Temas da 3ª semana – PSI3471-2020 – Prof Emilio

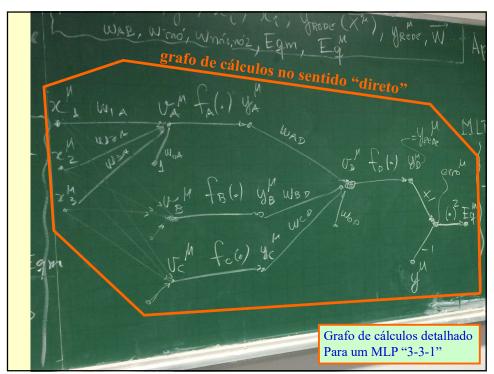
#5 [16/marco - 2ªf] Foco da semana: aprendizado da Rede Neural MLP – O Gradiente descendente e a otimização de pesos sinápticos com base no conjunto de treino e EBP; dedução das fórmulas do EBP, em sala de aula em conjunto com os alunos: trabalho focado num peso sináptico específico da rede, escolhido pelo professor para máxima complexidade da dedução.
#6 [18/marco - 4ªf] ... Discussão das extensões das deduções já feitas (para um peso no EBP) para os demais pesos sinápticos; redundâncias nos cálculos dos diversos pesos da rede neural e otimização do esforço computacional. Regra

"Delta" de aprendizado de Widrow, para neurônio isolado; Aprendizado por EBP recursivo, camada a camada.

_ © Prof. Emilio Del Moral Hernandez

E

59



Como escolhemos os valores dos diversos w's ?

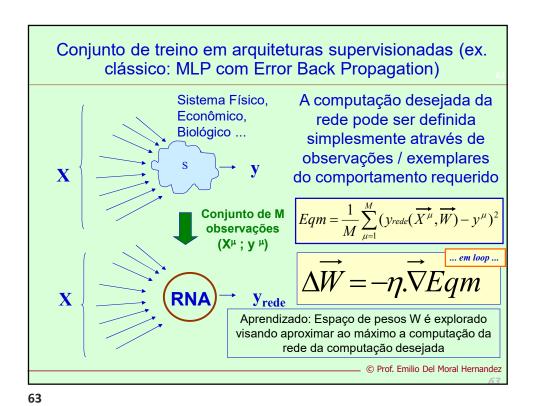
© Prof. Emilio Del Moral Hernandez

61

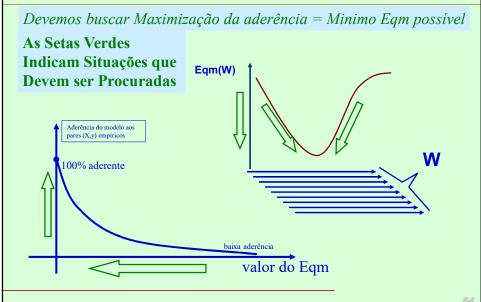
Aprendizado em RNAs do tipo MLP – Multi Layer Percetron – através do algoritmo Error Back Propagation

(método do gradiente usado na otimização de w's do MLP)

© Prof. Emilio Del Moral – EPUSP



O que devemos buscar quando exploramos o espaço de pesos W buscando que a RNA seja um bom modelo?



Método do Gradiente Aplicado aos nossos MLPs: a partir de um W#0, temos aproximações sucessivas ao Eqm mínimo, por repetidos pequenos passos DeltaW, sempre contrários ao gradiente ...

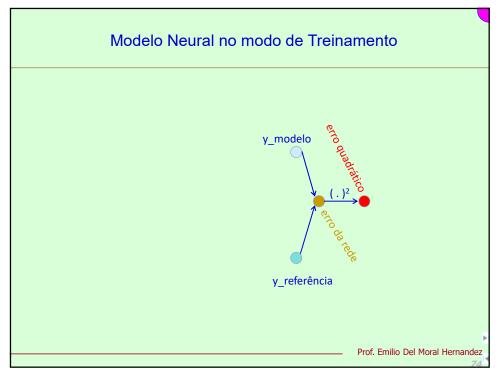
- "Chute" um W inicial para o "Wcorrente", ou "W melhor até agora"
- Em loop até obter Eqm zero, ou baixo o suficiente, ou estável:
 - Determine o vetor gradiente do Eqm, nesse espaço de Ws
 - Em loop varrendo todos os M exemplos $(X^{\mu};y^{\mu})$,
 - Calcule o gradiente de Eq $^\mu$ associado a um exemplo μ , e vá varrendo μ e somando os gradientes de cada Eq $^\mu$, para compor o vetor gradiente de Eqm, assim que sair deste loop em μ ;
 - Cada cálculo como esse, envolve primeiro calcular os argumentos de cada tangente hiperbólica e depois usar esses argumentos na regra da cadeia das derivadas necessárias
 - Tire a média dos M gradientes individuais e dê um passo Delta ΔW nesse espaço, com direção e magnitude dados por $-\eta^*$ vetor gradiente (Eqm)

Prof. Emilio Del Moral Hernandez

illo Dei Morai Herriandez

65

W#0	→ Eqm#0	GradEqm(W#0) =	→ DeltaW#0 =
			- n.GradEqm(W#6
(= W#0 + DeltaW#0)	Eqm#1 (< Eqm#0)	GradEqm(W#1)	DeltaW#1 = - n.GradEqm(W#
W#2 (= W#1 + DeltaW#1)	Eqm#2 (< Eqm#1)	GradEqm(W#2)	DeltaW#2 = - n.GradEqm(W#2
W#3 (= W#2 + DeltaW#2)	Eqm#3 (< Eqm#2)	GradEqm(W#3)	DeltaW#3 = - n.GradEqm(W#3
W#4 (= W#3 + DeltaW#3)	Eqm#4 (< Eqm#3)	GradEqm(W#4)	DeltaW#4 = - n.GradEqm(W#4
W#k (= W#k-1 + DeltaW#k-1)	Eqm#k (< Eqm#k-1)	GradEqm(W#k)	DeltaW#k = - n.GradEqm(W#4



... erro da rede com relação ao conjunto de treinamento como um todo; simbologia $(X^{\mu}\,;\,y^{\mu})$; Erro quadrático de exemplar (Eq^); Erro quadrático médio (Eqm)

$$Eqm = \frac{1}{M} \sum_{\mu=1}^{M} (y_{rede}(\overrightarrow{X}^{\mu}, \overrightarrow{W}) - y^{\mu})^{2}$$

μ identifica um de M exemplos de treinamento

Prof. Emilio Del Moral Hernandez

Deduzindo as Equações do Aprendizado em RNAs do tipo MLP – Multi Layer Percetron – com o algoritmo Error Back Propagation (Gradiente Descendente)

© Prof. Emilio Del Moral – EPUSP

81

"Chamada oral" sobre a lição de casa: estudar / reestudar os conceitos e a parte operacional de derivadas parciais, do vetor Gradiente, e da regra da cadeia ...

Derivadas parciais (que são as componentes do gradiente):

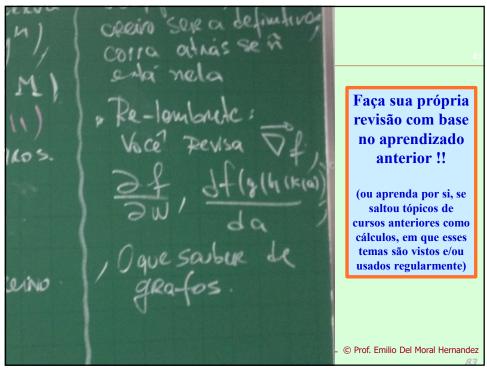
$$\partial f(a,b,c)/\partial a$$
 $\partial f(a,b,c)/\partial b$ $\partial f(a,b,c)/\partial c$

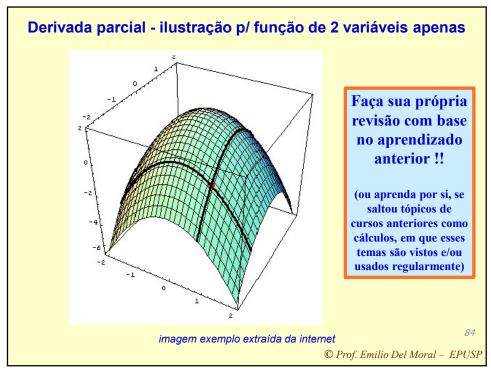
Vetor Gradiente, útil ao método do máximo declive:

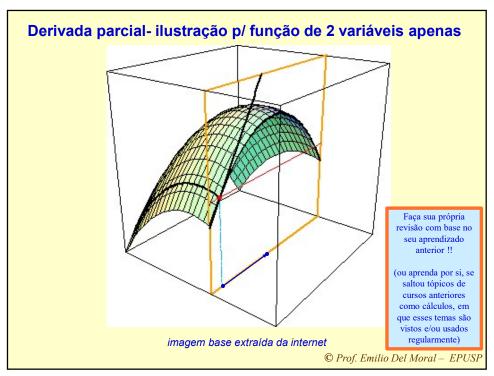
$$(\partial \text{Eqm(W)}/\partial w_1, \partial \text{Eqm(W)}/\partial w_2, \partial \text{Eqm(W)}/\partial w_3, ...)$$
 $\Delta \overrightarrow{W} = -\eta . \nabla Eqm_{\underline{}}$

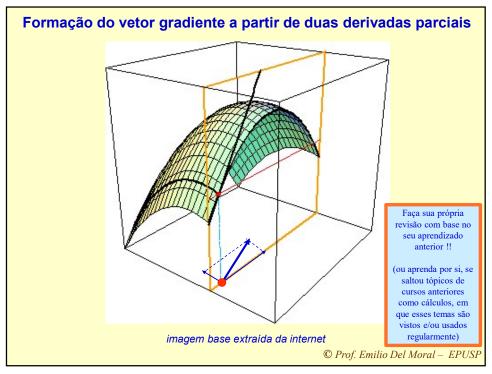
 Regra da cadeia, necessária ao cálculo de derivadas quando há encadeamento de funções:

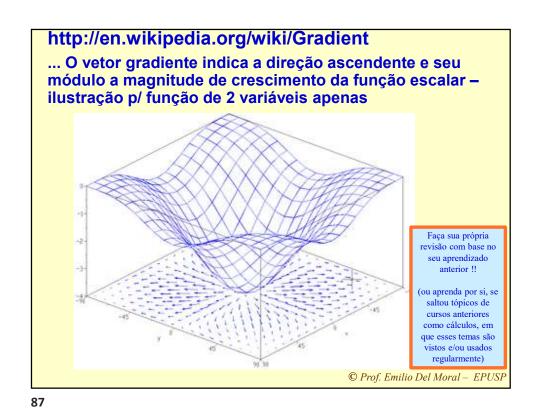
$$\partial f(g(h(a)))/\partial a = \partial f/\partial g \cdot \partial g/\partial h \cdot \partial h/\partial a$$









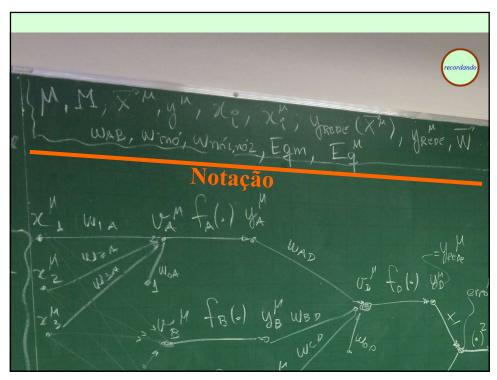


Aprendizado do MLP por Error Back Propagation ...

ΔW = -η.∇Eqm_

Gradiente de Eqm no espaço de pesos = (∂Eqm(W)/∂w₁, ∂Eqm(W)/∂w₂, ∂Eqm(W)/∂w₃, ...)

Chegando às fórmulas das derivadas parciais, necessárias à Bússola do Gradiente



Entendendo símbolos que temos usado em nossos grafos da lousa e em alguns dos slides:

 $X\,$ -- vetor $X\,$ de entradas num MLP, com os valores genéricos nas suas componentes x_i

X_i -- componente "i" do vetor de entradas de um MLP, com valor genérico, um número real entre " - infinito e + infinito"

 X^{μ} -- vetor X das entradas num MLP, mas com os valores de cada um dos x_i específicos da observação empírica μ

 $\mu\,\,$ -- identificador / indexador inteiro, entre 1 e M, usado para especificar um dos exemplares (uma das observações empíricas, aquela de "número" μ) que compõem o conjunto de pares empíricos (X,y).

 $M\,\,$ -- número total de exemplares empíricos que compõem o conjunto de treino; cardinalidade do conjunto de treino

 ${\bf X_i}^\mu$ -- componente "i" do vetor de entradas de um MLP, com o valor específico referente à observação empírica μ

 y^μ -- saída alvo para a rede neural sendo treinada com aprendizado supervisionado, com o valor específico da observação empírica μ . Poderia ser chamada também de $y_{alvo}{}^\mu$, explicitando mais claramente o significado

© Prof. Emilio Del Moral Hernandez

Entendendo símbolos que temos usado em nossos grafos da lousa e em alguns dos slides:

 $y_{\text{rede}}(X^{\mu})$ -- saída da rede neural quando a sua entrada corresponde aos valores empíricos X^{μ}

Ou ... y_{rede}^{μ} -- outra forma de representar $y_{rede}(X^{\mu})$

W -- vetor de todos os pesos sinápticos de uma rede MLP, incluindo todos os vieses de todos os neurônios

 $w_{AB}\,$ -- peso sináptico específico que conecta a saída do neurônio A com uma das entradas do neurônio B

w_{iA} -- peso sináptico específico que conecta a entrada x_i da rede neural com o neurônio A da primeira camada do MLP

Eqm -- Erro quadrático médio; média dos M valores de Eq^{μ} Eq^{μ} -- Erro quadrático individual, referente especificamente à observação empírica μ ----- fórmula: Eq^{μ} = [$y_{rede}(X^{\mu})$ - y^{μ}]²

© Prof. Emilio Del Moral Hernandez

93

Um Exemplo Ilustrativo para o Conceito de Conjunto de Treinamento e dos M pares (X,y)...

95

Exemplo de regressão multivariada para estimação contínua usando MLP

- O valor do y contínuo ... neste exemplo corresponde ao volume de consumo futuro num dado tipo de produto "A" a ser ofertado pela empresa a um cliente corrente já consumidor de outros produtos da empresa ("B" e "C"), volume esse previsto com base em várias medidas quantitativas que caracterizam tal indivíduo. ... Assim, y = Consumo do Produto A = F(x₁,x₂, x₃, x₄, x₅).
- Consideremos 4 variáveis de entrada no modelo preditivo neural, ou seja, temos 5 medidas em X:
 - x₁: Idade do indivíduo
 - x₂: Renda mensal do indivíduo
 - x₃: Volume de clicks do indivído no website de exibição de produtos oferecidos pela empresa
 - x₄: Volume de consumo desse cliente observado para outro Produto B da mesma empresa
 - x₅: Volume de consumo desse cliente Produto C da mesma empresa
- Problema: desenvolver uma MLP para regressão contínua multivariada que permita estimar esse volume de consumo futuro y com base no conhecimento dos X e numa base de dados de aprendizado com esses dados X e y para 350 já clientes de universo populacional similar ao do novo consumidor potencial.

© Prof. Emilio Del Moral – EPUSP

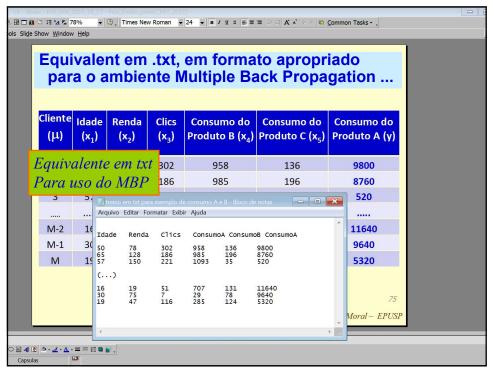
96

Exemplo de dados empíricos tabulados em Excel ...

Cliente (µ)	Idade (x ₁)	Renda (x ₂)	Clics (x ₃)	Consumo do Produto B (x ₄)	Consumo do Produto C (x ₅)	Consumo do Produto A (y)
1	50	78	302	958	136	9800
2	65	128	186	985	196	8760
3	57	150	221	1093	35	520
						••••
M-2	16	19	51	707	131	11640
M-1	30	75	7	29	78	9640
М	19	47	116	285	124	5320

97

Exe	Exemplo de dados empíricos tabulados em Excel							
Cliente (µ)	Idade (x ₁)	Renda (x ₂)	Clics (x ₃)	Consumo do Produto B (x ₄)	Consumo do Produto C (x ₅)	Consumo do Produto A (y)		
1	50	78	302	958	136	9800		
2	65	128	186	985	196	8760		
3	57	150	221	1093	35	520		
M-2	16	19	51	707	131	11640		
M-1	30	75	7	29	78	9640		
М	19	47	116	285	124	5320		
M vetores X ^μ (cada um deles é 5 dimensional) de entrada do MLP, referentes cada um deles a uma das M observações empíricas						M alvos y ^μ		
	98 © Prof. Emilio Del Moral – EPUSP							



... erro da rede com relação ao conjunto de treinamento como um todo; simbologia (X^{μ} ; y^{μ}); Erro quadrático de exemplar (Eq $^{\mu}$); Erro quadrático médio (Eqm)

$$Eqm = \frac{1}{M} \sum_{\mu=1}^{M} (y_{rede}(\overrightarrow{X}^{\mu}, \overrightarrow{W}) - y^{\mu})^{2}$$

μ identifica um de M exemplos de treinamento

Prof. Emilio Del Moral Hernandez

102

102

Inicialmente, invertamos o operador gradiente e a somatória

.. afinal, gradiente é uma derivada, e a derivada de um soma de várias funções é igual à soma das derivadas individuais de cada componente da soma:

Grad(Eqm) =

Grad($\Sigma_{\mu} Eq^{\mu}$) / M

 Σ_{μ} Grad (Eq $^{\mu}$) / M

103

Note que a inversão do gradiente com a somatória nada mais é que usar de forma repetida – e em separado para cada dimensão

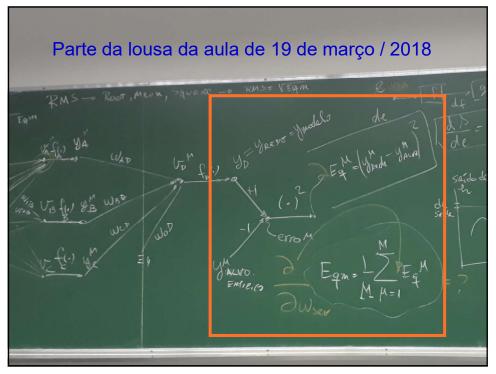
do vetor $\textit{Grad}(\Sigma_{\mu} \textit{Eq}^{\mu})$ – a seguinte propriedade simples e sua velha conhecida ...

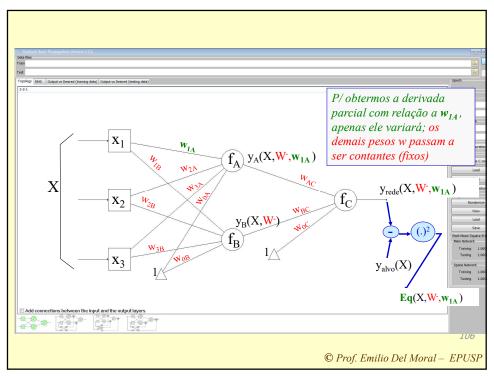
$$d(f_1(x)+f_2(x)) / dx = df_1(x)/dx + df_2(x)/dx$$

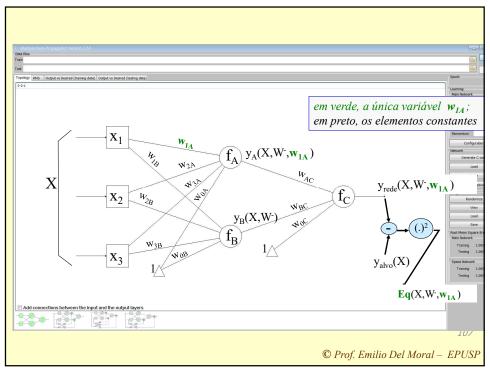
104

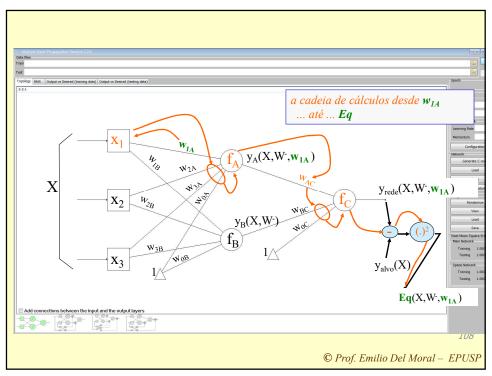
© Prof. Emilio Del Moral – EPUSP

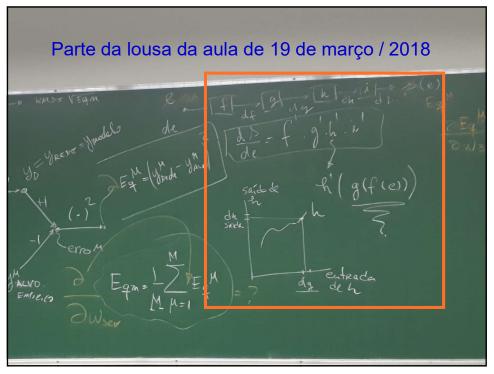
104

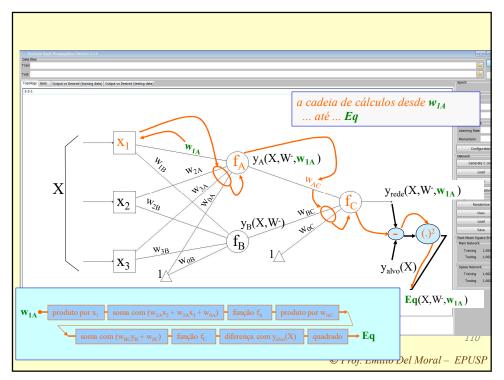












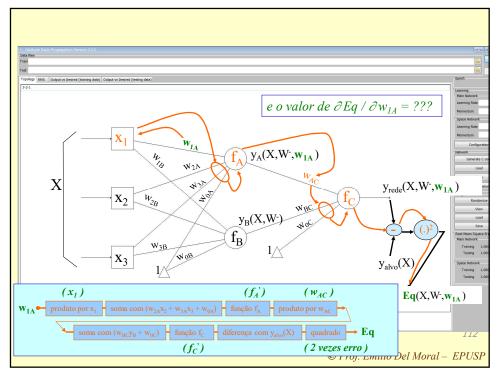
Note que aqui temos uma cadeia com muitos estágios que levam da váriável W_{1A} , à variável Eq^{μ} , e para a qual podemos calcular a derivada da saída (Eq^{μ}) com relação à entrada (W_{1A}) aplicando de forma repetida a seguinte propriedade simples e sua velha conhecida ...

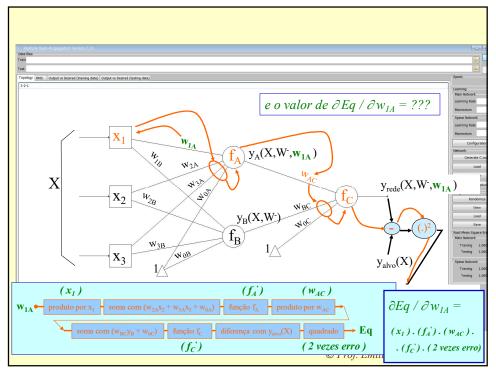
$$d(f_1(f_2(x)) / dx = df_1(x)/df_2 \cdot df_2(x)/dx$$

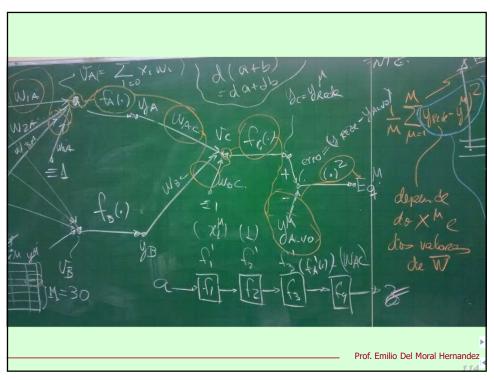
..., ou seja, calculando isoladamente o valor da derivada para cada estágio da cadeia, e finalizando o cálculo de derivada de ponta a ponta nessa cadeia toda através do produto dos diversos valores de cada estágio.

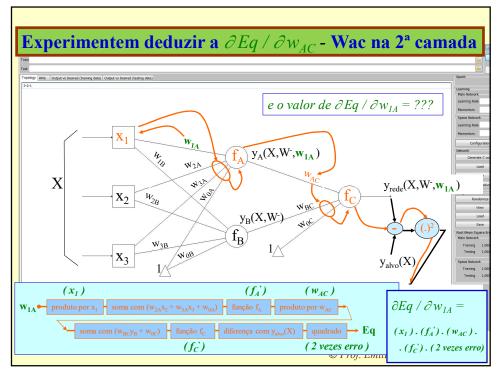
111

© Prof. Emilio Del Moral – EPUSP









Lembretes

- Na maioria dos slides anteriores, onde aparece X, leia-se X^μ, não incluído para não complicar demais os desenhos
- ... similarmente, onde aparece y_{alvo}, leia-se y_{alvo} ^μ. Idem para os Eq, leia-se Eq^μ
- Nos itens de cadeia de derivadas (f_A) e (f_C) , atenção para os valores dos argumentos, que devem ser os mesmos de f_A e f_C na cadeia original que leva w_{IA} a Eq.
- ... lembrando ... na cadeia original tinhamos ...

```
- para f_C: f_C(w_{AC} \cdot f_A(w_{1A} \cdot x_1 + w_{2A} \cdot x_2 + ... + w_{0A}) + w_{BC} \cdot f_B(w_{1B} \cdot x_1 + w_{2B} \cdot x_2 + ... + w_{0B}) + w_{0C})

- para f_A: f_A(w_{1A} \cdot x_1 + w_{2A} \cdot x_2 + ... + w_{0A})
```

 Similarmente, para o bloco "quadrado", cuja derivada é a função "2 vezes erro", o argumento é [y_{rede}(X,W) - y_{alvo}(X)]

123

© Prof. Emilio Del Moral – EPUSF

123

Lembretes

- O mesmo que foi feito para w_{IA} deve ser feito agora para os demais 10 pesos: w_{2A} , w_{3A} , $w_{\theta A}$, w_{1B} , w_{2B} , w_{3B} , $w_{\theta B}$, w_{AC} , w_{BC} , e $w_{\theta C}$!
- Assim compomos um gradiente de 11 dimensões, com as derivadas de Eq^μ com relação aos 11 diferentes pesos w: Grad_w (Eq^μ)
- Essas 11 fórmulas devem ser aplicadas repetidamente aos M exemplares numéricos de X^μ e y_{alvo}^μ, calculando M gradientes!
- Com eles, se obtém o gradiente médio dos M pares empíricos: Grad_w (Eqm) = [Σ₁₁ Grad_w (Eq^μ)] / M
- Esse gradiente médio é a Bussola do Gradiente!

121

Método do Gradiente Aplicado aos nossos MLPs: a partir de um W#0, temos aproximações sucessivas ao Eqm mínimo, por repetidos pequenos passos DeltaW, sempre contrários ao gradiente ...

- "Chute" um W inicial para o "Wcorrente", ou "W melhor até agora"
- Em loop até obter Eqm zero, ou baixo o suficiente, ou estável:
 - Determine o vetor gradiente do Eqm, nesse espaço de Ws
 - Em loop varrendo todos os M exemplos $(X^{\mu};y^{\mu})$,
 - Calcule o gradiente de Eq $^\mu$ associado a um exemplo μ , e vá varrendo μ e somando os gradientes de cada Eq $^\mu$, para compor o vetor gradiente de Eqm, assim que sair deste loop em μ ;
 - Cada cálculo como esse, envolve primeiro calcular os argumentos de cada tangente hiperbólica e depois usar esses argumentos na regra da cadeia das derivadas necessárias
 - I Tire a média dos M gradientes individuais e dê um passo Delta ΔW nesse espaço, com direção e magnitude dados por $-\eta^*$ vetor gradiente (Eqm)

Prof. Emilio Del Moral Hernandez

126