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Objectives and references

• To investigate the stability of periodic orbits using Floquet

theory;

• References

1 Mailybaev, A. A. (2019) Introduction to the theory of
parametric resonance.

2 Nayfeh, A. & Balachandran, B. (1995), Applied nonlinear
dynamics - analytical, computational and experimental
methods;

3 Wiggins, S (1990). Introduction to applied nonlinear
dynamical systems and chaos.
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Mathematical model



ẋ1
ẋ2
ẋ3
...

ẋn


=



f1(x1, x2, x3, . . . ,M)
f2(x1, x2, x3, . . . ,M)
f3(x1, x2, x3, . . . ,M)

...

fn(x1, x2, x3, . . . ,M)


→ ẋ = F (x ,M) (1)

M being a m-dimensional vector with the parameters of the

mathematical model.
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Perturbation

X0 = X0(t) is a periodic solution of Eq. 1 with minimal period T
at M =M0. Let y = y(t) a disturbance to be superimposed to X0

such that X0 + y = x(t) = x . Assuming F (C2), Eq. 1 can be

linearized around X0, leading to

ẏ ≈ A(t,M0)y ,A(t,M0) = DXF (X0,M0) (2)
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Solution

• Equation 2 is linear → It has n linearly independent (LI)

solutions (fundamental set of solutions) y i (t), i ,= 1, 2, . . . , n;

• We gather these solutions as the columns of a fundamental

matrix solution

Y (t) = [y1(t) y2(t) y3(t) . . . yn(t)]→ Ẏ = A(t,M0)Y ;

• Change of variables τ = t + T → Eq. 2 becomes

dY

dτ
= A(τ − T ,M0)Y = A(τ,M0)Y (3)

• We conclude that Y (t + T ) =
[y1(t + T ) y2(t + T ) y3(t + T ) . . . yn(t + T )] is another
fundamental matrix solution.
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Monodromy matrix

• As Eq. 2 has n LI solutions, y i (t + T ) is a linear combination

of y1(t), y2(t) . . . yn(t);

• In a more compact form Y (t + T ) = Y (t)Φ, Φ unknown (up

to now). Φ has dimension n × n, depends on the choice of

Y (t) and can be seen as a map from the initial condition to T ;

• If Y (0) = I , then Φ = Y (T ). Φ is the monodromy matrix.
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A transformation

• Let P be a non-singular constant matrix of order n× n and we

de�ne Y (t) = V (t)P−1;

•

Y (t + T ) = Y (t)Φ↔ V (t + T )P−1 = V (t)P−1Φ↔
V (t + T ) = V (t)P−1ΦP︸ ︷︷ ︸

J

(4)

• We can conveniently choose J ...
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Case 1 - Φ has distinct eigenvalues ρm

• In this case, we choose P = [p1 p2 . . .pn], pm being the

eigenvectors of Φ → Canonical Jordan form

•

J = P−1ΦP = P−1Φ[p1 p2 . . .pn] =

= P−1[Φp1 Φp2 . . .Φpn] = P−1[ρ1p1 ρ2p2 . . . ρnpn] =

= P−1PD = D =


ρ1 0 . . . 0

0 ρ2 . . . 0
...

...
. . .

...

0 0 . . . ρn

 (5)

• Each ρm is named Floquet or characteristic multiplier → gives

a measure of local divergence or convergence of the orbit in a

particular direction.
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Case 1 - Φ has distinct eigenvalues ρm

From Eqs. 5 and 4:

vm(t + T ) = ρmvm(t),m = 1, 2, . . . , n↔
↔ vm(t + NT ) = ρNmvm(t),m = 1, 2, . . . , n and N integer (6)

• Notice that N →∞ means t →∞. Eq. 6 indicates that the

stability of the periodic orbits can be assessed by the

eigenvalues of the monodromy matrix;

• vm(t)→ 0 if |ρm| < 1;

• vm(t)→∞ if |ρm| > 1.
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Case 2 - Φ has some repeated eigenvalues ρm

• In this case, the behavior of the system depends on the

algebraic and geometric multiplicities (am and gm,
respectively) of the Floquet multipliers.

• If am = gm > 1, we can use the approach aforementioned;

• Now, we focus on the case with gm < am.
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Jordan chains

• A Jordan chain can be de�ned as:

Φu1 = ρu1

Φu2 = ρu2 + p1

Φu3 = ρu3 + p2

... (7)

Φul = ρul + pl−1

Φul+1 6= ρul+1 + pl

u1 being the eigenvector and the u2 . . . , ul the generalized eigenvectors.

• The Jordan chain can be written as ΦP = PJ, with J =


ρ 1 . . . 0
0 ρ . . . 0
...

...
. . .

...
0 0 . . . ρ


being a Jordan block. The Jordan canonical form is composed of a number of
Jordan blocks, according to gm.
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A comment valid for autonomous systems

• Taking the derivative of Eq. 1

ẍ = DXF (x ,M)ẋ (8)

• If x is a solution of Eq. 1, ẋ is solution of both Eqs. 8 and 2;

• Provided X0(t) is solution of Eq. 1, Ẋ0(t) is solution of Eq. 2

and has period T . Hence Ẋ0(t) = Ẋ0(t + T );

• We write Ẋ0(t) as a linear combination of

y1(t), y2(t), . . . , yn(t) as:

Ẋ0(t) = Y (t)α (9)

α being a vector of constants.

• From Eq. 9: Ẋ0(0) = Y (0)α and Ẋ0(T ) = Y (T )α.
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A comment valid for autonomous systems

• Provided X0(t) has period T , recalling that Y (0) = I and

using the de�nition of the monodromy matrix;

Φα = α (10)

• From Eq. 10, one can notice that 1 is an eigenvalue of the

monodromy matrix;

• De�nition (autonomous systems): A periodic solution of 1

is named as hyperbolic if only one Floquet multiplier is located

in the unit circle;

• De�nition (autonomous systems): A periodic solution of 1

is named as non-hyperbolic if more than one Floquet multiplier

are located in the unit circle;

• The Hartman-Grobaman's theorem is valid for hyperbolic

periodic orbits.
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De�nitions for autonomous systems

• A hyperbolic period solution is asymptotically stable if no

Floquet multiplier is outside the unit circle → periodic

attractor or stable limit cycle;

• A hyperbolic period solution is unstable stable if at least on

Floquet multiplier is outside the unit circle → periodic repellor

or unstable limit cycle;
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Non-autonomous systems

• Non-autonomous system of �rst-order di�erential equations

ẋ = F (x ,M , t) (11)

• Similarly to what was carried out for the autonomous systems,

we study the stability of the T -periodic solution X0 = X0(t)
of Eq. 11 with M =M0;

• We superimpose the perturbation z = z(t) to X0, obtaining

x(t) = x = X0 + z ;

• Expanding Eq. 11 in Taylor series and neglecting higher-order

terms, one obtains:

ż = A(t,M0)z (12)
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De�nitions for non-autonomous systems

• Practically all the discussions already made for the autonomous systems remain
valid for non-autonomous systems;

• Notice, however, that 1 is no longer an eigenvalue of the monodromy matrix;

• A periodic solution of 1 is named as hyperbolic if no Floquet multiplier is
located in the unit circle;

• A periodic solution of 1 is named as non-hyperbolic if at least one Floquet
multiplier is located in the unit circle;

• If all ρm are located within the unit circle → Periodic solution is a stable
limit-cycle;

• If some ρm is located outside the unit circle → Periodic solution is a unstable.

• If all ρm are located outside the unit→ Periodic solution is an unstable limit
cycle;

• If some but not all ρm are located outside the unit circle→ Periodic solution is a
saddle;

• The Hartman-Grobaman's theorem is valid for hyperbolic periodic orbits.
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Bifurcation of periodic orbits

• We are interested in investigating with the stability of a

periodic orbit when the vector gathering the parameters of the

mathematical model (M) is varied;

• We de�ne the codimension of a bifurcation as the minimum

number of independent control parameters that must be varied

in order to observe the bifurcation;

• For periodic orbits, the bifurcations are observed when the

Floquet multipliers cross the unity circle. Three cases, below

illustrated may occur.
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transcritical, symmetry-breaking and fold bifurcations

Floquet multiplier crosses the unity circle through +1.

23/32PEF 5737



period-doubling or �ip bifurcation

Floquet multiplier crosses the unity circle through -1.

24/32PEF 5737



Neimark-Sackler (or secondary Hopf or torus) bifurcation

Floquet multiplier crosses the unity circle as complex conjugates.
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A comment on the period-doubling bifurcation

• We recall that vm(t + T ) = ρmvm(t),m = 1, 2, . . . , n

• if ρm = −1 (period-doubling bifurcation)

vm(t + T ) = −vm(t)→ vm(t) has period 2T .

26/32PEF 5737



Outline

1 Objectives and references

2 Autonomous systems

3 Non-autonomous systems

4 Bifurcation of periodic orbits

5 Application to the Mathieu's equation

27/32PEF 5737



Undamped Mathieu's equation

•
ü + (δ + 2ε cos 2τ)u = 0 (13)

• We rewrite Eq. 13 as a system of �rst-order di�erential equations by de�ning
x1 = u and x2 = u̇:

ẋ1 = x2 (14)

ẋ2 = −(δ + 2ε cos 2τ)x1 (15)

• The period of the non-autonomous linear system is T = π. We investigate the
stability of the periodic solution as a function of the parameters of the plane of
control parameters (δ; ε) (Strutt's diagram).

• We compute the monodromy matrix by numerically integrating Eqs. 14 and 15
from 0 to T for di�erent pairs (δ; ε). If at least one Floquet multiplier has
modulus larger than 1.05, we associate the blue color. If contrary, we associate
the yellow color.

• Notice that the Floquet theory indicates 1 as the threshold for the stability. In
this example, we adopt 1.05 for dealing with the errors intrinsically related with
the numerical methods.
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Strutt's diagram

For the undamped Mathieu's equation, the instability tongue arise from ε = 0. The
adopted discretization (600× 600) needs to be improved if this is an important aspect
in the analysis. In a standard notebook (i7, 10th gen, 8Gb RAM), the Strutt's
diagram was obtained in 6.6 minutes.
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Floquet multipliers
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Floquet multipliers

31/32PEF 5737



Floquet multipliers
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