

PMT 3205

Físico-Química para Metalurgia e Materiais I

- 21. Uma mistura gasosa forno a 600°C é reaproveitada num forno de fusão de Al pela sua queima estequiométrica com ar a 25°C. Os fumos saem a 1050°C. A composição volumétrica da mistura gasosa é: 20% CO, 10% CO₂ e 70% N₂. Supondo que a composição do ar seja 20% O₂ e 80% N₂. Fazer o balanço térmico.[32]
- A primeira etapa de um exercício como esse é adotar uma base de cálculo e realizar um balanço de massa
- BC: 100 moles de MG

mol

30

110

•	Balanço	de	massa
---	---------	----	-------

Entrada (600°C)		%	mol		Saida (1050°C)	ļ
MG	CO	20	20		Fumos CO2	4
	CO2	10	10		N2	,
	N2	70	70			
(25°C)						
ar	O2	20	10			
	N2	80	40			
	CO	+	0,502 =	CO2		
	20		10	20		
(600°C		()	(25°C)	(1050°C)		

A última etapa é a realização do balanço térmico

$$-\Delta H_1 = \Delta H_{aquec,CO2,MG,873K\to1323K} = 10 \text{x} \int_{873}^{1323} cp_{CO2}.dt$$

$$-\Delta H_2 = \Delta H_{aquec,N2,MG,873K\to1323K} = 70x \int_{873}^{1323} cp_{N2}. dt$$

$$- \Delta H_3 = \Delta H_{aquec,N2,ar,298K \to 1323K} = 40 \text{x} \int_{298}^{1323} cp_{N2} dt$$

$$-\Delta H_4 = \Delta H_{reação} = 20 x \int_{873}^{298} c p_{CO}. dt + 10 x \int_{298}^{298} c p_{O2}. dt + \Delta H_{reação,298K} + 20 x \int_{298}^{1323} c p_{CO2}. dt$$

•
$$\Delta H_{total} = \Delta H_{util} = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4$$

 $\Delta H_{\text{util}} = -2,395 \times 10^6 \text{ J/}100 \text{ mols MG}$

Termodinâmica – Balanço térmico

- 22. Um gás de alto forno a 600°C é reaproveitado num forno de reaquecimento de placas pela sua queima estequiométrica com ar a 25°C. A composição volumétrica do gás de alto forno é: 20% CO, 10% CO₂ e 70% N₂. Supondo que a composição do ar seja 20% O₂ e 80% N₂ calcular a temperatura teórica de chama.[31]
- A primeira etapa de um exercício como esse é adotar uma temperatura qualquer para os fumos e fazer o balanço térmico. No caso obviamente se adotará a temperatura de 1050°C
- Portanto o $\Delta H_{\text{\'u}til} = -2,395 \text{x} 10^6 \text{ J} / 100 \text{ mols MG}$
- A segunda e última etapa é transferir toda a energia gerada no processo para os fumos que vai aquecê-los da temperatura adotada para a TTC. Assim:

•
$$\Delta H_{aquec,fumos,1323K\to TTC} = +2,395x10^6 = 30x \int_{1323}^{TTC} cp_{CO2} dt + 110x \int_{1323}^{TTC} cp_{N2} dt$$

TTC=1471°C

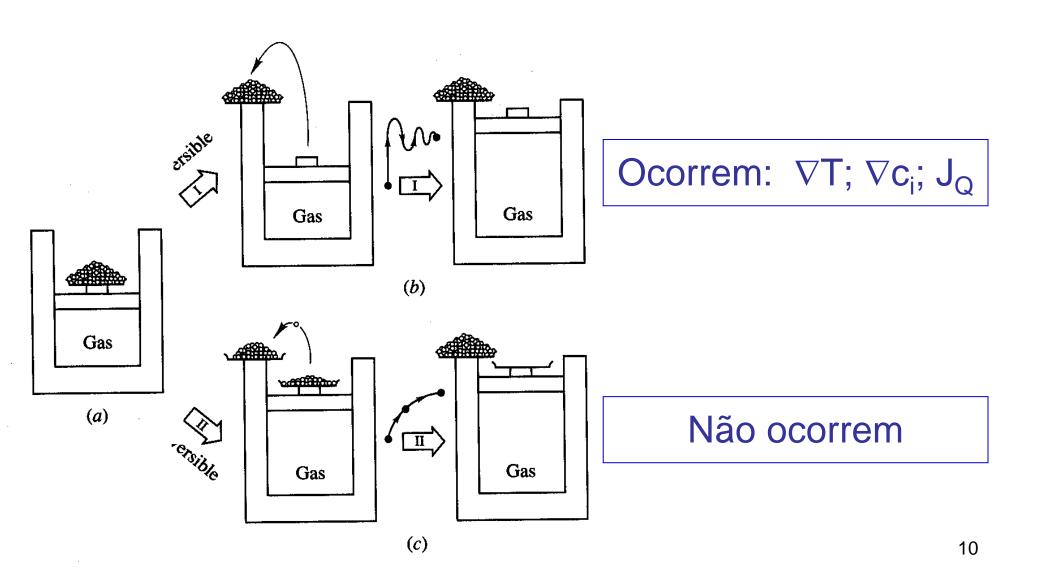
Para casa

18. Deseja-se aquecer 100 kg de Fe de 1000 a 1200°C através da queima de uma mistura gasosa contendo 10%CO, 10% H₂, 50% CO₂ e 30% N₂ a 500°C. O ar disponível está a 300°C e os fumos saem do forno a 900°C. Calcular o volume necessário de gás em Nm³/100 kg de Fe.[21]

METMAT

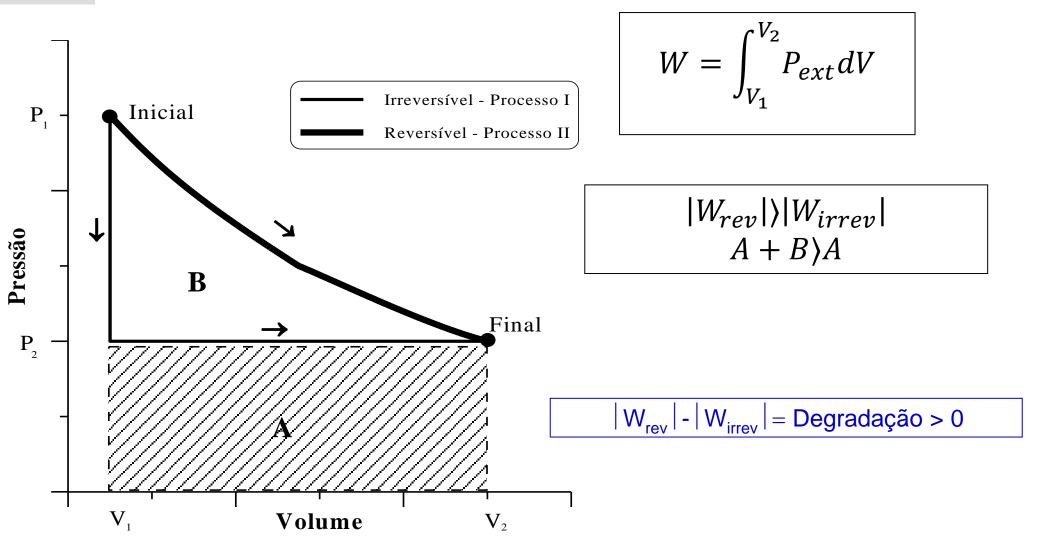
Termodinâmica

Num sistema duas situações podem ocorrer:

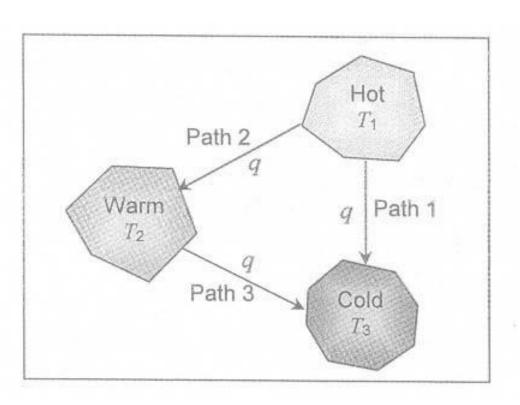

- a. Permanecer no estado em que se encontra \rightarrow reversível;
- b. Mover para outro estado de acordo com a sua preferência→ natural ou espontâneo → irreversível (há uma degradação energética)

Importante determinar:

- Processos reversíveis e irreversíveis
- Critério de irreversibilidade



Processos Reversíveis e Irreversíveis



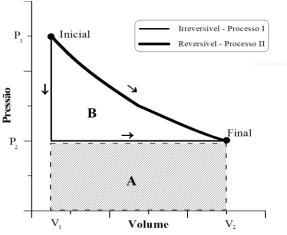
Consequência: Degradação

Grau de Irreversibilidade

Calor flui do corpo quente para o corpo frio e esse fluxo pode ocorrer:

- Pelo passo 1 ou
- Pelo passo 2 e passo 3

Cada um desses processo são espontâneos e portanto irreversíveis, ou seja, degradação ocorre em cada processo


Passo 1 = Passo 2 + Passo 3

Assim:

- Degradação no Passo 1 > Degradação no Passo 2,
- Degradação no Passo 1 > Degradação no Passo 3
- Passo 1 é mais irreversível que os Passos 2 ou 3

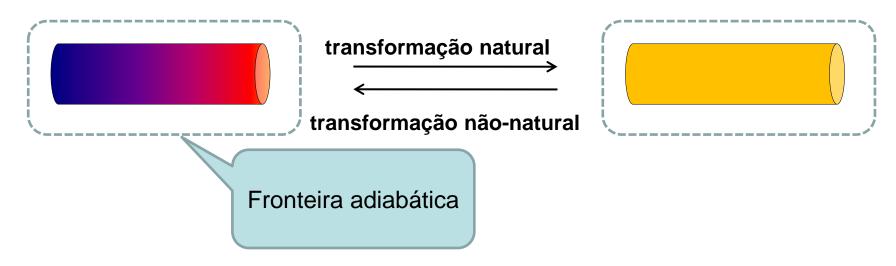
Degradação

Em termos da função q

$$\Delta E = q_{rev} - w_{rev} = q_{irrev} - w_{irrev}$$

$$q_{rev} - q_{irrev} - w_{rev} + w_{irrev} = 0$$

$$q_{rev}$$
 - q_{irrev} = w_{rev} - w_{irrev} = Degradação = q '> 0


$$q_{rev} - q_{irrev} = q' > 0$$

 $q' > 0$

q' também é chamado "calor não compensado"

Segunda Lei da Termodinâmica

- Viabilidade de Transformações
 - Primeira Lei: insuficiente; não estabelece critérios de direcionalidade das transformações

 A Primeira Lei é obedecida nos dois sentidos, mas apenas um é viável.

Segunda Lei da Termodinâmica

Enunciado de Clausius:

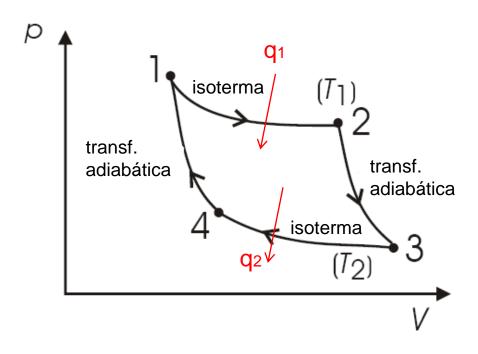
"Calor jamais flui espontaneamente de um reservatório de menor temperatura para um de maior temperatura."

Enunciado de Kelvin-Planck:

"Nenhum processo é possível com a conversão completa de calor em trabalho."

• Enunciado de Gibbs:

"A entropia mede o grau de "bagunça" de um sistema."


Enunciado matemático:

"Processos irreversíveis aumentam a entropia do universo."

$$\Delta S_{\text{universo}} > 0 = \Delta S_{\text{sistema,irreversivel}} + \Delta S_{\text{meio}}$$

Ciclo de Carnot reversível

1 → 2 expansão isotérmica a T1 (quente) $\Delta E = q_1 - w_1$

2 → 3 expansão adiabática (q = 0) $\Delta E = w'_1$

3 → 4 compressão isotérmica a T2 (frio) $\Delta E = q_2 - w_2$

4 → **1** compressão adiabática (q = 0) $\Delta E = w'_2$

Ciclo de Carnot reversível

Carnot demonstrou que:

$$\eta = \frac{q_1 + q_2}{q_1} = \frac{T_1 - T_2}{T_1} \Rightarrow \frac{q_1}{T_1} + \frac{q_2}{T_2} = 0$$

Qualquer processo cíclico reversível pode ser desdobrado na soma de um grande número de pequenos ciclos de Carnot reversíveis:

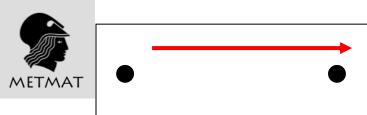
$$\sum \frac{q_{rev}}{T} = 0 \Rightarrow \oint \frac{\delta q_{rev}}{T} = 0$$

Propriedade de Estado

$$dS = \frac{\delta q_{rev}}{T}$$
; $\Delta S = \int \frac{\delta q_{rev}}{T}$

Entropia

Consequência:


Partindo da expressão de degradação em termos da função q:

$$q_{rev} - q_{irrev} = q' > 0$$

$$\frac{\delta q_{rev}}{T} - \frac{\delta q_{irrev}}{T} = \frac{\delta q'}{T} \rangle 0$$

$$\int_{A}^{B} \frac{\delta q_{rev}}{T} - \int_{A}^{B} \frac{\delta q_{irrev}}{T} = \int_{A}^{B} \frac{\delta q'}{T} \rangle 0$$

$$\Delta S - \int_{A}^{B} \frac{\delta q_{irrev}}{T} \rangle 0$$

A B

$$\Delta S - \int_{A}^{B} \frac{\delta q_{irrev}}{T} \rangle 0$$

Para a transformação $A \rightarrow B$

quando o processo é irreversível e adiabático:

$$\delta q_{irrev} = 0$$

$$\delta q_{irrev} = 0$$

$$A$$

$$B$$

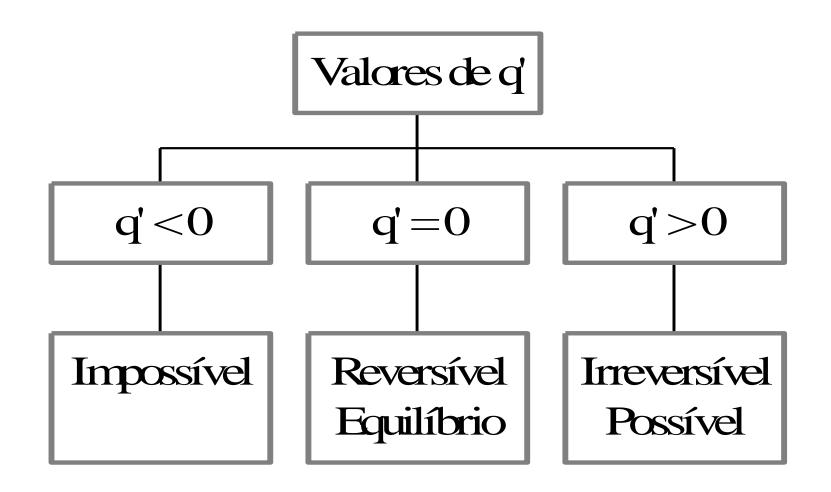
$$\Delta S - \int_{A}^{B} \frac{\delta q_{irrev}}{T} \rangle 0$$

$$\Delta S - \int_{A}^{B} \frac{\delta q_{irrev}}{T} \rangle 0$$

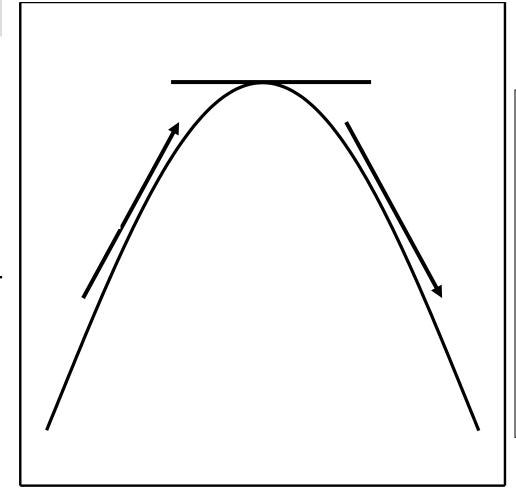
$$\Delta S - 0 \rangle 0$$

$$\Delta S \rangle 0$$

$$\Delta S \rangle 0$$


$$\Delta S = \int_{A}^{B} dS = \int_{A}^{B} \frac{\delta q_{rev}}{T} = S_{B} - S_{A} \rangle 0$$

"Processos irreversíveis sempre aumentam a entropia do universo."



$$\frac{\delta q_{rev}}{T} - \frac{\delta q_{irrev}}{T} = \frac{\delta q'}{T} \rangle 0$$

$$\Delta S - \int_{A}^{B} \frac{\delta q_{irrev}}{T} \rangle 0$$

Condição de Equilíbrio:

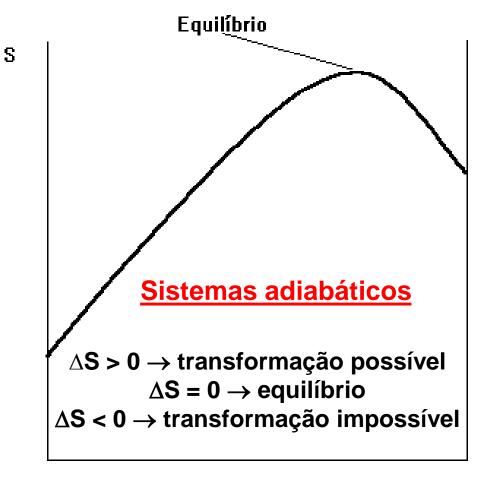
 $dS_{UNIV} = 0$

Em Ponto de Máximo (!!)

Condição de Espontaneidade:

 $dS_{UNIV} > 0$

Estado do Sistema ou Extensão da Reação


Termodinâmica

2ª LEI DA TERMODINÂMICA

ENTROPIA

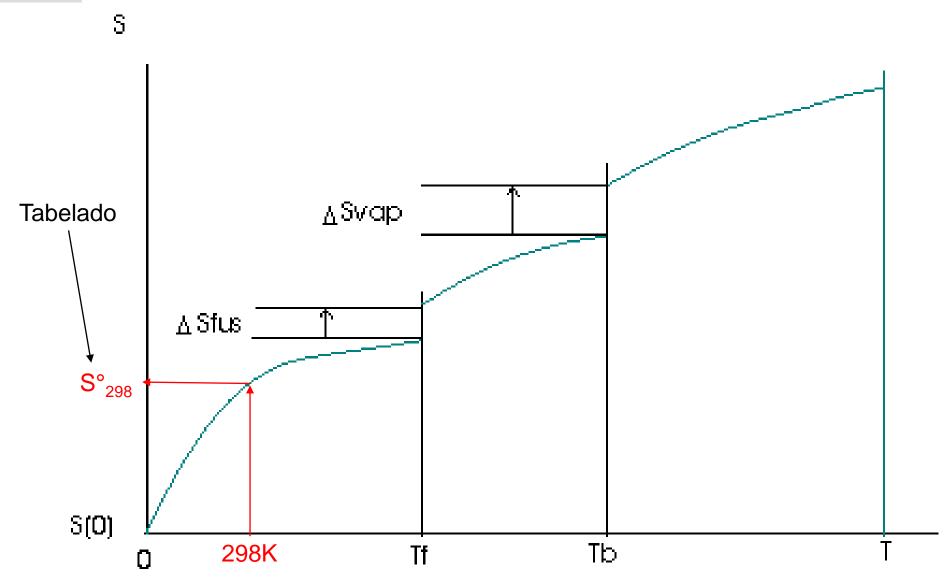
$$dS = \frac{\partial q}{T}$$

 $\delta q_P = dH = cp \cdot dT$ $dS = cp \cdot dT/T$

A+B (estado inicial) C+D (estado final)

2ª LEI DA TERMODINÂMICA

$$\Delta S = S_{T_2} - S_{T_1} = \int_{T_1}^{T_2} c_p \cdot \frac{dT}{T}$$


$$S_{T_2} = S_{T_1} + \int_{T_1}^{T_2} c_p \cdot \frac{dT}{T}$$

S_o = entropia a 0 K = zero 3^a lei da termodinâmica

$$S_{T} = \int_{0}^{T} c_{p}. dlnT$$

2ª LEI DA TERMODINÂMICA

Termodinâmica

Table 13-II. Thermodynamic Data* on Some Elements and Compounds Encountered in Ferrous Metallurgical Processes.

Units: $\Delta H_{\text{ps.}}^{\circ}$ in cal. per mole; $S_{\text{ps.}}^{\circ}$ in cal. per deg. per mole; C_{p} in cal. per deg. per mole; transformation (t.p.), melting (m.p.) and boiling (b.p.) point temperatures in °C; heats of transformation and fusion in cal. per mole.

Notations: " indicate nonstoichiometric compound; underlined m.p. indicates incongruent m.p.; values in () are estimated, dec. = decomposes. Sub. = sublimes.

				0.50		7	100		2			
Substance	$-\Delta H^{\alpha}_{zos}$ (S°	$C_p = a + bT - cT^{-2}$		Temp.	t.p.	m.p.	h n				
			а	$b \times 10^{3}$	$c \times 10^{-5}$	Range °C	t.p. °C	°C	b.p. °C	ΔH_t	ΔH_f	Remarks
Al	0	6.77	4.94	2.96		25–659		659	2467		2,570	
Al ₂ O ₃	399,600	12.2	7.00 27.49	2.82	— 8.38	659-2400 25-1500	(1000)	2030	dec.	(20,600)	(26,000)	
Al ₂ S ₃	172,900	12.2	21.10	2.02	0.00	20-1000	(1000)	1100	dec.	(20,000)	(20,000)	1
AlN	76,470	5.0	5.47	7.80	=== 8	25-600		dec.	dec.			
Al_iC_3	35,900	(31.3)	24.08	31.60		25-320						Heats of
$Al_2SiO_5(1)$	39,900°	22.3	46.24		12.53	25-1300						(1) Andalusite / formation
(2)	40,000° 46,000°	20.0	45.52 40.09	2.34 5.86	16.00 10.13	25-1400		1010				(2) Kyanite from ox-
(3)	40,000	23.0	40.09	5.60	10.13	25–1300		1810				(3) Sillimanite \int (ides, $\Lambda l_2 O_3 + SiO_2$.
$Al_{\scriptscriptstyle B}Si_{\scriptscriptstyle 2}O_{\scriptscriptstyle 13}{}^{**}$			59.65	67.00	- <u> </u>	25-300						Mullite
В	0	1.40	4.13	1.66	1.76	25–2027	_	2027	3927	_	5,300	
D () *	207 200	12.87	7.50 8.73		1.31	2027–2700 25–450		150	(2200)			
B_2O_3 °	305,300	12.87	30.50	25.40	131	450–1700		450	(2300)		5,500	Crystalline.
B ₂ O ₃ °	301,000	18.58	2.28	42.10		25-450		450	(2300)		2	Amorphous (glass).
-2-1	0.21.000	20.00	30.50	200-00-00 (C		4501700		100	(2300)			Timos priodo (glassy.
BN	60,700	3.67	1.82	3.62	00000	25-900				<i>t</i>		
"B ₄ C"	12,200	6.47	22.99	5.40	10.72	25-1450	·—		/			
Ba	0	15.50	5.36	3.16	10	25-370	370	710	1637	150	1,830	
			2.60	6.86	8	370-710						
			7.50			710–1600						
"BaO" BaS	133,500	16.80	11.79	1.88	0.88	25-1700	1	1925	(2750)	_	13,800	1
Ba ₃ N ₂	106,000 87,000	22.0 36.4						2200 dec.				
BaSiO ₃	38,000°	26.8						1605				from its oxides.
Ba ₂ SiO ₄	64,500°	43.5						1760				from its oxides.
BaTiO ₃			29.03	2.04	4.58	25-1700	5; 120	1705		16; 47	1.5	
Ba ₂ TiO ₄		47.0	43.00	1.60	6.96	25-1700						
Ве	0	2.28	4.58	. 2.12	1.14	25-1283		1283	2477	_	2,800	
Be()	143,100	3.37	7.50 8.45	4.00	3.17	1283-2400 25-900		2530	4120		17,000	
BeS	55,900	8.4	0.40	4.00	3.17	20-900		2000	4120	_	17,000	
Be ₃ N ₂	134,700	9,1	7.32	30.80		25-500						
Be ₂ SiO ₄	12,000°	15.4	22.84			25		1560				from its oxides.
C(1)	0	1.36	4.03	1.14	2.04	25-2200	_	Sub.	3727°	_	(33,000)	(1) Graphite; *Sublimation point.