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Analysis of Factorial Experiments with Defects
or Defectives as the Response

Sgren Bisgaard and Howard Fuller

The performance of a production process is often characterized by the number
of defects in its products or the number of defective products. Typically,
reduction of the number of defects or defectives is paramount to improving the
quality of such a process. A powerful tool used Jor identifying variables that
influence the process level of defects or defectives is experimental design.
However, when using counts of defects or defectives as the experimental
response, the assumption of constant variance made with almost all standard
analyses is violated. A common method for dealing with this problem is to
transform the data before the analysis so that the assumption of constant variance
is more likely. In this paper, we present various transformations that can be used
to approximately stabilize the variance of counts of defects and the variance of
proportion of defectives. We also re-analyze examples of each case where
transformation of the experimental data followed by a simple analysis of the data
led to significantly different conclusions.

Although the modern concept of quality
improvement by no means is limited te defect
reduction, such efforts nevertheless remain important.
Control chart studies are often useful in the initial
phases of projects with that objective. Later,
however, when the obvious assignable causes have
been identified and removed, more potent tools are
necessary to achieve further improvements. When
that is the case it is worth recalling George Box's
often quoted statement (Box, 1966) that "to find out
what happens to a system when you interfere with it
you have to interfere with it (not just passively
observe it)." Thus instead of just observing a process
we need to "kick” it so that it reveals how we can
improve it. Two-level factorial and fractional
factorial experiments provide simple and economical
recipes for systematically "kicking" complex systems
from a number of directions.

In several previous columns (Box, 1992, 1993a,
1993b; Bisgaard, 1993a, 1993b) we have discussed
how to analyze two-level factorial and fractional
factorial designs. Typically in the examples we have
used, the response has been measured on a
continuous scale. Frequently, however, the only
economical measure of quality is a simple count of
the number of defects or defectives. Almost all the
standard statistical methods, in particular the methods
used for the analysis of factorial experiments, are
based on the assumptions that the response is
measured on a continuous scale and has constant

variance, When using two-level factorials and
fractional factorials the more important of these
assumptions is that of constant variance.
Unfortunately, when dealing with counts of defects
and defectives the constant variance assumption is
violated. :

Of course, we may simply ignore the problem
and use the standard tools anyway and fortunately
factorial and fractional factorials are so powerful that
such an analysis will often not mislead. However, a
simple remedy that provides a more sensitive analysis
and adds only a few more minutes to the analysis is
to "bend the data into shape" by a variance
stabilizing transformation”. The beauty of using
transformations is that we can get an efficient
analysis by using the standard techniques on the
transformed data. They therefore significantly enlarge
the applicability of our existing "toolbox."

DEFECTS AND DEFECTIVES

You may have noticed that in the title of this column
we have carefully distinguished between defects and
defectives. To illustrate the difference suppose we are
going to conduct a factorial expetiment on cleaning

* Experience shows that frequently when we have achieved
constant variance other assumptions are also more closely
met.
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optical lenses. For some reason, presently unknown
to us, the lenses develop scratches in the cleaning
process. Thus we would like to see which of a
number of factors — such as temperature of the water,
type of detergent, etc. — may reduce or eliminate the
problem. Under each set of conditions determined by
the factorial design we might manufacture n lenses
and look for scratches. We can then classify each as
either "bad” or "good" according to whether they
have scratches or not and use the count, X, of bad
lenses in the sample as the response. Counts of this
kind are called defectives. It is easy to see that
defective counts will possibly take on integer values
0, 1, 2, up to n. Notice, however, that it will be
impossibie for X to assume values larger than n,

Alternatively we might use only one lens for
each trial but look at them individually and count the
number of scratches on the surface of each lens. Such
a count is called the number of defects. It is easy to
see that, at least theoretically, there may be any
number of scratches on a lens; therefore, X may
assume any of the integer values 0, 1, 2, ... with no
upper limit. If you are in doubt whether you are
dealing with either a defect or defective count, a
simple test is to ask if there is a natural upper limit. If
the answer is yes, then you are dealing with
defectives. Otherwise it is defects,

TRANSFORMING PROPORTIONS
DEFECTIVE

Suppose that we are counting defective lenses out of
a sample of n, and within a particular trial the
individual lenses have an equal chance p of being
"bad" and 1-p of being "good." Then for each trial
the count will be distributed according to the
Binomial distribution with parameters n and p. For a
more detailed discussion see BH? pages 135-137
(Box, Hunter and Hunter, 1978)

The Binomial distribution characterizes how the
observed proportion of defectives p=X/n varies
from one sample of n lenses to the next when we do
not change the factors in the experiment. The
observed proportion p has mean i = p and variance
a“ = p{1- p}/ n. Thus the variance of our responses
depends on the value of the mean p. But that is
unfortunate because the objective of a factorial
screening experiment is to try to change p so that we
can learn about factors that may help reduce the
number of defectives. Therefore, if we are successful
in our overall mission we unfortunately end up
violating the assumption of constant variance needed
in the analysis.
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For illustration suppose we conduct an
experiment with a sample size of » = 20 lenses for
each trial, and that for three different factor
combinations the true proportion of defectives p is
0.1, 0.3, and 0.5, respectively. We see from Figure 1
that this will change the variance and indeed the
whole shape of the distribution of p=X/n. In
Figure 1a the probability of an individual defective is
P = 0.1, and we see that the distribution of p is rather
‘marrow with a standard deviation of
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Figure 1. The distributions of proportions for n=20
and(a)p=0.1,(b) p=0.3, and (c) p=0.5.

0=4+/0.1(1-0.1)/20 = 0.067. However, in Figure
1b, p = 0.3 and now the distribution is wider with
0 =4+/0.3(1-0.3)/20 = 0.102. Finally, in Figure Ic,
p = 0.5, and we see that the distribution of p is again
slightly wider with a standard deviation of
0=4/0.5(1-0.5)/20 =0.112. Figures 2a and 2d
show how ¢*=p(1-p)/n the variance of p
depends on p for samples of #n = 20 and n = 50. Over
the range of possible values of p we see that the
variance is far from constant and changes like a
parabola. It is that problem we are concerned about.
Fortunately we can overcome the problem by
using a variance stabilizing transformation that
makes the variance of the transformed p
approximately constant. Table 1 shows two types of
transformations useful .for dealing with defectives
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and defects. Specifically for defective type data
that follow the Binomial distribution the table shows
that the appropriate transformation is the arcsin
square root function. Thus, if instead of using p
directly as our response we use arcsin+/p then the
variance will be approximately constant. Note that
you may use either radians or degrees for the arcsin
function. In our example below we have used
radians.

Figure 2b shows for n = 20 how the variance
changes with p if instead of p we use the arcsin
square root of 7 as the response. From about
p=0.2 to p=0.8 the variance curve is now quite
constant but outside this interval the curve begins to
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Figure 2. The variance functions for sample sizes of

n=20 and n=>50 for Binomial distributed proportions -

when using no transformation ((a) and (d)), the
arcsin square root of proportions ((b) and (e)), and
Freeman and Tukey's modification ({(c) and (f)).

swing up and down. This happens because the
smaller p is, the greater the probability of getting
samples containing zero defectives, which causes the

variance to become unstable. The same thing happens
at the other end of the scale as p gets close to one.

To deal with this problem Bartlett (1937) and
later Freeman and Tukey (1950) suggested minor
modifications to the arcsin square root
transformation. We prefer Freeman and Tukey's
modification, also provided in Table 1, because it
works slightly better and is easier to implement cn a
computer. Figure 2¢ shows the variance function
after Freeman and Tukey's modification. Notice that
it is now quite stable from about p = 0.05 top = 0.95;
hence, their modification extends the region of
constant variance.

By comparing Figures 2¢ and 2f we see that the
effect of increasing the sample size to n = 50 is to
further increase the interval of near constant variance
from about 0.05£p<0.95 to about
0.02<p<0.98. It is true that even Freeman and
Tukey's modification does not work well at the
extremes of the range of p especially if n = 20.
However, in practice, if we were planning a factorial
experiment expecting to estimate with reasonable
confidence defective probabilities as low as 0.02 < p
< 0.05 then both formal calculations and intuition
show that a sample size of # = 20 would be
inadequate. Instead we should use sample sizes of say
50 or larger and when doing so, as we see from the
figure, the range of stable variance would
automatically be extended.

TRANSFORMING COUNTS OF
DEFECTS

A similar scenario applies when dealing with a count
of defects which we usually denote by the symbol ¢
or ¢ if estimated from a sample. If the probability of
getting a defect in any small sub-unit, say a square
millimeter of a lens, is constant from one sub-unit to
the next and the chance of a defect in any sub-unit is
independent of getting a defect in any other sub-unit
then the distribution of the number of defects per unit
tends to be distributed as the Poisson distribution.
The defect rate or the expected number of defects per
unit is then denoted by the parameter A . A Poisson
distributed count ¢ then has mean g=A and
variance o2 = A. Hence as in the previous case the
variance depends on the mean, and if we are
successful in finding factors that change the defect

CQPI Report No. 119, June 1994
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Table 1.
The standard transformations and Freeman and Tukey's (F & T} modifications
when using proportion of defectives or count of defects as the response

TYPE

TYPE OF DATA DISTR IBD?TFIO N TRANSFORMATION F & T'S MODIFICATION

Proportions ( p) . ' . arcsin P + arcsin np+1
(Defective units in a Binomial arcsiny/p Vn+i ‘J n+1

sample of » units) : 2
Counts (& A . - ra
( ) Poisson Jé (w/E+\lc+l)/2

(Defects on a unit)

rate we end up violating the assumption of constant
variance. However, theoretical derivations show that
to get approximately constant variance for counts of
defects we need to take the square root of the
observed count.

Again, with count data we may get zeros in our
samples causing similar problems to those discussed
for defectives. It has been suggested, therefore, that
we avoid zero's by first adding 1 to all the counts.
However, as a better compromise, Freeman and
Tukey (1950) suggested that we instead take the
average of the two transformations, that is use
(VE+vé+1)/2, and surprisingly it works really
well. To see how well, let us consider the graphs in
Figure 3. Figure 3a shows the steadily increasing
variance for the count itself*. Figure 3b shows that by
using the square root of the count, the variance after a
large initial swing quickly stabilizes. As in the
Binomial case, the reason for this initial instability is
the large chance of getting zero's in the samples for
small A's. By using Freeman and Tukey's modified
transformation we get an even more stable variance
as shown in Figure 3c.

As in the Binomial case the early unstable region
for the Poisson case using the modified
transformation is of only minor practical relevance. If
we operate in the region where the variance is not
stable, then we are dealing with so rare defects that
the chosen unit size will contain little information
about the defect rate. Hence, as before, it is the
proposed experiment and not the transformation that
is to blame. A practical remedy, therefore, is to
redefine the basic experimental unit size on which we
are counting defects. In our lens experiment instead
of counting the number of defects per lens we might

* Notice that for plotting purposes the y-axis scale is
different for Figure 3a and the two other graphs in Figure 3,
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count the number of defects on, say, ten lenses. Thus,
if the mean defect rate per lens was 2 then the defect
rate per ten lenses will be 20 and we would move into
the region where the variance is stable.

As already indicated above, these
transformations are based on several assumptions
regarding the exact distributional form. In practice,
these idealizing assumptions are likely to be only
approximately true. The transformations are
nevertheless useful as a starting point for an iterative
data analysis (Bartlett, 1947),

20\ @ -0.4
©
w4 ¢ 02
(a)
0 R AR R R R
0 10 20
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Figure 3. The variance functions for Poisson
distributed counts when using (a) no transformation,
(b) the square root of counts, and (c) Freeman and
Tukey's modification. The y-axis scale on the left
applies to (a) and the scale on the right applies to (b)
and (c)
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TWO ILLUSTRATIVE EXAMPLES

Let us now consider two examples from the Fourth
Symposium on Taguchi Methods (Becknell, 1986;
Hsieh and Goodwin, 1986) held in 1986. In the first
example the object of the experiment was to reduce
the proportion of defective castings at the Essex
Aluminum Plant of Ford Motor Company. The
second example aimed at reducing the number of
defects in the paint finish of a car grille panel was
conducted by Chrysler Motors Engineering
Department. In the paper presented at the symposium
the engineers invelved in the first experiment used
the much discredited (Box and Jones, 1992; Nair,
1990) Accumulation Analysis Method snggested by
Dr. Taguchi as a way of dealing with count data. As a
supplementary analysis they also used analysis of
variance (ANOVA) directly on the observed
proportions. In the second example the team again
analyzed the count data directly with ANGVA. In
both cases the assumptions required for ANOVA
were violated. In our re-analysis of these examples
we will use the transformations discussed above and
as a simple alternative to ANOVA employ the much
simpler and more informative Normal Plots.

If you should compare our discussion below with
the original write-up of these two examples notice
that we have converted the one-two notation for the
factor levels preferred by Taguchi with the more
standard minus and plus notation. The reason for this
conversion is that the structure of the design and, in
particular, the confounding becomes much more
transparent and easy to understand with the minus
and plus notation. Another minor alteration is that we
have changed the order of the columns and the
definition of high and low level of some of the
factors. These changes are intended to make it easier
for you to re-analyze these examples using the
spreadsheets presented in a previous column
(Bisgaard, 1993a).

EXAMPLE I: ANALYSIS OF DEFECTIVES.

In Table 2 are shown the results from a 16-run two-
level fractional factorial experiment on sand-castings
of engine manifolds conducted by the engineers at
the Essex Aluminum Plant of the Ford Motor
Company. The objective of the experiment was to
determine which of 10 factors, Q4 Program (A), Q6
Washers (B), Q3 Washers (C), Q2 Washers (D), Q4
Washers (E), Flask Thickness (F), Flask Width (G},
Q3 Program (H), Q2 Program (J), and Q6 Program
(K), had an effect on the proportion of defective
castings of a 3.0 liter intake manifold. The sample
size per trial is not provided but the author said that it

was "very large". However, that is not a serious
problem for our analysis. The data, p, is the
proportion of non-defective castings. The generators
for this 2106 resolution /I design are E = CD, F =
BD, G=BC H=AC,J = AB and K = ABC. From
these we can derive the confounding pattern shown in
Table 2,

For the purpose of demonstration let us first analyze
the proportion non-defectives without any
transformation ignoring the problem of the non-
constant variance, In Figure 4a we show a Normal
Plot of the effects. We see that factors F and K seem
to have a significant effect on the number of
defective castings. If we now proceeded to fit a
simple linear model with these two factors and plot
the residuals against the predicted values then we can
check if they seem to have constant variance. The
residual plot in Figure 4b shows that the closer to one
the predicted values are the smaller the residual
scatter appears. Although one should always interpret
residual patterns with cauntion, this is likely because
the variance as indicated in Figure 2a depends on p
and decreases as p gets closer to 1. Since the factors
F and K are so obviously significant, it is most likely
of little practical consequence in this case for our
overall purpose of screening out the most important
factors.

Let us proceed to apply the arcsin square root
transformation. From Figure 4c we see that factors F
and K stand out even more clearly after this
transformation as would be expected by the increased
sensitivity of the test imparted by the transformation.
The straight line part of the effects in the center of the
Normal Plot may also appear slightly more straight
and the two significant factors slightly more off the
ling. Turning to the residual plot shown in Figure 4d
we see that they look more as if they have constant
variance because those in the right-hand side of the
plot spread out more. In general, however, as we
already indicated earlier two-level factorials are so
powerful that effects that are truly significant often
are so obvious that it does not matter which
transformation we use. This data set is a good
example of that. In general, however, that will not
necessarily be the case,

To apply Freeman and Tukey's modification we
would need to know the sample size. For illustration
we have here assumed that n = 1000. Since the data
only contained two observations with p=10 and
with a large sample size the modification would not
be expected to show much difference in either the
Normal Plot of effects or the plot of residuals which

CQPI Report No. 119, June 1994
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Table 2.

The design matrix, data, and confounding pattern for the sand-casting experiment. Note that the arcsin square
root and Freeman and Tukey's (F & T) modification to the arcsin square root were computed using radians.

R . = F&TS

RN\ A B € D E F G H J K| b | asnyp|, S0
1 - - - - +  + + + - | 0.958 1.364 1.363
2 + - = - + + 4+ = =+ {1000 1571 1.555
3 - + = = + = = o+ = 4+ | 0977 1419 1417
4 + + - = 4+ = = = + -|o7s 1.077 1.076
5 - - + = = 4+ = = % + | 0958 1.364 1.363
61 + - + - - + = + = =10958 1.364 1363
70 - + + = - - + - - -|os813 1.124 1.123
8 + + + - - - + + + + | 0906 1259 1.259
9 - - = ¥ = = ¥ 4+ + -=|067 0.969 0.968
ol + - - + - - + - - + |07 108 1.083
nl|l - + - + - 4+ = 4+ =  + {1000 1571 1.556
2| + + - + = + = = 4+ =089 1.241 1.242
13 - - + + + - - - + + | 0.958 1.364 1.363
M|l + ~ + + + - = + = = |¢818 1.130 1.130
5] - + + + + + + = = =084l 1.161 1.160
6! + + + + + + + + + + | 0955 1.357 1.356

£ =A+BJ+CH+GK £y =AD+EH+FJ

£, =B+ Al +CG+DF+HK
£, =J+AB+CK+GH
£,=C+AH+BG+DE+JK
Ls=H+AC+BK+GJ

e =G+ BC+AK+EF+HJ
£;=K+AG+BH+CJ

£y =D+BF+CE

£, = F+BD+EG
¢, =E+CD+FG

£,, =JD+AF+EK
43 =HD+AE+FK
£, =GD+BE+CF
£s=KD+EJ+FH

are shown in Figures 4e and 4f, respectively. Again
we stress that for other data sets the improvements
achieved by using the modified transformation are
likely to be more obvious.
: These results differ from those reported in the
original analysis based on Taguchi's Accumulation
Analysis and the analysis of variance of the
untransformed proportions which indicated that seven
main effects and interactions were significant. The
most significant were as in our analysis, factors F and
K. However, in addition the Taguchi style analysis
found factors D, E, G, and the interactions DG and
FK, to be significant. In the Normal Plots shown in
Figure 4 we have indicated by solid dots the contrasts
that the experimenters called out as significant and
with open dots those they pooled for estimating error.
From this we clearly see what went wrong in their
analysis. They used a standard error estimate that
grossly underestimated the real standard error and
hence with that smatler yardstick several more effects
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seemed significant. For a further discussion of this
see Box (1988).

You may ask what is wrong with cailing out
factors as significant when they are not. The
experimenters certainly did not miss the real
significant factors. If we are just going to adjust the
factor levels to a combination that produces the
highest number of non-defectives then there seems to
be little harm in this. We agree partly with this
argument. The experimenters did not fail to find the
truly significant effects; the experiment certainily was
a success and is by far superior to the alternatives of
doing nothing or experimenting one-factor-at-a-time.
However, we have several concemns. .

Most importantly, as you can see above, a less
complicated analysis got more out of the experiment
and did not mislead. Moreover, experimentation
should not necessarily lead only to a quick fix to a
problem. Tt shouid allow the investigators to learn
more about the process. The Taguchi approach used
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Figure 4. The Normal Plots of effects and residuals vs. predicted values plots for the sand-castings using p,
arcsin\lg . and Freeman and Tukey's (F & T) modification (arcsin npf(rn+1)+ arcsin\}(nﬁ +1)/(n+1)

by the experimenters indicates that certain factors or
interactions are active when they are not and that
leads to confusion. Specifically, it will lead to a
earnest effort by the engineers to explain effects that

)/2-

are not there and will thus bedevil attempts at further

 improvement. Thus the valuable catalytic effects of

scientific feedback (Box and Draper, 1969) will be
lost.
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A further concern is in regard to the Taguchi sirategy
of experimentation described by the experimenters.
This involves running a single experimental design,
assessing the significant factors, determining the
factor combination that provides the best predicted
response, and performing a confirmatory trial. The
obvious disadvantages of such a one-shot approach as
opposed to the sequential strategy to experimentation
have already been discussed in a previous column by
George Box(1993b) and therefore need not be
repeated here. However, there is also the
disadvantage that if we include factors that are not
significant because of misleading analysis and adjust,
as the experimenters in our example did, those to the
levels that supposedly yield the best predicted
response, then we might end up prescribing
expensive treatments that are not necessary. As a
contrived but illustrative example suppose one of the
factors were gold plating versus no gold plating then
it would be unfortunate if our analysis misled vs to
believe that gold plating was beneficial when in fact
it had no effect.

Our final concern is in regard to robustness.
Robustness simply means that a system is insensitive
to certain factors or their interactions. Hence we are
looking for effects that are not significant. The irony
therefore is that Taguchi who is credited for having
emphasized the idea of robustness also seems to
recommend methods of analysis that may pronounce
effects significant when they are not and hence defeat
this very purpose.

EXAMPLE 2: ANALYSIS OF DEFECTS

In this second example we re-examine an
experiment conducted by Chrysler Motors
Engineering in which the goal was to reduce the
number of defects in the finish of sheet molded grille
opening panels. The experiment was a 16-run, two-
level fractional factorial in nine factors; Mold Cycle
{A), Viscosity (B), Mold Temperature (C), Mold
Pressure (D), Weight (E), Priming (F), Thickening
Process (G}, Glass Type (H), and Cutting Pattern (J}.
The generators for this 2%-5 resolution JIf design were

Table 3.
The design matrix, data, and confounding pattern for the car grille opening panel experiment.
a ry F&TS
RUONl A B € D E F G H I é Jé MODIF CATION

1 - - - - + - + - + 56 7.48 1.52
2 + - - - + - - + - 17 4.12 4.18
3 - + - - - + + - - 2 141 1.57
4 + + - - - + - + + 4 2.00 212
5 - - + - + + - + + 3 1.73 1.87
6 + - + - + + + - - 4 2.00 212
7 - + + - - - - + - 50 7.07 7.12
8 + + + - - - + . - + 2 141 1.57
9 - - - + - + + + + 1 1.00 1.21
10 + - - + - + - - - 0 0.00 0.50
11 - + - + + - + + - 3 1.73 1.87
12 + + - + + - - - + 12 3.46 354
13 - - + + - - - - + 3 1.73 1.87
14 + - + + - - + + - 4 2.00 2.12
15 - + + + + + - - - 0 0.00 0.50
16 + + + + + + + + + 0 0.00 0.50

L =A+BJ+CG ly=AD+CH+EJ

£y =B+AJ+DE £y =E+BD+CF

{3=J+AB+FH £, =CD+AH+ BF

£,=C+AG+EF
£s=G+AC+DH
¢s=BC+DF+GJ
£, =BG+CJ+EH
£3=D+BE+GH

£, =JD+AE+FG
£y =H+DG+FJ
by =F+CE+HJ
45 =AF+BH +EG
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Figure 5. The Normal Plots of effects and residuals vs. pre
using €, \E, and Freeman and Tukey's (F & T) modification

E = BD, F = BCD, G= AC, H = ACD and J = AB.
The experimental design with the notional
modifications described above, the confounding

dicted values plots for the car grille opening panels

(«/34-\/6_3)/2.

pattern, and the responses, é, are displayed in
Table 3. The experimental responses in this case are
counts of defects per grille. The original analysis
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presented by the engineers from Chrysler was
performed directly on the counts using analysis of
variance. However, we will instead use the square
root of the defects followed by a Normal Plot of the
effects.

As in Example 1 we will again first analyze the data
without transformation. Figure 5a shows aNormal
Plot of the effects calculated directly on the raw data
(¢). We see that seven effects and interactions are
falling off the upward sloping line formed by the dots
in the center of the plot. Hence it would appear that
those effects are significant. Indeed except for the AF
interaction and its aliases these factors were the
effects that the experimenters reported as significant
in their paper. On the Normal Plots in Figure 5, as in
example 1, we have indicated with solid dots those
effects that in the original report were pronounced
significant and with open dots those that were used
for error in the analysis of variance. (We have not
shown the residual plot in the first case because when
fitting seven effects to sixteen data points the
residuals begin to lose their meaning)

By taking the square root of the counts we see in
Figure 5b that now only the main effects # and D and
the interaction BG (and its aliases) appear as
significant. In this example, therefore, the additional
interaction effects found by the engineers were likely
due to curvature of the response surface induced by
failing to use an appropriate transformation.

The response for several runs was zero and in
Figures 5d and Se we analyzed that data with the
modified transformation (ve+ve+1)rL. This
modification does not in this case make a difference.
In general, however, we do recommend the use of the
modified transformation for the reasons illustrated in
Figure 3.

Notice, incidentally that the residual plots in
Figures 5c and 5e may indicate that the residual
variance increases as a function of the predicted
value. This in turn may indicate the need for further
transformation of the already transformed counts. To
do so the empirical approach described in a previous
column (Bisgaard, 1993b) would be applicable but
that will not be pursued here. However, remember
that for real data there is no guarantee that defect
counts follow exactly a Poisson distribution so
further transformation is legitimate (Bartlett, 1947).

As a conclusion, it is interesting to note that the
experimenters reported with enthusiasm that "this
experiment is considered unique and successful
[within Chrysler and among its suppliers]." We
certainly agree and would like to encourage further
applications of factorial experiments. Furthermore,
the confirmatory experiment that they ran at the
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conditions that looked most favorable based on seven
significant effects and interactions produced an
increase in "first-time-through capability” from 77%
to 96%. This we think shows the enormous power of
two-level factorial experiments. As before, however,
the analysis reported by the experimenters would be
somewhat misleading for further development of the
process. A less misleading analysis, which would
most likely have pointed to the same most favorable
factor combination and is a lot easier to use, is an
appropriate transformation and Normal Plot rather
than Accumulation Analysis and ANOVA. By doing

-so we are better able to use statistics to catalyze our

creativity and to use engineering knowledge.
Continuous improvement also applies to the tools and
approaches we use!
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