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ABSTRACT

The use of renewable energy resources, especially wind power, is receiving strong attention from gov-
ernments and private institutions, since it is considered one of the best and most competitive alternative
energy sources in the current energy transition that many countries around the world are adopting.
Wind power also plays an important role by reducing greenhouse gas emissions and thus attenuating
global warming. Another contribution of wind power generation is that it allows countries to diversify
their energy mix, which is especially important in countries where hydropower is a large component.
The expansion of wind power generation requires a robust understanding of its variability and thus how
to reduce uncertainties associated with wind power output. Technical approaches such as simulation and
forecasting provide better information to support the decision-making process. This paper provides an
overview of how the analysis of wind speed/energy has evolved over the last 30 years for decision-
making processes. For this, we employed an innovative and reproducible literature review approach
called Systematic Literature Network Analysis (SLNA). The SLNA was performed considering 145 selected
articles from peer-reviewed journals and through them it was possible to identify the most represen-
tative approaches and future trends. Through this analysis, we identified that in the past 10 years, studies
have focused on the use of Measure-Correlate-Predict (MCP) models, first using linear models and then
improving them by applying density or kernel functions, as well as studies with alternative techniques,
like neural networks or other hybrid models. An important finding is that most of the methods aim to
assess wind power generation potential of target sites, and, in recent years the most used approaches are
MCP and artificial neural network methods.

© 2019 Elsevier Ltd. All rights reserved.
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Abbreviations

ANNs artificial neural networks

ARIMA  autoregressive integrated moving-average
ARMA autoregressive moving-average

BNs bayesian networks

BW bivariate weibull

CNA citation network analysis

CRMSE  centered root mean squared error

CRO-SL  coral reefs optimization with substrate layer
CRPS continuous ranked probability score

GCS global citation scores

HAR hammerstein auto-regressive

[IR-MLP  infinite impulse response multilayer perceptron
IPCC intergovernmental panel on climate change
LAF-MLN local activation feedback multilayer network
LCS local citation scores

LR literature review

MAE mean absolute error

MAPE mean absolute percentage error

MBE mean bias error

MCAE mean circular absolute error

MCP measure-correlate-predict

ME mean error

MPE margin percentual error

MRE mean relative error

MSE mean squared error

NMAE normalized mean absolute error

NRMSE  normalized root mean squared error

NWP numerical weather prediction

PHEVs plug-in hybrid electric vehicles

RAE relative absolute error

RME root mean error

RMSE root mean squared error

RNN recurrent neural network

RQs research questions

RRSE root relative square error

RTSS real-time software simulator

SLNA systematic literature network analysis

SLR systematic literature review

SMAPE  mean absolute percentage error

TGARCH threshold generalized autoregressive conditional
heteroscedastic

TVARMA time-varying threshold autoregressive moving
average

twCRPS  threshold-weighted continuous ranked probability
score

VARTA vector-autoregressive-to-anything

WASsP wind atlas analysis and application program

WoS web of science
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1. Introduction

The world is passing through a progressive energy transition.
Recently Germany and other European countries, along with
countries outside Europe such as China, India, USA, Brazil and
Canada, have made a serious effort to reduce their dependence on
fossil fuels, moving away from the hydrocarbon platform and
setting up a renewable energy platform (Hossain, 2015). Promoting
renewable energy resource incorporation, in particular wind po-
wer, in the electricity mix, is one of the strategies used to achieve
this goal and mitigate greenhouse gas emissions (Gonzdlez et al.,
2017; Ramadan, 2017; Sovacool, 2016). According to the Intergov-
ernmental Panel on Climate Change (IPCC), global warming is a
reality and human activities are responsible for causing approxi-
mate warming of 1.0 °C above pre-industrial levels, a figure that is
likely to reach 1.5°C between 2030 and 2052 (Masson-Delmotte
et al., 2018). To cope with the environmental challenges posed by
global warming, energy generation from renewable sources should
be increased as a precautionary measure, not only for energy se-
curity, but also to foster a healthier environment (Ramadan, 2017).

Wind is considered an attractive energy resource because it is
renewable, clean, socially justifiable, economically competitive and
environmentally friendly (Burton et al, 2011). Therefore, the
outlook is for increasing participation on wind power in the future,
up to at least 18% of global power by 2050 according to the Inter-
national Energy Agency (IEA, 2013). The Global Wind Energy
Council indicated that in 2017 the cumulative total was 11% greater

than the 2016 year-end total of 487 GW, and the global production
remained above 50 GW in 2017. Furthermore, according to the
Global Wind Energy Council, “Beyond the statistics, wind power is
becoming a fully commercialized, unsubsidized technology; suc-
cessfully competing in the marketplace against heavily subsidized
fossil and nuclear incumbents” (GWEC, 2018). Among the countries
that are promoting wind as a renewable energy resource are 30
countries with more than 1GW of installed capacity and nine
countries with more than 10 GW, including China, USA, Germany,
India, Spain, UK, France, Brazil and Canada (GWEC, 2018).

The fluctuating nature of wind, despite the high penetration of
wind energy, poses several challenges when integrating wind po-
wer into the electric grid, since high costs can be involved for
construction of wind farms as well as prior and ongoing assessment
studies. Contrary to conventional energy sources, wind speed var-
ies both spatially and temporally, generating fluctuations in wind
energy output (Fernandez-Gonzdlez et al., 2018). Weather variables
such as wind direction, temperature, pressure and humidity,
among others, influence wind power production (Sharifian et al.,
2018). Hence, to integrate wind power into the electric grid re-
quires estimates, at least, of future wind speed values (Ammar et al.,
2018). The development of new techniques to improve under-
standing of these variables, through simulation, forecasting, dis-
tribution curve fitting, filtering and modeling, allows making better
decisions about expansion of the wind sector and better manage-
ment of the electricity system. Additionally, accurate estimation of
wind speed can improve the safety, reliability and profitability of
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the operation of wind farms (Staid et al., 2015). This involves un-
derstanding the wind regime of a specific region, to enable more
accurate forecasting of future values based on past ones.

The future values of wind power generation comprehend three
different time horizons: short, medium and long-term. Short-term
forecasts are mainly useful for operational purposes (i.e., economic
load dispatch planning, load increase/decrease decisions), while
medium-term forecasts aim to increase operational security of day-
ahead electricity markets and corroborate online/offline decisions.
Finally, long-term forecasts provide information for power system
risk assessment and also to identify potential for wind power
generation in specific areas, providing valuable data for energy
planners (Soman et al., 2010).

On the other hand, in countries like Brazil, even though wind
power capacity is growing (Gonzdlez et al., 2017), promoted mainly
by incentives for renewable energy sources, the current electric
dispatch model still does not consider wind energy output
endogenously. So, defining mechanisms to introduce wind power
into the hydro-thermal dispatch model requires reliable estimation
of wind power to support the development of scenarios and pol-
icies considering the migration from the current dispatch model to
a hydro-thermal-wind dispatch model. In this context, this paper
describes an innovative approach to determine future trends and
understand the current state of the art of wind power generation
models. The focus of this study is on future wind speed/power
trends for medium and long-term, since both horizons could be
considered into the aggregate planning, while short-term is mainly
used for operational purposes. To achieve the proposed goal, we
examine the following research questions (RQs):

e RQ1: What are the current methods and models used in the field
of wind power generation?

e RQ2: Which type of analysis do these models involve?

e RQ3: How have these methods evolved over time?

e RQ4: What are the main variables and performance measures
considered?

e RQ5: What are the trends for the future?

e RQ6: What are the limitations of current research solutions?

Regarding wind energy, several reviews have focused on
different topics, such as development of wind power resources and
technologies (Cherubini et al., 2015; Herbert et al., 2007; Ma and Lu,
2011; Sherif et al., 2005), wind speed or wind power forecasting
(Foley et al., 2012; Lei et al., 2009; Okumus and Dinler, 2016; Qian
et al., 2016; Soman et al., 2010; Y. Zhang et al., 2014; Zhao et al.,
2011), and wind resource assessment (Carta et al., 2013; Murthy
and Rahi, 2017; Wen et al.,, 2009). Although providing valuable
information, none of them present a scientific framework consid-
ering Systematic Literature Network Analysis (SLNA), the core
innovation of this study. SLNA combines two research techniques:
systematic literature review (SLR) and citation network analysis
(CNA), and it offers an additional way to carry out SLR, allowing
both qualitative and quantitative analyses. Research areas such as
supply chain risk management, smart factories and occupational
health and safety issues have employed the same method
(Colicchia and Strozzi, 2012; Fan et al., 2014; Magcaira et al., 2018;
Strozzi et al., 2017). Hence, the novelty of this study is the use of
those two scientific tools to understand the current state of the art
of wind energy generation for decision-making processes and an
overview of ongoing and future trends.

The paper is organized into five sections, starting with this
introduction. Section 2 describes the research method used to
identify, select and evaluate the most relevant articles (from
indexed journals) on wind power forecasting, along with a brief
description of SLR and CNA techniques and bibliometric analysis.

Section 3 presents the SLR and CNA results. Section 4 discuss about
the main findings. Finally, Section 5 presents our concluding
remarks.

2. Research methodology

The SLNA method, proposed by Colicchia and Strozzi (2012),
combines the benefits of SLR and CNA. According to the authors,
SLNA has advantages over the traditional systematic review pro-
cess, allowing analyzing the most representative studies in a more
rigorous, scientific and objective way. SLR mainly describes, sum-
marizes, evaluates and clarifies the literature related to a selected
area, but does not offer any specific comparison to determine the
nature of these studies (i.e., the knowledge structure that allows
creating the bases of a research field) (Colicchia and Strozzi, 2012;
Denyer and Tranfield, 2009; Fan et al., 2014). CNA's main purpose is
to identify research domains, using summaries, obtained during the
SLN, to reveal the research field's evolution and to map paradigm
changes and ruptures (Colicchia and Strozzi, 2012; Fan et al., 2014;
Hummon and Dereian, 1989), offering a dynamic perspective to
literature review.

Through SLR it is possible to identify answers for the research
questions, presented in Section 1. In turn, CNA offers a deeper un-
derstanding of the research field's cognitive structure and how
knowledge has evolved in a specific research area, giving a pro-
spective view to the subject. It enables recognizing the most rele-
vant papers in a field and those that have most contributed to
knowledge, which are defined by networks delineated through
main path analysis. Therefore, the SLR and CNA methods are
complementary, combining qualitative with quantitative analysis.
Applying both methods provides high-quality results and enables
researchers to identify gaps and future trends in a research area. To
strengthen the quantitative analysis, other networks such as co-
citation and co-word networks, can also be applied (Zhao and
Strotmann, 2015).

Co-citation analysis measures the frequency of jointly cited
documents, allowing researchers to identify and ascertain the
importance of outstanding scholars in different disciplines (i.e., to
identify authors that have received peer-recognition indicated by
citation patterns) (Small, 1973). A similar network is built by co-
word analysis, which involves study of the co-occurrence of
words in a text, using two or more representative words found
together in the articles' keywords or abstracts, for instance. Those
networks can detect existing clusters or research lines in a certain
field, where the joint occurrence of words represents the concepts
contained in the text in cases where two or more representative
words appear together (Callon et al., 1991). With the co-citation and
co-words techniques it is possible to generate maps to visualize
researchers’ influences and the knowledge structure, com-
plementing the SLNA process.

The SLNA approach follows the structure in which SLR is
responsible for the qualitative analysis and CNA for the quantitative
analysis, using part of the SLR results. SLNA includes the following
steps: (i) formulate the study question(s); and (ii) apply SLR, which
encompasses search, selection and evaluation of articles. Then the
remaining papers pass through the CNA, which is composed of: (iii)
definition of the citation network obtained via the main path
analysis (determining the research field's evolution), and (iv)
analysis of the results of SLNA. The following sub-sections present a
more thorough description of the SLR and CNA methods.

2.1. Systematic literature review — SLR

A literature review (LR) serves to analyze, understand and
summarize the literature about a specific subject in an integrated
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way, visualizing new frameworks, approaches and future per-
spectives (Torraco, 2005). Considering this, SLR can be understood
as a specific framework (approach) to execute a literature review. In
this respect, Grant and Booth (2009) and Petticrew and Roberts
(2006) identified different LR types: critical mapping or system-
atic mapping, meta-analysis, mixed studies, overview, meta-
synthesis, rapid, scoping, state-of-the-art, systematic, systema-
tized, umbrella, narrative, conceptual, realistic and expert.

Usually, reviews are not necessarily rigorous or explicit in their
methods or procedures, but unlike narrative or descriptive reviews,
SLR is performed in a scientific and transparent way (Tranfield et al.,
2003), through a replicable and updateable process. Systematic
reviews are objective and systematic, eliminating duplicated and
unnecessary studies. According to Reim et al. (2015), “previous
researchers have argued that using such an approach to review
literature can ensure that bias (i.e., systematic error) is limited,
chance effects are reduced and the legitimacy of data analysis is
enhanced” in all aspects of the review process. In this sense, it is
“less of a discussion of the literature and more of a scientific tool”
(Petticrew and Roberts, 2006). Studies using this technique were
first published in medical science (Glasziou et al., 2000; O'Connor
et al., 2008; Stroup et al., 2000), but nowadays it is also applied
in areas such as management (Colicchia and Strozzi, 2012; Denyer
and Tranfield, 2009; Thomé et al., 2012; Tranfield et al., 2003)
and engineering (Kitchenham, 2004; Rasool et al., 2015) and time
series (Magcaira et al., 2018).

SLR uses a standard procedure in order to address and answer
the RQs. This standard procedure is divided into three phases, to
identify, select and review scientific articles associated with the
research area of interest. Those three main phases are presented in
Fig. 1.

The first phase includes definition of the scientific databases to
be searched as well as keywords and search queries. In addition, the
first paper exclusion criterion is implemented in this phase. In this
study, Scopus and Web of Science (WoS) were the search engines
chosen. Although these two platforms provide information from
different sources (journals, conference proceedings, abstracts and
books), the study only focuses on papers published in peer-
reviewed scientific journals. With the search engines defined, the
next task consists of defining keywords and queries to find the
relevant articles. Here these were defined by all six authors during a
brainstorming process, considering the main subject (wind power
or wind energy), the approach used (e.g., forecasting, simulation,
etc.) and time horizon considered (e.g., short, medium or long-

Paper Paper Full Paper
Identification Selection Review
Scientific
- database ) Descrit
selection Abstract review d:ts'l.cnl‘x'lt}i’o:
S —
E—
. Backward
Keyword
definition Paper exclusion meratg"gns{f“ ch
| additional papers
E—
Query
definition
| —
 EE—
Paper exclusion
— criterion
definition
—

Fig. 1. Paper selection scheme.

term). Table 1 presents the 18 keywords selected which were
used for each search engine (Scopus and WoS) until December
2018. Table 2 contains the two queries (one for each of the scientific
databases).

The last step of the first phase intends to filter the articles
considering specific exclusion criteria. According to Rasool et al.
(2015), “the inclusion and exclusion criteria are applied for select-
ing relevant essential studies to answer the RQ. Inclusion and
exclusion criteria are boundaries that are used to include relevant
studies and filter irrelevant studies which are extracted through
search queries.” Therefore, only articles from journals written in
English were considered and double-counting was eliminated.

Other exclusion criteria were:

e Articles not related to the subject or research area: here only
articles strictly related to wind power forecasting/simulation
should remain in the database.

Forecasting horizon studied: according to Zhao et al. (2011) and
Foley et al. (2012), wind power forecasting is classified consid-
ering different time scales: short-term (ranging from 1 hto 72 h
ahead), medium-term (ranging from 72 h to 7 days ahead) and
long-term (ranging from 1 week to 1 year or more ahead). In this
study, only medium and long-term were considered, so articles
that study short-term future values were excluded, since this
horizon is basically focused on the operation management and
the spot market, thus excluding the aggregated planning.

The second phase entails reading the abstracts and selecting the
papers, so abstracts were read by four authors, who independently
determined whether to reject or accept the article for full reading.
According to Esteves et al. (2015) “if an article receives more ac-
ceptances than rejections, it is accepted for full reading, and vice-
versa. If the number of acceptances and rejections matches, the
researchers have to decide together how to classify the paper.”
Convergence level between the four researchers' evaluation was
estimated through an intercoder reliability rate called Cohen's
kappa (Cohen, 1968). The last phase involves reading the entire
articles. During this reading, additional relevant papers could be
identified in the reference sections. This full reading aims to extract
(collect) detailed information about the studies, to synthetize the
most relevant aspects and characteristics. Hence, a descriptor
database was conceived to be fed during the full reading. Table 3
contains the information gathered for the descriptor database.
The purpose is to summarize each article's main aspects, including
retrieved information from the scientific database, grouped as
general information and characteristics collected during the
reading process. In order to answer the research questions, it is
necessary to define both data and model characteristics. Initially,
the input and output variables used during the processes are
identified. The modeling process can use one or more input vari-
ables, such as wind speed and other climate variables like direction
and humidity, or even use wind power as an output variable. The
models' type, purpose, forecast horizon and evaluation metrics are
also identified (Table 3) because the application varies according
with the modeling goals.

2.2. Citation network analysis — CNA

As already mentioned, CNA is used to identify knowledge evo-
lution over time and to determine present and future trends in a
certain research area, enabling the understanding and mapping of
knowledge ruptures and paradigm shifts (Colicchia and Strozzi,
2012; Fan et al,, 2014; Hummon and Dereian, 1989). It is also a
useful tool to classify relevant topics and research gaps. Hence, it
provides a foundation and paths for future studies because it
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Table 1
Keywords selected.

Wind related keywords

Approach related keywords Horizon related keywords

Inclusion Wind speed, wind power, wind energy, wind production, wind output. Forecast, forecasting. Medium-term, medium-range.
Prediction, predicting. Long-term, long-range.
Simulate, simulation, simulating.
Exclusion — - Short-term, short-range.
Table 2

Queries considered.

Web of Science

Scopus

TS =
OR "wind power"

("wind speed"

OR "wind energy"
OR "wind production"
OR "wind output")
AND TS = (forecast OR forecasting
OR prediction OR predicting
OR simulation OR simulating
OR simulate)
AND TS =
OR "long term" OR "long range")
NOT TI =

("medium term" OR "medium range

("short term" OR "short range")

(TITLE-ABS-KEY ("wind speed") OR
TITLE-ABS-KEY ("wind power") OR
TITLE-ABS-KEY ("wind energy") OR
TITLE-ABS-KEY ("wind production") OR
TITLE-ABS-KEY ("wind output"))

AND (TITLE-ABS-KEY ("forecast") OR
TITLE-ABS-KEY ("forecasting") OR
TITLE-ABS-KEY (

TITLE-ABS-KEY ("predicting") OR
TITLE-ABS-KEY ("simulate"™) OR
(
(

"

prediction") OR

"

TITLE-ABS-KEY ("simulation") OR
TITLE-ABS-KEY ("simulating"))

AND (TITLE-ABS-KEY ("medium term") OR
TITLE-ABS-KEY ("medium range") OR
TITLE-ABS-KEY ("long term") OR
TITLE-ABS-KEY ("long range"))

AND NOT (TITLE ("short term") OR

TITLE ("short range"))

Table 3
Descriptor database.

General Information Data Characteristics

Modeling Characteristics

— Authors — Time series type: wind power,
wind speed, direction,
temperature, humidity

— Article's title — Time series input: wind speed,
wind power, direction, climatological
variables, etc.

— Journal — Time series output: wind speed, wind
power, direction, climatological
variables, etc.

— Year — Data frequency: minutes, hours, days,
months or years

— Number of citations — Time series length: total observations

— Keywords — Region: Africa, Asia, Europe, North America,

South America, Central America
— Country analyzed

— Purpose: forecasting, simulation, distribution fitting, etc.

— Model types: statistical, computational intelligence, physical or hybrid models

— Forecast horizon: number of steps ahead that might depend on the data frequency

— Forecast type: single-step or multi-step

— Evaluation Metrics: MAE, MSE, MAPE, R2, etc.
— Simulation length

determines promising research subjects. CNA was first applied by
Garfield et al. (1964), followed by Garner (1967), who presented
graph theory applications specifically for citation network analysis.
To determine a research domain's main path, two significant ad-
vances were achieved by proposing to use three different indexes to
compute the transversal weights in a citation network (Hummon
et al., 1990; Hummon and Dereian, 1989; Hummon and Doreian,
1990).

A citation network is conceived for illustration, representing
studies published or authors associated with a field of research

through a network, containing nodes and arrows. Its nodes repre-
sent papers and its arrows the existing links between them. Thus,
the arrows indicate the knowledge flow, indicating from which
paper the knowledge and information came that made a new
contribution. The citation network uses information from a citation
matrix, formulated based on the articles’ references. This square
matrix contains only papers chosen for full reading during the SLR
process. If one article cites another article in the matrix, a value “1”
is assigned, representing a citation relationship between them:;
otherwise the value “0” is attributed (Colicchia et al., 2017).
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Through CNA it is possible to rank articles through two different
approaches: based on papers ‘number of citations’ or ‘closeness
centrality’ (De Nooy et al., 2018; Colicchia and Strozzi, 2012;
Hummon and Dereian, 1989), representing an article's global cita-
tion score (GCS) and local citation score (LCS), respectively. In other
words, the LCS denotes the number of times that an article is cited
inside the current dataset, while the GCS corresponds to the
number of times that the article was cited. A high LCS means that a
paper is relevant in the research field, whereas a high GCS indicates
the paper is considered important by the academic field worldwide.
The closeness centrality identifies the papers, in the network, cited
by highly cited papers, indicating how an article is located among
the analyzed papers, considering the fewest possible connections
(Knoke and Yang, 2008), therefore quantifying the relevance of
articles' contribution.

2.2.1. Main path analysis

Main path analysis provides a dynamic perspective to network
analysis. This technique determines the most prominent articles of
a research area, spotlighting seminal ones that are still considered
core references for further works (Lucio-Arias and Leydesdorff,
2008). To define a citation network's main path, a normalized
transversal weight needs to be estimated for each article, to
calculate the number of times that a connection between articles
was established in a citation network. This is a proportion between
of all source paths and sink nodes (De Nooy et al., 2018; Fan et al.,
2014; Colicchia and Strozzi, 2012). In this sense, each node repre-
sents a specific article and the citation data are represented by the
links among nodes (which could be sources or sinks). According to
De Nooy et al. (2018), a source is defined as a node that does not cite
others, while a sink is a node that is not cited by others. Hence, both
nodes are, respectively, the starting and ending points of a citation
network.

The normalized transversal weights are estimated using the
search path count (SPC) method, considering each source vertex
and selecting at each iteration the arcs with the highest weight,
until the sink node is reached. After obtaining all the normalized
weights, all the arcs with transversal weight lower than a certain
cut-off value are removed from the citation network, leaving only
the most relevant ones (De Nooy et al., 2018; Colicchia and Strozzi,
2012). There are different programs to build the citation network
and main path, and in this study Pajek software is the one used
(Batagelj and Mrvar, 1998).

2.2.2. Bibliometric analysis: Co-Word and Co-Citation

In bibliometric analysis, co-word analysis (also known as co-
occurrence) identifies the conceptual structure and the main sub-
jects of a field, allowing analyzing and tracking a research field's
evolution along consecutive time periods (Callon et al., 1983). Ac-
cording to Coulter et al. (1998), co-word analysis reduces a space of
keywords to a set of network graphs that effectively illustrate the
associations between them. Research themes are identified by
counting the number of documents in which the two keywords
appear together. Co-citation analyzes the intellectual structure of a
scientific research field (Small, 1973), indicating the connection
between authors regarding the same topic. In other words, two
articles are co-cited when they are jointly cited in one or more
subsequent articles. This process is performed by counting the
number of documents that contain the quoted one in their refer-
ence list (Zhao and Strotmann, 2015).

Here the co-word analysis was performed with the SciMAT
software (Cobo et al, 2012), whereas the co-citation analysis
employed two different programs: BibExcel to obtain the co-
citation matrix (Persson et al., 2009) and Pajek to generate the
co-citation network. Other programs can be used for the same

purpose, such as UCINET (Borgatti et al., 2002), VOSViewer (van Eck
and Waltman, 2010) and the Bibliometrix package of R (Aria and
Cuccurullo, 2017).

3. Results
3.1. SLR results

3.1.1. General analysis

From the queries in the Scopus and WoS databases, 2825 articles
were found (1667 articles in Scopus and 1158 in WoS). Of this total,
616 were removed from the database as duplicated articles, 716
were not published in indexed journals and 81 were not written in
English. Those were the initial exclusion criteria applied. More than
a half of the documents found through these two search engines
were not considered for abstract reading, and at least 26% were
conference proceedings, which is an exclusion criterion. Fig. 2
presents the results described above.

During the abstract reading process, most of the 1412 articles
were rejected because they were outside the scope, having no
relation with the research questions, leaving only 219 articles for
full reading. Also, during the full reading, 76 articles were classified
as out of scope. The intercoder index calculated for the articles’
selection process (Cohen's kappa coefficient) presented a high level
of agreement between the researchers (0.936). With the results of
the selection, both SLR and CNA can be performed. Fig. 3 depicts the
exclusion process.

Fig. 4 presents the publication evolution in the last 33 years,
where it can be observed that wind energy studies started growing
considerably after 2010, although there was a decrease in 2016 and
2017, before reaching a peak in 2018, with 24 articles published.

3000 1 5825
[ 1
-81
2500 1
9]
g 2000 A 716
B 1500 1
g -616
=]
=
; 1000
500
0
Research Language Non index Repeated Abstracts
output journals articles for reading

Fig. 2. Abstract selection.

1.413 articles excluded considering

2.825 articles identified through
the exclusion criteria

the data-base search

1.412 articles selected for abstract
review

1.193 articles excluded after
reading the abstracts

|

4{ 219 articles selected for full review

‘ ‘ 143 articles accepted ‘

145 articles selected

Fig. 3. Article selection process.

76 articles excluded considered
outside the scope

02 additional articles found for full
review
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Fig. 4. Article publication evolution.

From 2010 until 2018, a total of 120 articles were published (83% of
the studies) and the remaining were published before 2010. This
represents an average of 12 articles published per year.

From Fig. 5, it is possible to conclude that most of the articles
published (whose results were obtained from the search engine -
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Fig. 5. Citation frequency.

Scopus and WoS - until December 2018) have at least one citation,
as only 9% do not have any citation, 41% have between 1 and 10
citations, 18% have between 11 and 20 citations and 32% have more
than 21 citations. The most cited articles use forecasting and
simulation techniques to address issues about power system op-
erations, planning for connection or disconnection of wind turbines
or even wind power potential. The five articles with the highest
citation numbers are:

(i) Barbounis et al. (2006): This paper presents wind speed and
wind power forecasting considering meteorological data
using hourly information. These forecasts are used to
schedule connection and disconnection of conventional
generators and wind turbines to achieve low spinning
reserve and optimal operating cost. The models used were
three local recurrent neural networks: infinite impulse
response multilayer perceptron (IIR-MLP), local activation
feedback multilayer network (LAF-MLN) and diagonal
recurrent neural network (RNN).

(ii) Nichita et al. (2002): The authors propose two modeling
procedures for wind speed simulation to be used in real-time
wind turbine simulators, where wind power systems involve
high performance wind turbine simulators. This study uses
simulators with a general structure, i.e., any type of servo-
motor, and includes a real-time software simulator (RTSS),
which implements a mathematical model of the wind tur-
bine and contains the wind speed generator.

(iii) Bilgili et al. (2007): This paper uses artificial neural networks
(ANNs) to predict wind speed of any target station using
neighboring measuring stations. The purpose of the article is
to show that this method can be applied to forecast wind
speeds for any location around sampled measuring stations,
located in the eastern Mediterranean region of Turkey. This
procedure has the same purpose as all the measure-
correlate-predict (MCP) methods, whose objective is to
predict wind speed for a specific target station, considering
neighbor stations, providing a wind resource assessment.

(iv) Hill et al. (2012): The article sheds light on wind power's
impact on future power systems by modeling diurnal and
seasonal effects explicitly, and also considers the correlation
of wind speed between geographical locations. This is done
by applying autoregressive moving-average (ARMA) models
to forecast univariate and multivariate time series, for use to
synthesize wind speed and thus wind power time series with
the correct seasonal, diurnal, and spatial diversity
characteristics.

(v) Liu et al. (2012): The authors develop a two-stage stochastic
unit commitment model to study the impacts of plug-in
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Table 4
Number of articles by journal and citation.

Journal Number of Articles Number of citations
Renewable Energy 25 622
Wind Energy 10 177
Applied Energy 8 165
IEEE Transactions on Sustainable Energy 5 226
Energy 5 131
Journal of Wind Engineering and Industrial Aerodynamics 5 109
Energy Conversion and Management 4 82
Energies 4 23
IEEE Transactions on Energy Conversion 3 596
Energy Policy 3 121
hybrid electric vehicles (PHEVs) on power system operations ‘
and scheduling, considering wind power volatility and Spain Ge"“‘“‘y_ India _
. . . Hungary;, _ China
intermittency. The proposed model also addresses ancillary A Norway
services provided by vehicle-to-grid techniques. This work )
uses a combination of quantile regression and Monte Carlo Australia [ Greece
simulation to produce several wind power scenarios, and Denmark e Aee— L/ — Fhneland
then both forecasts and historical wind power generation are -
considered to calculate a quantile regression to be incorpo- Canada Finland
rated into the stochastic unit commitment model. f
USA \ T - Ireland
Regarding the publication source scope, the articles considered Tatwan ' Iran
in this study were published in 69 different journals. The 10 jour-
nals with the largest number of articles published are presented in Mexico Tanzania
Table 4, and they were obtained from the search engine (Scopus
and WoS) until December 2018. These journals are responsible for Italy Scotland
50% of all the articles analyzed in this study and two of them have
35 articles (Renewable Energy and Wind Energy). The remaining 57 Saudi Arabia Poland
journals have one or two articles published in the field. This anal- . \ .
ysis enables researchers to identify the most relevant journals in South Africa Brazil
Korea | France

this field.

When it comes to number of citations among those 10 journals,
Renewable Energy followed by IEEE Transactions on Energy Conver-
sion and IEEE Transactions on Sustainable Energy are the ones with
highest number of citations. It is also interesting to mention that
one of the most cited articles (Bilgili et al., 2007) — 191 citations,
was published in Renewable Energy and that 10 of the 25 articles
published in Renewable Energy studied issues associated with wind
resource assessment (Argiieso and Businger, 2018; Deo et al., 2018;
Ritter et al., 2015; Vanvyve et al., 2015; Weekes et al., 2015; Weekes
and Tomlin, 20143, 2014b; Bilgili et al., 2007; Manwell et al., 2002).

Most of the articles (around 80%) selected were written by re-
searchers from developed countries like the United States, Spain,
England and Germany, along with China. Europe has the highest
number of articles published (46%) and also articles written by
researchers from several countries studying wind power issues in
collaboration. Asia and USA also have considerable proportions
(23% and 10%, respectively). Those numbers can be explained by the
fact that Europe concentrates most of the countries that introduced
wind power in their electricity mix, and China and the USA are the
countries that are promoting the largest investments in this
renewable energy source (GWEC, 2017). Nevertheless, as a result of
the increasing investments on wind energy, researches from
developing countries (like Turkey, South Africa, Iran, Brazil, Mexico
and India) presented a significant growth in their publications,
especially in the last decade.

Fig. 6 contains the research collaboration between countries,
whose results were obtained from the search engine (Scopus and
WoS) until December 2018, and in which the circle's size represents
the proportion of each country's participation. Notice that the
number of publications by country is directly related with countries
with highest installed wind power capacity as well as amount of

Portugal Bulgaria Turkey

Fig. 6. Countries of collaborative networks.
investments in wind power generation (GWEC, 2017).

3.1.2. Analysis of descriptors: approach and techniques

The descriptors presented in Table 3 shed light on the technical
issues studied in the articles to improve medium and long-term
wind power forecasting. Despite the existence of several ap-
proaches to make those forecasts (ranging from physical ap-
proaches to statistical and computational intelligence models),
most of the articles still apply statistical models (54%) or hybrid
models (a combination of these three models; 20%). Physical and
computational intelligence models are studied in 14% and 17% of
the articles analyzed, respectively (Fig. 7).

Fig. 8 contains a timeline considering the four approaches’

C. Intelligence M. | 17
Physic M. | 21
Hybrid M. | N 30
statistical M. | A

0 20 40 60 80 100

Fig. 7. Articles' composition by approach.
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Fig. 8. Use of approaches with time.

usage. The oldest article considered in this analysis (Cheng and
Chiu, 1985) uses a statistical approach, which continues to be
used nowadays, but also show the emergence of other approaches,
like the physical during the nineties and computational intelligence
and hybrid models in the last decade. From Fig. 8, it is possible to
observe that hybrid models together with innovative statistical
models are being studied more actively than other approaches and
can be consolidated as the emerging approach of this decade.
Although computational intelligence models are employed steadily,
their use is usually associated with other models such as statistical
or physical models.

The approaches mentioned above can be used for different
purposes, such as filtering, forecasting, simulation, distribution
fitting, modeling and estimation. From Fig. 9, it is possible to notice
that forecasting (39%), simulation (26%), distribution fitting (15%)
and modeling (10%) are the main objectives of the articles studied.
Table 5 presents a more detailed perspective by author of these
techniques. Among the most cited articles are Barbounis et al.
(2006), Bilgili et al. (2007), Barbounis and Theocharis (2006),
applying forecasting techniques. The other two most cited articles
use simulation techniques: Nichita et al. (2002) and Liu et al. (2012).
A common feature on these techniques (and even estimation pro-
cedures) is the MCP model, used to assess wind power potential.

In distribution fitting, Hill et al. (2012) use univariate and
multivariate autoregressive models to understand wind power
generation influences on the electric power system, considering
diurnal and seasonal effects, as well as the correlation between
wind speed and geographical location. Oh et al. (2012) also use
distribution fitting to assess wind power potential in an offshore
wind farm in Korea. To do so, long-term wind power generation
potential is estimated using MCP techniques and the Weibull dis-
tribution probability density function to calculate the energy den-
sity and estimate energy production. The studies that perform
forecasting use a single step (8% of the studies), multiple steps

Estimation |l ¢
Modelling & Forecasting [l 2
Modelling I 14
Fitting distribution | NG |7
Simulation |G O
Forecasting | . 5O
Forecasting & Simulation [l 4
Filtering M 4

0 10 20 30 40 50 60 70

Fig. 9. Articles' composition by technical application.

(29%) or do not report the aspect (63%).

3.1.3. Descriptors analysis: variables, data frequency and evaluation
metrics

In this subsection the forecasting procedures' main character-
istics are studied. Table 6 is composed by the input and output
variables, which correspond to the rows and columns in the table.
This table represents the relationship between input and output
variables considered in the articles analyzed. Wind speed is pre-
sented as an input or output variable in 60% of the articles. Notice
that wind speed input variable plays an important role in wind
power generation, especially because it has direct influence on
power curve forecasting, as well as integrated power system
operation and operational aspects of wind farms (Burton et al.,
2011; Hill et al., 2012). Most of the models using wind speed as
input and output variable apply MCP (Bilgili et al.,, 2007; Dinler,
2013; Gass et al.,, 2011; Manwell et al.,, 2002; Oh et al., 2012;
Romo et al, 2011; Weekes et al., 2015; Weekes and Tomlin,
2014a) or the Weibull distribution (distribution fitting technique)
(Kelly et al., 2014; Milne, 1992; Monahan et al., 2011; Rashmi et al.,
2016). In some cases, when using wind speed as input variable, the
output provided by the model is wind power forecasting (Boehme
and Wallace, 2008; Jung, 2016; Jung et al., 2013) or the combination
of both variables (Kennedy and Rogers, 2003; Munoz et al., 2011;
Pinson and Madsen, 2012; Ritter et al., 2015). Some articles
consider other meteorological data together with wind speed as
input variables (Agrawal and Sandhu, 2016; Chen and Tran, 2015;
Diaz et al, 2018; ]J. Liu et al., 2018; Sharifian et al., 2018; Tiriolo
et al.,, 2015), implying the use of multivariate models and a more
complex approach. For instance, wind speed and wind direction are
used together to forecast/simulate wind speed, since including di-
rection as input variable improves the model's performance
(Barbounis et al., 2006; Bossavy et al., 2013; Carta and Veldzquez,
2011; Ettoumi et al., 2003; Takeyama et al., 2018; Wang et al.,
2018). Other studies consider wind power as input and output
variables (Burke et al., 2014; Dabernig et al., 2015; Hoeltgebaum
et al, 2018; Huh and Lee, 2014; Liu et al., 2012; MacCormack
et al, 2010), but in some other cases, first wind speed is fore-
casted and then wind power generation is estimated as the model
output (Barbounis and Theocharis, 2006; Bossavy et al., 2013;
Labati et al., 2018; Olaofe, 2014; Sharifian et al., 2018; Weekes
and Tomlin, 2014b). A few studies use load and maximum wind
speed as input and output variables (Jin et al., 2014; Natarajan et al.,
2008; Sapuan et al., 2011; Staid et al., 2015).

Although most studies use hourly data (49%), some of them use
lower frequencies such as 10, 20 and 30 min (17%). As can be seen in
Table 7, other studies also use daily (14%), monthly (10%) and
annual data. Some studies indicate annual frequency (2%) or do not
mention frequency (8%).

Table 8 presents the evaluation metrics and accuracy measures
used to analyze the modeling results and the model fit. The most
used accuracy measures are MAE (Azad et al., 2014; Barbounis et al.,
2006; Carta et al., 2011; Celik and Kolhe, 2013; Deo et al., 2018;
Lerch and Thorarinsdottir, 2013; J. Wang et al., 2015), RMSE
(Barbounis et al., 2006; Bossavy et al., 2013; Hill et al.,, 2012;
McQueen and Watson, 2006; Ritter et al., 2015; Sharifian et al.,
2018; J. Zhang et al., 2014), MAPE (Bilgili et al., 2007; Velazquez
et al,, 2011a; W. Wang et al., 2015; Weekes and Tomlin, 2014b; Yu
et al., 2013), MSE (Erto et al., 2010; Jamil and Zeeshan, 2018; Jung,
2016; Kritharas and Watson, 2010; Olaofe, 2014; C. Y. Zhang et al.,
2015), R? (Chang et al., 2015; Dinler, 2013; Hassan et al.,, 2011;
Hossain et al., 2018; Xia et al., 1999; Yari and Farsani, 2015), and
mean error (ME) (Cradden et al., 2017; Kritharas and Watson, 2010;
Penchah et al., 2017; Standen et al., 2017). Especially in probabilistic
forecasts, the error metrics used are CRPS and twCRPS (Baran and
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Table 5
Articles divided by approach and technical application.
Approaches Techniques Researchers
Statistical Estimation Schindler and Jung (2018)
Filtering Alam et al. (2014), Njau (1994a), Deidda et al. (2000)
Distribution Oh etal. (2012), Torrielli et al. (2013), Jung et al. (2013), Monahan et al. (2011), Munoz et al. (2011), Beyer and Nottebaum (1995),
fitting Tsekouras and Koutsoyiannis (2014), Akyuz et al. (2013), Milne (1992), Jung (2016), Gong et al. (2014), Kelly et al. (2014), Hassan
et al. (2011), Natarajan et al. (2008), Yari and Farsani (2015)
Forecasting Hill et al. (2012), Pinson and Madsen (2012), Carta and Veldzquez (2011), Lerch and Thorarinsdottir (2013), Yu et al. (2013), Baran
and Lerch (2015), Manwell et al. (2002), Huh and Lee (2014), Junk et al. (2015), Marinelli et al. (2015), Gryning et al. (2014),
Hasani-Marzooni and Hosseini (2011), Guo et al. (2010), Weekes and Tomlin (2014a), Torrielli et al. (2014), Dinler (2013),
Gutiérrez et al. (2013), Ziel et al. (2016), Hussain et al. (2004), Y. Liu et al. (2018), Weekes et al. (2015), Sapuan et al. (2011), Staid
et al. (2015), Kritharas and Watson (2010), Suryawanshi and Ghosh (2015), Ali et al. (2018)
Forecasting & Callaway (2010), Caporin and Pre$ (2012), Koivisto et al. (2016), Hoeltgebaum et al. (2018)
Simulation
Modeling Ettoumi et al. (2003), Xia et al. (1999), Weekes and Tomlin (2014b), ]. Zhang et al. (2014), Villanueva and Feij6o (2016), Erto et al.
(2010), Ling and Lublertlop (2015), Little et al. (2018)
Simulation Nichita et al. (2002), McPherson and Karney (2014), MacCormack et al. (2010), Moriarty et al. (2002), de Lucena et al. (2010),
Nogueira et al. (2014), Maatallah et al. (2015), Kennedy and Rogers (2003), Jin et al. (2014), Gass et al. (2011), Torrielli et al. (2011),
Cheng and Chiu (1985), McKague et al. (2005), Evans and Clausen (2015), Cheng and Chiu (1994), Koivisto et al. (2015), Koivisto
et al. (2017), Askari et al. (2014), Burke et al. (2014), Ekstrom et al. (2018)
Physical Filtering Azorin-Molina et al. (2014)
Forecasting Roulston et al. (2003), Pereira et al. (2013), McQueen and Watson (2006), Njau (1994b), Tiriolo et al. (2015), Standen et al. (2017)
Modeling Lavagnini et al. (2006), Vanvyve et al. (2015), Whale et al. (2013), Olauson (2018)
Simulation Boehme and Wallace (2008), Hsu et al. (2007), Cradden et al. (2017), Soukissian et al. (2017), Argiieso and Businger (2018),
Fernandez-Gonzalez et al. (2018), MacLeod et al. (2018), Pryor et al. (2018), Takeyama et al. (2018), Wang et al. (2018)
Computational Estimation Celik and Kolhe (2013), Diaz et al. (2018)
Intelligence Forecasting Barbounis et al. (2006), Bilgili et al. (2007), Barbounis and Theocharis (2006), C. Y. Zhang et al. (2015), Jung and Kwon (2013),
Carta et al. (2011), Olaofe (2014), Deo et al. (2018), Wang and Wang (2017), Ammar et al. (2018), Hossain et al. (2018), Jamil and
Zeeshan (2018), Qolipour et al. (2018)
Modeling & W. Wang et al. (2015)
Forecasting
Modeling Barszcz et al. (2012)
Hybrid Estimation Carta et al. (2013), Ritter et al. (2015), Salcedo-Sanz et al. (2018)
Distribution Chavez-Arroyo et al. (2015), Rashmi et al. (2016)
fitting
Forecasting Azad et al. (2014), Bossavy et al. (2013), Sun and Liu (2016), Romo et al. (2011), Vaccaro et al. (2012), Sharifian et al. (2018), Lynch
et al. (2014), Baran and Lerch (2016), Z. Zhang et al. (2015), Agrawal and Sandhu (2016), Labati et al. (2018), Dabernig et al.
(2015), Dunstan et al. (2016), Camelo et al. (2018)
Modeling & J. Wang et al. (2015)
Forecasting
Modeling Velazquez et al. (2011b)
Simulation Liu et al. (2012), Nolan et al. (2012), Burlando et al. (2009), Chang et al. (2015), Nolan et al. (2014), Deepthi and Deo (2010),
Penchah et al. (2017), J. Liu et al. (2018), Chen and Tran (2015)
Table 6

Relationship between input and output variables.

Input\Output Load Wind Wind Speed and  Wind Speed and Wind Wind Speed and Wind Speed and Maximum Wind
Variables Speed  Direction Temperature Power  Wind Power Meteorological Variables Speed
Load 1

Load and Wind Power 1

Wind Speed and Direction 8 6 3 3

Wind Speed and Temperature 1 1

Wind Speed 74 5 8

Wind Speed and Wind Power 4 4

Wind Speed and Pressure 2

Maximum Wind Speed 2
Wind Power 6

Wind Power and Irradiation 1

Wind Speed and 1 6 5 3

Meteorological Variables

Lerch, 2016, 2015; Lerch and Thorarinsdottir, 2013; Staid et al,,
2015). Less used but still common measures are correlation coef-
ficient (Romo et al., 2011; Soukissian et al., 2017; Veldzquez et al.,
2011a) and Weibull scale with shape factor (Romo et al., 2011).
Additionally, other recent measures considered are NMAE, NRMSE
(Pinson and Madsen, 2012), NMSE (Barbounis and Theocharis,
2006), RRSE (Carta et al., 2013, 2011; Carta and Velazquez, 2011),
CRMSE (Vanvyve et al., 2015), RAE (Carta et al., 2011), MPE (J. Wang
et al,, 2015), MRE (Guo et al., 2010), MBE (Weekes and Tomlin,

2014b), and RME, MCAE and SMAPE (Soukissian et al., 2017).

The analysis of the SLR results provides a holistic insight into the
different approaches, techniques and models used for wind power
forecasting, giving a broad view of the best journals that address
the matter, models, variables and data to be considered (and their
frequency) as well as the evaluation metrics. SLR encompasses
qualitative analysis, while in the next subsection a static and dy-
namic analysis is performed through the CNA and main path
analysis.
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Nichita et al. (2002), Roulston et al. (2003), Pinson and Madsen (2012), Moriarty et al. (2002), Sun and Liu (2016), Torrielli et al. (2013), Torrielli et al. (2011),
Barszcz et al. (2012), Junk et al. (2015), Ritter et al. (2015), Gryning et al. (2014), Olaofe (2014), Torrielli et al. (2014), Whale et al. (2013), Chang et al. (2015),
Gong et al. (2014), Ziel et al. (2016), Baran and Lerch (2016), Staid et al. (2015), Penchah et al. (2017), Natarajan et al. (2008), Agrawal and Sandhu (2016),

Barbounis et al. (2006), Hill et al. (2012), Liu et al. (2012), Barbounis and Theocharis (2006), Azad et al. (2014), Bossavy et al. (2013), Ettoumi et al. (2003),
Carta et al. (2013), MacCormack et al. (2010), Oh et al. (2012), Carta and Veldzquez (2011), Nogueira et al. (2014), Maatallah et al. (2015) Jung and Kwon
(2013), Carta et al. (2011), Monahan et al. (2011), Celik and Kolhe (2013), Jung et al. (2013), Jin et al. (2014), Lerch and Thorarinsdottir (2013), Munoz et al.
(2011), Vanvyve et al. (2015), Romo et al. (2011), Callaway (2010), Gass et al. (2011), Manwell et al. (2002), Velazquez et al. (2011a), Marinelli et al. (2015),
Boehme and Wallace (2008), Burlando et al. (2009), Weekes and Tomlin (2014b), Cheng and Chiu (1985), Vaccaro et al. (2012), Beyer and Nottebaum

(1995), Dinler (2013), Gutiérrez et al. (2013), Njau (1994a), Weekes and Tomlin (2014a), Akyuz et al. (2013), Koivisto et al. (2016), ]. Zhang et al. (2014),
Sharifian et al. (2018), Hussain et al. (2004), Y. Liu et al. (2018), Cheng and Chiu (1994), Weekes et al. (2015), Cradden et al. (2017), Diaz et al. (2018), Hassan
et al. (2011), Milne (1992), Tiriolo et al. (2015), Soukissian et al. (2017), J. Liu et al. (2018), Erto et al. (2010), Kritharas and Watson (2010), Koivisto et al.
(2017), Fernandez-Gonzadlez et al. (2018), Askari et al. (2014), Rashmi et al. (2016), Standen et al. (2017), Arglieso and Businger (2018), Burke et al. (2014),
Deidda et al. (2000), MacLeod et al. (2018), Schindler and Jung (2018), Ling and Lublertlop (2015), Ali et al. (2018), Ekstrom et al. (2018), Little et al. (2018),

J.- Wang et al. (2015), C. Y. Zhang et al. (2015), W. Wang et al. (2015), Yu et al. (2013), Baran and Lerch (2015), Tsekouras and Koutsoyiannis (2014), Caporin
and Pre$ (2012), Guo et al. (2010), Alam et al. (2014), Jung (2016), McKague et al. (2005), Hsu et al. (2007), Deepthi and Deo (2010), Chdvez-Arroyo et al.
(2015), Sapuan et al. (2011), Suryawanshi and Ghosh (2015), Yari and Farsani (2015), Z. Zhang et al. (2015), Chen and Tran (2015), Wang and Wang (2017),

Bilgili et al. (2007), Azorin-Molina et al. (2014), Kennedy and Rogers (2003), Nolan et al. (2012), Xia et al. (1999), Nolan et al. (2014), Njau (1994b), Lynch
et al. (2014), Deo et al. (2018), Camelo et al. (2018), Salcedo-Sanz et al. (2018), Ammar et al. (2018), Hoeltgebaum et al. (2018), Hossain et al. (2018), Jamil

Table 7
Data frequency.
Data Researchers
Frequency
<1 Hour
Dunstan et al. (2016), Pryor et al. (2018), Takeyama et al. (2018)
Hourly
Olauson (2018), Wang et al. (2018)
Daily
Qolipour et al. (2018)
Monthly
and Zeeshan (2018)
Annually McPherson and Karney (2014), Huh and Lee (2014), Pereira et al. (2013)
Others

de Lucena et al. (2010), Lavagnini et al. (2006), Hasani-Marzooni and Hosseini (2011), McQueen and Watson (2006), Evans and Clausen (2015), Kelly et al.
(2014), Koivisto et al. (2015), Villanueva and Feij6o (2016), Labati et al. (2018), Dabernig et al. (2015)

Table 8
Summary of the most used accuracy measurements.
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3.2. CNA results

Table 9 presents the most cited articles ranked by the local
citation scores (LCS) and the articles with the highest closeness
centrality index, respectively. LCS and closeness centrality have a

To perform citation network analysis, the 145 selected articles
were organized with the UCINET software and then to the Pajek
software, where all the citation network analysis and main path
analysis were conducted. In the next subsections both results are
discussed.

3.2.1. Citation network — static perspective

In a citation network, each of the articles is represented by a
network node and is linked to others by arcs, which are obtained
through the citation data. Fig. 10 presents the citation network for
the articles with more than two or three connections of the 145
articles analyzed. Fig. 10 shows that the following articles corre-
spond to central nodes in the citation network: Bilgili et al. (2007),
Carta et al. (2011), Carta and Veldzquez (2011), Velazquez et al.
(2011b), Romo et al. (2011), (Hill et al., 2012), Carta et al. (2013),
Weekes and Tomlin (2014a) and Azad et al. (2014). Those articles
can be characterized as central nodes because they are connected
with a large number of nodes in the citation network.

positive relationship, so some articles widely cited also have a high
closeness centrality index. As can be seen in Table 10, five of the
articles with the highest LCS (Table 9) are also among the articles
with largest closeness centrality (Bilgili et al., 2007; Carta et al.,
2013, 2011; Carta and Velazquez, 2011; Velazquez et al., 2011a).

3.2.2. Main path analysis — dynamic perspective

In main path analysis, the most prominent articles during a
certain time period are identified, setting up the backbone for
medium and long-term wind power forecasting research. This
analysis provides a dynamic feature to the study, revealing research
area's evolution over time. The main path network is derived from
the citation network, as mentioned in 2.2.1, and is obtained using
the transversal weight frequency as can be seen in Table 11. The
main path cutoff value is 0.042 because around 90% of the nodes
have traversal weights lower than this value. After applying the
cutoff value, only 17 nodes (articles) remain in the network, all of
them published between 2002 and 2018.

Fig. 11 show the main path derived from the analysis. Since the
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Table 9
Top 10 articles with highest LCS.

Rank Article's author Source Number of Citations
LCS GCS
1 Carta and Veldzquez (2011) Energy 7 35
2 Velazquez et al. (2011a) Applied Energy 7 22
3 Bilgili et al. (2007) Renewable Energy 6 151
4 Carta et al. (2013) Renewable and Sustainable Energy Reviews 6 40
5 Azad et al. (2014) IEEE Transactions on Sustainable Energy 5 53
6 Carta et al. (2011) Energy Conversion and Management 5 26
7 Weekes and Tomlin (2014b) Renewable Energy 4 14
8 Hill et al. (2012) IEEE Transactions on Sustainable Energy 3 71
9 Barbounis and Theocharis (2006) Neurocomputing 3 65
10 Barbounis et al. (2006) IEEE Transactions on Energy Conversion 2 218
Table 10
Top 10 articles with highest closeness centrality.
Rank Article's author Source Centrality
1 Carta et al. (2013) Renewable and Sustainable Energy Reviews 04138
2 Standen et al. (2017) Wind Energy 0.3517
3 Carta et al. (2011) Energy Conversion and Management 0.3448
4 Weekes et al. (2015) Renewable Energy 0.2552
5 Veldzquez et al. (2011a) Applied Energy 0.2483
6 Salcedo-Sanz et al. (2018) Applied Energy 0.2207
7 Diaz et al. (2018) Applied Energy 0.2069
8 Carta and Velazquez (2011) Energy 0.2069
9 Bilgili et al. (2007) Renewable Energy 0.1517
10 Weekes and Tomlin (2014a) Renewable Energy 0.1310
Table 11 closeness centrality and the main path have an intrinsic association

Traversal weight frequency.

Intervals Absolut Frequency % Frequency % Accumulated Frequency
0.0000—0.0069 106 73.1034 73.1034
0.0069—-0.0521 24 16.5517 89.6552
0.0521-0.0973 3 2.0690 91.7241
0.0973-0.1425 3 2.0690 93.7931
0.1425-0.1877 1 0.6897 94.4828
0.1877-0.2330 3 2.0690 96.5517
0.2330-0.2782 2 1.3793 97.9310
0.2782—-0.3234 0 0.0000 97.9310
0.3234-0.3686 2 1.3793 99.3103
0.3686—0.4138 1 0.6897 100.0000
$Manwell et al. (2002)
Bilgili etal. (2007)

Cartaand Veldzquez (2011)

ARomo etal. 2011) Velazquez etal (2017)

®Gass etal. (2011)

Carnta et al. (2011)

/oh etal. (2012)

Carta etal. (2013
~

@
Weekes et al. (2014b) Weekes etal. (2014a)

LS
Zhang etal. (2014)

Ritter et al. (2015) Weekes etal. (2015)

Standen etal. (2017)

Salcedo-Sanz etal. (2018) Diaz etal. (2018)

Fig. 11. Main path network.

in all the top 10 articles with the highest closeness centrality, these
papers are included in the main path, corroborating the results
from the main path analysis. Through a detailed analysis of the 17
articles, we noted that medium and long-term studies have focused
on four central topics: MCP methods that consider linear relation-
ships (Gass et al., 2011; Manwell et al., 2002; Oh et al., 2012;
Weekes et al., 2015; Weekes and Tomlin, 2014b; ]J. Zhang et al.,
2014), probabilistic MCP methods (Carta and Veldzquez, 2011;
Romo et al.,, 2011; Weekes and Tomlin, 2014a), artificial neural
networks and Bayesian networks (Bilgili et al., 2007; Carta et al,,
2011; Carta and Veldzquez, 2011; Diaz et al., 2018; Velazquez
et al., 2011a) and alternative techniques to MCP (Ritter et al,
2015; Salcedo-Sanz et al., 2018; Standen et al., 2017).

The main path begins with Manwell et al. (2002), using linear
regression and the variance ratio method to determine the poten-
tial for installing offshore wind power generation projects. The
study is followed by Bilgili et al. (2007), who applied artificial
neural networks (ANNs) to forecast the mean monthly wind speed
of target stations using data from neighboring stations (called
reference stations). Through the monthly wind speed forecast, the
wind power potential is estimated. Velazquez et al. (2011a) used
similar method to estimate wind power costs of certain sites, but
also compared the results of the ANN method with those obtained
through the linear MCP method. Four other articles were published
in 2011 investigating wind power forecasting issues. Carta pub-
lished two studies that year. In the first, Carta and Veldzquez (2011)
estimated wind speed at candidate sites using probability density
functions (considering information from a reference site) and
compared it with estimates reached considering the variance ratio
method, joint probability density distributions and the Weibull
scale method. In the second study, Carta et al. (2011) also estimated
long-term mean wind speed for candidate sites, but now applying
probabilistic Bayesian networks (BNs), using multiple reference
stations (with extended historical wind speed and wind direction
data) and compared it with the results from two MCP models. Gass
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et al. (2011) and Romo et al. (2011) also studied wind speed for
certain sites considering reference sites. Gass et al. (2011) used the
MCP method and variance ratio to generate those estimates for a
potential wind power generation site located in Austria, incorpo-
rating its risks in a statistical simulation model. Romo et al. (2011)
formalized a systematic analysis of MCP methods’ statistical fun-
damentals and conceived three new models: one based on a
nonlinear regression and two derived from conditional probability
density functions (kernel methods). Those three models were then
compared with a simple linear regression and the variance ratio
method. All comparisons were carried out considering synthetic
wind speed time series of two different sites, simulating the pro-
spective and the reference site. Unlike the other studies so far, Oh
et al. (2012) carried out assessments of wind power potential in a
southwestern area of the Korean Peninsula using MCP techniques.
Carta et al. (2013) aggregated and presented all the MCP methods
conceived so far, making a connection between old and new
methodological proposals.

Between 2014 and 2015, Weeks published three studies esti-
mating wind power generation potential for different sites in the
United Kingdom using different MCP methods. In the first one, the
potential was estimated for 22 UK sites with a MCP approach based
on onsite wind speed measurements for only three months,
comparing the results of three regression-based techniques
(Weekes and Tomlin, 2014b). The second study was developed for
the same 22 UK sites, comparing a MCP approach based on a
bivariate Weibull (BW) probability distribution and standard
(linear) regression MCP techniques (Weekes and Tomlin, 2014a).
The last study implemented linear MCP algorithms to estimate the
wind power resource of 37 UK sites, using an operational forecast
model (UK4) as a source of historical reference data and compared
the results with data from nearby meteorological stations. The re-
sults indicated that UK4 is highly competitive and also showed that
it systematically improved MCP predictions at coastal sites due to
better representation of local diurnal effects (Weekes et al., 2015).

Zhang et al. (2014) developed a hybrid MCP strategy to assess
long-term wind resource variations at a wind farm site. For this,
they tested five MCP methods: (i) linear regression; (ii) variance
ratio; (iii) Weibull scale; (iv) artificial neural networks; and (v)
support vector regression. Those methods were combined consid-
ering a set of metrics to analyze their statistical performance and a
set of metrics to evaluate wind speed distribution in the long-term.
The results showed that the many-to-one correlation in the hybrid
approach could provide a more reliable prediction of onsite wind
speed variations than those provided by the one-to-one correla-
tions. Ritter et al. (2015) proposed a new approach to assess the
local wind power generation potential, applying meteorological
reanalysis data to obtain long-term low-scale wind speed data at
specific turbine locations and hub heights, and thus determine the
relation between wind data and energy production via a five-
parameter logistic function with actual high-frequency energy
production data. Standen et al. (2017) presented a method for
deriving site-specific wind climatological information from nu-
merical weather prediction (NWP) model data and demonstrated
how this can provide a useful alternative to the traditional MCP
techniques. From a general perspective, it can be observed that the
conceptual structure of the main path is formed by the articles that
use MCP or similar approaches to assess wind resource potential for
one or more candidate sites. In an attempt to improve their anal-
ysis, Diaz et al. (2018) applied various models (artificial neural
network, support vector machine for regression and random forest)
based on MCP, incorporating air density in the MCP model as an
additional covariable for long-term wind turbine power output
estimation and considered both wind turbines with blade pitch
control and stall-regulated wind turbines. The last study in the

main path is the one published by Salcedo-Sanz et al. (2018), using a
novel meta-heuristic algorithm, known as the Coral Reefs Optimi-
zation with Substrate Layer (CRO-SL), which is hybridized with the
analog method as the wind power reconstruction method to
identify the most representative points for the wind field. The
method is tested to estimate monthly average wind power fields in
Europe, from reanalysis data (ERA-Interim reanalysis).

Fig. 12 presents the co-citation network based on the references
of the 145 selected articles. This network captures the co-citation
relationships between 23 articles with the highest number of ci-
tations. Bilgili et al. (2007), Veldzquez et al. (2011b), Carta et al.
(2011), Carta et al. (2013) and Weekes and Tomlin (2014a) again
integrated the co-citation core studies. It also can be noticed that
two of the biggest citation clusters are led by Putman (1948), Justus
etal. (1979), Koeppl (1982), Garcia-Rojo (2004), Rogers et al. (2005),
Oztopal (2006), Sreevalsan et al. (2007) and Velazquez et al.
(2011b). Therefore, below we present a brief overview of these
studies.

Putman (1948) is the study contained in the co-citation
network. It presents a detailed analysis of wind behavior and
characteristics. The study also presents parameters and designs for
large wind turbines and estimates wind speed at specific sites using
simultaneous measurements of the wind speed at the target site
and at a neighbor reference sites with a long history of wind data
measurements.

Usually short-term data provide the only available information
for many sites of interest. In this case, several models have been
proposed to estimate long-term wind speed. These models can be
classified into two groups: methods that use simultaneous mea-
surements of the wind speed for the target site and for only one
reference site (Clive, 2008; Daniels and Schroeder, 1988; Garcia-
Rojo, 2004; Justus et al., 1979; Koeppl, 1982; Putman, 1948;
Sreevalsan et al., 2007), and methods that use simultaneous mea-
surements of the wind speed for the target site and several nearby
references sites (Bechrakis et al., 2004; Carta et al., 2011; Oztopal,
2006; Velazquez et al., 2011b). As stated by Carta et al. (2013),
these methods can also be grouped according to the functions used
to relate long-term and short-term wind speed data. Rogers et al.
(2005), for instance, compared four MCP algorithms, using the
following models: linear regression, two-dimensional lineal
regression, binning method and variance ratio. Weekes and Tomlin
(2014a), besides linear regression alone, used linear regression with
Gaussian scatter and variance ratio regression. Sreevalsan et al.
(2007) applied MCP methods to assess the potential for a wind
power site considering a linear fit using fast Fourier transform
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* Hiester T.R. and Pennell W.T. (1961)

.KO:DD\ GW. (1982)

* Daniels P.A.and Schroede T.A. (1988)
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Fig. 12. Co-citation network.
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instead of regression analysis. Justus et al. (1979) employed spatial
cross-correlations instead of MCP methods for a candidate site
evaluation. On the other hand, Woods and Watson (1997) proposed
a new matrix method for MCP that relates short- and long-term
data. Artificial neural networks (ANNs) are the most common
nonlinear relationship used in MCP methods (Bechrakis et al.,
2004; Bilgili et al., 2007; Fadare, 2010; Oztopal, 2006; Velazquez
et al., 2011b, 2011a), but a study conducted by Monfared et al.
(2009) proposed a new approach based on a combination of
fuzzy logic and artificial neural networks to predict wind speed. At
sites where wind speeds are Weibull distributed, Clive (2008)
analyzed and demonstrated analytically that linear relationships
do not hold.

Probability relationship is another important grouping, in which
one of the biggest citation network clusters includes Garcia-Rojo
(2004), who proposed a joint probability distribution approach to
estimate long-term wind patterns. On the other hand, Carta et al.
(2008) provided a joint probability density function that includes
not only wind speed, but also direction for wind power potential
and generation analysis. A complementary analysis of the wind
speed probability distributions used in wind power potential esti-
mations was carried out by Carta et al. (2009). The method pro-
posed in Carta et al. (2011) is based on probabilistic Bayesian
networks (BNs) to estimate the long-term mean wind speed his-
togram. An important advantage of this approach is that it can be
used for sites where few measurements are available. Another
study followed a similar path, estimating the parameters of the
Weibull wind speed probability density distribution and its stan-
dard errors to analyze whether or not data sampling interval in-
fluences the estimation (Ramirez and Carta, 2005).

3.2.3. Co-word analysis

When a co-word analysis is carried out, the aim is to identify the
conceptual structure and the main concepts related to wind power.
To generate a deeper co-word analysis, the selected articles were
split into four consecutive periods: 1985—2000, 2001—-2006,
2007—-2014 and 2015—2018. The SciMAT software (Cobo et al.,
2012) was used to perform the co-word analysis. The articles’
keywords were exported from the Scopus and WoS databases so
the thematic clusters could be identified (Table 12).

As can be seen in Table 12, the keywords are classified into core
and secondary words. The former are those with at least two co-
occurrences of keywords and the latter are those with a single
co-occurrence. Additionally, the number of keywords per period is
shown in Fig. 13, as well as the keywords that reappeared in the
following periods and those that did not.

The first period in the overlapping map (1985—2000) starts with
13 keywords, rising to 27, 111 and 97 in the next three periods. This
growth indicates that wind power research areas passed through a
diversification process. It is also interesting to observe the keyword
changes and maintenance during the period. From the first to the
second period, only 38% remained (8 keywords), while from the
second to the third period, 85% remained (23 keywords) and from
the third to the fourth period 81% remained (79 keywords). The
large number of keywords introduced in the third period (88) can
be explained by the intensive growth of scientific interest in wind
power during the period. It is also important to mention that wind
power forecasting research was quite new, so those increments in
keywords and themes are logical.

Fig. 14 clearly illustrates what was mentioned above. In this
figure, the solid lines indicate that the connected clusters share a
main association between thematic clusters, while the dotted lines
mean associations regarding other aspects that are not the main
themes. Besides this, the ball sizes represent the number of key-
words associated with each cluster. In the first period all the

thematic clusters have a homogenous distribution, meaning that
extreme-wind-speed, forecasting and stochastic analysis have
almost the same amount of keywords connected to them. In the
second period there is some diversification, so wind energy, long-
term and system are the thematic clusters with the highest num-
ber of keywords. For the third period, the thematic “model” is the
one with the highest number of keywords and is followed by wind-
resource-assessment and forecasting. Finally, for the fourth period,
wind energy, energy and artificial neural networks are the most
prominent thematic clusters. Concerning the solid and dotted lines,
from the second to the third period the thematic model and
simulation are both partially correlated with the thematic model.
From the third to the fourth period, the same thematic model
disappears and becomes partially associated with MCP and Energy.

From 1985—-2000 to 2001—-2006, the thematic clusters are
reorganized as follows: extreme wind speed splits into simulation
with long-term; the theme stochastic analysis migrates to long-
term. The thematic cluster forecasting disappears, and three
others are created: wind energy, system and modeling. From
2001-2006 to 2007—2014, almost all the thematic clusters change
into two new clusters. For instance, the wind energy cluster splits
into model and wind resource assessment, having a stronger as-
sociation with the last theme. The same happens with the simu-
lation theme. In the period 2007—2014, the core themes are wind
resource assessment and model. Both themes are completely
related. The model thematic cluster gathers a group of studies
focused on MCP methods, which in the last period is a cluster itself,
emphasizing its importance. In these studies, MCP appeared several
times as a central issue for wind power forecasting/assessment.
Also, as already seen in the main path, 2015—2018 is the period
when the most representative studies are concentrated and artifi-
cial neural networks (ANNs) and MCP are the core research fields.

Besides the studies mentioned in the previous sections, there
are other recent studies that deserve comment. In the thematic
cluster artificial neural networks, J. Wang et al. (2015) used hybrid
models containing recurrent neural networks to forecast medium-
term wind speed; Maatallah et al. (2015) proposed a new recursive
wind speed forecasting method named the Hammerstein Auto-
Regressive (HAR) model and compared its performance with ANN
and autoregressive integrated moving-average (ARIMA) models;
and Agrawal and Sandhu (2016) applied ANNs to figure out the
most influential parameters affecting wind forecasting. Regarding
the wind energy cluster, Ritter et al. (2015), Marinelli et al. (2015)
and Ziel et al. (2016) analyzed either wind power generation po-
tential assessment or generation itself through different tech-
niques, such as regional models, multivariate seasonal time-varying
threshold autoregressive moving average (TVARMA) and threshold
generalized autoregressive conditional heteroscedastic (TGARCH)
models or even through an assessment index. In the energy cluster,
Koivisto et al. (2016) analyzed the effect of wind power generation
on the electric power systems using a Vector-Autoregressive-To-
Anything (VARTA) process with a time-dependent intercept,
modeling wind speeds in multiple locations. This wind speed
simulation method provided a risk assessment for the power sys-
tem. The recent expansion of wind power generation around the
world and the growing interest in this energy source were the main
incentives to the progress made in this area during the last 10 years.

4. Discussion

This study applied a rigorous and reproducible SLNA method-
ology related to wind power production that aims to answer six
research questions formulated at the introduction. Table 13 sum-
marizes the outputs obtained for each one of the Research Ques-
tions (RQs) drawn in the Introduction.
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Table 12
Number of keywords by thematic cluster and period.
Period Thematic cluster Number of Keywords Core with up to 80% References for the Core Keywords with up to 80% citations
Core Secondary Total citations
1985 Extreme-wind-speed 6 0 6 1 Cheng and Chiu (1994)
—2000 Forecasting 1 0 1 1 Deidda et al. (2000)
Stochastic 14 0 14 1 Xia et al. (1999)
Subtotal 21 0 21 3
2001 Simulation 158 163 321 1 Nichita et al. (2002)
—2006 Wind-energy 26 43 69 2 Manwell et al. (2002),
McQueen and Watson (2006)
Long-term 51 0 51 1 Ettoumi et al. (2003)
System 241 0 241 2 Barbounis et al. (2006);
Barbounis and Theocharis (2006)
Modeling 26 204 230 1 Lavagnini et al. (2006)
Subtotal 502 410 912 7
2007 Model 214 388 602 8 Carta and Veldzquez (2011), Carta et al. (2013),

—2014 Torrielli et al. (2013), Jung et al. (2013) Nolan et al. (2012), Velazquez et al. (2011a), Carta et al. (2011), Burlando et al. (2009)
System 158 592 750 5 Bossavy et al. (2013), MacCormack et al. (2010), McPherson and Karney (2014), Jin et al. (2014), Hasani-Marzooni and Hosseini (2011)
Wind-resource- 168 649 817 7 Carta et al. (2013), Jung and Kwon (2013), Jung et al. (2013), Nolan et al. (2012), (Gass et al. (2011), Yu et al. (2013), Weekes and Tomlin
assessment (2014b)

Forecasting 120 131 251 5 Azad et al. (2014), Torrielli et al. (2013), Lerch and Thorarinsdottir (2013), Callaway (2010), Caporin and Pre$ (2012)
Weibull 62 428 490 3 Celik and Kolhe (2013), Nolan et al. (2012), Gryning et al. (2014)
Subtotal 722 2188 2910 28

2015 Time-series 31 14 45 2 J. Wang et al. (2015), (C. Y. Zhang et al. (2015)

—2018 Artificial-neural- 60 54 114 3 J. Wang et al. (2015), Maatallah et al. (2015), Sun and Liu (2016)
networks
Measure-correlate- 5 24 29 1 Weekes et al. (2015)
predict
Energy 27 45 72 3 Ritter et al. (2015), Koivisto et al. (2016), Chavez-Arroyo et al. (2015)

Wind-energy 36 77 113 4 Ritter et al. (2015), C. Y. Zhang et al. (2015), Marinelli et al. (2015), Ziel et al. (2016)
Subtotal 159 214 373 13

Total 1404 2812 4216 51
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Fig. 14. Thematic network evolution.

The first was: “What are the current methods and models used
in the field of wind power generation?” When applying citation
analysis, it was found that the oldest article considered corresponds
to Cheng and Chiu (1985) which uses a statistical approach and, up
to now, continues to be the most prominent one. It has also been
responsible for the emergence of other ones, like the physical,
during the 90's, and computational intelligence and hybrid models
in the last decade. The results from the citation analysis indicate
that 54% of the articles analyzed belong to statistical models, 17% to
physical, 14% to computational intelligence and 20% to hybrid
models. According to the frequency they appeared, the most used
for these approaches cover a large number of models, such as the
Box-Jenkins family, Neural Networks, Generalized Linear Regres-
sion, NWP models, Weibull distribution adjusts with joint proba-
bility density functions, Markov Chains, quantile regression and
WASP. Nonetheless, they are also applied to other purposes,

Table 13
Main answers to the Research Questions (RQs).

including simulation and modeling wind behavior, estimating wind
power generation potential or even fitting distributions of the wind
energy resource. Notice that statistical models are the ones that
were most developed over time when compared to physical models
and computational intelligence, being hybrid models the most
recent. On the other hand, the last three approaches are those
receiving more attention in the last two years.

Similarly, it was used citation analysis to answer the second
question: “Which type of analysis do these models involve?” The
results indicate that the core of the articles is centralized on fore-
casting (43%), simulation (28%), distribution fitting (12%), modeling
(10%) and some studies are spread out between estimation and
filtering, 4% and 3% respectively. A common feature on these
techniques (and even estimation procedures) is the Measure-
Correlate-Predict (MCP) model, used to assess wind power poten-
tial. It was found that the most cited articles use forecasting and
simulation techniques to address issues about power system op-
erations, planning for connection or disconnection of wind turbines
or even wind power potential.

The third research question is related to: “How have these
methods evolved over time?”. When implementing citation
network analysis (CNA) were obtained the central nodes in the
citation network: Bilgili et al. (2007), Carta and Velazquez (2011),
Carta et al. (2011), Velazquez et al. (2011b), Romo et al. (2011),
Hill et al. (2012), Carta et al. (2013), Weekes and Tomlin (2014a)
and Azad et al. (2014). These works are considered as central
nodes because they are connected to a large number of nodes in the
citation network. Thus, the main path analysis provided the most
prominent articles constituting the backbone for medium and long-
term wind power generation research. The evolution of these
studies indicates that they have focused on four central topics: MCP
methods, that consider linear relationships, probabilistic MCP,
Artificial Neural Networks and Bayesian Networks and alternative
techniques to MCP methods to assess wind power potential. It is
possible to observe that over the last 15 years, the most studied
tools to forecast and access wind power generation have been MCP
methods, which comprise Linear Regression and Variance Ratio
techniques. The use of Weibull distribution, joint probability den-
sity functions or kernel techniques were analyzed and tested,
aiming to provide more accurate results and better understanding
of the problems studied. Also, Artificial Neural Networks and
Bayesian Networks were considered to capture the nonlinear
relationship among the variables and were usually studied to
generate more precise long-run wind speed forecasts (for specific

RQ Analyses

Main answers

1 Citation

2 Citation

3 Citation

4 Citation

5 Citation Network and Co-word

6 Citation Network and Co-citation

The most used methods are: statistical, hybrid, physical

and computational intelligence.

The analysis done by these methods comprehends forecasting,
simulation, distribution fitting, modeling, filtering and estimation.
The core publications indicate that MCP methods, to assess wind
power potential, has evolved through models that consider linear
relationships, probabilistic MCP, Artificial Neural Networks and
Bayesian Networks and alternative techniques to MCP.

The main variables are: wind speed and meteorological variables,
such as direction, temperature, pressure and irradiation. Similarly,

the main accuracy measures are: MAE, RMSE, MAPE, MSE, R?,

Mean Error (ME).

It is expected that MCP methods, which are combined in hybrid models,
have a part of more intensive research focused on applications using
computational intelligence methods.

The main limitation of MCP methods is related to the lack of historical
wind speed data for most of the candidate sites.
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targeted sites).

To complement this evolution, co-word analysis allowed to
identify the conceptual structure and the main concepts related to
wind power, splitting the articles into four consecutive periods:
1985—2000, 2001—2006, 2007—2014 and 2015—2018. It was
observed that there was a growth in the thematic clusters which
indicates that wind power research areas passed through a diver-
sification process. The thematic cluster gathers a group of studies
focused on models that refer to wind-resource-assessment which
make use of Artificial Neural Networks and MCP methods. Notice
that those thematic are the core research fields for the most recent
period (2015—2018), confirming the findings in the main path
analysis.

Concerning the fourth research question: “What are the main
variables and performance measures considered?”, according to
the citation analysis, there are several variables used in the field of
wind energy considered as input variables, and most studies use
hourly data frequency. This include wind speed and meteorological
variables, such as direction, temperature, pressure, irradiation
among others less used. Nonetheless, based on the number of pa-
pers, wind speed implemented as input and output variable rep-
resents 60%. Also, wind speed and wind direction variables are used
together to forecast/simulate themselves, since including the sec-
ond improves the performance, according to: (Barbounis et al.,
2006; Bossavy et al., 2013; Carta and Veldzquez, 2011; Ettoumi
et al., 2003; Takeyama et al., 2018; Wang et al., 2018). In some
other cases, wind speed is first used to forecast and, then, the future
values of this predicted variables are employed to estimate wind
power generation. The obtained forecasts and simulations are
evaluated through the most used accuracy measures: MAE, RMSE,
MAPE, MSE, R?, Mean Error (ME). In probabilistic forecasts, the
error metrics most used are CRPS and twCRPS.

The fifth research question: “What are the trends for the
future?”, was addressed based on the growing expansion of wind
power generation around the world and the increasing interest in
this renewable energy source. The developed countries, like USA,
Spain, England and Germany, along with China, whose studies
represent 80%, at least, of the number of publications, offer a pos-
itive outlook of expansion growing of wind power generation
around the world, because of the large investments made by these
countries to this renewable energy source. As such, it is expected
that the developing countries will reach the same level of invest-
ment in the field of wind energy of the developed countries
implying an expected increase of the number of researches and
publications.

Based on the research directions obtained from the CNA, wind
resource assessment (on certain target sites using data from
reference sites) to estimate wind power generation potential
continue being highly explored, probably by applying MCP
methods, which are now often combined in hybrid models as part
of more intensive research focused on applications using compu-
tational intelligence methods.

Finally, concerning the sixth research question: “What are the
limitations of current research solutions?”, it was also possible to
observe that the main bottleneck related to the use of those
methods is the lack of historical wind speed data for most of the
candidate sites. To overcome this drawback, NWP models and the
use of climatological information are gaining more space, mainly
due to the costs associated with making new measurements.
Although statistical models have been widely used in the last
decade, hybrid ones present a promising alternative, especially
considering the increasing power of computational intelligence
techniques and also the use of physical models to improve data
availability.

5. Conclusions and final remarks

Wind power generation is a subject that has been widely
analyzed in the last 20 years and much attention has been given by
researchers around the world to short-run forecasting and related
issues, leaving a gap especially in review studies and analysis
focused on medium- and long-term forecasting. This is what the
present article addresses, through SLNA and bibliometric analysis.
One hundred and forty-five articles selected from the Scopus and
WoS databases were analyzed using the SLNA approach. Through
the articles, the six research questions proposed in the introduction
were answered considering different approaches and, now, the
most important observations and conclusions are summed up.

By applying SLNA, it was possible to identify the most relevant
studies in the field of wind energy generation, and the most
prominent journals and researchers. This study allows to find the
main techniques and approaches, and which currently have high
prospective to being developed. Additionally, it was possible to
recognize which is the knowledge backbone and who are the
scholars associated to these works, and also the most outstanding
countries. Furthermore, the analysis of the publication lead to
identification of the main variables, the data frequency and evalu-
ation metrics that provide a complete understanding of the the-
matic evolution.

This study has some limitations due to in the choice of search
parameters (keywords and exclusion criteria) and the fact of
restricting the search to only two databases. So, this work could be
extended, as future work, to use additional databases such as JSTOR
and ProQuest. Similarly, expand the study to theses, dissertations
and conference articles can enrich the analysis and lead to the in-
clusion of new methods and applications yet to be published in
peer-reviewed journals, reducing the risk of publication bias
associated with peer-reviewed literature. The analysis of wind
power production in the short-term as well as incorporating
studies that consider other renewable sources such as photovoltaic
generation are other key topics that can be considered.
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