
14 Classical Mechanics

frame, together with the physical assertion that such frames exist, while the

second and third laws contain definitions of mass and force. These laws,

supplemented by the laws of force, such as the law of universal gravitation,

provide the equations from which we can determine the motion of any

dynamical system.

Problems

Note. Here and in later chapters, starred problems are somewhat harder.

1. An object A moving with velocity v collides with a stationary object B.

After the collision, A is moving with velocity 1
2v and B with velocity

3
2v. Find the ratio of their masses. If, instead of bouncing apart, the

two bodies stuck together after the collision, with what velocity would

they then move?

2. The two components of a double star are observed to move in circles of

radii r1 and r2. What is the ratio of their masses? (Hint: Write down

their accelerations in terms of the angular velocity of rotation, ω.)

3. Consider a system of three particles, each of mass m, whose motion is

described by (1.9). If particles 2 and 3, even though not rigidly bound

together, are regarded as forming a composite body of mass 2m located

at the mid-point r = 1
2 (r2+r3), find the equations describing the motion

of the two-body system comprising particle 1 and the composite body

(2+3). What is the force on the composite body due to particle 1? Show

that the equations agree with (1.7). When the masses are unequal, what

is the correct definition of the position of the composite (2+3) that will

make (1.7) still hold?

4. Find the distance r between two protons at which the electrostatic

repulsion between them will equal the gravitational attraction of the

Earth on one of them. (Proton charge = 1.6 × 10−19 C, proton mass =

1.7 × 10−27 kg.)

5. Consider a transformation to a relatively uniformly moving frame of

reference, where each position vector ri is replaced by r′
i = ri − vt.

(Here v is a constant, the relative velocity of the two frames.) How does

a relative position vector rij transform? How do momenta and forces

transform? Show explicitly that if equations (1.1) to (1.4) hold in the

original frame, then they also hold in the new one.

6. A body of mass 50 kg is suspended by two light, inextensible cables of
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lengths 15m and 20m from rigid supports placed 25m apart on the same

level. Find the tensions in the cables. (Note that by convention ‘light’

means ‘of negligible mass’. Take g = 10m s−2. This and the following

two problems are applications of vector addition.)

7. *An aircraft is to fly to a destination 800 km due north of its starting

point. Its airspeed is 800km h−1. The wind is from the east at a speed

of 30m s−1. On what compass heading should the pilot fly? How long

will the flight take? If the wind speed increases to 50m s−1, and the

wind backs to the north-east, but no allowance is made for this change,

how far from its destination will the aircraft be at its expected arrival

time, and in what direction?

8. *The two front legs of a tripod are each 1.4m long, with feet 0.8m apart.

The third leg is 1.5m long, and its foot is 1.5m directly behind the mid-

point of the line joining the other two. Find the height of the tripod, and

the vectors representing the positions of its three feet relative to the top.

(Hint: Choose a convenient origin and axes and write down the lengths

of the legs in terms of the position vector of the top.) Given that the

tripod carries a weight of mass 2 kg, find the forces in the legs, assuming

they are purely compressional (i.e., along the direction of the leg) and

that the legs themselves have negligible weight. (Take g = 10m s−2.)

9. *Discuss the possibility of using force rather than mass as the basic

quantity, taking for example a standard weight (at a given latitude) as

the unit of force. How should one then define and measure the mass of

a body?

10. The first estimate of Newton’s constant was made by the astronomer

Nevil Maskelyne in 1774 by measuring the angle between the direc-

tions of the apparent plumb-line vertical on opposite sides of the Scot-

tish mountain Schiehallion (height 1081m, chosen for its regular conical

shape). Find a rough estimate of the angle through which a plumb line

is deviated by the gravitational attraction of the mountain, by modelling

the mountain as a sphere of radius 500m and density 2.7 × 103 kg m−3,

and assuming that its gravitational effect is the same as though the total

mass were concentrated at its centre. (This latter assumption will be

justified, for a spherical object, in Chapter 6.)
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only part of a larger system, and subject to external forces, there may be

some transfer of energy and momentum from the system to its surroundings

(or vice versa). For a single particle moving on a straight line, the total

(kinetic plus potential) energy is conserved if the force is a function only

of x. If the force is velocity-dependent, however, there will be some loss of

energy to the surroundings.

The importance of the harmonic oscillator, treated in detail in this chap-

ter, lies in the fact that any system with one degree of freedom behaves like

a harmonic oscillator when sufficiently near to a point of stable equilib-

rium. The methods we have discussed for solving the oscillator equation

can therefore be applied to a great variety of problems. In particular, the

phenomenon of resonance can occur in any system subjected to periodic

forces. It occurs when there is a natural frequency of oscillation close to

the forcing frequency, and leads, if the damping is small, to oscillations of

very large amplitude.

Problems

1. A harmonic oscillator of angular frequency 2 s−1 is initially at x =

−3m, with ẋ = 8 m s−1. Write the solution in each of the three forms

(2.19), (2.20) and (2.23). Find the first time at which x = 0, and the

first at which ẋ = 0. (A sketch of the solution may help.)

2. A weight of mass m is hung from the end of a spring which provides

a restoring force equal to k times its extension. The weight is released

from rest with the spring unextended. Find its position as a function

of time, assuming negligible damping.

3. When a mass is suspended from a spring, the equilibrium length is

increased by 50 mm. The mass is then given a blow which starts it

moving vertically at 200mm s−1. Find the period and amplitude of the

resulting oscillations, assuming negligible damping.

4. A pendulum of period 2 s is released from rest at an inclination of 5◦ to

the (downward) vertical. What is its angular velocity when it reaches

the vertical? When it first returns to its starting point, it is given

an impulsive blow towards the vertical that increases the amplitude of

swing to 10◦. Find its subsequent angular position as a function of

time.

5. Write down the potential energy function corresponding to the force

−GMm/x2 experienced by a particle of mass m at a distance x from a



44 Classical Mechanics

planet of massM (	 m). The particle is released from rest at a distance

a from the centre of the planet, whose radius is R, and falls under

gravity. What is its speed when it strikes the surface? Evaluate this

speed for a particle falling to the Earth from a = 2R. (Use R = 6400

km, and GM/R2 = g = 10m s−2.)

6. A particle of mass m moves under a force F = −cx3, where c is a

positive constant. Find the potential energy function. If the particle

starts from rest at x = −a, what is its velocity when it reaches x = 0?

Where in the subsequent motion does it instantaneously come to rest?

7. A particle of mass m moves (in the region x > 0) under a force F =

−kx+c/x, where k and c are positive constants. Find the corresponding

potential energy function. Determine the position of equilibrium, and

the frequency of small oscillations about it.

8. A particle of mass m has the potential energy function V (x) = mk|x|,
where k is a positive constant. What is the force when x > 0, and when

x < 0? Sketch the function V and describe the motion. If the particle

starts from rest at x = −a, find the time it takes to reach x = a.

9. A particle of mass m moves under a conservative force with potential

energy function given by

V (x) =

{

1
2k(a

2 − x2) for |x| < a,

0 for |x| ≥ a,

where a and k are constants, and a > 0. What is the force on the

particle? Sketch the function V , for both cases k > 0 and k < 0, and

describe the possible types of motion.

10. The particle of Problem 9 with k = −mω2 < 0 is initially in the region

x < −a, moving to the right with velocity v. When it emerges into the

region x > a, will it do so earlier or later than if it were moving freely

under no force? Find an expression for the time difference. (To do the

required integral, use a substitution of the form x = constant × sin θ.)

11. The potential energy function of a particle of mass m is V = − 1
2c(x

2 −
a2)2, where c and a are positive constants. Sketch this function, and

describe the possible types of motion in the three cases (a) E > 0, (b)

E < − 1
2ca

4, and (c) − 1
2ca

4 < E < 0.

12. *The potential energy function of a particle of mass m is V = cx/(x2 +

a2), where c and a are positive constants. Sketch V as a function of

x. Find the position of stable equilibrium, and the period of small

oscillations about it. Given that the particle starts from this point
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with velocity v, find the ranges of values of v for which it (a) oscillates,

(b) escapes to −∞, and (c) escapes to +∞.

13. *A particle falling under gravity is subject to a retarding force propor-

tional to its velocity. Find its position as a function of time, if it starts

from rest, and show that it will eventually reach a terminal velocity.

[The equation of motion can be integrated once to give, with a suitable

choice of origin and definition of γ (differing from (2.28) by a factor of

2), ż + γz = −gt. To integrate again, use an integrating factor, i.e.

a function f(t) such that when the equation is multiplied by f(t) the

left-hand side becomes an exact derivative, in fact the derivative of zf .

The final stage requires an integration by parts.]

14. The terminal speed of the particle in Problem 13 is 50m s−1. Find the

time it takes to reach a speed of 40m s−1, and the distance it has fallen

in that time. (Take g = 10m s−2.)

15. *A particle moves vertically under gravity and a retarding force pro-

portional to the square of its velocity. (This is more appropriate than

a linear relation for larger particles — see Problem 8.10.) If v is its up-

ward or downward speed, show that v̇ = ∓g−kv2, respectively, where k

is a constant. If the particle is moving upwards, show that its position

at time t is given by z = z0 + (1/k) ln cos[
√
gk (t0 − t)], where z0 and

t0 are integration constants. If its initial velocity at t = 0 is u, find

the time at which it comes instantaneously to rest, and its height then.

[Note that ln always denotes the natural logarithm: ln x ≡ loge x. You

may find the identity ln cosx = − 1
2 ln(1 + tan2 x) useful.]

16. *Show that if the particle of the previous question falls from rest its

speed after a time t is given by v =
√

g/k tanh(
√
gk t). What is its

limiting speed? How long does it take to hit the ground if dropped

from height h?

17. The pendulum described in §2.1 is released from rest at an angle θ0 to

the downward vertical. Find its angular velocity as a function of θ, and

the period of small oscillations about the position of stable equilibrium.

Write down the solution for θ as a function of time, assuming that θ0
is small.

18. *For the pendulum described in §2.1, find the equation of motion for

small displacements from the position of unstable equilibrium, θ = π.

Show that if it is released from rest at a small angle to the upward

vertical, then the time taken for the angular displacement to increase by

a factor of 10 will be approximately
√

l/g ln 20. Evaluate this time for
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a pendulum of period 2 s, and find the angular velocity of the pendulum

when it reaches the downward vertical.

19. *The particle of Problem 11 starts from rest at x = −a, and is given a

small push to start it moving to the right. What is its velocity when

it reaches the point x? Given that t = 0 is the instant when it reaches

x = 0, find its position as a function of time. (Assume that the push

has negligible effect on its energy.)

20. *A particle of mass m moves in the region x > 0 under the force

F = −mω2(x − a4/x3), where ω and a are constants. Sketch the

potential energy function. Find the position of equilibrium, and the

period of small oscillations about it. The particle starts from this point

with velocity v. Find the limiting values of x in the subsequent motion.

Show that the period of oscillation is independent of v. (To do the

integration, transform to the variable y = x2, then add a constant to

‘complete the square’, and finally use a trigonometric substitution.)

21. Repeat the calculation of Problem 2 assuming that the system is crit-

ically damped. Given that the final position of equilibrium is 0.4m

below the point of release, find how close to the equilibrium position

the particle is after 1 s.

22. *A pendulum whose period in a vacuum is 1 s is placed in a resistive

medium. Its amplitude on each swing is observed to be half that on the

previous swing. What is its new period? Given that the pendulum bob

is of mass 0.1 kg, and is subjected to a periodic force of amplitude 0.02N

and period 1 s, find the angular amplitude of the resulting forced oscil-

lation. Compare your answer with the angular deviation that would be

induced by a constant force of this magnitude in a pendulum at rest.

23. Write down the solution to the oscillator equation for the case ω0 > γ

if the oscillator starts from x = 0 with velocity v. Show that, as ω0 is

reduced to the critical value γ, the solution tends to the corresponding

solution for the critically damped oscillator.

24. *Solve the problem of an oscillator under a simple periodic force (turned

on at t = 0) by the Green’s function method, and verify that it repro-

duces the solution of §2.6. [Assume that the damping is less than

critical. To do the integral, write sinωt as (eiωt − e−iωt)/2i.]

25. *For an oscillator under a periodic force F (t) = F1 cosω1t, calculate the

power, the rate at which the force does work. (Neglect the transient.)

Show that the average power is P = mγω2
1a

2
1, and hence verify that it

is equal to the average rate at which energy is dissipated against the

resistive force. Show that the power P is a maximum, as a function
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of ω1, at ω1 = ω0, and find the values of ω1 for which it has half its

maximum value.

26. *Find the average value Ē of the total energy of an oscillator under a

periodic force. If W is the work done against friction in one period,

show that when ω1 = ω0 the ratio W/Ē is related to the quality factor

Q by W/Ē = 2π/Q.

27. Three perfectly elastic bodies of masses 5 kg, 1 kg, 5 kg are arranged in

that order on a straight line, and are free to move along it. Initially,

the middle one is moving with velocity 27m s−1, and the others are at

rest. Find how many collisions take place in the subsequent motion,

and verify that the final value of the kinetic energy is equal to the initial

value.

28. A ball is dropped from height h and bounces. The coefficient of resti-

tution at each bounce is e. Find the velocity immediately after the

first bounce, and immediately after the nth bounce. Show that the ball

finally comes to rest after a time

1 + e

1 − e

√

2h

g
.

29. *An oscillator with free period τ is critically damped and subjected to

a force with the ‘saw-tooth’ form

F (t) = c(t− nτ) for (n− 1
2 )τ < t ≤ (n+ 1

2 )τ,

for each integer n (c is a constant). Find the ratios of the amplitudes

an of oscillation at the angular frequencies 2πn/τ .

30. *A particle moving under a conservative force oscillates between x1 and

x2. Show that the period of oscillation is

τ = 2

∫ x2

x1

√

m

2[V (x2) − V (x)]
dx.

In particular, if V = 1
2mω

2
0(x

2 − bx4), show that the period for oscilla-

tions of amplitude a is

τ =
2

ω0

∫ a

−a

dx√
a2 − x2

√

1 − b(a2 + x2)
.

Using the binomial theorem to expand in powers of b, and the substi-

tution x = a sin θ, show that for small amplitude the period is approx-

imately τ ≈ 2π(1 + 3
4ba

2)/ω0.
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31. Use the result of the preceding question to obtain an estimate of the

correction factor to the period of a simple pendulum when its angular

amplitude is 30◦. (Write cos θ ≈ 1 − 1
2θ

2 + 1
24θ

4.)

32. *Find the Green’s function of an oscillator in the case γ > ω0. Use it

to solve the problem of an oscillator that is initially in equilibrium, and

is subjected from t = 0 to a force increasing linearly with time, F = ct.


