Computabilidade e Decidibilidade

Se há problemas não-resolvíveis por máquinas de Turing, então, pela Tese de Church, estes não podem ser resolvidos por algoritmos de qualquer tipo. Esta conclusão motiva o estudo e a identificação dos problemas solucionáveis. Partindo do conceito de decidibilidade para máquinas de Turing pode-se chegar a conclusões importantes.

<u>Teorema</u>: Toda Linguagem Turing-decidível é Turing-aceitável.

Demonstra-se construindo a máquina de Turing de aceitação, a partir de uma máquina de decisão.

 $\underline{\text{Teorema}}\text{: Se L \'e}$ uma Linguagem Turing-decidível então o seu complemento \overline{L} também \'e Turing-decidível.

Demonstra-se construindo a máquina de Turing a partir de uma máquina de decisão para L.

As perguntas que estão sem resposta são:

- 1. Toda linguagem Turing-aceitável é Turing-decidível?
- 2. O complemento de uma linguagem Turing-aceitável é Turing-aceitável?

Se houvesse uma máquina de Turing capaz de "descobrir" a saída de uma máquina de Turing M qualquer, então toda linguagem Turing-aceitável seria Turing-decidível. Então pode-se resumir esta constatação na seguinte linguagem $K_0 = \{\rho(M)\rho(w): M \text{ aceita } w\}$. Se K_0 for Turing-decidível por alguma máquina M_0 , então toda linguagem Turing-aceitável será Turing-decidível.

Se K_0 é Turing-decidível, então $K_1 = \{ \rho(M) : M \text{ aceita } \rho(M) \}$ também o é, e a máquina de Turing M_1 que a decide é composta de uma máquina de codificação, que codifica e copia a cadeia recebida w em $\rho(w)$, e passa o controle para a máquina M_0 .

Assim o resultado final de M_0 será Y se e somente se:

- a) w é $\rho(M)$, e
- b) M aceita w, isto é, $\rho(M)$;

que é a definição de K_1 . Entretanto se K_1 é Turing-decidível, então seu complemento também o é:

 $\overline{K}_1 = \{w \in \{I, c\}^*: w \text{ não \'e a codificação de uma máquina de Turing M, ou w= <math>\rho(M)$ para alguma máquina de Turing M que não aceita entrada $\rho(M)\}$.

Entretanto \overline{K}_1 não é sequer Turing-aceitável, porque se o fosse haveria uma máquina de Turing M^* que a aceita. Pela definição de \overline{K}_1 , $\rho(M^*) \in \overline{K}_1$ se e somente se M^* não aceita $\rho(M^*)$. Mas M^* deve aceitar \overline{K}_1 , assim $\rho(M^*)$ $\in \overline{K}_1$ se e somente se M^* aceita $\rho(M^*)$. Portanto M^* aceita $\rho(M^*)$ se e somente se M^* não aceita $\rho(M^*)$, o que é absurdo, logo deve ter havido erro na hipótese sobre M^* , que não deve existir. Logo tem-se:

<u>Teorema</u>: Nem toda linguagem Turing-aceitável é Turing-decidível.

<u>Teorema</u>: Os complementos de algumas linguagens Turing-aceitáveis não são Turing-aceitáveis.

Este é o problema da parada da máquina de Turing (K_0) , através dele sabe-se que há problemas que não admitem solução algorítmica. Tais problemas são chamados não-solucionáveis. Por outro lado, um problema é dito solucionável se existe um algoritmo que o resolve, isto é, se há um procedimento de decisão para ele.

<u>Teorema</u>: Uma linguagem é Turing-decidível se e somente se tanto ela quanto o seu complemento são Turing-aceitáveis.

<u>Teorema</u>: Uma linguagem é Turing-aceitável se e somente se ela é a linguagem de saída de alguma máquina de Turing.

<u>Definição</u>: Uma Linguagem é dita Turing-enumerável se e somente se existe uma máquina de Turing que enumera suas cadeias.

<u>Teorema</u>: Uma linguagem é Turing-aceitável se e somente se ela é Turing-enumerável.

Problemas não Resolvíveis sobre MT

Teorema: Os problemas a seguir são não-solucionáveis:

- a) Dada uma máquina de Turing M e uma cadeia de entrada w, M pára com a entrada w?
- b) Para uma específica máquina M, dada uma cadeia de entrada w, M pára com a entrada w?
- c) Dada uma máquina de Turing M, M pára com a fita de entrada vazia?
- d) Dada uma máquina de Turing M, há alguma cadeia de entrada com a qual M pára?
- e) Dada uma máquina de Turing M, M pára com toda cadeia de entrada?
- f) Dadas duas máquinas de Turing M₁ e M₂, elas param com as mesmas cadeias de entrada?
- g) Dada uma máquina de Turing M, a linguagem que M aceita é regular? É livre de contexto? É Turing-decidível?

Problemas não Resolvíveis sobre Gramáticas

Teorema: Os problemas abaixo são não-solucionáveis:

- a) Para uma gramática arbitrária dada G e uma cadeia w, determinar se $w \in L(G)$.
- b) Para uma específica gramática G_0 e uma cadeia w, determinar se $w \in L(G_0)$.
- c) Dadas duas gramáticas arbitrárias G_1 e G_2 , determinar se $L(G_1) = L(G_2)$.
- d) Para uma gramática arbitrária G, determinar se $L(G)=\emptyset$.

Problemas não Resolvíveis para GLC

<u>Teorema</u>: Os problemas a seguir são não-solucionáveis:

- a) Dadas duas gramáticas livres de contexto G_1 e G_2 , determinar se $L(G_1) \cap L(G_2) = \emptyset$.
- b) Para uma gramática livre de contexto G, determinar se G é ambígua.

Complexidade Computacional

O conceito de complexidade está diretamente associado à realidade objetiva, isto é, à prática da computação em dispositivos reais. Há problemas que, apesar de solucionáveis, têm uma *complexidade* em tempo tão elevada que torna impraticável a sua implementação computacional.

<u>Definição</u>: *Decidibilidade em tempo*. Seja T: $\mathbb{N} \to \mathbb{N}$ uma função numérica, e L $\subseteq \Sigma_0^*$ uma linguagem, e M=(K, Σ , δ , s) uma máquina de Turing com k fitas e

com $\Sigma_0 \subseteq \Sigma$. Diz-se que M decide L em tempo T se sempre que $w \in L$, $(s, \#w\#,\#, ...,\#) \vdash_M^t (h, \#y\#,\#, ...,\#)$ para algum $t \le T(|w|)$;

e sempre que $w \notin L$ (s, #w#,#,...,#) \vdash_M^t (h, ##,#,...,#) para algum $t \le T(|w|)$;

Diz-se que L é decidível em tempo T se há algum k > 0 e alguma máquina de Turing com k fitas que decide L em tempo T. A classe de todas as linguagens decidíveis em tempo T é denotada por TIME(T).

Assim adota-se como limite para o número de passos da máquina de Turing por uma função do comprimento da entrada. Assim não há função T tal que o T(n) < 2n + 4 para algum $n \ge 0$ (já que é necessário percorrer a cadeia de entrada, apagá-la, e escrever \mathbf{Y} ou \mathbf{N}).

Encontrar um limite superior para a função T pode não ser trivial. Entretanto o objetivo da teoria da complexidade computacional é escolher, dentre as várias possíveis máquinas de Turing para decidir uma dada linguagem, aquela capaz de terminar em T passos, onde T é o menor possível, ou, se não for possível, fornecer uma demonstração rigorosa da impossibilidade de uma máquina tão rápida.

Taxa de crescimento de funções

A questão mais relevante a respeito da complexidade computacional é a taxa de crescimento no tempo, os valores constantes podem ser aproximados sempre do menor possível (usando para isso uma máquina de Turing com mais fitas).

<u>Definição</u>: Sejam f e g funções de \mathbb{N} para \mathbb{N} . Escreve-se f=O(g) se e somente se há uma constante c>0 e um inteiro $n_0 \in \mathbb{N}$ tal que: $f(n) \le c.g(n)$, para todo $n \ge n_0$.

Teorema: Seja
$$f(n) = \sum_{j=0}^{d} a_j n^j$$
 um polinômio e $r > 1$.
Então $f = O(r^n)$.

Simulações limitadas em tempo

<u>Teorema</u>: Suponha que uma linguagem L é decidida por uma máquina de Turing M_1 com uma fita duplamente

infinita em tempo T_1 . Então L é decidida por uma máquina de Turing padrão M_2 , com uma fita, em tempo T_2 , onde para todo $n \in \mathbb{N}$, $T_2(n)=6T_1(n)+3n+8$.

<u>Teorema</u>: Suponha que uma linguagem L é decidida por uma máquina de Turing M_1 com k fitas em tempo T_1 . Então L é decidida por uma máquina de Turing padrão M_2 , com uma fita, em tempo T_2 , onde, $T_2(n) = 4T_1(n)^2 + (4n + 4k + 3)T_1(n) + 5n + 15$.

Corolário: Se L é decidida por uma máquina de Turing com k fitas em tempo T, então L é decidida em tempo T'=O(T²) por uma máquina de Turing com uma fita.

Classes P e NP

<u>Definição</u>: Define-se \mathcal{P} (decidíveis em tempo polinomial) como a classe de linguagens:

$$\mathcal{P} = \cup \{TIME(n^d): d > 0\}.$$

A classe \mathcal{P} coincide com a classe de problemas que podem ser resolvidos realisticamente por computadores.

<u>Definição</u>: Seja T: N → N uma função numérica, e L ⊆ Σ_0^* uma linguagem, e M=(K, Σ, δ, s) uma máquina de Turing não determinística. Diz-se que M aceita L em tempo não determinístico T se para todo w ∈ Σ_0^* , w ∈ L se e somente se (s, #w#) \vdash_M^t (h, v $\underline{\sigma}$ u) para algum v, u ∈ Σ^* , $\sigma \in \Sigma$, e t ≤ T(|w|). Diz-se que L é aceitável em tempo não determinístico T se há uma máquina de Turing não determinística que aceita L em tempo não determinístico T. A classe de linguagens aceitáveis em tempo não determinístico T é denotada por NTIME(T). Define-se \mathcal{NP} = U {NTIME(n d): d > 0}.

Uma computação é considerada infinita se necessita de mais de T(|w|) passos para uma entrada w.

<u>Teorema</u>: $\mathcal{NP} \subseteq \bigcup \{TIME(r^{n^d}): r, d > 0\}.$

Classe NP-Completo

<u>Definição</u>: Sejam Σ e Δ alfabetos. Uma função $f: \Sigma^* \to \Delta^*$ é dita computável em tempo T por uma máquina de Turing determinística com k fitas M=(K, Σ ', δ , s) se e somente se para todo $x \in \Sigma^*$,

(s, $\#x \underline{\#}, \underline{\#}, ..., \underline{\#}$) \vdash_M^t (h, $\#f(x)\underline{\#}, \underline{\#}, ..., \underline{\#}$), para algum $t \leq T(|x|)$. Diz-se que f é computável em tempo T se existe alguma máquina de Turing M que computa f em tempo T. Diz-se que que f é computável em tempo polinomial se existe um polinômio T tal que f seja computável em tempo T.

<u>Definição</u>: Sejam as linguagens $L_1 \subseteq {\Sigma_1}^*$ e $L_2 \subseteq {\Sigma_2}^*$. Uma função computável em tempo polinomial $T: {\Sigma_1}^* \to {\Sigma_2}^*$ é chamada de uma transformação em tempo polinomial de L_1 para L_2 se e somente se para cada $x \in {\Sigma_1}^*$, é verdadeiro: $x \in L_1$ se e somente se $T(x) \in L_2$.

<u>Definição</u>: Uma linguagem L é dita \mathcal{NP} -completa se e somente se $L \in \mathcal{NP}$, e para toda linguagem $L' \in \mathcal{NP}$ há uma transformação polinomial de L' para L.

<u>Teorema</u>: Seja L uma linguagem \mathcal{NP} -completa. Então \mathcal{P} = \mathcal{NP} se e somente se L $\in \mathcal{P}$

Problemas NP-Completos:

- Programação Linear Inteira
- Ciclo Hamiltoniano
- Caixeiro Viajante

Lida-se com esses problemas através de algoritmos de aproximação.