Name			

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) Magnesium and nitrogen react in a combination reaction to produce magnesium nitride:
- 1) _____

$$3 \text{ Mg} + \text{N}_2 \rightarrow \text{Mg}_3 \text{N}_2$$

In a particular experiment, a 9.27-g sample of N₂ reacts completely. The mass of Mg consumed is

- A) 24.1
- B) 8.04
- C) 13.9
- D) 0.92
- E) 16.1
- 2) The combustion of ammonia in the presence of excess oxygen yields NO2 and H2O:
- 2) _____

$$4 \text{ NH}_3 (g) + 7 \text{ O}_2 (g) \rightarrow 4 \text{ NO}_2 (g) + 6 \text{ H}_2 \text{O} (g)$$

The combustion of 28.8 g of ammonia consumes _____ g of oxygen.

A) 54.1 B) 108 C) 15.3 D) 28.8

- A) 54.1

- E) 94.7
- 3) The combustion of ammonia in the presence of excess oxygen yields NO2 and H2O:
- 3)

$$4 \text{ NH}_3 (g) + 7 \text{ O}_2 (g) \rightarrow 4 \text{ NO}_2 (g) + 6 \text{ H}_2 \text{O} (g)$$

The combustion of 43.9 g of ammonia produces _____ g of NO₂.

- A) 2.58
- B) 43.9
- C) 0.954
- D) 178
- E) 119

4) The combustion of propane (C₃H₈) produces CO₂ and H₂O:

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

The reaction of 2.5 mol of O₂ will produce _____ mol of H₂O.

- A) 4.0
- B) 3.0
- C) 2.5
- E) 1.0
- 5) The combustion of propane (C₃H₈) in the presence of excess oxygen yields CO₂ and H₂O:
- 5)

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

When 2.5 mol of O₂ are consumed in their reaction, _____ mol of CO₂ are produced.

- A) 2.5
- B) 3.0
- C) 6.0
- D) 1.5
- E) 5.0
- 6) Calcium carbide (CaC₂) reacts with water to produce acetylene (C₂H₂):

6) ____

$$CaC_{2}(s) + 2H_{2}O(g) \rightarrow Ca(OH)_{2}(s) + C_{2}H_{2}(g)$$

Production of 13 g of C₂H₂ requires consumption of _____ g of H₂O.

- A) 4.8×10^2
- B) 4.5
- C) 4.8×10^{-2}
- D) 9.0
- E) 18

7) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:					7)
$N_2(g) + 3$	$BH_2(g) \rightarrow 2NH_3$	(g)			
A 7.1-g sample of 1	N ₂ requires	g of H ₂ for com	plete reaction.		
A) 1.2	B) 0.51	C) 17.2	D) 0.76	E) 1.5	
8) Lead (II) carbonate	decomposes to gi	ve lead (II) oxide and	carbon dioxide:		8)
PbCO ₃ (s)	\rightarrow PbO (s) + CO) ₂ (g)			
How many grams of carbonate?	of lead (II) oxide w	vill be produced by the	e decomposition of 2	.50 g of lead (II)	
A) 2.09	B) 0.41	C) 2.61	D) 2.50	E) 0.00936	
9) GeF ₃ H is formed fr	om GeH4 and Ge	F ₄ in the combination	reaction:		9)
GeH ₄ + 3	GeF ₄ → 4GeF ₃ H				
If the reaction yield	l is 92.6%, how ma	ny moles of GeF4 are	e needed to produce	8.00 mol of GeF ₃ H?	
A) 2.78	B) 5.56	C) 2.16	D) 3.24	E) 6.48	
10) What mass in gram of water?	10) What mass in grams of hydrogen is produced by the reaction of 4.73 g of magnesium with 1.83 g of water?				
Mg (s) + 2	$H_2O(l) \rightarrow Mg(Ol)$	$H_{2}(s) + H_{2}(g)$			
A) 0.0485	B) 0.204	C) 0.0162	D) 0.102	E) 0.219	
11) Silver nitrate and aluminum chloride react with each other by exchanging anions:					11)
$3AgNO_3 (aq) + AlCl_3 (aq) \rightarrow Al(NO_3)_3 (aq) + 3AgCl (s)$					
What mass in grams of AgCl is produced when 4.22 g of Ag NO ₃ react with 7.73 g of AlCl ₃ ?					
A) 4.22	B) 3.56	C) 11.9	D) 17.6	E) 24.9	
12) How many moles of magnesium oxide are produced by the reaction of 3.82 g of magnesium nitride with 7.73 g of water?					12)

C) 0.0756

D) 4.57

E) 0.429

 $\rm Mg_3N_2 + 3H_2O \rightarrow 2NH_3 + 3MgO$

B) 0.0378

A) 0.114

13) A 3.82-g sample of magnesium nitride is reacted with 7.73 g of water.					13)
Mg ₃ N ₂ +	- 3H ₂ O → 2NH ₃	+ 3MgO			
The viold of MgO	is 3 60 a. What is th	e percent yield in th	no reaction?		
A) 46.6	B) 99.9	C) 78.7	D) 49.4	E) 94.5	
14) Pentacarbonyliror carbon monoxide:		vith phosphorous tri	ifluoride (PF3) and hy	drogen, releasing	14)
Fe(CO)5	+ PF ₃ + H ₂ → F ₆	e(CO) ₂ (PF ₃) ₂ (H) ₂ +	· CO (not balanced)		
The reaction of 5.0) mol of Fe(CO)5, 8.	0 mol of PF3 and 6.0) mol of H ₂ will releas	se mol of	
CO. A) 5.0	B) 15	C) 24	D) 6.0	E) 12	
15) What is the maxin	num mass in grams	of NH3 that can be	produced by the reac	tion of 1.0 g of N ₂	15)
with 3.0 g of H ₂ v	ia the equation belo	ow?			
$N_2(g) +$	$H_2(g) \rightarrow NH_3(g)$	(not balanced)			
A) 1.2	B) 2.0	C) 4.0	D) 17	E) 0.61	
16) What is the maxin with 1.0 g of O ₂ v	num amount in grania the equation belo		pe produced by the re	action of 1.0 g of S	16)
S (s) + O	$_2(g) \rightarrow SO_3(g) (r)$	ot balanced)			
A) 0.27	B) 2.5	C) 1.7	D) 2.0	E) 3.8	
17) Solid aluminum a	nd gaseous oxygen	react in a combinati	on reaction to produc	e aluminum oxide:	17)
4Al (s) +	$3O_2(g) \rightarrow 2Al_2C$	93 (s)			
The maximum am	ount of Al ₂ O ₃ that	can be produced from	om 2.5 g of Al and 2.5	g of O ₂ is	
A) 9.4	B) 5.3	C) 7.4	D) 5.0	E) 4.7	
18) Sulfur and fluorin	e react in a combina	ation reaction to pro	duce sulfur hexafluor	ride:	18)
` '	$F_2(g) \rightarrow SF_6(g)$				
	•	n be produced from	the reaction of 3.5 g o	ot sulfur with 4.5 g	
of fluorine is A) 5.8	g. B) 16	C) 8.0	D) 12	E) 3.2	

19) Solid aluminum	and gaseous oxygen	react in a combinati	on reaction to produc	e aluminum oxide:	19)
4Al (s)	+ 3O ₂ (g) → 2Al ₂ O	93 (s)			
			2.5 g of O ₂ produced	d 3.5 g of Al ₂ O ₃ .	
A) 26	e reaction is B) 74	 C) 47	D) 66	E) 37	
20) Sulfur and oxyge pollutant:	en react in a combina	ation reaction to proc	luce sulfur trioxide, a	n environmental	20)
2S (s) +	$3O_2(g) \rightarrow 2SO_3(g)$				
-	-	-	g O ₂ produced 0.80	g of SO ₃ . The %	
	eriment is B) 30		D) 88	E) 19	
A) 29	D) 30	C) 21	D) 00	E) 48	
21) Sulfur and fluori	ne react in a combin	ation reaction to pro	duce sulfur hexafluoi	ride:	21)
S (s) +	$3F_2(g) \rightarrow SF_6(g)$				
	periment, the percent		is means that in this ϵ	experiment, a 7.90 -g	
A) 0.110	B) 10.1		D) 24.0	E) 30.3	
	$N_2 \rightarrow Mg_3N_2$? (Mg = .0)	to react with 2.30 m = 24.3, N = 14.0 g/mo	oles of Mg in the folk	owing process?	22)
23) How many mole	s of H3PO4 are prod	luced when 20.0 g of	HCl are produced by	y the reaction	23)
	5	g/mol)			
·		· ·	(27.0 g/mol) and 7.2 g	g of Fe ₂ O ₃ (159.8	24)
g/mol) produce l A) 7.2 (55.9/15 B) 2.5 (55.9/27 C) 2.5 (55.9)(2) D) 7.2 (55.9)(2) E) 2.5 (55.9/15	.0) /(27.0)(2) //158.9	5.9 g/mol)?			

25) Which metal will	produce the most hy	ydrogen per gram of	metal?		25)
A) Mg + 2 HCl \rightarrow MgCl ₂ + H ₂					
B) Sn + 4 HCl -	→ SnCl4 + 2 H2				
C) 2 Li + 2 HCl	→ 2 LiCl + H2				
·	→2 FeCl ₃ + 3 H ₂				
,	$l \rightarrow 2 \text{ CrCl}_3 + 3\text{H}_2$				
,	Ş -				
26) Gases emitted dur	ring volcanic activity	y often contain high	concentrations of hyd	rogen sulfide and	26)
sulfur dioxide. Th	ese gases may react	to produce deposits	of sulfur according to	the equation:	
2 H2S(g) + SO2(g)	\rightarrow 3 S(s) + 2 H ₂ O(g	;)			
For the complete	reaction of 6.41 mol	of hydrogen sulfide:			
A) 628 g of tota	l reactants are consu	ımed			
B) 308 g of sulf	ur is formed				
	l products result				
	ur dioxide is consur				
E) 231 g of wat	er vapor is produce	d			
27) 24.0 g of othere (6	20Hc) are burned to	form CO2 and H2C) How many grams o	of CO2 are	27)
27) 24.0 g of ethane (C	2116) are burned to	rioriii CO2 and 112C	o. How many grains c	il CO2 ale	
produced?	B) 22 9 ~	C) 43.2 g	D) 14.4 a	E) 25.1 a	
A) 70.3 g	D) 32.8 g	C) 43.2 g	D) 14.4 g	E) 35.1 g	
28) Given the following	ng reaction:				28)
	s) + 2 C(s) \rightarrow Na ₂ S(s	(s) + 2 CO2(g)			
·		red to produce 18.4 s	g Na2S(s)?		
A) 2.83 g	B) 11.3 g	C) 239 g	D) 142 g	E) 5.66 g	
11) 2.00 g	<i>b)</i> 11.5 g	C) 207 g	D) 142 g	L) 5.00 g	
29) The chemical reac	tion occurring durir	ng the discharge of a	lead storage battery of	can be represented	29)
	-	$I_2SO_4(aq) \rightarrow 2 PbSO$		1	,
		-	reaction of 41.4 g of l	ead?	
A) 121 g	B) 115 g	•	D) 105 g	E) 57.6 g	
30) A 1.900 g sample	of C6H12 is burned	in an excess of oxyg	en. What mass of CO	2 and H2O should	30)
be obtained?					
A) 10.45 g CO ₂	, 4.27 g G H ₂ O				
B) 0.994 g CO ₂	, 0.407 g H ₂ O				
C) 2.98 g CO ₂ ,	1.22 g H ₂ O				
D) 5.96 g CO ₂ ,	2.44 g H ₂ O				
E) 5.23 g CO ₂ ,	· ·				
31) How much Cl ₂ , ir	ng, is required to pr	oduce 12.0 g CCl4 ac	ccording to the follow	ing reaction?	31)
CH4 + 4 ($Cl_2 \rightarrow CCl_4 + 4 HCl$				
A) 11.0 g	B) 5.52 g	C) 12.0 g	D) 1.38 g	E) 22.1 g	
20) 61					22)
32) Given the reaction		(I/- CO	0. 51- 0.11-0		32)
		→ 6 K ₂ SO ₄ + 2 MnSo		.1	
	ot H2SO4 are requi	red to produce 2.0 m	noles of I2, given the o	other reactants are	
in excess?					

C) 3.2 mol

A) 1.3 mol

B) 1.6 mol

D) 4.0 mol

E) 0.80 mol

33) Given the reaction:					33)
$2 \text{ KMnO4} + 10 \text{ KI} + 8 \text{ H}_2\text{SO4} \rightarrow 6 \text{ K}_2\text{SO4} + 2 \text{ MnSO4} + 5 \text{ I}_2 + 8 \text{ H}_2\text{O}$					
How many moles	of I ₂ are produced	by reacting 28.0 g KM	nO4, 18.0 g KI and 40	6.0 g H ₂ SO ₄ ?	
A) 0.108 mol					
B) 0.0542 mol					
C) 0.886 mol					
D) 0.293 mol					
E) 0.443 mol					
34) The chemical read	tion during low cur	rent discharge of a sin	nnle "dry cell" involv	ec.	34)
-	_	Tent discharge of a sin IH4Cl → ZnCl2 + Mn2		C3.	
•		balanced equation, an		reagent for a	
	equal masses of reac		O	. 0	
A) 1/MnO ₂	B) 1/Zn	C) 2NH4Cl	D) 2/MnO ₂	E) 2/Zn	
_	nt yield if 185 grams	of SiO ₂ are made from	m 328 g of Cr ₂ O ₃ by	the following	35)
equation?		() () ()			
	$2 \operatorname{Cr}_2\operatorname{O3}(s) \to 3 \operatorname{SiO}_2$		5) 1050/	=> ===/	
A) 142%	B) 95%	C) 56%	D) 105%	E) 70%	
36) What is the percei	nt vield if 122 grams	s of SiO2 are made from	m 246 g of Cr2O3 by	the following	36)
equation?	<i>)</i>				
-	$Cr_2O_3(s) \rightarrow 3SiO_2$	(s) + 4 Cr(1)			
A) 83.6%		C) 49.6%	D) 125%	E) 33.1%	
,	,	,	,	,	
37) If 0.500 mol of Ca	Cl ₂ is mixed with 0.	200 mol Na3PO4, the	maximum amount ir	moles of	37)
Ca3(PO4)2 that ca	an be formed is:				
A) 0.10	B) 0.50	C) 0.67	D) 0.20	E) 0.17	
38) Consider the equa					38)
	$H_2O \rightarrow 2 \text{ NaOH + H}$				
e e		0 g of water until the r	eaction goes to comp	letion, which	
	nin and in what quar	ntity?			
A) 10.0 g sodiu:					
B) 43.5 g sodiu:					
C) 72.0 g water D) 10.0 g water					
E) 3.9 g water					
, 0					
39) 42.6 g Cu are com	bined with 84.0 g of	HNO3 according to t	he reaction:		39)
-	HNO3 → 3 Cu(NO3	-			, <u> </u>
Which reagent is 1	limiting and how ma	any grams of Cu(NO3	3)2 are produced?		
A) HNO3, 93.8	g		-		
B) HNO ₃ , 125.6 g					
C) Cu, 125.6 g	_				
D) Cu, 93.8 g					
E) Cu(NO ₃) ₂ , 1	125.6 g				

40) Consider the gaseous reaction:					
$N_2H_4(g)$	$+3 O_2(g) \rightarrow 2 NO_2(g)$	$g) + 2 H_2O(g)$			
If the above reaction	on has a percent yie	ld of 98.5%, what ma	ss in grams of oxyger	n is needed to	
produce 49.0 g of I	VO ₂ (g)?				
A) 25.9 g	B) 23.1 g	C) 51.9 g	D) 11.5 g	E) 50.4 g	
41) Chromium in its +	VI oxidation state is	considered a hazard	lous, carcinogenic spe	ecies, destruction	41)
		process symbolized			
4 Zn + K20	Cr2O7 + 7 H2SO4 -	→ 4 ZnSO4 + 2 CrSO4	4 + K2SO4 + 7 H2O		
If 1.0 mol of each r	eactant is mixed, w	hat is the limiting rea	igent, and what is the	theoretical yield	
of chromium(II) su	ılfate?				
A) H ₂ ,1.0 mol					
B) Zn,0.50 mol					
C) H ₂ SO ₄ ,0.29 1					
D) K2Cr2O7,2.0	mol				
E) no limiting re	eagent, 1.0 mol				
42) Given the reaction	:				42)
P4(l) + 6 C	$Cl_2(g) \rightarrow 4 PCl_3(l)$				
If the percent yield	l is 82%, what mass	of P4 is required to	obtain 2.30 g PCl3 (Cl	2 in excess)?	
A) 0.16 g	B) 0.43 g	C) 0.52 g	D) 0.63 g	E) 0.95 g	
43) In the following re	action:				43)
_	$\rightarrow 2 \text{ KCl(s)} + 3 \text{ O}_2$	(g)			
•		at is the percent yield	1?		
A) 16.4%	B) 10.0%	C) 32.9%		E) 11.0%	
44) Cryolite is a comp	ound needed for the	e Hall-Heroult proce	ess for producing alur	ninum. Cryolite is	44)
produced by the fo		•	1	Ž	
6 HF + Al((OH)3 + 3 NaOH →	Na3AlF ₆ + 6 H ₂ O			
How many grams	of cryolite are prod	uced if the reaction h	as a 94.3% yield and	a limiting reagent	
of 27.8 grams of H	F?				
A) 15.9	B) 275	C) 48.6	D) 15.0	E) 45.8	

Answer Key

Testname: CALCULO ESTEQUIOMETRICO

- 1) A
- 2) E
- 3) E
- 4) D
- 5) D
- 6) E
- 7) E
- 8) A
- 9) E
- 10) D
- 11) B
- 12) A
- 13) C
- 14) E
- 15) A
- 16) C
- 17) E
- 18) A
- 19) B
- 20) E
- 21) C
- 22) B
- 23) A
- 24) D
- 25) C
- 26) B
- 27) A
- 28) E
- 29) A
- 30) D
- 31) E
- 32) C
- 33) B
- 34) A
- 35) B
- 36) A
- 37) A
- 38) E
- 39) A
- 40) C
- 41) C
- 42) D 43) A
- 44) E