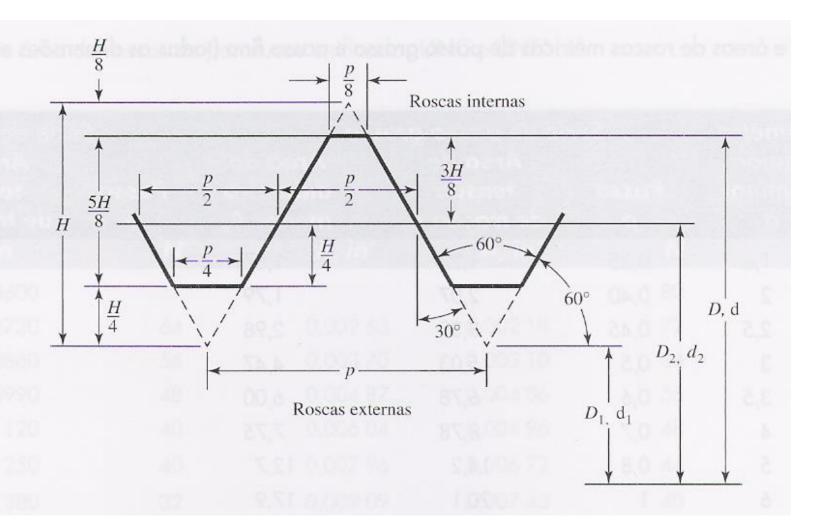
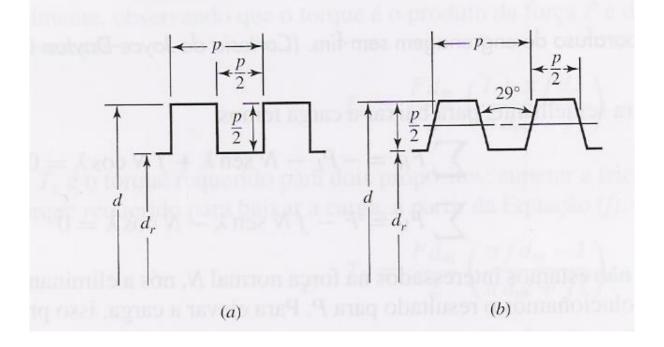
Parafusos, Fixadores e Projeto de Junções Não-Permanentes

CAPITULO

8-1	Padrões de Rosca e Definições 386
8-2	Mecânica dos Parafusos de Potência 387
8-3	Fixadores Rosqueados 397
8-4	Junções – Rigidez de Fixadores 398
8-5	Junções – Rigidez de Membro 402
8-6	Resistência de Parafuso de Porca 405
8-7	Junções de Tração – Carga Externa 407
8-8	Relacionando o Torque à Tração de Parafuso de Porca 409
8-9	Junção de Tração Carregada Estaticamente com Pré-Carga 412
8-10	Junções de Gaxeta 415
8-11	Carregamento de Fadiga de Junções de Tração 415
8-12	Junções de Cisalhamento 421
8-13	Parafusos de Retenção 426
8-14	Chavetas e Pinos 427
8-15	Considerações Estocásticas 433



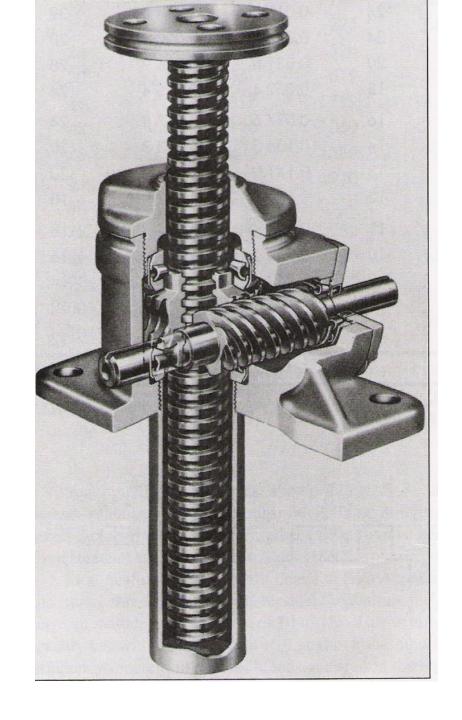

Tabela 8-1 Diâmetros e áreas de roscas métricas de passo grosso e passo fino (todas as dimensões em milímetros)*

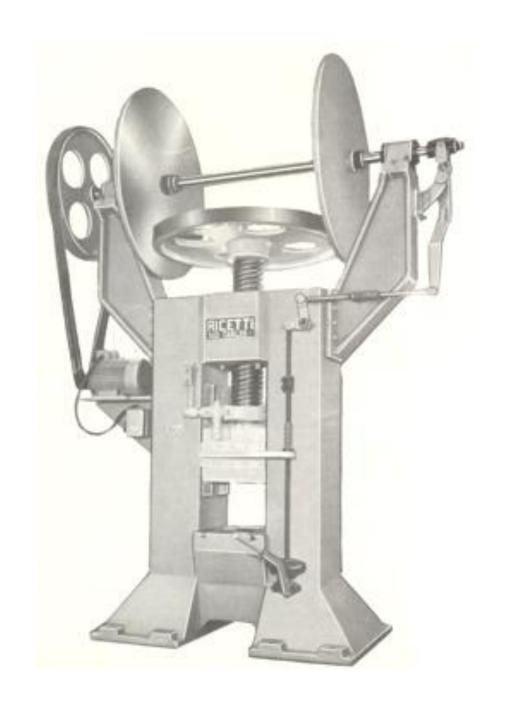
Diâmetro maior	Séi	rie de passo gross Área de	so Área do	S	o Área do	
nominal	Passo	tensão	diâmetro	Passo	Área de tensão	diâmetro
d	P	de tração A,	menor A _r	P	de tração A,	menor A
1,6	0,35	1,27	1,07			Willes Williage State of the
2	0,40	2,07	1,79			a ineconici na
2,5	0,45	3,39	2,98			
3	0,5	5,03	4,47			
3,5	0,6	6,78	6,00			
4	0,7	8,78	7,75			
5	0,8	14,2	12,7			
6	1	20,1	17,9			
8	1,25	36,6	32,8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39,2	36,0
10	1,5	58,0	52,3	1,25	61,2	56,3
12	1,75	84,3	76,3	1,25	92,1	86,0
14	2	115	104	1,5	125	116
16	2	157	144	1,5	167	157
20	2,5	245	225	1,5	272	259
24	3	353	324	2	384	365
30	3,5	561	519	2	621	596
36	4	817	759	2	915	884
42	4,5	1120	1050	2	1260	1230
48	5	1470	1380	2	1670	1630
56	5,5	2030	1910	2	2300	2250
64	6	2680	2520	2	3030	2980
72	6	3460	3280	2	3860	3800
80	6	4340	4140	1,5	4850	4800
90	6	5590	5360	2	6100	6020
100	6	6990	6740	2	7560	7470
110		man o se obnimble in 1817 181 oo C	especificadas of	2	9180	9080

^{*} As equações e os dados usados para desenvolver esta tabela foram obtidos da ANSI B1.1-1974 e B18.3.1-1978. O diâmetro menor foi en contrado a partir da equação $d_r = d-1,226\,869p$, e o diâmetro de passo, a partir de $d_m = d-0,64\,9519p$. A média do diâmetro de passo e do diâmetro menor foi usada para computar a área de tensão de tração.

		Sér	5	Série fina – UNF			
Designação lo tamanho	Diâmetro maior nominal in	Roscas por polegada N	Áreas de tensão de tração A, in²	Área do diâmetro menor A, in²	Roscas por polegada N	Áreas de tensão de tração A, in²	Área do diâmetro menor A, in²
0	0,0600				80	0,001 80	0,001 51
1	0,0730	64	0,002 63	0,002 18	72	0,002 78	0,002 37
2	0,0860	56	0,003 70	0,003 10	64	0,003 94	0,003 39
3	0,0990	48	0,004 87	0,004 06	56	0,005 23	0,004 51
4	0,1120	40	0,006 04	0,004 96	48	0,006 61	0,005 66
5	0,1250	40	0,007 96	0,006 72	44	0,008 80	0,007 16
6	0,1380	32	0,009 09	0,007 45	40	0,010 15	0,008 74
8	0,1640	32	0,0140	0,011 96	36	0,014 74	0,012 85
10	0,1900	24	0,017 5	0,014 50	32	0,020 0	0,017 5
12	0,2160	24	0,024 2	0,020 6	28	0,025 8	0,022 6
1/4	0,2500	20	0,031 8	0,026 9	28	0,036 4	0,032 6
<u>5</u>	0,3125	18	0,052 4	0,045 4	24	0,058 0	0,052 4
3 8	0,3750	16	0,077 5	0,067 8	24	0,087 8	0,080 9
7 16	0,4375	14	0,106 3	0,093 3	20	0,1187	0,109 0
1/2	0,5000	13	0,141 9	0,1257	20	0,1599	0,148 6
9	0,5625	12	0,182	0,162	18	0,203	0,189
<u>5</u> 8	0,6250	11	0,226	0,202	18	0,256	0,240
3/4	0,7500	10	0,334	0,302	16	0,373	0,351
7/8	0,8750	9	0,462	0,419	14	0,509	0,480
1	1,0000	8	0,606	0,551	12	0,663	0,625
$1\frac{1}{4}$	1,2500	7	0,969	0,890	12	1,073	1,024
$1\frac{1}{2}$	1,5000	6	1,405	1,294	12	1,581	1,521

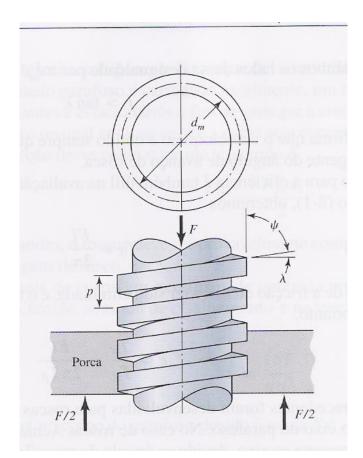
tabela foi compilada a partir da ANSI B1.1-1974. O diâmetro menor foi encontrado a partir da equação $d_r = d - 1,299\,038p$, e o diâmetro de passo, a partir da equação $d_m = d - 0,649\,519p$. A média do diâmetro de passo e do diâmetro menor foi usada para computar a área de tensão de tração.

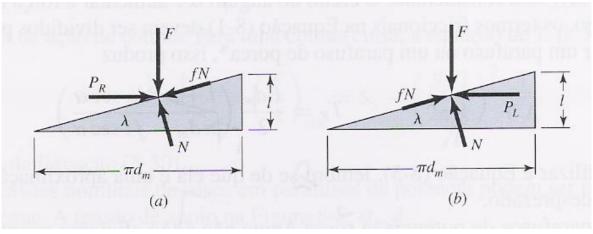

d, in	$\frac{1}{4}$	<u>5</u>	3 8	$\frac{1}{2}$	<u>5</u> 8	3/4	<u>7</u> 8	1	$1\frac{1}{4}$	$1\frac{1}{2}$	$1\frac{3}{4}$	2	$2\frac{1}{2}$	3
p, in	1/16	1/14	1/12	10	1/8	1/6	1/6	1/5	1/5	1/4	1/4	1/4	1/3	1/2

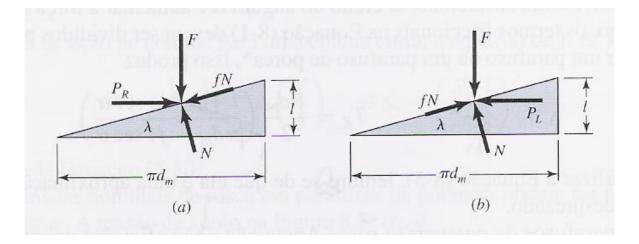

Parafusos, Fixadores e Projeto de Junções Não-Permanentes

CAPÍTULO

8-1	Padrões de Rosca e Definições 386
8-2	Mecânica dos Parafusos de Potência 387
8-3	Fixadores Rosqueados 397
8-4	Junções – Rigidez de Fixadores 398
8-5	Junções – Rigidez de Membro 402
8-6	Resistência de Parafuso de Porca 405
8-7	Junções de Tração – Carga Externa 407
8-8	Relacionando o Torque à Tração de Parafuso de Porca 409
8-9	Junção de Tração Carregada Estaticamente com Pré-Carga 412
8-10	Junções de Gaxeta 415
8-11	Carregamento de Fadiga de Junções de Tração 415
8-12	Junções de Cisalhamento 421
8-13	Parafusos de Retenção 426
8-14	Chavetas e Pinos 427
8-15	Considerações Estocásticas 433


Exemplos





Torno Universal

$$\sum F_H = P_R - N \operatorname{sen} \lambda - f N \operatorname{cos} \lambda = 0$$

$$\sum F_V = F + f N \operatorname{sen} \lambda - N \operatorname{cos} \lambda = 0$$

$$\sum F_H = -P_L - N \operatorname{sen} \lambda + f N \cos \lambda = 0$$

$$\sum F_V = F - f N \operatorname{sen} \lambda - N \operatorname{cos} \lambda = 0$$

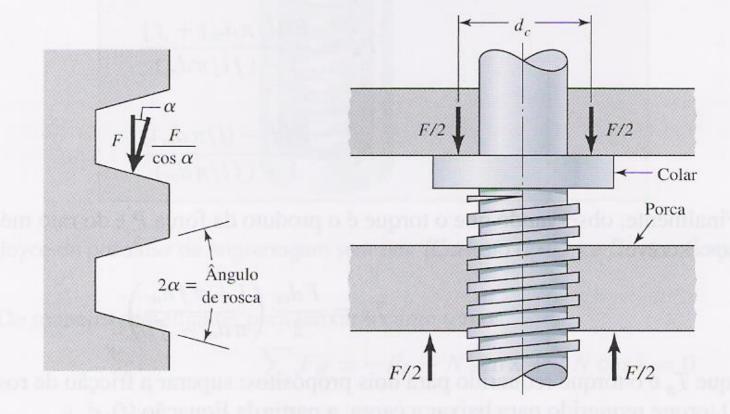
$$P_R = \frac{F(\sin \lambda + f \cos \lambda)}{\cos \lambda - f \sin \lambda}$$

$$P_L = \frac{F(f\cos\lambda - \sin\lambda)}{\cos\lambda + f\sin\lambda}$$

$$P_R = \frac{F[(l/\pi d_m) + f]}{1 - (fl/\pi d_m)}$$

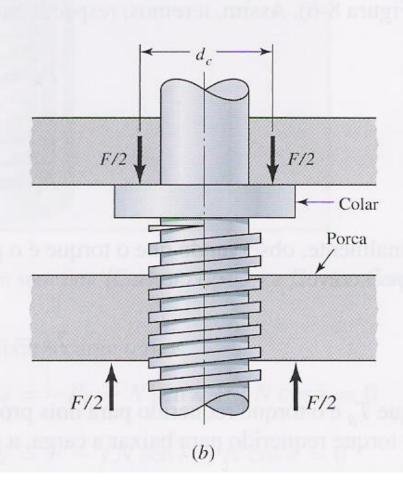
$$P_{L} = \frac{F[f - (l/\pi d_{m})]}{1 + (fl/\pi d_{m})}$$

$$T_R = \frac{Fd_m}{2} \left(\frac{l + \pi f d_m}{\pi d_m - f l} \right)$$


DEMONSTRE O RENDIMENTO !

$$\eta = \frac{F t}{2\pi T_R}$$

$$T_L = \frac{Fd_m}{2} \left(\frac{\pi f d_m - l}{\pi d_m + f l} \right)$$


f > tg λ condição para auto-bloqueio **DEMONSTRE ISSO !**

Rosca Acme

$$T_R = \frac{Fd_m}{2} \left(\frac{l + \pi f d_m \sec \alpha}{\pi d_m - f l \sec \alpha} \right)$$

Colar

$$T_c = \frac{Ff_c d_c}{2}$$