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Objectives and references (@ PEFUSP

® To investigate the stability of periodic orbits using Floquet
theory;
® References

@ Mailybaev, A. A. (2019) Introduction to the theory of
parametric resonance.

® Nayfeh, A. & Balachandran, B. (1995), Applied nonlinear
dynamics - analytical, computational and experimental
methods;

© Wiggins, S (1990). Introduction to applied nonlinear
dynamical systems and chaos.
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Mathematical model
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M being a m-dimensional vector with the parameters of the
mathematical model.
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Perturbation

Xo = Xo(t) is a periodic solution of Eq. 1 with minimal period T
at M = M. Let y = y(t) a disturbance to be superimposed to Xp
such that Xg +y = x(t) = x. Assuming F (C?), Eq. 1 can be
linearized around Xjp, leading to

y = A(ta MO).y? A(ta MO) = DXF()(O7 MU) (2)
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Solution (&) PEFUSP

® Equation 2 is linear — It has n linearly independent (LI)
solutions (fundamental set of solutions) y;(t), i,=1,2,...,n;

® \We gather these solutions as the columns of a fundamental
matrix solution

Y(t) = ya(t) ya(t) y3(t).-.ya(t)] = Y = A(t,Mp)Y;
® Change of variables 7 =t + T — Eq. 2 becomes

dY

o = AT = T.Mo)Y = A(r, Mo) Y (3)
-

® We conclude that Y(t+ T) =
[yi(t+T) y(t+T) y3(t+T)...y,(t+ T)]is another
fundamental matrix solution.
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Monodromy matrix (@ PEFUSP

® As Eq. 2 has n LI solutions, y;(t + T) is a linear combination
of y1(t), y2(t) ... y,(t);

® In a more compact form Y(t+ T) = Y (t)®, ® unknown (up
to now). ® has dimension n x n, depends on the choice of
Y (t) and can be seen as a map from the initial condition to T;

® If Y(0) =1, then ® = Y(T). ® is the monodromy matrix.
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A transformation (@ PEFUSP

® et P be a non-singular constant matrix of order n x n and we
define Y(t) = V(t)P7

Yt+T)=Y(t)® < V(t+ TP L=V(H)P o

V(t+T)=V(t)P loP (4)
J

® \We can conveniently choose J...
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Case 1 - @ has distinct eigenvalues pp, \&) PEFUSP

® In this case, we choose P = [p1  p2...Pn|, Pm being the
eigenvectors of ® — Canonical Jordan form

J=PloP =P '®[p; py...pa] =
=P l®p; ®py...®p] =P 'pip1 pop2...pnPn] =

pr 0 ... 0
0 0

_plpp=p-| 7 - (5)
0 0 ... pp

® Each pp, is named Floquet or characteristic multiplier — gives
a measure of local divergence or convergence of the orbit in a
particular direction.
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Case 1 - @ has distinct eigenvalues p, L&} PEFUSP

From Egs. 5 and 4:

Vm(t+ T) = pmvm(t),m=1,2,...,n«
S Vm(t+NT) = pNvo(t),m=1,2,...,nand N integer (6)

® Notice that N — oo means t — oo. Eq. 6 indicates that the
stability of the periodic orbits can be assessed by the
eigenvalues of the monodromy matrix;

® vy(t) = 0if [pm| < 1;
® vy(t) = ooif [pm| > 1.
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Case 2 - ® has some repeated eigenvalues pp, (@ PEFUSP

® |n this case, the behavior of the system depends on the
algebraic and geometric multiplicities (an, and gpm,
respectively) of the Floquet multipliers.

® |f a,, = gm > 1, we can use the approach aforementioned;

® Now, we focus on the case with g,, < ap.
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Jordan chains

® A Jordan chain can be defined as:

bu; = puny
Puy = puy + 1
®uz = puz + p2

(7

Suy = puy + pj_1
Suyi 1 # pupyr + pi

uy being the eigenvector and the uy . . ., u; the generalized eigenvectors.
p 1 ... 0
0 p ... O

® The Jordan chain can be written as ®P = PJ, with J =
0 0 ... p
being a Jordan block. The Jordan canonical form is composed of a number of
Jordan blocks, according to gm.
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A comment valid for autonomous systems (&) PEFUSP

® Taking the derivative of Eq. 1
x = DxF(x,M)x (8)

e If x is a solution of Eq. 1, x is solution of both Egs. 8 and 2;

® Provided Xg(t) is solution of Eq. 1, _Xg(t) is solution of Eq. 2
and has period T. Hence Xp(t) = Xo(t+ T);

* We write Xo(t) as a linear combination of
y1(t),y2(t), ..., ya(t) as:

« being a vector of constants.
® From Eq. 9: Xo(0) = Y(0)ax and Xo(T) = Y(T)a.
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A comment valid for autonomous systems €)PEFUSP

® Provided Xg(t) has period T, recalling that Y/(0) = I and
using the definition of the monodromy matrix;

dba =« (10)

® From Eq. 10, one can notice that 1 is an eigenvalue of the
monodromy matrix;

¢ Definition (autonomous systems): A periodic solution of 1
is named as hyperbolic if only one Floquet multiplier is located
in the unit circle;

¢ Definition (autonomous systems): A periodic solution of 1
is named as non-hyperbolic if more than one Floquet multiplier
are located in the unit circle;

® The Hartman-Grobaman's theorem is valid for hyperbolic
periodic orbits.
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Definitions for autonomous systems €} PEFUSP

® A hyperbolic period solution is asymptotically stable if no
Floquet multiplier is outside the unit circle — periodic
attractor or stable limit cycle;

e A hyperbolic period solution is unstable stable if at least on
Floquet multiplier is outside the unit circle — periodic repellor
or unstable limit cycle;
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Non-autonomous systems

® Non-autonomous system of first-order differential equations

x = F(x,M, t) (11)

® Similarly to what was carried out for the autonomous systems,
we study the stability of the T-periodic solution Xp = Xp(t)
of Eq. 11 with M = My;

® \We superimpose the perturbation z = z(t) to Xy, obtaining
x(t) =x=Xo+ z;

® Expanding Eq. 11 in Taylor series and neglecting higher-order
terms, one obtains:

z = A(t, Mp)z (12)
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Definitions for non-autonomous systems €/ PEFUSP

® Practically all the discussions already made for the autonomous systems remain
valid for non-autonomous systems;

® Notice, however, that 1 is no longer an eigenvalue of the monodromy matrix;

® A periodic solution of 1 is named as hyperbolic if no Floquet multiplier is
located in the unit circle;

® A periodic solution of 1 is named as non-hyperbolic if at least one Floquet
multiplier is located in the unit circle;

® If all p, are located within the unit circle — Periodic solution is a stable
limit-cycle;
® |f some pp, is located outside the unit circle — Periodic solution is a unstable.

® If all pm are located outside the unit— Periodic solution is an unstable limit
cycle;

® |f some but not all p,, are located outside the unit circle— Periodic solution is a
saddle;

® The Hartman-Grobaman's theorem is valid for hyperbolic periodic orbits.

POLISE PEF 5737 20/32



Outline (@ PEFUSP

@ Bifurcation of periodic orbits

POLI s PEF 5737 21/32



Bifurcation of periodic orbits \&) PEFUSP

® \We are interested in investigating with the stability of a
periodic orbit when the vector gathering the parameters of the
mathematical model (M) is varied;

® \We define the codimension of a bifurcation as the minimum
number of independent control parameters that must be varied
in order to observe the bifurcation;

® For periodic orbits, the bifurcations are observed when the
Floguet multipliers cross the unity circle. Three cases, below
illustrated may occur.
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transcritical, symmetry-breaking and fold bifurcations
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Floquet multiplier crosses the unity circle through +1.
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period-doubling or flip bifurcation
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Floquet multiplier crosses the unity circle through -1.
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Floquet multiplier crosses the unity circle as complex conjugates.
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A comment on the period-doubling bifurcation

e We recall that v, (t + T) = pmvm(t), m=1,2,...

® if pm = —1 (period-doubling bifurcation)
Vm(t + T) = —vm(t) = vm(t) has period 2T.

POLI s PEF 5737

(&) PEFUSP

26/32



Outline (@ PEFUSP

@ Application to the Mathieu’s equation
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Undamped Mathieu's equation PEFUSP

i+ (6 +2ecos27)u=0 (13)

® We rewrite Eq. 13 as a system of first-order differential equations by defining
x1 = u and xo = :

X1 = X2 (14)
X2 = —(6 + 2ecos 27)xy (15)

® The period of the non-autonomous linear system is T = 7w. We investigate the
stability of the periodic solution as a function of the parameters of the plane of
control parameters (J; €) (Strutt’'s diagram).

® \We compute the monodromy matrix by numerically integrating Eqs. 14 and 15
from 0 to T for different pairs (J; €). If at least one Floquet multiplier has
modulus larger than 1.05, we associate the blue color. If contrary, we associate
the yellow color.

® Notice that the Floquet theory indicates 1 as the threshold for the stability. In
this example, we adopt 1.05 for dealing with the errors intrinsically related with
the numerical methods.
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Strutt’s diagram (&) PEFUSP
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For the undamped Mathieu's equation, the instability tongue arise from € = 0. The
adopted discretization (600 x 600) needs to be improved if this is an important aspect
in the analysis. In a standard notebook (i7, 10th gen, 8Gb RAM), the Strutt’s
diagram was obtained in 6.6 minutes.
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Floquet multipliers (&) PEFUSP
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Floquet multipliers (&) PEFUSP
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