AGA5802 Coordinate Systems

Prof. Alessandro Ederoclite

How do you know how to come to class?

- Class is
- in Brazil
- São Paulo
- USP
- Cidade Universitaria
- IAG
- Aula XXX
- Or
- Latitude
- Longitude
- Elevation
- At 2 pm

Sky Coordinates

What do you need to define coordinates?

- A plane
- (which tends to have an axis)
- A way to break symmetry (N-S / E-W)
- An origin of your system

Earth Coordinates - Equator

https://www.nasa.gov/audience/forstudents/k-4/dictionary/Equator.html

If the human population held hands around the equator

A significant portion of them would drown

Earth Coordinates - Meridian Zero

https://en.wikipedia.org/wiki/Longitude_(book)

Relevant planes

Equator
Ecliptic
Milky Way

Declination

Angular distance from the celestial equator

Celestial poles have $\bar{\delta}=+/-90^{\circ}$

Declination of zenith

Celestial poles have $\delta=90^{\circ}$
If the height above the horizon of the celestial pole equals the longitude of the place: can we infer the declination of zenith?

$$
\delta_{z}=1
$$

Circumpolar stars

Can anyone explain this picture?
-) why some tracks are longer than others?
-) can you guess the length of the exposure?
-) can you guess where the Southern Pole is?

Circumpolar Stars

The stars with declination $\bar{\delta}>90^{\circ}-/$
Where / is the local longitude never rise or set.

It's $\delta<-90^{\circ}+$ I for the Southern hemisphere.

The y point and Right Ascension (α)

The celestial equator and the ecliptic cross in two points.

One of these points is the "vernal point".
It is the position of the Sun on Mar21 (aprox).

ON MAR21, THE SUN HAS RA = 0h
2π radians $=360^{\circ}=1$ day $=24 \mathrm{~h}$

The Hour Angle

Local Sidereal Time is the (sidereal) time since the y point has passed the local meridian.

The hour angle (HA) is:
HA ${ }_{\text {object }}=$ LST $-\alpha_{\text {object }}$

Pointing Limits of an Equatorial Mount

The Right Ascension of zenith

In the middle of the night (which is NOT midnight):
On Mar21, $\alpha_{\text {Sun }} \sim 0 h$
Since Sun is at nadir, at that moment, the $\alpha_{\text {zenith }} \sim 12 h$
Since the Sun "moves" around the Ecliptic in a year ($360^{\circ}=24 \mathrm{~h}=12$ months), it means that $\alpha_{\text {zenith }}$ changes by 2 hours/month.

On Dec $21, \alpha_{\text {zenith }}$ is $0 h$

Coordinates of zenith

What are the coordinates of zenith (in the middle of the night) on
Jun 21
Sep 21
Today

18h00
00h00
11h30

Movements of the Earth

Revolution	1 year
Rotation	1 day
Precession	25,000 years
Nutation	18.6 years

Epoch and Equinox

Define the origin of our coordinate system.
Equinox refers to the position of the vernal point.
Epoch refers to the position of a moment in time.

Reference Systems

FK4
Based on bright stars at B1950.
FK5
Based on bright stars at J2000.
ICRS
Based on 212 extragalactic radio sources (J2000)

Stars MOVE!

Movimento Próprio

Componentes do $\quad \mu=$ movimento próprio ["/ano] movimento próprio
 $\mu_{\alpha}=$ movimento próprio em ascensão reta
 $\mu_{\delta}=$ movimento próprio em declinação

To make things more complicated: parallax

$d=a \tan p \sim a * p$
$a=1 U A=140 \times 10^{6} \mathrm{~km}$

Gaia !

Mellinger color

Galactic Coordinates

Galactic longitude - I
Galactic latitude - b

Mellinger color

Super-Galactic Coordinates

Very little used.
Designed to have its equator aligned with the supergalactic plane, a major structure in the local universe formed by the preferential distribution of nearby galaxy clusters (such as the Virgo cluster, the Great Attractor and the Pisces-Perseus supercluster) towards a (two-dimensional) plane

$$
\bigcirc
$$

Ecliptic Coordinates

Used for objects in the Solar System
Ecliptic as main plane
Centred on Earth OR Sun
Can be either spherical or rectangular

Let's get some objects and check their coordinates

Simbad
http://simbad.u-strasbg.fr//simbad/
NED (NASA Extragalactic Database)
http://ned.ipac.caltech.edul

John R. Thornstensen

https://home.dartmouth.edu/faculty-directory/john-r-thorstensen
https://www.dartmouth.edu/~physics/labs/skycalc/flyer.html

Staralt

http://catserver.ing.iac.es/staralt/index.php
Compute visibility
Compute trajectories

Programming

Most (if not all) programming languages have some library/module to deal with coordinate systems

- FORTRAN
- C
- C++
- Perl
- Python
- IDL
- R

ESO SkyCalc

https://www.eso.org/observing/etc/bin/gen/form?INS.MODE=swspectr+INS.NAME =SKYCALC

pyephem

https://rhodesmill.org/pyephem/
In case you get lost with cities:
https://github.com/brandon-rhodes/pyephem/blob/master/ephem/cities.py
Yet, pyephem is now deprecated.
One should use SkyField
https://rhodesmill.org/skyfield/

astropy

http://www.astropy.org/astropy-tutorials/rst-tutorials/coordinates.html?highlight=filt ertutorials

IDL
There are commands for IDL users:
https://idlastro.gsfc.nasa.gov/contents.html

The Flag of Brazil

the stars in the sky at Rio de Janeiro at 8:30 in the morning on 15 November 1889

Exercises

- Draw the flag of Brazil for the same date but as if the capital was Natal instead of Rio
- Draw the flag of Brazil if the sky was Mar1, 2020 and the capital was São Paulo
- Draw the alt-az position of Sirius at noon over a year. Does it draw an analemma? Explain why
- Draw the azimuth of Sirius when it rises (i.e. when its altitude $=0$ towards East) over the year. Does it vary? Explain why

