus along a 
streamline:

y But for any smooth function ψ of two variables x and y, we 
know by the chain rule of mathematics that the total change of 
ψ from point (x, y) to another point (x + dx, y + dy) some 
infinitesimal distance away is
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y Total change of ψ:

y By comparing the above two equations we see that dψ = 0 
along a streamline;
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y In cylindrical coordinates the continuity equation for 
incompressible, plane, two dimensional flow reduces to

y and the velocity components,      and       can be related to 
the stream function,             through the equations
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The Differential Equation of Linear Momentum
y Using the same elemental control volume as in mass 

conservation, for which the appropriate form of the linear 
momentum relation is
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y Again the element is so small that the volume integral 
simply reduces to a derivative term:

y The momentum fluxes occur on all six faces, three inlets 
and three outlets.
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y Introducing these terms

y A simplification occurs if we split up the term in brackets 
as follows:

y The term in brackets on the right-hand side is seen to be the 
equation of continuity, which vanishes identically
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y The long term in parentheses on the right-hand side is the 
total acceleration of a particle that instantaneously occupies 
the control volume:

y Thus now we have

y This equation points out that the net force on the control 
volume must be of differential size and proportional to the 
element volume. 
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y These forces are of two types, body forces and surface 
forces. 

y Body forces are due to external fields (gravity, magnetism, 
electric potential) that act on the entire mass within the 
element. 

y The only body force we shall consider is gravity. 
y The gravity force on the differential mass ρ dx dy dz within 

the control volume is

y The surface forces are due to the stresses on the sides of the 
control surface. These stresses are the sum of hydrostatic 
pressure plus viscous stresses τij that arise from motion with 
velocity gradients
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The Differential Equation of Linear Momentum

Fig. Elemental Cartesian fixed
control volume showing the surface
forces in the x direction only.



y The net surface force in the x direction is given by

y Splitting  into pressure plus viscous stresses

y where dv  = dx dy dz.
y Similarly we can derive the y and z forces per unit volume 

on the control surface
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y The net vector surface force can be written as
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y In divergence form

y is the viscous stress tensor acting on the element
y The surface force is thus the sum of the pressure gradient 

vector and the divergence of the viscous stress tensor
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y The basic differential momentum equation for an 
infinitesimal element is thus

y In words
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y the component equations are

y This is the differential momentum equation in its full glory, 
and it is valid for any fluid in any general motion, particular 
fluids being characterized by particular viscous stress 
terms. 
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Inviscid Flow: Eulers’ Equation

y For Frictionless flow τij =0, for which

y This is Eulers’ equation for inviscid flow
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Newtonian Fluid: Navier-Stokes Equations

y For a newtonian fluid, the viscous stresses are proportional 
to the element strain rates and the coefficient of viscosity. 

y where μ is the viscosity coefficient
y Substitution gives the differential momentum equation for a 

newtonian fluid with constant density and viscosity:
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y These are the incompressible flow Navier-Stokes 
equations named after C. L. M. H. Navier (1785–1836) and 
Sir George G. Stokes (1819–1903), who are credited with 
their derivation.
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Inviscid Flow
y Shearing stresses develop in a moving fluid because of the 

viscosity of the fluid. 
y We know that for some common fluids, such as air and 

water, the viscosity is small, therefore it seems reasonable 
to assume that under some circumstances we may be able 
to simply neglect the effect of viscosity (and thus shearing 
stresses). 

y Flow fields in which the shearing stresses are assumed to 
be negligible are said to be inviscid, nonviscous, or 
frictionless.

y For fluids in which there are no shearing stresses the 
normal stress at a point is independent of direction—that is 
σxx = σyy = σzz.
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Euler’s Equations of Motion
y For an inviscid flow in which all the shearing stresses are 

zero and the Euler’s equation of motion is written as

y In vector notation Euler’s equations can be expressed as
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Vorticity and Irrotationality

y The assumption of zero fluid angular velocity, or 
irrotationality, is a very useful simplification.

y Here we show that angular velocity is associated with the 
curl of the local velocity vector.

y The differential relations for deformation of a fluid element 
can be derived by examining the Fig. below. 

y Two fluid lines AB and BC, initially perpendicular at time t, 
move and deform so that at t + dt they have slightly different 
lengths A’B’ and B’C’ and are slightly off the perpendicular 
by angles dα and dβ. 
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y We define the angular velocity ωz about the z axis as the 
average rate of counterclockwise turning of the two lines:

y But from the fig.  dα and dβ are each directly related to 
velocity derivatives in the limit of small dt:

y Substitution results
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y The vector                                   is thus one-half the curl of 
the velocity vector

y A vector twice as large is called the vorticity
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y Many flows have negligible or zero vorticity and are called 
irrotational.

y Example. For a certain two-dimensional flow field the 
velocity is given by the equation

y Is this flow irrotational?
Solution.
y For the prescribed velocity field
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Velocity Potential
y The velocity components of irrotational flow can be 

expressed in terms of a scalar function ϕ(x, y, z, t) as

y where ϕ is called the velocity potential.
y In vector form, it can be written as

y so that for an irrotational flow the velocity is expressible as 
the gradient of a scalar function ϕ.

y The velocity potential is a consequence of the irrotationality 
of the flow field, whereas the stream function is a 
consequence of conservation of mass
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y It is to be noted, however, that the velocity potential can be 
defined for a general three-dimensional flow, whereas the 
stream function is restricted to two-dimensional flows.

y For an incompressible fluid we know from conservation of 
mass that

y and therefore for incompressible, irrotational flow (with                 
) it follows that 
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Velocity Potential

y This differential equation arises in 
many different areas of engineering 
and physics and is called Laplace’s 
equation. Thus, inviscid, 
incompressible, irrotational flow 
fields are governed by Laplace’s 
equation. 

y This type of flow is commonly called 
a potential flow.

y Potential flows are irrotational flows. 
That is, the vorticity is zero 
throughout. If vorticity is present 
(e.g., boundary layer, wake), then the 
flow cannot be described by Laplace’s 
equation.64



y For some problems it will be convenient to use cylindrical 
coordinates, r,θ, and z. In this coordinate system the 
gradient operator is
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Example 1

y The two-dimensional flow of a nonviscous, incompressible fluid 
in the vicinity of the corner of Fig. is described by the stream 
function

y where ψ has units of m2/s when r is in meters. Assume the fluid 
density is 103 kg/m3 and the x–y plane is horizontal that is, there 
is no difference in elevation between points (1) and (2).

FIND
a) Determine, if possible, the corresponding velocity potential.
b) If the pressure at point (1) on the wall is 30 kPa, what is the 

pressure at point (2)?
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Example 1

Solution
y The radial and tangential velocity components can be 

obtained from the stream function as
68



Solution

69
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Basic Plane Potential Flows

y For simplicity, only plane (two-dimensional) flows will be 
considered. In this case, by using Cartesian coordinates

y Since we can define a stream function for plane flow, we 
can also let
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Uniform Flow
y The simplest plane flow is one for which the streamlines 

are all straight and parallel, and the magnitude of the 
velocity is constant.  This type of flow is called a uniform 
flow. 

y For example, consider a uniform flow in the positive x 
direction as is illustrated in Fig a. 
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y In this instance, u = U and  v = 0, and in terms of the 
velocity potential

y These two equations can be integrated to yield

y where C is an arbitrary constant, which can be set equal to 
zero. 

y Thus, for a uniform flow in the positive x direction
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y The corresponding stream function can be obtained in a 
similar manner, since

y and, therefore,

y These results can be generalized to provide the velocity 
potential and stream function for a uniform flow at an angle 
α with the x axis, as in Fig. b. For this case

y and
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Source and Sink

y Consider a fluid flowing radially outward from a line 
through the origin perpendicular to the x–y plane as is 
shown in Fig.  Let m be the volume rate of flow emanating 
from the line (per unit length), and therefore to satisfy 
conservation of mass

y or 
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y A source or sink represents a purely radial flow.
y Since the flow is a purely radial flow,             , the 

corresponding velocity potential can be obtained by 
integrating the equations

y It follows that

y If m is positive, the flow is radially outward, and the flow is 
considered to be a source flow. If m is negative, the flow is 
toward the origin, and the flow is considered to be a sink 
flow. The flowrate, m, is the strength of the source or sink.
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y The stream function for the source can be obtained by 
integrating the relationships

y To yield

y The streamlines (lines of ψ = constant ) are radial lines, and 
the equipotential lines (lines of ϕ = constant)  are concentric 
circles centered at the origin.
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Example 2
y A nonviscous, incompressible fluid flows between wedge-

shaped walls into a small opening as shown in Fig.  The 
velocity potential (in ft/s2), which approximately describes 
this flow is

y Determine the volume rate of flow (per unit length) into the 
opening.

80



81

The negative sign indicates that the flow is toward the opening,
that is, in the negative radial direction



Vortex
y We next consider a flow field in which the streamlines are 

concentric circles—that is, we interchange the velocity 
potential and stream function for the source. Thus, let

and
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where K is a constant. In this 
case the streamlines are 
concentric circles with               
and

This result indicates that the tangential velocity varies inversely 
with the distance from the origin



y A mathematical concept commonly associated with vortex 
motion is that of circulation. The circulation, Γ, is defined 
as the line integral of the tangential component of the 
velocity taken around a closed curve in the flow field. In 
equation form, Γ, can be expressed as
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where the integral sign 
means that the integration 
is taken around a closed 
curve, C, in the
counterclockwise 
direction, and ds is a 
differential length along 
the curve



y For an irrotational flow

y This result indicates that for an irrotational flow the circulation 
will generally be zero.

y However, for the free vortex with                , , the circulation 
around the circular path of radius r is 

y which shows that the circulation is nonzero.
y However, for irrotational flows the circulation around any path 

that does not include a singular point will be zero.84
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y The velocity potential and stream function for the free 
vortex are commonly expressed in terms of the circulation 
as

and 
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Doublet
y Doublet is formed by combining a source and sink in a 

special way. Consider the equal strength, source–sink pair 
shown. The combined stream function for the pair is
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y which can be rewritten as

y From the Fig. above it follows that

y And

y These results substitution gives
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y So that

y For small values of the distance a
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Doublet

A doublet is formed by letting a source
and sink approach one another.

since the tangent of an angle 
approaches the value of the angle for 
small angles



y The so-called doublet is formed by letting the source and 
sink approach one another              while increasing the 
strength                   so that the product            remains 
constant. In this case, since

y where K, a constant equal to             is called the strength of 
the doublet.

y The corresponding velocity potential for the doublet is
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y Plots of lines of constant ψ reveal that the streamlines for a 
doublet are circles through the origin tangent to the x axis 
as shown in fig below. 
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Rankine Ovals
y To study the flow around a closed body, a source and a sink 

of equal strength can be combined with a uniform flow as 
shown in Fig. below. 
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y The stream function for this combination is
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y Using the stream function for the source–sink pair, the 
stream function for Rankine Ovals can be written as

y Or

y The corresponding streamlines for this flow field are 
obtained by setting ψ = constant. If several of these 
streamlines are plotted, it will be discovered that the 
streamline  ψ =0 forms a closed body as shown in fig. 
above. 
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y Stagnation points occur at the upstream and downstream 
ends of the body. These points can be located by 
determining where along the x axis the velocity is zero. 

y The stagnation points correspond to the points where the 
uniform velocity, the source velocity, and the sink velocity 
all combine to give a zero velocity.

y The locations of the stagnation points depend on the value 
of a, m, and U. 

y The body half-length,
y When y= 0), can be expressed as

or
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y The body half-width, h, can be obtained by determining the 
value of y where the y axis intersects the ψ = 0 streamline.

y Or

y both                    are functions of the dimensionless 
parameter,              . A large variety of body shapes with 
different length to width ratios can be obtained by using 
different values of Ua/m,

96

Rankine Ovals



y As this parameter becomes large, 
flow around a long slender body is 
described, whereas for small values 
of the parameter, flow around a more 
blunt shape is obtained
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Flow around a Circular Cylinder
y When the distance between the source–sink pair 

approaches zero, the shape of the Rankine oval becomes 
more blunt and in fact approaches a circular shape. 

y Since the Doublet was developed by letting a source–sink 
pair approach one another, it might be expected that a 
uniform flow in the positive x direction combined with a 
doublet could be used to represent flow around a circular 
cylinder.

y This combination gives for the stream function

y and for the velocity potential
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y In order for the stream function to represent flow around a 
circular cylinder it is necessary that
where a is the radius of the cylinder.

y which indicates that the doublet strength, K, must be equal 
to         Thus, the stream function for flow around a circular 
cylinder can be expressed as
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y and the corresponding velocity potential is

y The velocity components are

y On the surface of the cylinder             it follows
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Fig.  The flow around a circular cylinder.
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Solved Problems

1. The velocity potential for a certain flow field is ϕ = 4xy. 
Determine the corresponding stream function.
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2. The stream function for an incompressible, two 
dimensional flow field is 

Where a and b are constants. Is this an irrotational flow? 
Explain. 
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3. The stream function for a given two dimensional flow filed 
is 

Determine the corresponding velocity potential.
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4.    Determine the stream function corresponding to the 
velocity potential ϕ = x3 – 3xy2. Sketch the streamline ψ
= 0, which passes through the origin.
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5.   The velocity potential for a certain inviscid, 
incompressible flow field is given by the equation

Where ϕ has the units of m2/s when x and y are in meters. 
Determine the pressure at the point x = 2 m, y = 2m if the 
pressure at x = 1 m, y = 1 m is 200 kPa. Elevation 
changes can be neglected and the fluid is water. 
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6. Water is flowing between wedge-shaped walls into a small 
opening as shown in the Fig. below. 
The velocity potential with units m2/s for this flow is

ϕ = -2ln r         with r in meters. 
Determine the pressure differential between points A and B.
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7. An ideal fluid flows between the inclined walls of a  two 
dimensional channel into a sink located at origin. The 
velocity potential for this flow field is
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End of Chapter 4

Next Lecture
Chapter 5: Dimensional Analysis And 

Similitude 
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