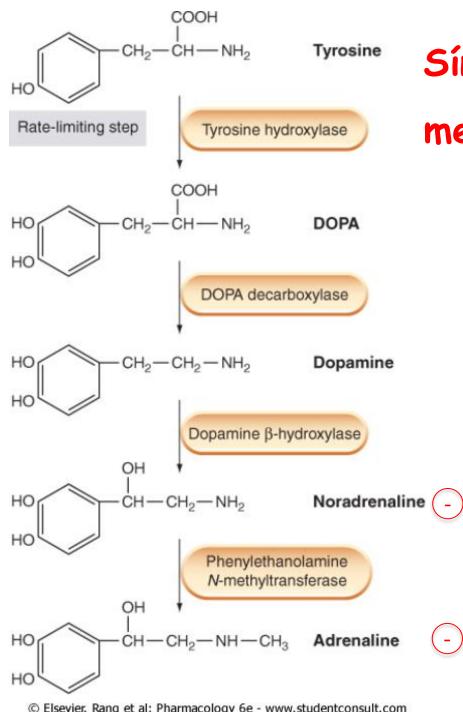
Farmacologia do Sistema Nervoso Autônomo e Sistema Nervoso Somático

Eliana H. Akamine
eliakamine@usp.br
Departamento de Farmacologia
ICB

Veterinária - 2020

Tópicos

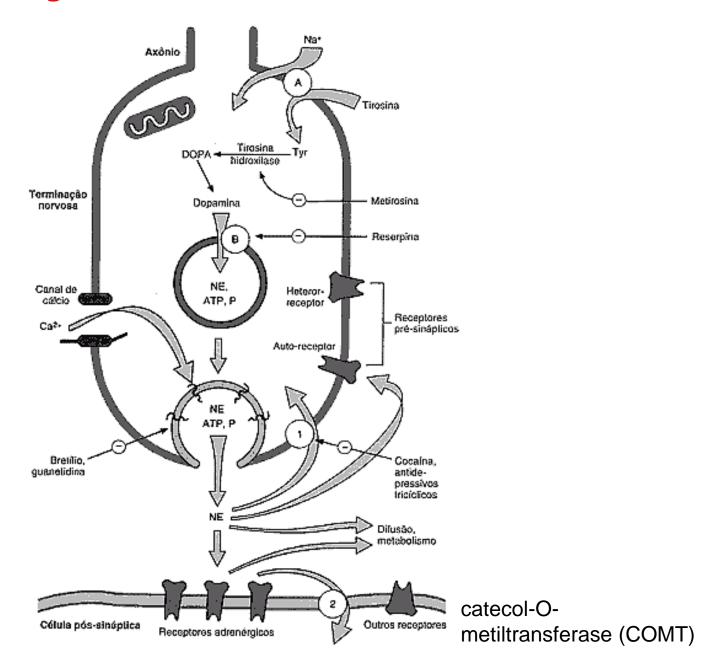

- ✓ Adrenérgicos
- ✓ Antiadrenérgicos
- ✓ Colinérgicos
- ✓ Anticolinérgicos
- ✓ Bloqueadores da JNM

FÁRMACOS ADRENÉRGICOS

Fármacos que ativam receptores adrenérgicos

- ação direta = agonista

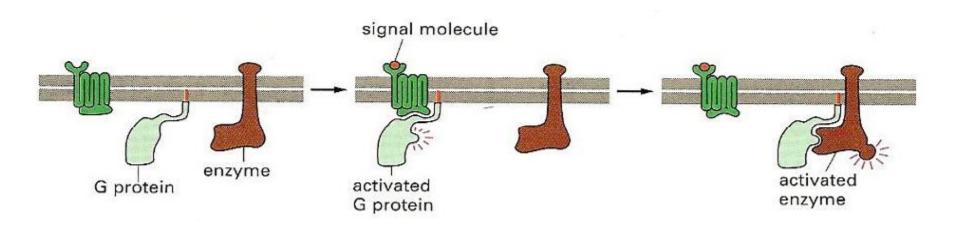
- ação indireta = ↑ NA



Síntese, liberação e metabolismo: NA e AD

MAO: monoamino oxidase

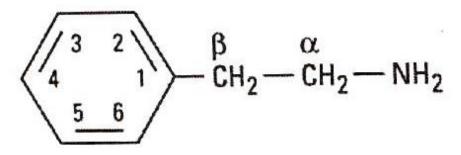
COMT: catecol O-metiltransferase


Sinapse adrenérgica

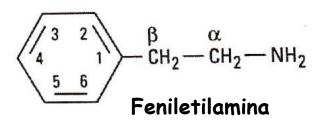
<u>História</u>

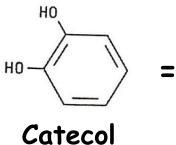
- 1895: efeito pressórico do extrato adrenal
- 1899: princípio ativo adrenalina
- 1899: síntese da adrenalina
- 1910: drogas simpatomiméticas
- 1913: hipótese receptores α e β
- 1948: caracterização farmacológica receptores a e β
- 1967: receptores β1 e β2
- 1973: receptores al e a2
- 1989: receptores β3

Receptores adrenérgicos

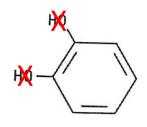

 α_1 - acoplado à proteína \emph{Gq} : M. liso

 α_2 - acoplado à proteína Gi: M. liso, neurônio


 β_1 - acoplado à proteína Gs: Coração

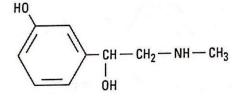

 β_2 - acoplado à proteína Gs: M. liso, coração

 β_3 - acoplado à proteína Gs: Adipócito


Feniletilamina

= Catecolaminas

↑ Afinidade receptores ADR Sensível à COMT ↓ Lipossolubilidade

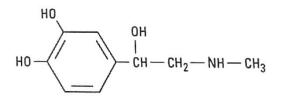


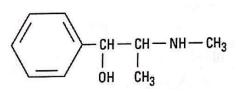
= não catecolaminas

↓ Afinidade receptores ADR
 Não reconhecida pela COMT
 ↑ Lipossolubilidade

Fármacos Adrenérgicos: exemplos

$$\begin{array}{c} \text{HO} \\ \\ \text{HO} \\ \\ \\ \text{CH} \\ \\ \text{CH}_2 \\ \\ \text{NH}_2 \\ \end{array}$$



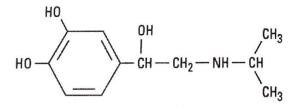

$HO \longrightarrow CH_2 - CH_2 - NH$ $HO \longrightarrow CH_2 - CH_2 - CH - CH_3$

Noradrenalina

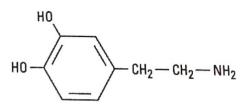
Fenilefrina

Dobutamina

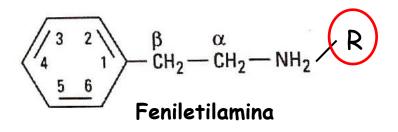
Efedrina*


OH CH—CH—NH I I I CH_2OH OH H $C(CH_3)_3$

Adrenalina


CH2-CH-NH2

Anfetamina


Salbutamol

Isoprenalina

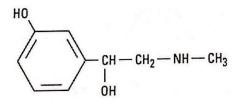
Dopamina

> Afinidade β

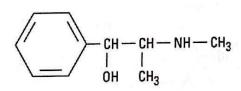
Fármacos Adrenérgicos: exemplos

$$\begin{array}{c} \text{HO} \\ \\ \text{HO} \\ \\ \end{array} \begin{array}{c} \text{OH} \\ \\ \text{CH} \\ \\ \end{array} \begin{array}{c} \text{CH}_2 \\ \\ \text{NH}_2 \end{array}$$

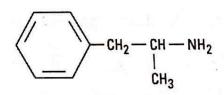
Noradrenalina

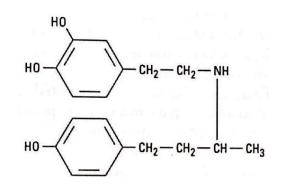

Adrenalina

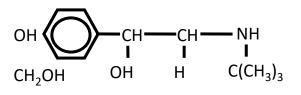
$$\begin{array}{c|c} & \text{HO} & \text{OH} & \text{CH}_3 \\ & \text{CH} - \text{CH}_2 - \text{NH} - \text{CH}_3 \\ & \text{CH}_3 \end{array}$$

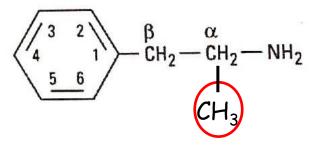

Isoprenalina

$$\begin{array}{c} \operatorname{HO} \\ \\ \operatorname{HO} \\ \\ \end{array} \begin{array}{c} \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{NH}_2 \\ \end{array}$$


Dopamina

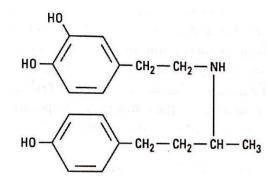

Fenilefrina


Efedrina*


Anfetamina

Dobutamina

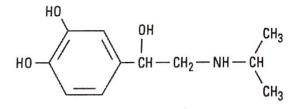
Salbutamol

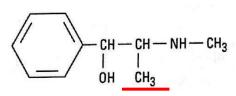

Feniletilamina

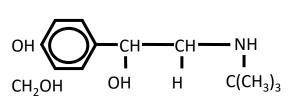
Degradação pela MAO
 Se R for CH₃, desloca NA da vesícula

Fármacos Adrenérgicos: exemplos

$$\begin{array}{c} \text{HO} \\ \\ \text{HO} \\ \\ \end{array} \begin{array}{c} \text{OH} \\ \\ \text{CH} \\ \\ \end{array} \begin{array}{c} \text{CH}_2 \\ \\ \text{NH}_2 \end{array}$$

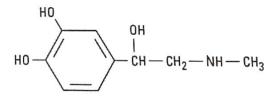

$$\begin{array}{c|c} & \text{HO} \\ \hline & \text{CH}-\text{CH}_2-\text{NH}-\text{CH}_3 \\ \hline & \text{OH} \end{array}$$

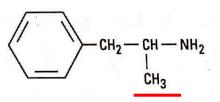



Noradrenalina

Fenilefrina

Dobutamina





Isoprenalina

Efedrina*

Salbutamol

Adrenalina

Anfetamina

$$\mathsf{HO} \longrightarrow \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{NH_2}$$

Dopamina

Fármacos Adrenérgicos: mecanismo de ação

Ação direta = agonista

<u>Ação indireta = ↑ NA</u>

Adrenalina: α_1 , β_1 , β_2

Efedrina*: expulsa NA da vesícula,

Noradrenalina: α_1 , β_1 , β_3

 β_2

Dopamina: D, β_1 , α_1

Fenilefrina: α_1

Anfetamina: expulsa NA da vesícula,

Isoprenalina: β_1 , β_2

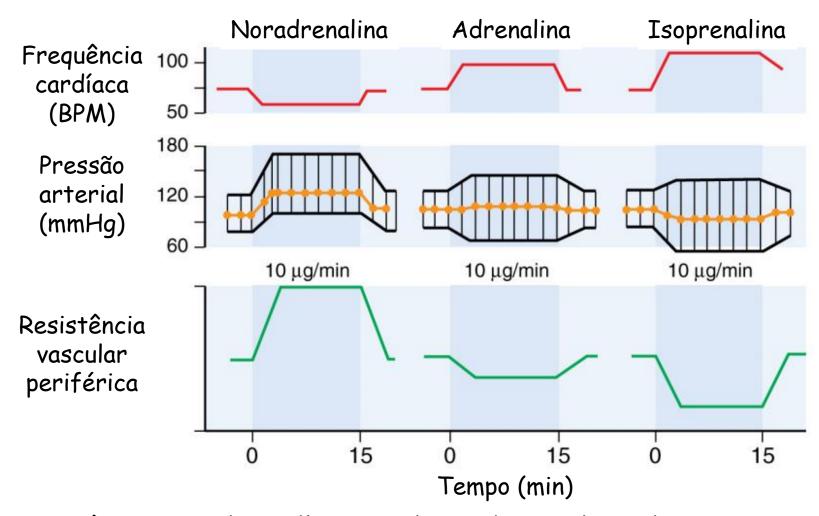
(-) captação 1, (-) MAO,

Dobutamina: β_1

Cocaína: (-) captação 1

Salbutamol: β_2

Antidepressivos: (-) MAO, (-)


captação 1

Xilazina e clonidina: α_2

 $\alpha\text{-Metildopa*: falso transmissor - }\alpha_2$

Fármacos Adrenérgicos: efeitos

Sistema cardiovascular

Uso terapêutico: parada cardíaca, IC, choque, hemostático, descongestionante nasal, prolongamento ação anestésico local

Fármacos Adrenérgicos: efeitos

Sistema respiratório

Broncodilatação: receptores β_2

Uso terapêutico: tratamento da asma, DPOC

M. uterino

Gata: relaxamento (não gravídico), contração (final da prenhez)

Coelha: contração

Mulher: relaxamento (final da gravidez)

TGI e urinário

M. liso: relaxamento

Esfíncteres: contração

<u>Olho</u>

Dilatação da pupila

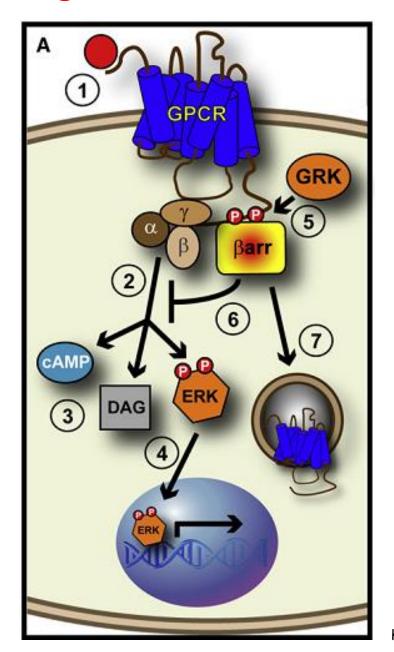
<u>Metabólicos</u>

Ganho de massa muscular, (+) secreção de glucagon

Fármacos Adrenérgicos: efeitos

α-metildopa, clonidina, xilazina

 \downarrow liberação NA, (-) descarga simpática (ação SNC): receptores α_2

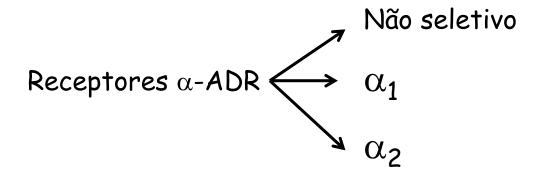

Uso terapêutico: tratamento hipertensão arterial, sedação

Anfetamina, cocaína

Ação indireta Efeitos periféricos: ↑ PA, taquicardia, dilatação pupila Efeitos SNC: s. límbico (euforia, ↑ humor), s. vigília (↑ atenção, ↓ sono), s. nigroestriado (↑ atividade motora), ↑ frequência respiratória, ↓ apetite

Uso: redução apetite, droga de abuso

Receptores adrenérgicos: mecanismo de dessensibilização


FÁRMACOS ANTIADRENÉRGICOS

Fármacos que impedem a ação das catecolaminas endógenas nos receptores adrenérgicos

- ação direta = antagonista

- ação indireta = ↓ NA

Antagonistas dos receptores adrenérgicos

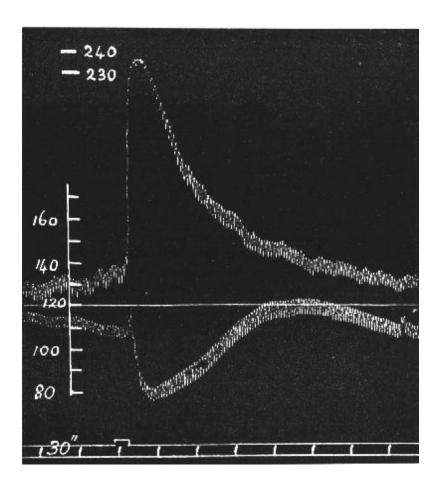
Receptores
$$\beta$$
-ADR \longrightarrow Não seletivo β_1

Antagonistas dos receptores α -ADR: exemplos e mecanismo de ação

FENOXIBENZAMINA (α - não seletivo)

FENTOLAMINA (α - não seletivo)

ATIPAMEZOL (α_2)


Antagonistas dos receptores α -ADR: efeitos

Sistema cardiovascular

Vasodilatação: receptores α_1

Uso terapêutico: tratamento hipertensão arterial

Efeitos adversos: hipotensão, congestão nasal, taquicardia reflexa

Antagonistas dos receptores α -ADR: efeitos

Trato gênito-urinário

Relaxamento m. liso uretral e esfíncter: receptores α_1

Uso terapêutico: tratamento retenção urinária

Efeito adverso: incontinência urinária, (-) ejaculação

Antagonistas dos receptores α -ADR: efeitos

Fenoxibenzamina

Uso terapêutico: pré-cirurgia para remoção do feocromocitoma

Efeito adverso: taquicardia

Atipamezol

 \uparrow liberação NA, (+) descarga simpática (ação SNC): receptores $\alpha_{\rm 2}$

Uso terapêutico: reversão dos efeitos dos agonistas α_2 -ADR

Efeito adverso: ↑ PA, excitação

Antagonistas dos receptores β-ADR: exemplos e mecanismo de ação

(β-não seletivo)

$$\begin{array}{c} O \\ CCH_2 \\ \hline \\ H_2N \end{array} \begin{array}{c} OH \\ CH_3 \\ CCH_2 \\ \hline \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \end{array}$$

ATENOLOL

$$(\beta_1)$$

(β -não seletivo, agonista parcial)

(β -não seletivo + α_1)

 $(\beta_1 + \text{liberação NO})$

Antagonistas dos receptores β -ADR: efeitos

Sistema cardiovascular

Cronotropismo e ionotropismo negativos: receptores β_1

 \downarrow ativação SRAA: receptores β_1

Vasodilatação: receptores α_1 , NO

Ausência de vasodilatação: receptores β_2

Uso terapêutico: tratamento hipertensão arterial, arritmias, cardiomiopatias obstrutivas, IM, IC

Efeitos adversos: bloqueio cardíaco, bradicardia, fadiga

Olho

 \downarrow formação humor aquoso: receptores β_1

Uso terapêutico: tratamento glaucoma de ângulo aberto (uso tópico)

Antagonistas dos receptores β -ADR: efeitos

<u>Outros</u>

↓ tremores, sudorese, taquicardia

Uso terapêutico: ↓ sintomas ansiedade

Efeito adverso: sedação/depressão

Sistema respiratório

Broncoconstrição: receptores β_2

Efeito adverso: asma

Metabólicos

 \downarrow glicogenólise

Efeito adverso: hipoglicemia

Ação indireta = ↓ NA

 α -Metiltirosina: (-) tirosina hidroxilase

Uso terapêutico: tratamento feocromocitoma

Reserpina: (-) transporte NA para vesícula

Guanetidina: compete com NA pelo transportador da vesículas

 α -Metildopa*, clonidina*, xilazina*: falso transmissor - α_2

Bibliografia

Goodman e Gilman A (Ed.). As bases farmacológicas da terapêutica. 12. ed. Rio de Janeiro: MaGraw-Hill, 2012.

Rang HP et al. (Ed.). Farmacologia. 7. ed. Rio de Janeiro: Elsevier, 2011.

Spinosa HS et al. (Ed.). Farmacologia aplicada à medicina veterinária. 6. ed. Rio de Janeiro: Guanabara Koogan, 2017.

Adams HR (Ed.). Farmacologia e terapêutica veterinária. 8. ed. Rio de Janeiro: Guanabara Koogan, 2003.

Katzung BG (Ed.). Farmacologia básica e clínica. 9. ed. Rio de Janeiro: Guanabara Koogan, 2005.

Burnstock. Autonomic neurotransmission. Annu Ver Pharmacol Toxicol, 49:1-30, 2009.