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• Generally speaking, parametric excitation occurs when at least one of the parameters of the equations of

motion explicitly depends on time;

• Focus of the lecture: The stiffness varies in time according to 𝑘(𝑡) = ത𝑘 + Δ𝑘 cos(𝑡);

• Classical linear problem written in the dimensionless form ሷ𝑥 + 𝛿 + 2𝜖 cos 2𝜏 𝑥 = 0(undamped Mathieu′s

equation);

• Strutt's diagram: Straightforward way to check the stability of the trivial solution of Mathieu's equation on the

plane of control parameters (𝛿; 𝜖 ). Can be either obtained using the harmonic balance method (HBM) or the

method of multiple scales (MMS).

GENERAL ASPECTS
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• Point located above (below) the transition curves: unbounded (bounded) 

solutions;

• First instability (principal parametric instability) arises at ( 𝛿 = 1; 𝜖 =

0). A favorable scenario for the parametric instability is that in which the 

parametric excitation frequency is twice the natural frequency of the

system;

• Surveys on the theme: Nayfeh & Mook (1978), Meirovitch (2003) 

among others.

STRUTT'S DIAGRAM
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TRANSITION CURVES: DERIVATION USING THE
HBM
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• Derivation valid for the undamped Mathieu’s Equation: ሷ𝑥 + 𝛿 + 2𝜖 cos 2𝜏 𝑥 = 0;

• Using the Floquet’s theory, it can be shown that the transition curves are associated with period solutions of

period 𝑇 or 2𝑇, 𝑇 being the period of the parametric excitation (in our case 𝑇 = 𝜋);

• We write the transition curves in the form of Fourier Series:  



𝑛=0

∞

𝑎𝑛𝑐os (𝑛2𝜏) + ෨𝑏𝑛sin (𝑛2𝜏) +

𝑛=0

∞

ǁ𝑐𝑛𝑐os (𝑛𝜏) + ሚ𝑑𝑛sin (𝑛𝜏) = 

𝑛=0

∞

𝑎𝑛𝑐os (𝑛𝜏) + 𝑏𝑛sin (𝑛𝜏 )

TRANSITION CURVES: DERIVATION USING THE HBM
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• Some useful mathematical identities

cos(2𝜏) cos(𝑛𝜏) =
𝑒𝑖2𝜏 + 𝑒−𝑖2𝜏

2

𝑒𝑖𝑛𝜏 + 𝑒−𝑖𝑛𝜏

2
=
1

2
cos 2 + 𝑛 𝜏 +

1

2
cos( 2 − 𝑛 𝜏)

cos 2𝜏 sin(𝑛𝜏) =
𝑒𝑖2𝜏+𝑒−𝑖2𝜏

2

𝑒𝑖𝑛𝜏−𝑒−𝑖𝑛𝜏

2𝑖
=

1

2
sin 2 + 𝑛 𝜏 +

1

2
sin( 𝑛 − 2 𝜏))

𝑥𝑐𝑜𝑠(2𝜏) = 

𝑛=0

∞

𝑎𝑛
1

2
cos 2 + 𝑛 𝜏 +

1

2
sin( 2 − 𝑛 𝜏) + 𝑏𝑛

1

2
sin 2 + 𝑛 𝜏 +

1

2
sin( 𝑛 − 2 𝜏))

ሷ𝑥 = −

𝑛=0

∞

𝑛2(𝑎𝑛cos(𝑛𝜏) + 𝑏𝑛sin 𝑛𝜏 )

TRANSITION CURVES: DERIVATION USING THE HBM
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• Expansion using three terms in the Fourier Series:

• δ𝑥 = δ𝑎0+δ𝑎1𝑐𝑜sτ+δ𝑏1sinτ+δ𝑎2cos 2τ+δ𝑏2sin2τ

• 𝑥𝑐𝑜𝑠 2𝜏 =
𝑎0

2
𝑐𝑜𝑠2𝜏 + 𝑐𝑜𝑠2𝜏 +

𝑎1

2
𝑐𝑜𝑠3𝜏 + 𝑐𝑜𝑠𝜏 +

𝑏1

2
𝑠𝑖𝑛3𝜏 − 𝑠𝑖𝑛𝜏 +

𝑎2

2
cos 4𝜏 + 1 +

𝑏2

2
𝑠𝑖𝑛4𝜏

• ሷ𝑥 = −(𝑎1𝑐𝑜𝑠𝜏 + 𝑏1𝑠𝑖𝑛𝜏 + 4𝑎2𝑐𝑜𝑠2𝜏 + 4𝑏2𝑠𝑖𝑛2𝜏)

Substituting the above quantities into the Mathieu’s equation, one obtains:

−𝑎1 + 𝛿𝑎1 + 𝜖𝑎1 𝑐𝑜𝑠𝜏 + −𝑏1 + 𝛿𝑏1 − 𝜖𝑏1 𝑠𝑖𝑛𝜏 + −4𝑎2 + 𝛿𝑎2 + 2𝜖𝑎0 𝑐𝑜𝑠2𝜏 + −4𝑏2 + 𝛿𝑏2 𝑠𝑖𝑛2𝜏

+ … = 0

(...)  being higher-order harmonics not considered in the expansion.

TRANSITION CURVES: DERIVATION USING THE HBM
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• As the trigonometric functions are orthogonal according to the usual inner product:

0
0
2𝜖
0
𝛿

−1 + 𝛿 + 𝜖
0
0
0
0

0
−1 + 𝛿 + 𝜖

0
0
0

0
0

−4 + 𝛿
0
𝜖

0
0
0

−4 + 𝛿
0

𝑎0
𝑎1
𝑏1
𝑎2
𝑏2

=

0
0
0
0
0

• Non-trivial solutions of the above equations exist if the determinant of the coefficients matrix is null, i.e., if  

4𝛿 − 𝛿2 + 2𝜖2 −4 + 𝛿 −1 + 𝛿 − 𝜖 −1 + 𝛿 + 𝜖 = 0

TRANSITION CURVES: DERIVATION USING THE HBM
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TRANSITION CURVES: DERIVATION USING THE HBM

• The description of the Strutt’s diagram is improved if more terms are considered in the HBM. Symbolic

computation is a valuable tool here.

• 3 terms • 7 terms
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TRANSITION CURVES: DERIVATION USING THE
MMS
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TRANSITION CURVES: DERIVATION USING THE MMS

• Derivation presented in Nayfeh (1978) – Perturbation methods

• Mathieu’s equations written in the form: ሷ𝑢 + 𝛿 + 𝜖 cos 2𝜏 𝑢 = 0;

• Notice that 𝛿 = 𝜔0
2, 𝜔0 being the natural frequency of the oscillator;

• Following the MMS, different time-scales are defined as 𝜏𝑛 = 𝜖𝑛𝜏;

• Solution is sought on the form:

𝑢 = 𝑢0 + 𝜖𝑢1 + 𝜖2𝑢2

with 𝑢𝑗 = 𝑢𝑗 𝜏0, 𝜏1, 𝜏2 , 𝑗 = 0,1 and 2

• Family of differential operators: 𝐷𝑛
𝑘( ) =

𝜕𝑘

𝜕𝜏𝑛
𝑘( )
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TRANSITION CURVES: DERIVATION USING THE MMS

ሶ =
𝑑( )

𝑑𝜏
=
𝑑( )

𝑑𝜏0

𝑑𝜏0
𝑑𝜏

+
𝑑( )

𝑑𝜏1

𝑑𝜏1
𝑑𝜏

+
𝑑( )

𝑑𝜏2

𝑑𝜏2
𝑑𝜏

= (𝐷0+𝜖𝐷1 + 𝜖2𝐷2) + 𝑂(𝜖3)

ሷ( ) =
𝑑2 ( )

𝑑𝜏2
= (𝐷0+𝜖𝐷1 + 𝜖2𝐷2)(𝐷0+𝜖𝐷1 + 𝜖2𝐷2) = (𝐷0

2+𝜖2𝐷0𝐷1 + 𝜖2(2𝐷0𝐷2 + 𝐷1
2))( ) +𝑂 𝜖3

ሷ𝑢 = (𝐷0
2+𝜖2𝐷0𝐷1 + 𝜖2(2𝐷0𝐷2 + 𝐷1

2))( 𝑢0 + 𝜖𝑢1 + 𝜖2𝑢2) =

= 𝐷0
2𝑢0 + 𝜖 𝐷0

2𝑢1 + 2𝐷0𝐷1𝑢0 + 𝜖2 𝐷1
2𝑢0 + 2𝐷0𝐷2𝑢0 + 𝐷0

2𝑢2 + 2𝐷0𝐷1𝑢1 + 𝑂(𝜖3)

Using the above definitions, the terms of the Mathieu’s equation read

𝜖 cos 2𝜏 𝑢 = 𝜖 cos 2𝜏0 𝑢0 + 𝜖𝑢1 + 𝜖2𝑢2 = 𝜖𝑢0 cos 2𝜏0 + 𝜖2𝑢1 cos 2𝜏0 + 𝑂 𝜖3

𝛿𝑢 = 1 + 𝜖𝛿1 + 𝜖2𝛿2 𝑢0 + 𝜖𝑢1 + 𝜖2𝑢2 = 𝑢0 + 𝜖 𝛿1𝑢0 + 𝑢1 + 𝜖2(𝑢2 + 𝛿2𝑢0 + 𝛿1𝑢1) +𝑂 𝜖3

Focus of this class: Principal Mathieu’s instability (𝛿 = 1) → 𝛿 = 1 + 𝜖𝛿1 + 𝜖2𝛿2 + 𝑂 𝜖3
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TRANSITION CURVES: DERIVATION USING THE MMS

By substituting ሷ𝑢, 𝜖 cos 2𝜏 𝑢 and 𝛿𝑢 in the Mathieu’s equation and collecting terms of equal power in 𝜖,
one obtains:

𝑂 𝜖0 : 𝐷0
2𝑢0 + 𝑢0 = 0

𝑂 𝜖 : 𝐷0
2𝑢1 + 𝑢1 = −𝑢0 cos 2𝜏0 − 𝛿1𝑢0 − 2𝐷1𝐷0𝑢0

𝑂 𝜖2 : 𝐷0
2𝑢2 + 𝑢2 = −𝛿2𝑢0 − 𝛿1𝑢1 − 𝑢1 cos 2𝜏0 − 𝐷1

2𝑢0 − 2𝐷0𝐷2𝑢0 − 2𝐷0𝐷1𝑢1

The application of the MMS leads to a series of linear equations in which

the solutions of the faster scales “force” the lower ones.

𝑢0 = 𝐴𝑒𝑖𝜏0 + 𝐴∗𝑒−𝑖𝜏0 = 𝐴𝑒𝑖𝜏0 + 𝑐. 𝑐;Solution of the equation of order 𝜖0: 𝐴 = 𝐴(𝜏1, 𝜏2) being a complex amplitude.

Useful identities: 𝐷0𝑢0 = 𝑖𝐴𝑒𝑖𝜏0 − 𝑖𝐴∗𝑒−𝑖𝜏0 = 𝑖𝐴𝑒𝑖𝜏0 + 𝑐. 𝑐.

𝐷1𝐷0𝑢0 = 𝑖𝐷1𝐴𝑒
𝑖𝜏0 + 𝑐. 𝑐.

𝑢0 cos 2𝜏0 = 𝐴𝑒𝑖𝜏0 + 𝐴∗𝑒−𝑖𝜏0
𝑒𝑖2𝜏0 + 𝑒−𝑖2𝜏0

2
=
1

2
𝐴𝑒𝑖3𝜏0 + 𝐴∗𝑒𝑖𝜏0 + 𝑐. 𝑐.



Module 29 - Guilherme R. Franzini 16

TRANSITION CURVES: DERIVATION USING THE MMS

Substituting these identities into the equation of order 𝑂 𝜖 :

𝐷0
2𝑢1 + 𝑢1 = −

1

2
𝐴𝑒𝑖3𝜏0 + −

1

2
𝐴∗ − 𝛿1𝐴 − 𝑖2𝐷1𝐴 𝑒𝑖𝜏0 + 𝑐. 𝑐.

Resonant term

Resonant terms give rise to secular terms (unbounded solutions) and must be removed.

Solvability condition: −
1

2
𝐴∗ − 𝛿1𝐴 − 𝑖2𝐷1𝐴 = 0 ↔ 𝐷1𝐴 =

𝑖

2
𝛿1𝐴 +

1

2
𝐴∗
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TRANSITION CURVES: DERIVATION USING THE MMS

𝐴 = 𝑎 + 𝑖𝑏 → 𝐴∗ = 𝑎 − 𝑖𝑏, 𝑎, 𝑏 real numbers

𝐷1𝐴 =
𝑖

2
𝛿1𝐴 +

1

2
𝐴∗ → 𝐷1𝑎 + 𝑖𝐷1𝑏 =

𝑖

2
𝛿1 +

1

2
𝑎 + 𝑖 𝛿1 −

1

2
𝑏

Separating into real and imaginary parts:

𝐷1𝑎 =
1

2

1

2
− 𝛿1 𝑏

𝐷1𝑏 =
1

2

1

2
+ 𝛿1 𝑎

First-order system of autonomous

differential equations:

Stability can be studied using the first

Lyapunov’s method.
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TRANSITION CURVES: DERIVATION USING THE MMS

𝐷1𝑎
𝐷1𝑏

=

0
1

2

1

2
− 𝛿1

1

2

1

2
+ 𝛿1 0

𝑎
𝑏

Solutions are sought in the form
𝑎
𝑏

= ෩𝑨𝑒𝜆𝑡 . The existence of non-trivial solutions implies that

𝑑𝑒𝑡

−𝜆
1

2

1

2
− 𝛿1

1

2

1

2
+ 𝛿1 −𝜆

= 𝜆2 −
1

4

1

4
− 𝛿1

2 = 0 → 𝜆 = ±
1

2

1

4
− 𝛿1

2
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TRANSITION CURVES: DERIVATION USING THE MMS

• Case 1: −
1

2
< 𝛿1 <

1

2
→ 𝜆 =

1

2

1

4
− 𝛿1

2 > 0 (unbounded solution)

• Case 2: 𝛿1 >
1

2
and 𝛿1 < −

1

2
→ 𝜆 = ±

𝑖

2
𝛿1
2 −

1

4
(bounded solution)

• Case 3: 𝛿1 = ±
1

2
(transition curves)

𝜆 = ±
1

2

1

4
− 𝛿1

2

Recalling that 𝛿 = 1 + 𝜖𝛿1 + 𝑂 𝜖2 , the transition curves are defined as 𝛿 = 1 +
𝜖

2
or 𝛿 = 1 −

𝜖

2
. In an

equivalently manner, 𝜖 = 2(𝛿 − 1) or 𝜖 = 2(−𝛿 + 1).
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TRANSITION CURVES: DERIVATION USING THE MMS

𝜖 = 2(𝛿 + 1).𝜖 = 2(−𝛿 + 1)

𝛿

𝜖

1

Bounded

solutions

Bounded

solutions

Unbounded

solutions
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• Cables have their lateral stiffness associated with

the normal force (geometric stiness);

• Tension depends on time→ geometric stiffness also

depends on it;

• In offshore scenario, slender structures such as

risers and TLP’s tethers, the motion of the floating

units on the vertical plane induces a time-dependent

tension;

• May be important due to structural fatigue.

TECHNOLOGICAL IMPORTANCE
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• Focus on the oshore scenario Patel & Park (1991): Effects of the quadratic damping (Morrison's equation) is 

taken into account on the reduced-order models (ROMs) → Bounded solutions are obtained even in the region 

in which the Strutt's diagram predicts unbounded responses;

• Simos & Pesce (1997) and Chandrasekaran et al. (2006): The spatial variation of tension may be of 

importance on the study of the parametric instability;

• The aforementioned papers deal with the case in which the tension harmonically varies with respect to time →

Some aspects of the irregular parametric excitation in risers can be found in the numerical paper by Yang, Xiao 

and Xu (2013).

AN OVERVIEW ON RISERS DYNAMICS
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• Experimental investigations focusing on the parametric excitation of submerged cylinders;

• Numerical studies focusing on the post-critical response (i.e, after the parametric instability);

• Experimental studies focusing on the response of a flexible cylinder to irregular parametric excitation.

RESEARCH OPPORTUNITIES
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1. General Aspects

2. Experimental analysis of the PE of a flexible and submerged cylinder

3. Mathematical modeling of PE of a vertical and flexible cylinder

4. Passive suppression of PE
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• Focus: PE of a flexible and submerged vertical cylinder;

• Experiments carried out at Technological Research Institute (IPT-SP) as part of  a comprehensive project 

sponsored by Petrobras (2009-2013);

• Innovative aspects of the experimental set-up: Cartesian coordinates of 43 reflective targets were 

directly measured by means of an optical tracking system (Qualisys®) – uncertainty lower than 0.1mm 

• VIV is obtained by towing the carriage in which the model is assembled. PE is achieved by using a 

servomotor device for imposing a vertical and harmonic top motion with amplitude 𝐴𝑡 and frequency 𝑓𝑡

. Temporal variation of the normal force (geometric stiffness modulation).

CONTEXTUALIZATION
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Extracted from Franzini et al. (2016a).

EXPERIMENTAL ARRANGEMENT

(a) Lateral view. (b) Back view.
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EXPERIMENTAL ARRANGEMENT AND CYLINDRICAL
MODEL

Extracted from Franzini et al. (2018).Extracted from Franzini et al. (2015).

(a) General view. (b) Submerged cameras.

(c) Servomotor device.
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EXPERIMENTAL MODAL ANALYSIS

Adapted from Franzini et al. (2015).
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• Standard techniques: Based on the time-histories of each monitored target; statistics and amplitude spectra;

• Modal decomposition scheme: Projection of the measured response onto a set of “modal functions”𝜓𝑘 (𝜉) =

sin(𝑘𝜋𝜉).

Trigonometric functions are not the vibration modes for a vertical rod

𝑎𝑘
𝑥(𝑡𝑗) =

0
1
𝑋∗(𝜉,𝑡𝑗)𝜓𝑘 𝜉 𝑑𝜉

0
1
(𝜓𝑘(𝜉))

2𝑑𝜉
(1)

𝑎𝑘
𝑦
(𝑡𝑗) =

0
1
𝑌∗(𝜉,𝑡𝑗)𝜓𝑘 𝜉 𝑑𝜉

0
1
(𝜓𝑘(𝜉))

2𝑑𝜉
(2)

𝜉 = 𝑧/𝐿0

ANALYSIS METHODOLOGIES



Module 29 - Guilherme R. Franzini 30

• Published in Franzini et al. (2015) - J. Vib. Acoustics, v.137(3), 031010-1 - 031010-12. ResearchGate

project named Risers Mechanics;

• Experimental investigations on the PE of a submerged cylinder are not commonly found;

• Cases to be discussed: 𝑓𝑡: 𝑓𝑛,1 = 1 ∶ 3, 𝑓𝑡: 𝑓𝑛,1 = 1 ∶ 1, 𝑓𝑡: 𝑓𝑛,1 = 2 ∶ 1 𝑎𝑛𝑑 𝑓𝑡: 𝑓𝑛,1 = 3 ∶

1, 𝑎𝑙𝑙 𝑤𝑖𝑡ℎ 𝐴𝑡 = 𝐿0 = 0: 01.

• For the sake of conciseness of this presentation, the modal-amplitude time-histories are discussed.

• Modal form of the equation of motion (after the application of the Galerkin's method considering a unimodal 

projection):

𝑀𝑘
𝑑2𝑎𝑘

𝑑𝑡2
+ 𝛽𝑘

𝑑𝑎𝑘

𝑑𝑡

𝑑𝑎𝑘

𝑑𝑡
+ 𝜂𝑘 + 𝜉𝑘 𝑐𝑜𝑠 𝜔𝑡 𝑡 𝑎𝑘 = 0 (3)

PE OF A VERTICAL AND FLEXIBLE CYLINDER

http://dx.doi.org/10.1115/1.4029265
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𝑀𝑘 = න
0

𝐿0

𝑚𝑡𝜓𝑘
2 𝑧 𝑑𝑧 = 𝑚𝐼 +𝑚𝑎

𝑝𝑜𝑡 𝐿0
2

𝛽𝑘 = 0
𝐿0 1

2
𝜌𝐶𝐷𝐷|𝜓𝑘 𝑧 |𝜓𝑘

2 𝑧 𝑑𝑧

𝜂𝑘 = − න
0

𝐿0 𝜕

𝜕𝑧
𝑇𝑡 − 𝛾 𝐿0 − 𝑧

𝑑𝜓 𝑧

𝑑𝑧
𝜓𝑘 𝑧 𝑑𝑧 =

𝑘𝜋

2

2

2
𝑇𝑡
𝐿0

− 𝛾

𝜉𝑘 =
𝑘𝜋

2

2 𝐸𝐴

𝐿0

2 𝐴𝑡

𝐿0

PE OF A VERTICAL AND FLEXIBLE CYLINDER

Dimensionless mathematical model:

ሷ𝑎 + 2𝜇𝑘 𝐷 ሶ𝑎𝑘| ሶ𝑎𝑘| + 𝛿𝑘 + 2𝜖𝑘 cos 2𝜏 𝑎𝑘 = 0

2𝜏 = 𝜔𝑡𝑡 = 2𝜋𝑓𝑡𝑡, 𝜇𝑘 =
𝛽𝑘

2𝑀𝐾
, 𝛿𝐾 =

4𝑛𝑘

𝑀𝑘𝜔𝑡
2 , 𝜖𝑘 =

2𝜉𝑘

𝑀𝑘𝜔𝑡
2

(4)

(5)

(6)

(7)

(8)

(9)
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The marker for the case 𝑓𝑡 ∶ 𝑓𝑛,1 = 1: 3 is inside the stable region and is not
visible in the adopted scale.

PE: MODAL STRUTT'S DIAGRAMS

(a) 𝑘 = 1 (b) 𝑘 = 2 (c) 𝑘 = 3

Adapted from Franzini et al. (2015)
𝑓𝑡: 𝑓𝑛,1 = 1: 1

𝑓𝑡: 𝑓𝑛,1 = 1: 2

𝑓𝑡: 𝑓𝑛,1 = 3: 1
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PE: MODAL-AMPLITUDE TIME-HISTORIES - 𝑎1(𝜏)

Significant responses in the first mode for the cases:

• 𝑓𝑡 ∶ 𝑓𝑛,1 = 1 ∶ 1 (classical resonance);

• 𝑓𝑡 ∶ 𝑓𝑛,1 = 2 ∶ 1(principal parametric instability of the

first mode).

(a) 𝑓𝑡∶ 𝑓𝑛,1 = 1 ∶ 3 (b) 𝑓𝑡 ∶ 𝑓𝑛,1 = 1 ∶ 1

(c) 𝑓𝑡 ∶ 𝑓𝑛,1 = 2 ∶ 1 (d) 𝑓𝑡 ∶ 𝑓𝑛,1 = 3 ∶ 1

Adapted from Franzini et al. (2015).
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PE: MODAL-AMPLITUDE TIME-HISTORIES - 𝑎2(𝜏)

(a) 𝑓𝑡∶ 𝑓𝑛,1 = 1 ∶ 3 (b) 𝑓𝑡 ∶ 𝑓𝑛,1 = 1 ∶ 1

(c) 𝑓𝑡 ∶ 𝑓𝑛,1 = 2 ∶ 1 (d) 𝑓𝑡 ∶ 𝑓𝑛,1 = 3 ∶ 1

Adapted from Franzini et al. (2015).

Significant responses in the second mode for the cases:

• 𝑓𝑡 ∶ 𝑓𝑛,1 = 2 ∶ 1 (classical resonance);

• 𝑓𝑡 ∶ 𝑓𝑛,1 = 3: 1 → responses with the shape of the
second mode with frequency close to 𝑓𝑛,3.
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PE: MODAL-AMPLITUDE TIME-HISTORIES - 𝑎3(𝜏)

(a) 𝑓𝑡∶ 𝑓𝑛,1 = 1 ∶ 3 (b) 𝑓𝑡 ∶ 𝑓𝑛,1 = 1 ∶ 1

(c) 𝑓𝑡 ∶ 𝑓𝑛,1 = 2 ∶ 1 (d) 𝑓𝑡 ∶ 𝑓𝑛,1 = 3 ∶ 1

Adapted from Franzini et al. (2015).

Significant responses in the third mode for the case:

• 𝑓𝑡 ∶ 𝑓𝑛,1 = 3 ∶ 1 (classical resonance).
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1. General Aspects

2. Experimental analysis of the PE of a flexible and submerged cylinder

3. Mathematical modeling of PE of a vertical and flexible cylinder

4. Passive suppression of PE
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PARAMETRIC EXCITATION OF A VERTICAL AND 
IMMERSED CYLINDER

• Start-point: Non-linear equations of motion for the planar dynamics of a vertical cylinder (see Mazzilli et al.

(2008).

• Contribution: Analysis oh the parametric excitation of a vertical and immersed flexible cylinder using a multi-

modal ROM.

• Rom obtained by applying the Galerkin’s method on the equations of motion for the continuum.

• Results published in Franzini & Mazzilli (2016), Int. J. of Non-Linear Mech., v.80,29-39.

http://dx.doi.org/10.1016/j.ijnonlinmec.2015.09.019
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SKETCHES AND MATHEMATICAL MODEL FOR THE 
CONTINUUM

(a) Vertical and stretched cylinder (b) Kinematical hyphothesis.



Module 29 - Guilherme R. Franzini 39

SKETCHES AND MATHEMATICAL MODEL FOR THE 
CONTINUUM

𝑚𝑙
𝜕2𝑢

𝜕𝑡2
+ 𝑐

𝜕𝑢

𝜕𝑡
+ 𝐸𝐼

𝜕4𝑢

𝜕𝑧4
−

𝜕

𝜕𝑧
𝑇 𝑧, 𝑡

𝜕𝑢

𝜕𝑧
−

𝐸𝐴

2𝐿0

𝜕2𝑢

𝜕𝑧2
0
𝐿0 𝜕𝑢

𝜕𝑧

2
𝑑𝑧 = −𝑚𝑎

𝑝𝑜𝑡 𝜕2𝑢

𝜕𝑡2
−

1

2
𝜌𝐷 ҧ𝐶𝐷

𝜕𝑢

𝜕𝑡

𝜕𝑢

𝜕𝑡

𝑇 𝑧, 𝑡 = −𝛾 𝐿0 − 𝑧 + ത𝑇𝑡 +
𝐸𝐴

𝐿0
𝐴𝑡 (cosΩ𝑡)

𝑇𝑡 𝑡

𝑢 𝑧, 𝑡 = 

𝑘=1

3

𝜓𝑘 𝑧 𝑎𝑘 𝑡 ;
𝑑𝑢(𝑧, 𝑡)

𝑑𝑡
= 

𝑘=1

3

𝜓𝑘 𝑧
𝑑𝑎𝑘 𝑡

𝑑𝑡

𝑑2𝑢 𝑧, 𝑡

𝑑𝑡2
= 

𝑘=1

3

𝜓𝑘 𝑧
𝑑2𝑎𝑘(𝑧)

𝑑𝑡2
;
𝑑𝑢(𝑧, 𝑡)

𝑑𝑧
= 

𝑘=1

3
𝑑𝜓𝑘 𝑧

𝑑𝑧
𝑎𝑘 𝑡

𝑑2𝑢 𝑧, 𝑡

𝑑𝑧2
= 

𝑘=1

3
𝑑2𝜓𝑘 𝑧

𝑑𝑧2
𝑎𝑘 𝑡 ;

𝑑4𝑢 𝑧, 𝑡

𝑑𝑧4
= 

𝑘=1

3
𝑑4𝜓𝑘 𝑧

𝑑𝑧4
𝑎𝑘 𝑡

Non-linear equation of motion

for the continuum: 

immersed cylinder
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DIMENSIONLESS ROM

Dimensionless quantities

𝜏 = 𝑡𝜔𝑛,1; 𝜉 =
𝑧

𝐿0
𝑛 =

Ω

𝜔𝑛,1
; 𝑎𝑘 =

𝑎𝑘
𝐷
; 𝐶𝑎

𝑝𝑜𝑡
=
𝑚𝑎

𝑝𝑜𝑡

𝑚𝑑
; 𝑚 =

𝑚𝐼

𝑀𝐷
Λ𝑀 =

𝐷2

𝑚𝑑 𝑚 + 𝐶𝑎
𝑝𝑜𝑡 𝜌 ҧ𝐶𝐷

Multi-modal ROM (after the application of the Galerkin´s method)

ሷ𝑎1 + 𝛼1 ሶ𝑎1 + 𝛿1 + 𝜖1 cos 𝑛𝜏 𝑎1 + 𝛼2 𝑎2 + 𝛼3 𝑎1
3 + 𝛼4 𝑎2

2 𝑎1 + 𝛼5 𝑎1 𝑎3
2

+Λ𝑀න
0

1

ሶ𝑎1𝜓1 + ሶ𝑎2𝜓2 + ሶ𝑎3𝜓3
ሶ𝑎1𝜓1 + ሶ𝑎2𝜓2 + ሶ𝑎3𝜓3 𝜓1𝑑𝜉 = 0

ሷ𝑎2 + 𝛽1 ሶ𝑎2 + 𝛿2 + 𝜖2 cos 𝑛𝜏 𝑎2 + 𝛽2 𝑎3 + 𝛽3 𝑎1 + 𝛽4 𝑎2 𝑎1
2 + 𝛽5 𝑎2

3 + 𝛽6 𝑎 2 𝑎3
2

+Λ𝑀න
0

1

ሶ𝑎1𝜓1 + ሶ𝑎2𝜓2 + ሶ𝑎3𝜓3
ሶ𝑎1𝜓1 + ሶ𝑎2𝜓2 + ሶ𝑎3𝜓3 𝜓2𝑑𝜉 = 0

ሷ𝑎3 + 𝛾1 ሶ𝑎3 + 𝛿3 + 𝜖3 cos 𝑛𝜏 𝑎3 + 𝛾2 𝑎2 + 𝛾3 𝑎3 𝑎2
2 + 𝛾4 𝑎3 𝑎1

2 + 𝛾5 𝑎3
3

+Λ𝑀න
0

1

ሶ𝑎1𝜓1 + ሶ𝑎2𝜓2 + ሶ𝑎3𝜓3
ሶ𝑎1𝜓 1 + ሶ𝑎2𝜓2 + ሶ𝑎3𝜓3 𝜓3𝑑𝜉 = 0
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DIMENSIONLESS ROM

ሶ =
𝑑

𝑑𝜏
( ); 𝜓𝑘 𝜉 = sin 𝑘𝜋𝜉 ; 𝜖𝑘 =

𝐸𝐴

𝐿0

𝑘𝜋

𝐿0

2
𝐴𝑡

𝑚𝑑 𝑚 + 𝐶𝑎
𝑝𝑜𝑡

𝜔1
2

𝛿𝑘 =
𝐸𝐼

𝑚𝑑 𝑚 + 𝐶𝑎
𝑝𝑜𝑡

𝜔1
2

𝑘𝜋

𝐿0

4

−
1

2

𝛾𝐿0

𝑚𝑑 𝑚 + 𝐶𝑎
𝑝𝑜𝑡

𝜔1
2

𝑘𝜋

𝐿0

2

+
𝑘𝜋

𝐿0

2 ത𝑇𝑡

𝑚𝑑 𝑚 + 𝐶𝑎
𝑝𝑜𝑡

𝜔1
2

• Adopted projection functions: 𝜓𝑘 𝜉 = sin 𝑘𝜋𝜉 ;

• Sensitivity of the results with respect to the choice of the projection functions:

Ongoing research, part of the PhD of Guilherme Vernizzi (see Vernizzi, Franzini & Lenci (2019) – RANM

Conference and Vernizzi, Franzini & Lenci (2019) – submitted to Int. J. of Mech. Sciences).
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MAPS OF POST-CRITICAL MODAL AMPLITUDES

(a) መ𝐴1 ൗ𝐴𝑡
𝐿0 , 𝑛 (b) መ𝐴2 ൗ𝐴𝑡

𝐿0 , 𝑛 (c) መ𝐴3 ൗ𝐴𝑡
𝐿0 , 𝑛
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MAPS OF POST-CRITICAL MODAL AMPLITUDES

• Post-critical response maps do not correspond to the Strutt’s diagram. They show the characteristic value of

the modal-amplitude time-histories as functions of the parameters that govern the parametric excitation;

• The multi-modal character of the ROM allows the appearance of other regions in the plane of control

parameter in which lateral responses are observed. This result is not observed if a 1-dof ROM is employed;

• As expected, the parametric excitation frequency associated with the onset of the main region of response

corresponds to twice the natural frequency of that mode.
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1. General Aspects

2. Experimental analysis of the PE of a flexible and submerged cylinder

3. Mathematical modeling of PE of a vertical and flexible cylinder

4. Passive suppression of PE
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PASSIVE SUPPRESSION OF PE

• Rigid cylinder, assembled onto a time-dependent spring
support of constant damping;

• Undergraduate research developed by Giovanna Campedelli;
results presented in Franzini, Campedelli & Mazzilli (2018),
Int. J. of with Non-Linear Mech., v.105, 249-260.

• Part of a research project sponsored by FAPESP – Regular
Research Project (2017-2019). Similar studies can be found
in the ResearchGate project named ``Passive suppression of
oscillations using non-linear vibration absorbers.

ሷ𝑦 − 𝛽1 sin 𝜃
ሶሷ𝜃 − 𝛽1 cos 𝜃 ሶ𝜃2 + 𝛽2 ሶ𝑦 + 1 + 𝛿 sin 𝑛𝜏 𝑦 = 0

ሷ𝜃 −
1

Ƹ𝑟
sin 𝜃 ሷ𝑦 + 𝛽3 ሶ𝜃 = 0

𝑦 =
𝑌

𝐷
, ෝ𝑚 =

𝑚

𝑀
, Ƹ𝑟 =

𝑟

𝐷
, 𝜁𝑦 =

𝑐

2 𝑀 +𝑚 𝜔𝑛,𝑦

𝜁𝜃 =
𝑐𝜃

2𝑚𝑟2𝜔𝑛,𝑦
, 𝛽1= Ƹ𝑟

ෝ𝑚

1+ ෝ𝑚
, 𝛽2 = 2𝜁𝑦

𝛽3 = 2𝜁𝜃 , 𝛿 =
∆𝑘

ത𝑘
, 𝑛 =

Ω

𝜔𝑛,𝑦
,𝜏 = 𝜔𝑛,𝑦𝑡, ሶ( ) =

𝑑( )

𝑑𝜏

𝜔𝑛,𝑦 =
ത𝑘

𝑚 +𝑀

http://dx.doi.org/10.1016/j.ijnonlinmec.2018.05.014
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OBJECTIVE

• To check if the rotative NVA is able to suppress the principal parametric instability 𝑛 = 2 . Gravitational effects

are not taken into account;

• To assess the influence of the NVA parameters (mass, radius and damping) on the cylinder (main or controlled

structure). Similar investigations were not found in the literature;

• Numerical studies; mathematical model numerically, integrated using a Runge-Kutta scheme.

• Initial conditions; 𝑦 0 = 0.1, 𝜃 0 = Τ𝜋 6 , ሶ𝑦 0 = ሶ𝜃 0 = 0;

• The mon-linear character of the mathematical model would lead to important dependence of the response on

the initial conditions (possible erosion of the basin of attraction) → Even tough important, this aspect is left for

a further work.
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MAPS 𝑦𝑠𝑡𝑑 ෝ𝑚; Ƹ𝑟

• Regions shaded in red: unbounded responses (similar to those obtained in the case without the NVA);

• Regions shaded in blue: Small oscillation amplitudes, showing that the NVA is able to limit the structural

response even if the parametric excitation frequency leads to the principal parametric instability;

• Erosion of the plane of control parameters is observed, specially for the case with 𝜁𝜃 = 0.05 (regions of

unbounded or null oscillatory responses appear inside a region of small responses);

• The increase in 𝜁𝜃 enhances the response of the main structure and decreases the erosion of the plane ෝ𝑚; Ƹ𝑟 .

(a) 𝜁𝜃 = 0.05 (b) 𝜁𝜃 = 0.10 (c) 𝜁𝜃 = 0.15
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A CLOSER INSPECTION

Map 𝑦𝑠𝑡𝑑 ෝ𝑚; Ƹ𝑟 and examples of cylinder responses 𝑦 𝜏 . 𝜁𝜃 = 0.05.

• Different types of responses of the main structure

appear: Unbounded solutions, strongly modular

responses, complete suppression and steady-

state responses (see the paper);

• Besides limiting the cylinder response, the rotative

NVA is also able to completely suppress PE

(depending on its parameters);

Extracted from Franzini, Campedelli & Mazzilli (2018)
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STRONGLY MODULATED RESPONSE

Time-histories and spectral analyses. ෝ𝑚 = 0.12, Ƹ𝑟 = 0.35 and 𝜁𝜃 = 0.05.

(a) 𝑦 𝜏 (b) 𝜃 𝜏 (c) H-H spectrum of 𝑦 𝜏

Extracted from Franzini, Campedelli & Mazzilli (2018)
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STRONGLY MODULATED RESPONSE

• Two distinct response regimes: In the suppression regime, the NVA oscillates with angular velocity practically

constant 𝜃 ≈ 1. In the growing regime, the NVA has no motion ( ሶ𝜃 ≈ ሷ𝜃 ≈ 0) and cos 𝜃 = ±1 (sin 𝜃 ≈ 0);

• Growing regime:

ሷ𝑦 − 𝛽1 sin 𝜃 ሷ𝜃 − 𝛽1 cos 𝜃 ሶ𝜃2

→0

+𝛽2 ሶ𝑦 + 1 + 𝛿 sin 𝑛𝜏 = 0, Damped Mathieu’s equation

ሷ𝜃 −ถsinθ
→0

1

ොr
ሷ𝑦 + 𝛽3 ሶ𝜃 = 0, Trivially satisfied

• An asymptotic perturbation method is employed aiming at investigating the strongly modulated response…
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STRONGLY MODULATED RESPONSE –
CX-A METHOD

Let us consider the following quantities:

𝛽1 = Ƹ𝑟
ෝ𝑚

1+ ෝ𝑚
= 𝜖, 𝛿 = 𝜖 መ𝛿, 𝛽2 = 𝜖𝜆2, ሷ𝑦 = −𝑦 + 𝑂(𝜖) Assumed

Substituting the above parameters in the equations of motion, one obtains:

ሷ𝑦 + 𝜖𝜆2 ሶ𝑦 + 𝑦 = 𝜖 sin 𝜃 ሷ𝜃 + cos 𝜃 ሶ𝜃2 − መ𝛿𝑦 sin 𝑛𝜏

ሷ𝜃 + 𝛽3 ሶ𝜃 = −
1

Ƹ𝑟
sin 𝜃𝑦 + 𝑂(𝜖)

Change of variables (complexification)

𝜙𝑒𝑖𝜏 = ሶ𝑦 + 𝑖𝑦

𝜃 = 𝜏 + 𝜓
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STRONGLY MODULATED RESPONSE –
CX-A METHOD

After the averaging (similar to the Krylov-Bogoliubov’s method)

ሶ𝜙 + 𝜖
𝜆2
2
𝜙 =

𝜖

2
−
መ𝛿

2
𝜙∗ + 𝑒𝑖𝜓 1 + ሶ𝜓2 − 𝑖 ሷ𝜓

ሷ𝜓 + 1 + ሶ𝜓 𝛽3 = −
1

4 Ƹ𝑟
𝜙−𝑖𝜓 + 𝜙∗𝑒−𝑖𝜓 + 𝑂(𝜖)

By applying the method of multiple scales and collecting equations of order 𝜖0, one obtains:

𝐷0𝜙0 = 0 → 𝜙 = 𝜙 𝜏1 = 𝑁𝑒𝑖𝛼; 𝑁 = 𝑁 𝜏1 > 0, 𝛼 = 𝛼 𝜏1

𝐷0
2𝜓0 + 𝛽3 1 + 𝐷0𝜓0 = −

1

4 Ƹ𝑟
𝜙−𝑖𝜓0 + 𝜙∗𝑒𝑖𝜓0

The slow invariant manifold (SIM) is defined as the fixed points of the equations of order 𝜖0.
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SIM

cos 𝛾 − 𝛼 = −
2𝛽3 Ƹ𝑟

𝑁
𝛾 = lim

𝜏0→∞
𝜓0

The investigation of stability of the fixed points allows to point out that the SIM is composed of two branches, one

being unstable. The dynamics is observed on the stable branch of the SIM.

Now, we will see an example. Let’s assume ෝ𝑚 = 0.06, Ƹ𝑟 = 0.25 and 𝜁𝜃 = 0.15.

Extracted from Franzini, Campedelli & Mazzilli (2018).
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SIM

Extracted from Franzini, Campedelli & Mazzilli (2018).

• Qualitative and quantitative agreement between the

analytical and the numerical results;

• Strongly modulated response: associated with the capture

in a 2 : 1 : 1 resonance (the oscillation frequency is equal

to the angular velocity of the NVA, both half the

parametric excitation frequency).
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