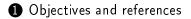


Stability of periodic solutions using the Floquet Theory

PEF 5737 - Nonlinear dynamics and stability

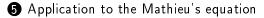
Prof. Dr. Carlos Eduardo Nigro Mazzilli Prof. Dr. Guilherme R. Franzini



2 Autonomous systems

3 Non-autonomous systems

4 Bifurcation of periodic orbits



- 3 Non-autonomous systems
- **4** Bifurcation of periodic orbits
- **5** Application to the Mathieu's equation

- To investigate the stability of periodic orbits using Floquet theory;
- References
 - Mailybaev, A. A. (2019) Introduction to the theory of parametric resonance.
 - Nayfeh, A. & Balachandran, B. (1995), Applied nonlinear dynamics - analytical, computational and experimental methods;
 - Wiggins, S (1990). Introduction to applied nonlinear dynamical systems and chaos.

2 Autonomous systems

3 Non-autonomous systems

④ Bifurcation of periodic orbits

(5) Application to the Mathieu's equation

$$\begin{cases} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \vdots \\ \dot{x}_{n} \end{cases} = \begin{cases} f_{1}(x_{1}, x_{2}, x_{3}, \dots, \boldsymbol{M}) \\ f_{2}(x_{1}, x_{2}, x_{3}, \dots, \boldsymbol{M}) \\ f_{3}(x_{1}, x_{2}, x_{3}, \dots, \boldsymbol{M}) \\ \vdots \\ f_{n}(x_{1}, x_{2}, x_{3}, \dots, \boldsymbol{M}) \end{cases} \rightarrow \dot{\boldsymbol{x}} = \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{M})$$
(1)

 ${m M}$ being a m-dimensional vector with the parameters of the mathematical model.

 $X_0 = X_0(t)$ is a periodic solution of Eq. 1 with minimal period Tat $M = M_0$. Let y = y(t) a disturbance to be superimposed to X_0 such that $X_0 + y = x(t) = x$. Assuming $F(C^2)$, Eq. 1 can be linearized around X_0 , leading to

$$\dot{\mathbf{y}} \approx \mathbf{A}(t, \mathbf{M}_0) \mathbf{y}, \mathbf{A}(t, \mathbf{M}_0) = \mathbf{D}_{\mathbf{X}} \mathbf{F}(\mathbf{X}_0, \mathbf{M}_0)$$
 (2)

- Equation 2 is linear → It has n linearly independent (LI) solutions (fundamental set of solutions) y_i(t), i, = 1, 2, ..., n;
- We gather these solutions as the columns of a fundamental matrix solution

 $oldsymbol{Y}(t) = [oldsymbol{y}_1(t) \quad oldsymbol{y}_2(t) \quad oldsymbol{y}_3(t) \dots oldsymbol{y}_n(t)]
ightarrow \dot{oldsymbol{Y}} = oldsymbol{A}(t,oldsymbol{M}_0)oldsymbol{Y};$

• Change of variables $au = t + T o \mathsf{Eq}$. 2 becomes

$$\frac{d\boldsymbol{Y}}{d\tau} = \boldsymbol{A}(\tau - T, \boldsymbol{M}_{\boldsymbol{0}})\boldsymbol{Y} = \boldsymbol{A}(\tau, \boldsymbol{M}_{\boldsymbol{0}})\boldsymbol{Y}$$
(3)

• We conclude that $\mathbf{Y}(t+T) = [\mathbf{y}_1(t+T) \quad \mathbf{y}_2(t+T) \quad \mathbf{y}_3(t+T) \dots \mathbf{y}_n(t+T)]$ is another fundamental matrix solution.

- As Eq. 2 has *n* LI solutions, $y_i(t + T)$ is a linear combination of $y_1(t), y_2(t) \dots y_n(t)$;
- In a more compact form Y(t + T) = Y(t)Φ, Φ unknown (up to now). Φ has dimension n × n, depends on the choice of Y(t) and can be seen as a map from the initial condition to T;
- If $\mathbf{Y}(0) = \mathbf{I}$, then $\mathbf{\Phi} = \mathbf{Y}(T)$. $\mathbf{\Phi}$ is the monodromy matrix.

• Let \boldsymbol{P} be a non-singular constant matrix of order $n \times n$ and we define $\boldsymbol{Y}(t) = \boldsymbol{V}(t)\boldsymbol{P}^{-1}$;

$$\mathbf{Y}(t+T) = \mathbf{Y}(t)\mathbf{\Phi} \leftrightarrow \mathbf{V}(t+T)\mathbf{P}^{-1} = \mathbf{V}(t)\mathbf{P}^{-1}\mathbf{\Phi} \leftrightarrow$$
$$\mathbf{V}(t+T) = \mathbf{V}(t)\underbrace{\mathbf{P}^{-1}\mathbf{\Phi}\mathbf{P}}_{J}$$
(4)

• We can conveniently choose **J**...

• In this case, we choose $P = [p_1 \quad p_2 \dots p_n]$, p_m being the eigenvectors of $\Phi \rightarrow$ Canonical Jordan form

$$J = P^{-1} \Phi P = P^{-1} \Phi [p_1 \quad p_2 \dots p_n] =$$

$$= P^{-1} [\Phi p_1 \quad \Phi p_2 \dots \Phi p_n] = P^{-1} [\rho_1 p_1 \quad \rho_2 p_2 \dots \rho_n p_n] =$$

$$= P^{-1} P D = D = \begin{bmatrix} \rho_1 & 0 & \dots & 0 \\ 0 & \rho_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \rho_n \end{bmatrix}$$
(5)

• Each ρ_m is named Floquet or characteristic multiplier \rightarrow gives a measure of local divergence or convergence of the orbit in a particular direction.

PEFUSP

From Eqs. 5 and 4:

$$\mathbf{v}_m(t+T) = \rho_m \mathbf{v}_m(t), m = 1, 2, \dots, n \leftrightarrow$$

$$\leftrightarrow \mathbf{v}_m(t+NT) = \rho_m^N \mathbf{v}_m(t), m = 1, 2, \dots, n \text{ and N integer} \quad (6)$$

- Notice that N→∞ means t→∞. Eq. 6 indicates that the stability of the periodic orbits can be assessed by the eigenvalues of the monodromy matrix;
- $\mathbf{v}_m(t)
 ightarrow 0$ if $|
 ho_m| < 1$;

•
$$\mathbf{v}_m(t) \to \infty$$
 if $|\rho_m| > 1$.

- In this case, the behavior of the system depends on the algebraic and geometric multiplicities (*a_m* and *g_m*, respectively) of the Floquet multipliers.
- If $a_m = g_m > 1$, we can use the approach aforementioned;
- Now, we focus on the case with $g_m < a_m$.

• A Jordan chain can be defined as:

 $\Phi u_1 = \rho u_1$ $\Phi u_2 = \rho u_2 + p_1$ $\Phi u_3 = \rho u_3 + p_2$ $\Theta u_l = \rho u_l + p_{l-1}$ $\Phi u_{l+1} \neq \rho u_{l+1} + p_l$ (7)

 u_1 being the eigenvector and the $u_2 \ldots, u_l$ the generalized eigenvectors.

• The Jordan chain can be written as $\Phi P = PJ$, with $J = \begin{bmatrix} \rho & 1 & \dots & 0 \\ 0 & \rho & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \rho \end{bmatrix}$

being a Jordan block. The Jordan canonical form is composed of a number of Jordan blocks, according to $g_m.$

• Taking the derivative of Eq. 1

$$\ddot{\boldsymbol{x}} = \boldsymbol{D}_{\boldsymbol{X}} \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{M}) \dot{\boldsymbol{x}}$$
(8)

- If x is a solution of Eq. 1, \dot{x} is solution of both Eqs. 8 and 2;
- Provided $X_0(t)$ is solution of Eq. 1, $\dot{X}_0(t)$ is solution of Eq. 2 and has period T. Hence $\dot{X}_0(t) = \dot{X}_0(t + T)$;
- We write $\dot{X}_0(t)$ as a linear combination of $y_1(t), y_2(t), \dots, y_n(t)$ as:

$$\dot{X}_{0}(t) = Y(t)\alpha \tag{9}$$

lpha being a vector of constants.

• From Eq. 9: $\dot{X}_0(0) = Y(0)\alpha$ and $\dot{X}_0(T) = Y(T)\alpha$.

 Provided X₀(t) has period T, recalling that Y(0) = I and using the definition of the monodromy matrix;

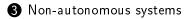
$$\mathbf{\Phi}\boldsymbol{\alpha} = \boldsymbol{\alpha} \tag{10}$$

- From Eq. 10, one can notice that 1 is an eigenvalue of the monodromy matrix;
- **Definition (autonomous systems)**: A periodic solution of 1 is named as hyperbolic if only one Floquet multiplier is located in the unit circle;
- **Definition (autonomous systems)**: A periodic solution of 1 is named as non-hyperbolic if more than one Floquet multiplier are located in the unit circle;
- The Hartman-Grobaman's theorem is valid for hyperbolic periodic orbits.

PEFUS

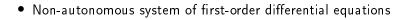
- A hyperbolic period solution is asymptotically stable if no Floquet multiplier is outside the unit circle → periodic attractor or stable limit cycle;
- A hyperbolic period solution is unstable stable if at least on Floquet multiplier is outside the unit circle → periodic repellor or unstable limit cycle;

2 Autonomous systems



4 Bifurcation of periodic orbits

(5) Application to the Mathieu's equation



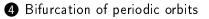
$$\dot{\boldsymbol{x}} = \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{M}, t) \tag{11}$$

- Similarly to what was carried out for the autonomous systems, we study the stability of the *T*-periodic solution $X_0 = X_0(t)$ of Eq. 11 with $M = M_0$;
- We superimpose the perturbation z = z(t) to X_0 , obtaining $x(t) = x = X_0 + z$;
- Expanding Eq. 11 in Taylor series and neglecting higher-order terms, one obtains:

$$\dot{\boldsymbol{z}} = \boldsymbol{A}(t, \boldsymbol{M}_0)\boldsymbol{z} \tag{12}$$

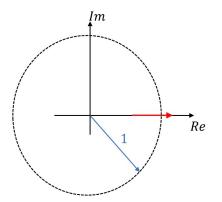
PEFUSP

- Practically all the discussions already made for the autonomous systems remain valid for non-autonomous systems;
- Notice, however, that 1 is no longer an eigenvalue of the monodromy matrix;
- A periodic solution of 1 is named as hyperbolic if no Floquet multiplier is located in the unit circle;
- A periodic solution of 1 is named as non-hyperbolic if at least one Floquet multiplier is located in the unit circle;
- If all ρ_m are located within the unit circle \rightarrow Periodic solution is a stable limit-cycle;
- If some ho_m is located outside the unit circle ightarrow Periodic solution is a unstable.
- If all ρ_m are located outside the unit \rightarrow Periodic solution is an unstable limit cycle;
- If some but not all ρ_m are located outside the unit circle \rightarrow Periodic solution is a saddle;
- The Hartman-Grobaman's theorem is valid for hyperbolic periodic orbits.

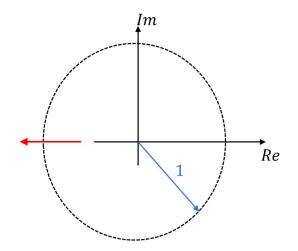


(5) Application to the Mathieu's equation

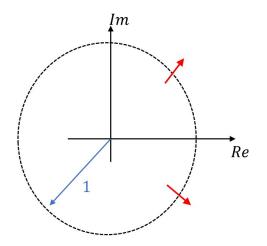
- We are interested in investigating with the stability of a periodic orbit when the vector gathering the parameters of the mathematical model (*M*) is varied;
- We define the codimension of a bifurcation as the minimum number of independent control parameters that must be varied in order to observe the bifurcation;
- For periodic orbits, the bifurcations are observed when the Floquet multipliers cross the unity circle. Three cases, below illustrated may occur.



Floquet multiplier crosses the unity circle through +1.



Floquet multiplier crosses the unity circle through -1.



Floquet multiplier crosses the unity circle as complex conjugates.

- We recall that $\boldsymbol{v}_m(t+T) =
 ho_m \boldsymbol{v}_m(t), m=1,2,\ldots,n$
- if $\rho_m = -1$ (period-doubling bifurcation) $\mathbf{v}_m(t+T) = -\mathbf{v}_m(t) \rightarrow \mathbf{v}_m(t)$ has period 2T.

- 2 Autonomous systems
- 3 Non-autonomous systems
- ④ Bifurcation of periodic orbits

5 Application to the Mathieu's equation

Undamped Mathieu's equation

$$\ddot{u} + (\delta + 2\epsilon \cos 2\tau)u = 0 \tag{13}$$

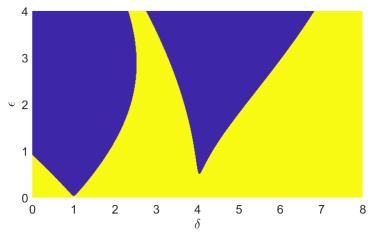
• We rewrite Eq. 13 as a system of first-order differential equations by defining $x_1 = u$ and $x_2 = \dot{u}$:

$$\dot{x}_1 = x_2 \tag{14}$$

$$\dot{x}_2 = -(\delta + 2\epsilon \cos 2\tau)x_1 \tag{15}$$

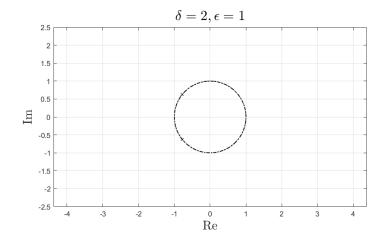
- The period of the non-autonomous linear system is T = π. We investigate the stability of the periodic solution as a function of the parameters of the plane of control parameters (δ; ε) (Strutt's diagram).
- We compute the monodromy matrix by numerically integrating Eqs. 14 and 15 from 0 to T for different pairs (δ ; ϵ). If at least one Floquet multiplier has modulus larger than 1.05, we associate the blue color. If contrary, we associate the yellow color.
- Notice that the Floquet theory indicates 1 as the threshold for the stability. In this example, we adopt 1.05 for dealing with the errors intrinsically related with the numerical methods.

Strutt's diagram

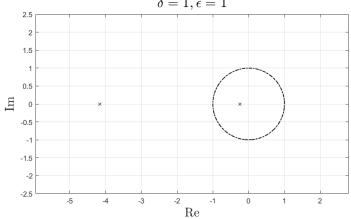


For the undamped Mathieu's equation, the instability tongue arise from $\epsilon=0$. The adopted discretization (600 \times 600) needs to be improved if this is an important aspect in the analysis. In a standard notebook (i7, 10th gen, 8Gb RAM), the Strutt's diagram was obtained in 6.6 minutes.

Floquet multipliers

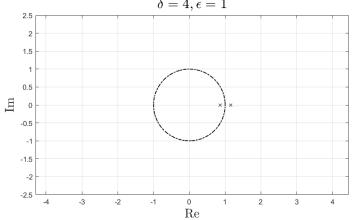


Floquet multipliers



$$\delta = 1, \epsilon = 1$$

Floquet multipliers



$$\delta = 4, \epsilon = 1$$

