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6.3 Linear Algebra and Matrix Inversion

Definition 6.1 Ann x m (n by m) matrix is a rectangular array of elements with n rows and m columns
in which not only is the value of an element important, but also its position in the array. m

Definition 6.2 Two matrices A and B are equal if they have the same number of rows and columns, say
nxm,andif aj; = b;j,foreachi =1,2,...,nandj = 1,2,...,m. [ |

Definition 6.3 1If A and B are both n x m matrices, then the sum of A and B, denoted A + B, is the n x m
matrix whose entries are a;; + b;;, foreachi=1,2,...,nandj =1,2,...,m. [ |

Definition 6.4 If A is an n x m matrix and A is a real number, then the scalar multiplication of A and

A, denoted AA, is the n x m matrix whose entries are Aq;;, for each i = 1,2,..., n and

i=12....m. 0
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We have the following general properties for matrix addition and scalar multiplication.
These properties are sufficient to classify the set of all n x m matrices with real entries as
a vector space over the field of real numbers.

¢ We let O denote a matrix all of whose entries are 0 and —A denote the matrix whose
entries are —aij.

Theorem 6.5 LetA, B, and C be n x m matrices and A and u be real numbers. The following properties
of addition and scalar multiplication hold:

(i) A+B=B+A, (i) A+B)+C=A+(B+C),
(lii) A+0=0+A=A, (iv) A+(-A)=-A+A=0,
(v) XA+ B)=21A+ AB, (vi) (A + A =2rA 4 uA,
(vii) A(pA) = (Ap)A, (viii) 1A =A.

All these properties follow from similar results concerning the real numbers. [
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Matrix-Vector Products

The product of matrices can also be defined in certain instances. We will first consider the
product of an n x m matrix and a m x 1 column vector.

Let A be an n x m matrix and b an m-dimensional column vector. The matrix-vector
product of A and b, denoted Ab, is an n-dimensional column vector given by

[~ A r = [~ M =
ajy @y - Q| | b i—1 A1ib;
ay apn - dw| | b2 :"=| a;b;
Ab=| | . . = . : _
M
| an1 A2 - Apm | | bm | Z, | Anibi

For this product to be defined the number of columns of the matrix A must match the
number of rows of the vector b, and the result is another column vector with the number of
rows matching the number of rows in the matrix.
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Matrix-Matrix Products

We can use this matrix-vector multiplication to define general matrix-matrix multiplication.

Definition 6.7 Let A be an n x m matrix and B an m x p matrix. The matrix product of A and B, denoted
AB, is an n x p matrix C whose entries ¢;; are
m
Cij = Z aigbgy = ajbyj + apbij + - - - + Aimbpj,
k=1

foreachi=1,2,---n,andj =1,2,--- ,p. [ |

The computation of ¢;; can be viewed as the multiplication of the entries of the ith row
of A with corresponding entries in the jth column of B, followed by a summation; that is,

by
[air.aip. -~ - . aim] . = Cjj,

| bmj
where
i

cij = ajitbyj + apby + - - - + Ajgbyj = Z aikby;.
k=1

This explains why the number of columns of A must equal the number of rows of B for the
product AB to be defined.

O produto de matrizes é comutativo ?
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Definition 6.9

(i) A square matrix has the same number of rows as columns.
(ii) A diagonal matrix D = [d;;] is a square matrix with d;; = 0 whenever i # J.

(iii) The identity matrix of order n, I, = [§;;]. is a diagonal matrix whose diagonal
entries are all 1s. When the size of [, is clear, this matrix is generally written simply
as [. |

Definition 6.10

An upper-triangular n x n matrix U = [u;;] has, for each j = 1,2, - - , n, the entries
uij =0, foreachi=j+1.j4+2.--- ,m
and a lower-triangular matrix L = [."{-J,-] has, foreachj = 1,2, -- -, n, the entries

.f;j:{l foreachi=1,2,---,j— 1. [ |



MAP2210
Inverse Matrices

Definition 6.11

An n x n matrix A is said to be nonsingular (or invertible) if an n x n matrix A1 exists
with AA~" = A='A = . The matrix A~! is called the inverse of A. A matrix without an

inverse is called singular (or noninvertible). O

Theorem 6.12  For any nonsingular n x n matrix A:
(i) A~!is unique.
(ii) A~'is nonsingularand (A~")~! = A,

(iii) If B is also a nonsingular n x n matrix, then (AB) ' =B 1A 1 [

Como encontrar a inversa ?



To find a method of computing A~! assuming A is nonsingular, let us look again at

matrix multiplication. Let B; be the jth column of the n x n matrix B,

_ by .
bj

bnj

If AB = C, then the jth column of C is given by the product

_ - — . E” a b =
fl
a axp -+ any boj >k G2y
| dal Qg2 - dan | | bﬂ_f _ ZE_I a,rkb@-

Suppose that A lexistsand thatA~!' = B = (bij). Then AB = I and

AB;

To find B we need to solve n linear systems in which the jth column of the inverse is the
solution of the linear system with right-hand side the jth column of /. The next illustration

0

0

demonstrates this method.

. where the value 1 appears in the jth row.

MAP2210
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Illustration

determine the inverse of the matrix
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Lad| = wSil = S| b

Al =

| = DB D] =

I
il W= WS L

As we saw in the illustration, in order to compute A~ it is convenient to set up a larger
augmented matrix,

[A - T].
Upon performing the elimination in accordance with Algorithm 6.1, we obtain an augmented
matrix of the form

(U @ Y],

where U is an upper-triangular matrix and Y is the matrix obtained by performing the same
operations on the identity 7 that were performed to take A into U.

Gaussian elimination with backward substitution requires

4 1 C e . e 4 . 3 7 R C. .
—n~ — —n multiplications/divisions and En' — EH + P additions/subtractions.

to solve the n linear systems (see Exercise 8(a)).
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Transpose of a Matrix
Definition 6.13

The transpose of an n x m matrix A = [a;;] is the m x n matrix Al = [aj;], where for each i,
the ith column of A’ is the same as the ith row of A. A square matrix A is called symmetric
if A=A |

Theorem 6.14

The following operations involving the transpose of a matrix hold whenever the operation
is possible:

(i) (AD = A, (iii) (AB)' = B'A!,
(ii) A+LB) =A"1B, (iv) if A~!exists, then (A~") = (4H)~!. =
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6.4 The Determinant of a Matrix

The determinant of a matrix provides existence and uniqueness results for linear systems
having the same number of equations and unknowns. We will denote the determinant of a
square matrix A by det A, but it is also common to use the notation |A|.

Definition 6.15

Suppose that A is a square matrix.

(i) ITA=][a]lisal x 1 matrix, then detA = a.

(ii) If A is an n x n matrix, with n > 1 the minor M;; is the determinant of the
(n—1) x (n — 1) submatrix of A obtained by deleting the ith row and jth column
of the matrix A.

(iii) The cofactor A;; associated with M;; is defined by A;; = (—1)""M;;.
(iv) The determinant of the n x n matrix A, when n > 1, is given either by
n fl o
detA =) ajA;j= Y (=1)"a;M;;, foranyi=12,---n,
Jj=1 j=1
or by

n fl
detA = ajAij =Y (=1)"a;M;;, foranyj=1,2,---.n.

i=1 i=1
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a b = ad — bc.
d

Al =

C

] O O
[] o <
(] = &
Q
I_I
[ %= o L
"D
OO0 —5
(1 = = ™
< o
| < o
[] 9~ ‘= )
_
0 o < o
I I I R
- i
| |
QO = '
0 U L
- S

Al =|d

aei + bfg+ cdh — ceg — bdi — a fh.
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Fi+r3 F14r2+13

(a+c.b+d)

(0,0)

g 1
= aei + bfg+ cdh — ceg — bdi — afh.
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Example 2

Compute the determinant of the matrix

Grupo A: Use alinha 2

Grupo B: Use a coluna 3
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Suppose A is an 1 x 1 matrix:

(i) If any row or column of A has only zero entries, then det A = 0.
(ii) If A has two rows or two columns the same, then detA = 0.

(iii) If A is obtained from A by the operation (E;) <> (Ej), with i # j, then det A =
—det A.

(iv) If A is obtained from A by the operation (AE;) — (E;). then det A = A det A.

(v) IfA is obtained from A by the operation (E; + AE;) — (E;) with i # j, then
det A = det A.

(vi) If Bisalsoan n x n matrix, then det AB = det Adet B.
(vii) detA’ = det A.
(viii) When A~! exists, det A~! = (detA)~".

(ix) If A is an upper triangular, lower triangular, or diagonal matrix, then
detA = l_[:r:| ajj. |

It can be shown (see Exercise 9) that to calculate the determinant of a general n x n
matrix by this definition requires O(n!) multiplications/divisions and additions/subtractions.
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Example 2

Compute the determinant of the matrix

Usando as regras do Teorema 6.16
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Lhapter

Determinants

4.4 APPLICATIONS OF DETERMINANTS

This section follows through on four major applications: inverse of A, solving Ax = b,
volumes of boxes, and pivots. They are among the key computations in linear algebra
(done by elimination). Determinants give formulas for the answers.

1. Computation of A~'. The 2 by 2 case shows how cofactors go into A~:

a b7 1 d =b| _ 1 |Cy Cy
c d " ad — bec | —c¢ a| detA |Cn Cnl

We are dividing by the determinant, and A is invertible exactly when det A is nonzero.
The number C;; = d is the cofactor of a. The number C;, = —c is the cofactor of b
(note the minus sign). That number C;; goes in row 2, column 1!
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The row a, b times the column C,;, Cy, produces ad — bc. This is the cofactor
expansion of det A. That is the clue we need: A~! divides the cofactors by det A.

Cofactor matrix ct

* ) A A'_l e ' ) -1 .. = ____.“” .

'II_ =
b s

Our goal is to verify this fDI‘IllLllﬂ/ for A='. We have to see why ACT = (det A)I:
] e )

aj; -+ ap| |[Cny oo Cp | [detA --- 0
: SR =1 |- 2)
(ant o Gun| [Cin o0 Can 0 co+ det A |
With cofactors Cyj, ..., Cy, in the first column and not the first row, they multiply
aii, . --,ay, and give the diagonal entry det A. Every row of A multiplies its cofactors

(the cofactor expansion) to give the same answer det A on the diagonal.
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2. The Solution of Ax = b. The multiplication x = A~'b is just C'b divided by
det A. There is a famous way in which to write the answer (x, ..., X,):

4C Cramer’s rule: The jth component of x = A~'b is the ratio

e
—
i

o dElBj
~ detA’

ay ap b ay,

Xj where B;=| : : : : |hashincolumnj. (4)

) an2 bn Ayn

Proof Expand det B; in cofactors of its jth column (which is b). Since the cofactors
ignore that column, det B; is exactly the jth component in the product CTb:

dtl’,Bj = b]CU +b2C2j + .. +an,,j.

Dividing this by det A gives x;. Each component of x is a ratio of two determinants.
That fact might have been recognized from Gaussian elimination, but it never was. ®
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The key result relating nonsingularity, Gaussian elimination, linear systems, and de-
terminants is that the following statements are equivalent.

Theorem 6.17

The following statements are equivalent for any n x n matrix A:

(i) The equation Ax = 0 has the unique solution x = 0.

(ii) The system Ax = b has a unique solution for any n-dimensional column
vector b.

(iii) The matrix A is nonsingular: that is, A~ exists.

(iv) detA #= 0.

(v) Gaussian elimination with row interchanges can be performed on the system
Ax = b for any n-dimensional column vector b. |
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7.  Given the two 4 x 4 linear systems having the same coefficient matrix:

X; —x2+2x3 — x4 =06, x1—x2+2x3—x3=1,

X —x3+x, =4, Xy —Xxi+xs=1,

2x) + x5 4+ 3x3 — dxy = -2, 2x; 4+ x5 + 3x; — dxy = 2,
—X; + X3 — Xy = 5; —X; +x3 — x5 = —1.

a.  Solve the linear systems by applying Gaussian elimination to the augmented matrix

—

—1 2 -1

=

I

—_

[
Lh b = O

1 1
1 : 1
2 1 3 -4 - - 2
0 -1 I -1 : —1

=

E calcule o determinante da matriz A
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