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F = −∇V (r), and in that case the total energy T + V is a constant. The

condition for the existence of such a function is that F should be a function

of position such that ∇ ∧ F = 0.

The rate of change of angular momentum of a particle is equal to the

moment of the force, J̇ = r ∧ F . When the force is central, the angular

momentum is conserved. Then the motion is confined to a plane, and the

rate of sweeping out area in this plane is a constant.

The use of these conservation laws greatly simplifies the treatment of

any problem involving central or conservative forces. When the force is

both central and conservative, they provide all the information we need

to determine the motion of the particle, as we shall see in the following

chapter.

Lagrange’s equations are of great importance in advanced treatments of

classical mechanics (and also in quantum mechanics). We have seen that

they can be used to write down equations of motion in any system of co-

ordinates, as soon as we have found the expressions for the kinetic energy

and potential energy. In later chapters, we shall see that the method can

readily and usefully be extended to more complicated systems than a single

particle.

Problems

1. Find which of the following forces are conservative, and for those that

are find the corresponding potential energy function (a and b are con-

stants, and a is a constant vector):

(a) Fx = ax+ by2, Fy = az + 2bxy, Fz = ay + bz2;

(b) Fx = ay, Fy = az, Fz = ax;

(c) Fr = 2ar sin θ sinϕ, Fθ = ar cos θ sinϕ, Fϕ = ar cosϕ;

(d) F = a ∧ r;

(e) F = ra;

(f) F = a(a · r).

2. Given that the force is as in Problem 1(a), evaluate the work done in

taking a particle from the origin to the point (1, 1, 0): (i) by moving

first along the x-axis and then parallel to the y-axis, and (ii) by going

in a straight line. Verify that the result in each case is equal to minus

the change in the potential energy function.

3. Repeat the calculations of Problem 2 for the force in 1(b).

4. Compute the work done in taking a particle around the circle x2 +y2 =
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a2, z = 0 if the force is (a) F = yi, and (b) F = xi. What do you

conclude about these forces? (Use the parametrization x = a cosϕ, y =

a sinϕ, z = 0.)

5. Evaluate the force corresponding to the potential energy function

V (r) = cz/r3, where c is a constant. Write your answer in vector nota-

tion, and also in spherical polars, and verify that it satisfies ∇∧F = 0.

6. A projectile is launched with velocity 100m s−1 at 60◦ to the horizontal.

Atmospheric drag is negligible. Find the maximum height attained and

the range. What other angle of launch would give the same range? Find

the time of flight in each of the two cases.

7. *Find the equation for the trajectory of a projectile launched with ve-

locity v at an angle α to the horizontal, assuming negligible atmospheric

resistance. Given that the ground slopes at an angle β, show that the

range of the projectile (measured horizontally) is

x =
2v2

g

sin(α− β) cosα

cosβ
.

At what angle should the projectile be launched to achieve the maxi-

mum range?

8. *By expanding the logarithm in (3.17), find the approximate equation

for the trajectory of a projectile subject to small atmospheric drag to

first order in γ. (Note that this requires terms up to order γ3 in the

logarithm.) Show that to this order the range (on level ground) is

x =
2uw

g
− 8γuw2

3g2
,

and hence that to maximize the range for given launch speed v the angle

of launch should be chosen to satisfy cos 2α =
√

2γv/3g. (Hint : In the

term containing γ, you may use the zeroth-order approximation for the

angle.) For a projectile whose terminal speed if dropped from rest (see

Chapter 2, Problem 13) would be 500m s−1, estimate the optimal angle

and the range if the launch speed is 100m s−1.

9. *Show that in the limit of strong damping (large γ) the time of flight

of a projectile (on level ground) is approximately t ≈ (w/g + 1/γ)(1 −
e−1−γw/g). Show that to the same order of accuracy the range is x ≈
(u/γ)(1 − e−1−γw/g). For a projectile launched at 800m s−1 with γ =

0.1 s−1, estimate the range for launch angles of 30◦, 20◦ and 10◦.
10. A particle of mass m is attached to the end of a light string of length

l. The other end of the string is passed through a small hole and is
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slowly pulled through it. Gravity is negligible. The particle is originally

spinning round the hole with angular velocity ω. Find the angular

velocity when the string length has been reduced to 1
2 l. Find also the

tension in the string when its length is r, and verify that the increase in

kinetic energy is equal to the work done by the force pulling the string

through the hole.

11. A particle of mass m is attached to the end of a light spring of equi-

librium length a, whose other end is fixed, so that the spring is free to

rotate in a horizontal plane. The tension in the spring is k times its

extension. Initially the system is at rest and the particle is given an

impulse that starts it moving at right angles to the spring with velocity

v. Write down the equations of motion in polar co-ordinates. Given

that the maximum radial distance attained is 2a, use the energy and

angular momentum conservation laws to determine the velocity at that

point, and to find v in terms of the various parameters of the system.

Find also the values of r̈ when r = a and when r = 2a.

12. *A light rigid cylinder of radius 2a is able to rotate freely about its

axis, which is horizontal. A particle of mass m is fixed to the cylinder

at a distance a from the axis and is initially at rest at its lowest point.

A light string is wound on the cylinder, and a steady tension F applied

to it. Find the angular acceleration and angular velocity of the cylinder

after it has turned through an angle θ. Show that there is a limiting

tension F0 such that if F < F0 the motion is oscillatory, but if F >

F0 it continues to accelerate. Estimate the value of F0 by numerical

approximation.

13. In the system of Problem 12, instead of a fixed tension applied to the

string, a weight of mass m/2 is hung on it. Use the energy conservation

equation to find the angular velocity as a function of θ. Find also the

angular acceleration and the tension in the string. (Compare your

results with those in Problem 12.) Show that there is a point at which

the tension falls to zero, and find the angle at which this occurs. What

happens immediately beyond this point?

14. A wedge-shaped block of mass M rests on a smooth horizontal table. A

small block of mass m is placed on its upper face, which is also smooth

and inclined at an angle α to the horizontal. The system is released

from rest. Write down the horizontal component of momentum, and

the kinetic energy of the system, in terms of the velocity v of the wedge

and the velocity u of the small block relative to it. Using conservation

of momentum and the equation for the rate of change of kinetic energy,
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find the accelerations of the blocks. Given that M = 1kg and m =

250g, find the angle α that will maximize the acceleration of the wedge.

15. *A particle starts from rest and slides down a smooth curve under

gravity. Find the shape of the curve that will minimize the time taken

between two given points. [Take the origin as the starting point and

the z axis downwards. Show that the time taken is

∫ z1

0

[

1 + (dx/dz)2

2gz

]1/2

dz,

and hence that for a minimum
(

dx

dz

)2

=
c2z

1 − c2z
,

where c is an integration constant. To complete the integration, use

the substitution z = c−2 sin2 θ. This famous curve is known as the

brachistochrone. It is in fact an example of a cycloid, the locus of a

point on the rim of a circle of radius 1/2c2 being rolled beneath the

x-axis.

This problem was first posed by Johann Bernoulli on New Year’s Day

1697 as an open challenge. Newton’s brilliant solution method initiated

the calculus of variations. Bernoulli had an equally brilliant idea, using

an optical analogy with refraction of a light ray through a sequence of

plates and Fermat’s principle of least time.]

16. *The position on the surface of a cone of semi-vertical angle α is spec-

ified by the distance r from the vertex and the azimuth angle ϕ about

the axis. Show that the shortest path (or geodesic) along the surface

between two given points is specified by a function r(ϕ) obeying the

equation

r
d2r

dϕ2
− 2

(

dr

dϕ

)2

− r2 sin2 α = 0.

Show that the solution is r = r0 sec[(ϕ − ϕ0) sinα], where r0 and ϕ0

are constants. [The equation may be solved by the standard technique

of introducing a new dependent variable u = dr/dϕ, and writing

d2r

dϕ2
=

du

dϕ
=

dr

dϕ

du

dr
= u

du

dr
.

The substitution u2 = v then reduces the equation to a linear form that

may be solved by using an integrating factor (see Chapter 2, Problem
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13). Finally, to calculate ϕ =
∫

(1/u)dr, one may use the substitution

r = 1/x.]

17. *Find the geodesics on a sphere of unit radius. [Hint : Use θ as in-

dependent variable, and look for the path ϕ = ϕ(θ). To perform the

integration, use the substitution x = cot θ.]

18. *Parabolic co-ordinates (ξ, η) in a plane are defined by ξ = r + x, η =

r − x. Find x and y in terms of ξ and η. Show that the kinetic energy

of a particle of mass m is

T =
m

8
(ξ + η)

(

ξ̇2

ξ
+
η̇2

η

)

.

Hence find the equations of motion.

19. Write down the equations of motion in polar co-ordinates for a particle

of unit mass moving in a plane under a force with potential energy

function V = −k ln r + cr + gr cos θ, where k, c and g are positive

constants. Find the positions of equilibrium (a) if c > g, and (b)

if c < g. By considering the equations of motion near these points,

determine whether the equilibrium is stable (i.e., will the particle, if

given a small displacement, tend to return repeatedly?).

20. If q1, q2, q3 are orthogonal curvilinear co-ordinates, and the element of

length in the qi direction is hidqi, write down (a) the kinetic energy T

in terms of the generalized velocities q̇i, (b) the generalized momentum

pi and (c) the component ei · p of the momentum vector p in the qi
direction. (Here ei is a unit vector in the direction of increasing qi.)

21. *By comparing the Euler–Lagrange equations with the corresponding

components of the equation of motion mr̈ = −∇V , show that the

component of the acceleration vector in the qi direction is

ei · r̈ =
1

mhi

[

d

dt

(

∂T

∂q̇i

)

− ∂T

∂qi

]

.

Use this result to identify the components of the acceleration in cylin-

drical and spherical polars.

22. For the case of plane polar co-ordinates r, θ, write the unit vectors er

(= r̂) and eθ in terms of i and j. Hence show that ∂er/∂θ = eθ and

∂eθ/∂θ = −er. By starting with r = rer and differentiating, rederive

the expressions for the components of the velocity and acceleration

vectors.

23. *Find the corresponding formulae for ∂ei/∂qj for spherical polar co-

ordinates, and hence verify the results obtained in Problem 21.
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24. *The motion of a particle in a plane may be described in terms of

elliptic co-ordinates λ, θ defined by

x = c coshλ cos θ, y = c sinhλ sin θ, (λ ≥ 0, 0 ≤ θ ≤ 2π),

where c is a positive constant. Show that the kinetic energy function

may be written

T = 1
2mc

2(cosh2 λ− cos2 θ)(λ̇2 + θ̇2).

Hence write down the equations of motion.

25. *The method of Lagrange multipliers (see Appendix A, Problem 11)

can be extended to the calculus of variations. To find the maxima and

minima of an integral I, subject to the condition that another integral

J = 0, we have to find the stationary points of the integral I − λJ

under variations of the function y(x) and of the parameter λ. Apply

this method to find the catenary, the shape in which a uniform heavy

chain hangs between two fixed supports. [The required shape is the one

that minimizes the total potential energy, subject to the condition that

the total length is fixed. Show that this leads to a variational problem

with

f(y, y′) = (y − λ)
√

1 + y′2,

and hence to the equation

(y − λ)y′′ = 1 + y′2.

Solve this equation by introducing the new variable u = y′ and solving

for u(y).]

26. *A curve of given total length is drawn in a plane between the points

(±a, 0). Using the method of Problem 25, find the shape that will

enclose the largest possible area between the curve and the x-axis.
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4.8 Summary

For a particle moving under any central, conservative force, information

about the radial motion may be obtained from the radial energy equation,

which results from eliminating θ̇ between the conservation equations for

energy and angular momentum. The values of E and J can be determined

from the initial conditions, and this equation then tells us the radial velocity

at any value of r.

When information about the angle θ is needed, we must find the equa-

tion of the orbit. For the inverse square law, the orbit is an ellipse or a

hyperbola, according as E < 0 or E > 0. The semi-major axis is fixed by

E, and the semi-latus rectum by J .

If we are concerned with finding the time taken to traverse part of the

orbit, we can use the relation between the angular momentum and the rate

of sweeping out area.

When a beam of particles strikes a target, the angular distribution of

scattered particles may be found from the differential cross-section dσ/dΩ.

This may be calculated from a knowledge of the relation between the scat-

tering angle and the impact parameter. The attenuation of the beam is

related to the total cross-section σ, obtained by integrating dσ/dΩ over all

solid angles.

Problems

1. The orbits of synchronous communications satellites have been chosen

so that viewed from the Earth they appear to be stationary. Find the

radius of the orbits.

2. Find the radii of synchronous orbits about Jupiter and about the Sun.

[Their mean rotation periods are 10 hours and 27 days, respectively.

The mass of Jupiter is 318 times that of the Earth. The semi-major

axis of the Earth’s orbit, or astronomical unit (au) is 1.50 × 108 km.]

3. The semi-major axis of Jupiter’s orbit is 5.20au. Find its orbital period

in years, and its mean (time-averaged) orbital speed. (Mean orbital

speed of Earth = 29.8 kms−1.)

4. The orbit of an asteroid extends from the Earth’s to Jupiter’s, just

touching both. Find its orbital period. (Treat the planetary orbits as

circular and coplanar.)
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5. Find the maximum and minimum orbital speeds of the asteroid in Prob-

lem 4.

6. The Moon’s mass and radius are 0.0123ME and 0.273RE (E = Earth).

For Jupiter the corresponding figures are 318ME and 11.0RE. Find in

each case the gravitational acceleration at the surface, and the escape

velocity.

7. Calculate the period of a satellite in an orbit just above the Earth’s

atmosphere (whose thickness may be neglected). Find also the periods

for close orbits around the Moon and Jupiter.

8. The Sun has an orbital speed of about 220km s−1 around the centre

of the Galaxy, whose distance is 28 000 light years. Estimate the total

mass of the Galaxy in solar masses.

9. A particle of mass m moves under the action of a harmonic oscillator

force with potential energy 1
2kr

2. Initially, it is moving in a circle of

radius a. Find the orbital speed v. It is then given a blow of impulse

mv in a direction making an angle α with its original velocity. Use the

conservation laws to determine the minimum and maximum distances

from the origin during the subsequent motion. Explain your results

physically for the two limiting cases α = 0 and α = π.

10. Write down the effective potential energy function U(r) for the system

described in Chapter 3, Problem 11. Initially, the particle is moving

in a circular orbit of radius 2a. Find the orbital angular velocity ω in

terms of the natural angular frequency ω0 of the oscillator when not

rotating. If the motion is lightly disturbed, the particle will execute

small oscillations about the circular orbit. By considering the effec-

tive potential energy function U(r) near its minimum, find the angular

frequency ω′ of small oscillations. Hence describe the disturbed orbit

qualitatively.

11. Show that the comet discussed at the end of §4.4 crosses the Earth’s

orbit at opposite ends of a diameter. Find the time it spends inside the

Earth’s orbit. (To evaluate the area required, write the equation of the

orbit in Cartesian co-ordinates. See Appendix B.)

12. A star of mass M and radius R is moving with velocity v through a

cloud of particles of density ρ. If all the particles that collide with the

star are trapped by it, show that the mass of the star will increase at

a rate

dM

dt
= πρv

(

R2 +
2GMR

v2

)

.
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Given that M = 1031 kg and R = 108 km, find how the effective cross-

sectional area compares with the geometric cross-section πR2 for ve-

locities of 1000kms−1, 100km s−1 and 10 km s−1.

13. *Find the polar equation of the orbit of an isotropic harmonic oscillator

by solving the differential equation (4.25), and verify that it is an ellipse

with centre at the origin. (Hint : Change to the variable v = u2.) Check

also that the period is given correctly by τ = 2mA/J .

14. Discuss qualitatively the orbits of a particle under a repulsive force

with potential energy function V = 1
2kr

2 where k is negative, using the

effective potential energy function U . How would the orbit equation,

as found in Problem 13, differ in this case? What shape is the orbit?

15. *If the Earth’s orbit is divided in two by the latus rectum, show that

the difference in time spent in the two halves, in years, is

2

π

(

e
√

1 − e2 + arcsin e
)

,

and hence for small e about twice as large as the difference computed

in the example in §4.4. (Hint : Use Cartesian co-ordinates to evaluate

the required area. The identity π/2− arcsin
√

1 − e2 = arcsin e may be

useful.)

16. A spacecraft is to travel from Earth to Jupiter along an elliptical orbit

that just touches each of the planetary orbits (i.e., the orbit of the

asteroid in Problem 4). Use the results of Problems 3, 4 and 5 to

find the relative velocity of the spacecraft with respect to the Earth

just after launching and that with respect to Jupiter when it nears

that planet, neglecting in each case the gravitational attraction of the

planet. Where in its orbit must Jupiter be at the time of launch, relative

to the Earth? Where will the Earth be when it arrives?

[This semi-elliptical trajectory is known as a Hohmann transfer and it

is energy-efficient for interplanetary travel using high-thrust rockets in

that a discrete boost is required at the beginning and at the end of the

journey in order respectively to leave Earth and to arrive at the target

planet. A similarly careful choice of timing for initiating a return to

Earth is necessary, so that there is an inevitable minimum time that

must be spent in the region of (here) Jupiter before this can be done. It

is an interesting and important exercise to compare timings for round

trips of planetary exploration using this form of transfer. For Mars, an

obvious target in the short term, the time required is about 32 Earth

months with about 15 months spent at Mars. There are of course other
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ways of effecting transfer, but at rather greater cost, either in fuel or

in time spent at the destination!]

17. *Suppose that the asteroid of Problems 4 and 5 approaches the Earth

with an impact parameter of 5RE, where RE = Earth’s radius, moving

in the same plane and overtaking it. (This is an improbably close

encounter for a large asteroid; however the spectacular impact of comet

Shoemaker–Levy 9 with Jupiter in July 1994 should prevent us from

being too complacent about this threat!) Find the distance of closest

approach and the angle through which the asteroid is scattered, in the

frame of reference in which the Earth is at rest. (Assume that the

asteroid is small enough to have negligible effect on the Earth’s orbit.)

What is its new velocity v relative to the Sun? Show that the semi-

major axis of its new orbit is aEv
2
E/(2v

2
E − v2), where aE and vE are

the Earth’s orbital radius and orbital velocity. Find the asteroid’s new

orbital period.

18. *Show that the position of a planet in its elliptical orbit can be ex-

pressed, using a frame with x-axis in the direction of perihelion (point

of closest approach to the Sun), in terms of an angular parameter ψ by

x = a(cosψ − e), y = b sinψ. (See Problem B.1. In the literature, ψ is

sometimes called the eccentric anomaly, while the polar angle θ is the

true anomaly.) Show that r = a(1 − e cosψ), and that the time from

perihelion is given by t = (τ/2π)(ψ − e sinψ) (Kepler’s equation).

19. Use the parametrization of Problem 18 to calculate the time-averaged

values of the kinetic and potential energies T and V over a complete

period. Hence verify the virial theorem, 〈V 〉av = −2〈T 〉av.
20. *Find a parametrization similar to that of Problem 18 for a hyperbolic

orbit, using hyperbolic functions.

21. On reaching the vicinity of Jupiter, the spacecraft in Problem 16 is

swung around the planet by its gravitational attraction — a ‘sling-

shot’ manoeuvre. Consider this encounter in the frame of reference in

which Jupiter is at rest. What is the magnitude and direction of the

spacecraft’s velocity before scattering? What is its magnitude after

scattering? If the scattering angle in this frame is 90◦, what must be

the impact parameter? What is the distance of closest approach to the

planet, in terms of Jupiter radii? (MJ = 318ME, RJ = 11.0RE.)

22. *If the manoeuvre in Problem 21 is in the orbital plane, so that the

final velocity of the spacecraft relative to Jupiter is radially away from

the Sun, what is its velocity in magnitude and direction relative to

the Sun? Use the radial energy equation to determine the spacecraft’s
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farthest distance from the Sun (its aphelion distance) in astronomical

units. Find also its new orbital period. When it returns, what will be

its perihelion distance?

23. An alternative to the manoeuvre described in Problem 22 is for the

spacecraft to be scattered out of the orbital plane. Assume that rel-

ative to Jupiter its velocity after scattering is directed normal to the

orbital plane. What is its velocity relative to the Sun? What will be its

aphelion distance and orbital period? How far from the orbital plane

will it reach? (Hint : Immediately after scattering, the radial compo-

nent of its velocity is zero. This is therefore the perihelion point of the

new orbit. The farthest point from the original orbital plane will occur

when it is at one end of the semi-minor axis of the orbit.)

24. *A ballistic rocket (one that moves freely under gravity after its initial

launch) is fired from the surface of the Earth with velocity v <
√
Rg

at an angle α to the vertical. (Ignore the Earth’s rotation.) Find

the equation of its orbit. Express the range 2Rθ (measured along the

Earth’s surface) in terms of the parameters l and a, and hence show

that to maximize the range, we should choose α so that l = 2a − R.

(Hint : A sketch may help.) Deduce that the maximum range is 2Rθ

where sin θ = v2/(2Rg − v2). Given that the maximum range is 3600

nautical miles, find the launch velocity and the angle at which the

rocket should be launched. (Note: 1 nautical mile = 1 minute of arc

over the Earth’s surface.)

25. Discuss the possible types of orbit for a particle moving under a central

inverse-cube-law force, described by the potential energy function V =

k/2r2. For the repulsive case (k > 0), show that the orbit equation is

r cosn(θ − θ0) = b, where n, b and θ0 are constants. Show that for the

attractive case (k < 0), the nature of the orbit depends on the signs

of J2 +mk and of E. Find the equation of the orbit for each possible

type. (Include the cases where one of these parameters vanishes.)

26. Show that the scattering angle for particles of mass m and initial ve-

locity v scattered by a repulsive inverse-cube-law force is π − π/n (see

Problem 25). Hence find the differential cross-section.

27. *The potential energy of a particle of mass m is V (r) = k/r + c/3r3,

where k < 0 and c is a small constant. (The gravitational potential

energy in the equatorial plane of the Earth has approximately this

form, because of its flattened shape — see Chapter 6.) Find the angular

velocity ω in a circular orbit of radius a, and the angular frequency ω′

of small radial oscillations about this circular orbit. Hence show that a
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nearly circular orbit is approximately an ellipse whose axes precess at

an angular velocity Ω ≈ (c/|k|a2)ω.

28. A beam of particles strikes a wall containing 2 × 1029 atoms per m3.

Each atom behaves like a sphere of radius 3× 10−15 m. Find the thick-

ness of wall that exactly half the particles will penetrate without scat-

tering. What thickness would be needed to stop all but one particle in

106?

29. An α-particle of energy 4 keV (1 eV = 1.6 × 10−19 J) is scattered by

an aluminium atom through an angle of 90◦. Calculate the distance

of closest approach to the nucleus. (Atomic number of α-particle = 2,

atomic number of Al = 13, e = 1.6 × 10−19 C.) A beam of such parti-

cles with a flux of 3 × 108 m−2 s−1 strikes a target containing 50mg of

aluminium. A detector of cross-sectional area 400mm2 is placed 0.6m

from the target in a direction at right angles to the beam direction.

Find the rate of detection of α-particles. (Atomic mass of Al = 27u;

1 u = 1.66 × 10−27 kg.)

30. *It was shown in §3.4 that Kepler’s second law of planetary motion

implies that the force is central. Show that his first law — that the

orbit is an ellipse with the Sun at a focus — implies the inverse square

law. (Hint : By differentiating the orbit equation l/r = 1 + e cos θ, and

using (3.26), find ṙ and r̈ in terms of r and θ. Hence calculate the

radial acceleration.)

31. Show that Kepler’s third law, τ ∝ a3/2, implies that the force on a

planet is proportional to its mass.

[This law was originally expressed by Kepler as τ ∝ r̄3/2, where r̄ is a

‘mean value’ of r. For an ellipse, the mean over angle θ is in fact b; the

mean over time is actually a(1 + 1
2e

2); it is the mean over arc length

— or the median — which is given by a! Of course, for most planets

in our Solar System these values are almost equal.]


