

Terapia Gênica: Sistemas de liberação de genes

Profa Dra Fabiana T.M.C. Vicentini Profa Dra Maria Vitória L.B. Bentley 2020

Cronograma

- Introdução
- Princípios
- Histórico
- Introdução do material genético Ex vivo e In vivo
- Contexto atual
- Conclusão

A ideia central da terapia gênica é introduzir genes terapêuticos no corpo para corrigir uma doença através da expressão ou inibição da expressão de uma proteína

A LEGISLAÇÃO ATUAL PERMITE A TERAPIA GÊNICA APENAS EM CÉLULAS SOMÁTICAS

Introdução - Terapia Gênica

Contém uma substância ativa que contém ou consiste em um ácido nucleico recombinante utilizado ou administrado a seres humanos com objetivo de regular, reparar, substituir, adicionar ou eliminar uma sequência genética;

O seu efeito terapêutico, profilático ou diagnóstico relaciona-se diretamente com a sequência de ácido nucleico recombinante que contém, ou com o produto da expressão genética desta sequência.

Processo experimental que envolve a alteração da composição genética das células para o tratamento ou prevenção de doenças Um sistema que forneça expressão eficiente, persistente e estável de genes transferidos em células de mamíferos pode ser uma ferramenta útil para diversas aplicações, como regulação de genes, modelagem de doenças, testes de fármacos e suplementação de genes para correção terapêutica

Introdução - Terapia Gênica

Terapias Convencionais

Sintomas

Introdução - Terapia Gênica

Terapia Gênica

Correção da expressão anormal de determinado gene ou da função celular responsáveis pelos sintomas das doenças

Introdução - Princípios da Terapia Gênica

(I) Substituição ou correção de um gene mutante

Restaurar a capacidade da célula para produzir proteínas funcionais;

Uma das mais utilizadas;

Pode ser aplicado a diferentes tipos de doenças;

(II) Introdução de um gene heterólogo

VACINAS DE DNA

VACINAS DE DNA

(III) Inativação de um gene

Expressão do produto de um gene anormal:

Desequilíbrio na célula;

Não é fundamental para a célula ou para o indivíduo;

(III) Inativação de um gene

(III) Inativação de um gene

Oligonucleotídeo Antisense

RNA interferente ou RNA de interferência

OLIGONUCLEOTÍDEOS

É um fragmento curto de uma cadeia simples de ácido nucléico (DNA ou RNA), tipicamente com 20 ou menos bases

USO DOS OLIGONUCLEOTÍDEOS

- Iniciadores (primers) para seqüenciamento e amplificação de DNA;
- Sondas para detecção de cDNA ou RNA (ex: microarrays de DNA; southern blots e hibridização in situ);
- Ferramenta para introdução de mutações e restrições sítio-dirigidas;
- Ferramenta para síntese artificial de genes;

>Oligonucleotídeos antisense;

OLIGONUCLEOTÍDEOS ANTISENSE (ASO)

Dean, N.M.; Bennett, C.F. 2003

Mecanismo exercido por moléculas de RNA complementares a RNAs mensageiros, o qual inibe a expressão gênica na fase de tradução ou dificulta a transcrição de genes específicos;

- miRNA produtos da transcrição de genes presentes em muitos eucariotos;
- siRNA derivados de longas moléculas de RNA dupla fita de origem exógena (como aquelas provenientes de vírus de RNA)

Moléculas efetoras (siRNA e microRNA (mi-RNA)) são geradas

Ocorre a incorporação das moléculas efetoras em complexos protéicos e promoção do silenciamento gênico

Cronograma destacando alguns marcos importantes da Terapia Gênica

Cronograma destacando alguns marcos importantes da Terapia Gênica

Cronograma destacando alguns marcos importantes da Terapia Gênica

Adaptado de Wirth et al., 2013

1990 – Tratamento de uma menina de 4 anos Síndrome da imunodeficiência combinada severa

- Principais causas de SCID Deficiência da enzima adenosina desaminase (ADA);
- Mutações no gene degeneração das células T do sistema imune;
- Tratamento convencional: reposição da enzima através de injeções semanais;
- Paciente desenvolveu uma alergia ao preparado da enzima usado para injeções;
- Autorização dos comitês de ética médico William French Anderson iniciar um teste de TG

Cada um ou dois meses

Retiravam células T do sangue Inseriam o gene da ADA e induziam a proliferação dessas células Devolviam as células tratadas para o sangue da paciente

Resultados

- Melhora clínica redução da quantidade de enzima que era necessário repor;
- Níveis da enzima no sangue das pacientes aumentaram progressivamente e se mantiveram estáveis no intervalo de descanso de 6 meses;
 - 12 anos após terminarem as infusões
- Grande números de células T continuaram expressando o gene terapêutico

Marco na história da TG e inspirou o crescimento dessa área de investigação científica

Cronograma destacando alguns marcos importantes da Terapia Gênica

Adaptado de Wirth et al., 2013

Teste suspenso definitivamente pelas Agências Reguladoras, apesar da ausência de efeitos adversos graves nos outros 17 pacientes tratados no mesmo estudo

1999

de

da

Constituem os exemplos mais graves efetivamente caracterizados como efeitos adversos diretos da TG;

Origem em características dos vetores virais utilizados

Cronograma destacando alguns marcos importantes da Terapia Gênica

Gendicine[®]

Aprovado para comercialização em 2003

China's State Food and Drug Administration - SFDA;

Tratamento de carcinoma de cabeça e pescoço;

Shenzhen Sibiono Genetech
Gendicine[®]

🖵 rAd-p53

Gendicine[®]

Controle e eliminação do tumor;

Food and Drug Administration da China aprovou a Gendicine sem dados de um ensaio clínico de fase III

e

Histórico - Terapia Gênica

Cronograma destacando alguns marcos importantes da Terapia Gênica

Adaptado de Wirth et al., 2013

Cerepro®

Vetor adenoviral que contém o gene da timidina quinase do vírus Herpes simplex (HSV-tk) Tratamento de tumores cerebrais malignos Ensaio clínico de fase I/II - Aumento significativo da sobrevida do grupo de 17 pacientes tratados por TG Vetor – Ark Therapeutics: Estudo multicêntrico de fase III com 250 pacientes; Fevereiro de 2009 = primeira autorização para uso compassionado do produto

Câncer

- Maioria dos ensaios clínicos de TG;
- Morte seletiva das células tumorais;
- Diversas abordagens da TG:
- "Técnica de genes suicidas";
- Melhoria mecanismos de defesa imunológica dirigidos contra as células tumorais

Histórico - Terapia Gênica

Cronograma destacando alguns marcos importantes da Terapia Gênica

Glybera[®]

 Originalmente desenvolvido pela Amsterdam Molecular Therapeutics e agora comercializado pela UniQure
Foi reprovado três vezes antes de receber uma recomendação positiva para aprovação pelo Comité dos Medicamentos de Uso Humano (CHMP)

O que é necessário para a realização da TG?

- Compreensão do processo da doença base molecular;
- Entender a estrutura e a função do gene a ser introduzido;
- Transporte eficiente do gene de interesse;
- Controle da expressão gênica;
- Prevenção e controle de resposta imune;

Introdução do material genético

Khavari, P.A. et al., 2002

Introdução do material genético

Khavari, P.A. et al., 2002

Introdução do material genético - Ex vivo

Estar disponíveis em grandes quantidades;

- Longa vida após a transferência para célula hospedeira;
- Expressar o gene de interesse por um longo período de tempo;
- Não desencadear qualquer tipo de resposta imune.

Vantagens

Desvantagens

Maior eficiência de transfecção e alcance da célula alvo;

Evita a administração de vetores diretamente para o paciente com o risco concomitante de disseminação sistêmica;

Possibilidade de caracterização da população de células modificadas antes da transferência; Mais etapas;

Apenas alguns quadros clínicos são passíveis de tratamento;

Pequena porcentagem de células permanecem viáveis

Permite estudos de segurança

Ex vivo – Epidermólise bolhosa

Ex vivo – Epidermólise bolhosa

Ex vivo – Epidermólise bolhosa

3-6 meses = Sem evidência de resposta imune;

Exame clínico – pele normal

Introdução do material genético - In vivo

Características dos ácidos nucleicos

- □ Alvos são invariavelmente intracelular;
- Variam em tamanho de 103 kDa (oligonucleotídeos) a 106 kDa (genes);
- Macromoléculas hidrofílicas carregadas negativamente;

Rapidamente degradados por endonucleases;

Introdução do material genético - In vivo

- Sucesso limitado da Terapia Gênica
- Dificuldades relacionadas com a entrega eficaz de ácidos nucleicos nas células alvo

Barreiras Biológicas

Fernandez & Rice, 2009

o uso de terapia gênica em medicina utilizando DNA plasmidial (pDNA), oligodeoxinucleotídeo (ODN) ou RNA de interferência (siRNA) representa uma nova e promissora abordagem para tratar uma variedade de doenças genéticas e adquiridas

2018 2017 2016 2015 2014

Contexto Atual – Terapia Gênica

The Journal of Gene Medicine, © 2018 John Wiley and Sons Ltd

Ŵ

WILEY

Picanço-Castro, V. et al. 2020

Picanço-Castro, V. et al. 2020

Picanço-Castro, V. et al. 2020

The Journal of Gene Medicine, © 2019 John Wiley and Sons Ltd

e

Development status	Number of GT products
Biological testing	1,246
Preclinical	2,984
IND filed	13
Phase I	141
Phase I/II	142
Phase II	68
Phase II/III	9
Launched	16

Table 1 Gene therapy drugs launched in the market						
Product	Vector type	Application	Highest phase	Gene	Organization	
Gendicine	Adenovirus	Cancer, head and neck (squamous cell carcinoma)	Launched 2004	p53	SiBiono	
Oncorine	Adenovirus	Cancer, rhinopharyngeal	Launched 2006	p53	Shanghai Sunway Biotech	
DeltaRex-G	Retroviral	Cancer, solid tumor	Launched 2007	Dominant-negative mutant of cyclin G1	Epeius Biotechnologies	
Neovasculogen	DNA plasmid	Peripheral arterial disease	Launched 2012	VEGF	Human Stem Cells Institute	
Imlygic	Herpes simplex virus 1	Melanoma, metastatic	Launched 2015	GM-CSF	Amgen	
Strimvelis	Retroviral	Adenosine deaminase deficiency	Launched 2016	Adenosine deaminase	Orchard Therapeutics	
Invossa	Retroviral	Osteoarthritis, knee	Launched 2017	Transforming growth factor beta1 (TGF-b1)	Kolon Life Science	
Zalmoxis	Retroviral	Hematologic, blood cancer	Launched 2017	HSV-TK/Neo fusion suicide gene	MolMed	
Kymriah	Lentiviral	Leukemia, acute lymphocytic	Launched 2017	CART-19	Novartis	
		Lymphoma, diffuse large B-cell	Launched 2018	CART-19		
		Leukemia, B-cell acute lymphocytic	Launched 2019	CART-19		
Yescarta	Retroviral	Lymphoma, B-cell, diffuse large B-cell, primary mediastinal large B-cell	Launched 2017	CART-19	Kite Pharma	
Spinraza	No vector	Spinal muscular atrophy	Launched 2017	SMN2-directed antisense oligonucleotide	Biogen	
Glybera	Adeno-associated	Lipoprotein lipase deficiency	Withdrawn 2017	Lipoprotein lipase	Chiesi Farmaceutici	
Luxturna	Adeno-associated	Retinal dystrophy	Launched 2018	Retinal pigment epithelium- specific (RPE65)	Spark Therapeutics	
Zolgensma	Adeno-associated	Spinal muscular atrophy type 1	Launched 2019	Survival motor neuron 2 (SMN2)	AveXis	
Collategene	DNA plasmid	Critical limb ischemia	Registered 2019	Hepatocyte growth factor	AnGes	
Lentiglobin	Lentiviral	Thalassemia, beta (major)	Registered 2019	Hemoglobin subunit beta	bluebird bio	

Picanço-Castro, V. et al. 2020

FIGURE 1 Approved human gene and cell-based gene therapy products. **(A)** *In vivo* approved gene therapy drugs such as Neovasculgen, Glybera, Defitelio, Rexin-G, Onpattro, Eteplirsen, Spinraza, Kynamro, Imlygic, Oncorine, Luxturna, Macugen, Gendicine, Vitravene as well as Zolgensma directly injected into their target tissue or organ. **(B)** *Ex vivo* gene therapy drugs include Zalmoxis as allogenic T cells, Invossaas allogenic chondrocytes, Yeskarta and Kymriahas autologous T cells (CAR T cell therapy), Strimvelisas autologous hematopoitic stem cells.

Macugen foi aprovado pelo FDA dos EUA como o primeiro tratamento terapêutico de **RNA** para degeneração macular relacionada a idade (AMD)

Neovasculgen desenvolvido e aprovado apenas para o mercado russo

Europa aprovou seu primeiro medicamento para TG para tratar deficiência de lipase lipoprotéica (LPLD)

Atualmente, a Glybera não está mais listada no pipeline de produtos da sua empresa desenvolvedora

Kynamro é outro medicamento antisense que inibe a apolipoproteína B (apoB) em pacientes com hipercolesterolemia familiar homozigótica (HoFH)

Aprovado pelo FDA dos EUA em 2013

Décimo produto clínico de TG Exondys51 foi aprovado pelo FDA dos EUA em 2016 para o tratamento de pacientes com distrofia muscular de Duchenne (DMD)

Desenvolvido para tratar pacientes com síndrome da obstrução sinusoidal hepática / doença veno-oclusiva (SOS / VOD) com disfunção renal ou pulmonar após o tratamento citorredutor antes do transplante de células-tronco hematopoiéticas (TCTH) Aprovado pelo FDA dos EUA em março de 2016

Spark Therapeutics aprovação da FDA para seu Luxturna

Sistema AAV para fornecer o gene RPE65 no olho do paciente que sofre de distrofia retiniana causada por mutações no EPR

Anvisa aprova regras para terapias com alteração do DNA no Brasil

Medida estabelece critérios para registro de terapias de alta tecnologia baseadas em células e genes humanos

18.fev.2020 às 16h34

EDIÇÃO IMPRESSA (https://www1.folha.uol.com.br/fsp/fac-simile/2020/02/19/)

BRASÍLIA A Anvisa (Agência Nacional de Vigilância Sanitária) aprovou nesta terça-feira (18) um marco regulatório para a oferta de terapia gênica, que inclui técnicas de modificação do DNA com fins medicinais, e celular no Brasil.

Até então, as regras existentes visavam apenas o aval ao desenvolvimento de estudos clínicos. Agora, a agência cria uma nova categoria para registro desses tratamentos no país.

Atualmente, a Anvisa monitora oito estudos clínicos com <u>terapias gênicas</u> (https://www1.folha.uol.com.br/equilibrioesaude/2018/07/novas-estrategias-contra-hemofilia-incluem-terapia-genica-eprevencao-mensal.shtml) e celulares avançadas. Outros três estão em fase inicial de análise para autorização da agência.

TABLE 2 | Highlighted ongoing gene therapy products.

Product name	Developer/	Structure and mechanism	Therapeutic indication and target tissue	Clinical trials ID	TABLE 2 Continued				
Zynteglo	Bluebird Bio	Ex vivo transplantation of hematopoietic	Beta thalassemia	NCT01745120	Product name	Developer/ sponsor	Structure and mechanism of action	Therapeutic indication and target tissue	Clinical trials ID
(Lentiglobin BB305)		stem cells manipulated by a lentiviral vehicle transferring HBB	(conditional approved by EMA)	NCT02151526 NCT03207009 NCT02140554 NCT02906202 NCT03207009	OXB-301 (MVA-5T4)	Oxford BioMedica	An attenuated engineered vaccinia virus Ankara that delivers the 5T4 oncofetal antigen gene to stimulate the immune cells anainst cancer cells	Ovarian cancer, colorectal cancer	NCT01556841 NCT01569919
BMN 270	BioMarin Pharmaceutical	An AAV vector transferring factor VIII in	Hemophilia A	NCT03392974	Poverver	Silla lon Transgene			NCT02562755
(Valoctocogene roxaparvovec)		hemophilia A individuals with Residual FVIII Levels ≤ 1 IU/dI		NCT03370913 NCT02576795 NCT03520712	(JX-594)	Sinden, nansgene	to directly lyse tumor cells and stimulate anti-tumor immunity	nepatolenulai carcinoma	NCT03071094
AAV2-hAADC	PTC Therapeutics	AAV serotype 2 expressing human AADC (hAADC)	Aromatic L-amino Acid Decarboxylase (AADC9 deficiency AADC	NCT02926066 NCT02852213 NCT02399761 NCT02926066	SPK-8011 Toca 511 and Toca	Spark Therapeutics	Manipulated AAV vehicle (to specifically transfer the human factor VIII (hFVIII) gene into liver Toca 511 is a retroviral vector	Hemophilia A Glioblastoma Multiforme	NCT03003533 NCT03432520 NCT03876301 NCT02414165
Lenti-D	Bluebird Bio	Ex vivo Transplantation of CD34+ stem cells manipulated by lentiviral vector to contain a functional ABCD1 gene	Cerebral adrenoleukodystrophy (CALD), ABCD1 gene	NC101395641 NCT03852498 NCT01896102 NCT02698579	FC (vocimagene amiretrorepvec)		expressing cytosine deaminase. Toca FC is prodrug 5-fluorocytosine which is converted into 5-fluorouracil by CD	And Anaplastic Astrocytoma	NCT02576665 NCT02598011
NSR-REP1 (AAV2-hCHIM)	Spark Therapeutics Nightstar Therapeutics	An AAV2 vector transferring REP1 gene into the eye. The drug is delivered surgically by injection into the sub- retinal space	Retinal Gene Therapy for choroideremia	NCT02553135 NCT02077361 NCT03507686 NCT03496012 NCT01461213 NCT03584165	VB-111 (ofranergene obadenovec)	Vascular Biogenics	Targeted anticancer gene-based biologic administered as an IV infusion once every 2 months. VB-111 was developed through VBL's Vascular Targeting System (VTS™). VBL says	Solid tumors, including recurrent platinum-resistant ovarian cancer	NCT03398655
ADVM-043 (AAVrh.10hA1AT)	Adverum	An AAV expressing Alpha-1 Antitrypsin (A1AT) gene to patients with A1AT deficiency	A1AT Deficiency	NCT02168686 NCT03804021			the mechanism combines blockade of tumor vasculature with an anti-tumor immune response		
LYS-SAF302	Lysogene, Regenxbio, Sarepta Therapeutics	AAVrh10 virus expressing N-sulfoglucosamine sulfohydrolase (SGSH)	Sanfilippo type A syndrome	NCT03612869 NCT02746341	VGX-3100	Inovio Pharmaceuticals	A synthetic DNA vehicle targeting the E6 and E7 proteins of HPV types 16	Cervical high-grade squamous intraepithelial lesion infected by HPV	NCT03185013 NCT03721978
AMT-061	uniQure	An AAV5 viral vector expressing the Padua variant of Factor IX (FIX-Padua)	Hemophilia B	NCT03569891 NCT03489291 NCT03587116			and 18, also is considered as a DNA vaccine	subtypes of 16 and 18	NCT03603808 NCT03499795
elaparvovec (SPK-9001)		expresses human coagulation factor IX gene		NCT03307980	VM202	ViroMed	DNA vehicle expressing two isoforms	Painful diabetic peripheral	NCT02563522
OTL-103 (GSK2696275)	Orchard Therapeutics	Ex vivo autologous transplantation of hematopoietic stem cells manipulated by a lentiviral vehicle expressing WAS gene	Wiskott Aldrich syndrome	NCT01515462 NCT03837483			or nepatocyte growth factor, HGF728 and HGF723	neuropathy, chronic honneailing ischemic foot ulcer in diabetes, Critical limb ischemia, Amyotrophic lateral sclerosis, Acute myocardial	NCT03363165 NCT03404024
OTL-200 (GSK2696274)	Orchard Therapeutics	Ex vivo autologous transplantation of CD34+ stem cells manipulated by lentivral vector expressing human arylsulfatase A	Metachromatic Leukodystrophy (MLD)	NCT03392987	QTA020V	Astellas	A rAAV transfects retinal ganglion cell to express BDNF and one of its receptors (TrkB) resulting reduction in cell death	infarction Glaucoma	-
Instiladrin (rAd-IFN/Syn3)	FKD Therapies, Ferring Pharmaceuticals	Vin lovy gene Nonreplicating recombinant adenovirus type 5 expressing interferon alpha-2b (IFNα2b) gene, fused with the excipient \$\xn3 (4D_JEN/S\xn3)	Bacillus Calmette-Guérin (BCG)- unresponsive nonmuscle invasive bladder cancer (NMIBC)	NCT02773849	EB-101	Abeona Therapeutics	This drug was designed to transfer a healthy copy of COL7A1gene using the patients' own skin cells	RDEB (skin disease)	NCT01263379
OTL-101	Orchard Therapeutics	Lentiviral transduced CD34+ cells to express ADA gene	Adenosine deaminase severe combined immune deficiency	NCT03765632	AT132	Audentes Therapeutics	An AAV8 vector containing a functional copy of the MTM1 gene	X-Linked Myotubular Myopathy (ASPIRO)	NCT03199469
RT-100 (Ad5.hAC6)	Renova Therapeutics	AAV5 vehicle expressing human adenylyl cyclase type 6 which it is	(ADA-SCID) Heart failure and reduced ejection fraction	NCT03360448 NCT00787059	NSR-RPGR Generx	Angionetics, Huapont Life	An AAV8 encoding retinitis pigmentosa GTPase Regulator (RPGR) A human serotype 5 adenovirus that	X-linkeo retinitis pigmentosa (XLRP) Angina, Stable	NCT03116113
		directly injected throughout cardiac catheterization into the arteries feeding the heart			(Ad5FGF-4)	Sciences	express fibroblast growth factor-4 (FGF-4) gene	Lobor Horaditon (Ontio Nourspethy	NCT01550614 NCT00346437
ADXS11-001 (Axalimogene filolisbac) Shahrvari	Advaxis	Targeted immunotherapy /attenuated Listeria monocytogenes manipulated for secretion of antigen/ adjuvant fusion proteins	Metastatic cervical cancer	NCT02853604 NCT02002182 NCT02164461	uou iu	oonaigint aiviitigiitis	wild-type ND4 protein	(LHON) caused by mutation of the ND4 gene	NCT02652767 NCT03293524 NCT03406104

(Continued)

TABLE 3 Recruited clinical trials based	d on genome editing	g technologies (e.g.	. CRISPR/Cas, ZFN and	TALEN)
---	---------------------	----------------------	-----------------------	--------

	Product name	Developer/ sponsor	Structure and mechanism of action	Therapeutic indication and target tissue	Clinical trials ID
	AGN-151587 (EDIT-101)	Allergan	An AAV5 vector employed in EDIT-101 contains two gRNAs and Cas9 to correct IVS26 mutation in CEP290 gene	Leber Congenital Amaurosis 10 (LCA10)	NCT03872479
	Cyclophosphamide (PD-1 Knockout T Cells)	Sichuan University	Ex vivo gene manipulation of T cells with CRISPR/Cas system to target non-small cell	Metastatic NSCLC	NCT02793856
	PD-1 Knockout T Cells	Yang Yang	Ex vivo gene manipulation of Peripheral blood lymphocytes with CRISPR/Cas system to knockout PD1 gene. Then EBV-CTL will be produced (PD-1 Knockout ERV-CTL)	Advanced-stage EBV- associated malignancies	NCT03044743
	PD-1 Knockout T Cells	Hangzhou Cancer Hospital	<i>Ex vivo</i> gene manipulation of T cells with CRISPR/Cas system to target esophageal	Esophageal Cancer	NCT03081715
Δ	CTX001	Vertex Pharmaceuticals Incorporated	Autologous CD34+ Hematopoietic Stem and Progenitor Cells (hHSPCs) manipulated with CRISPR/Cas9 system at the enhancer position of the BCL11A gene leads to increase in fetal hemoglobin	Hematologic diseases (Hemoglobinopathies)	NCT03655678 NCT03745287
C	SB-FIX	Sangamo Therapeutics	An AAV2/6 virus with ZFN inserting Factor 9 gene under the control of albumin promoter for liver expression	Hemophilia B	NCT02695160
6	ST-400	Sangamo Therapeutics	Autologus Hematopoietic Stem Cell Transplant/ST-400 is composed of the patient's own blood stem cells which are genetically modified with ZFN technology to disrupt a precise and specific sequence of the enhancer of the BCI 114 gene	Transfusion Dependent Beta-thalassemia	NCT03432364
n	CCR5 gene modification	Affiliated Hospital to Academy of Military Medical Sciences	CD34+ hematopoietic stem/progenitor cells from donor are manipulated with CRISPR/ Cas9 aiming CCR5 gene deletion from cell surface	HIV-1-infection	NCT03164135
1	SB-318	Sangamo	An AAV2/6 viral vehicle combined with ZFN to incorporated IDUA under the control of albumin promoter for liver expression	MPS I (Hurler syndrome)	NCT02702115
	SB-913	Sangamo	An AAV2/6 viral vehicle linked with ZFN tool to incorporated IDS gene under the control of albumin promoter in liver cells	MPS II (Hunter's syndrome)	NCT03041324
	UCART123	Cellectis S.A.	Allogeneic engineered T-cells with TALEN system expressing anti-CD123 chimeric anticen receptor	AML	NCT03190278
	UCART019	Chinese PLA General Hospital	CRISPR/Cas9 mediated CAR-T Cells Targeting CD19 in individuals with relapsed or refractory CD19+ leukemia and lymphoma	leukemia and lymphoma	NCT03166878
	Anti-Mesothelin CAR-T cells	Chinese PLA General Hospital	Knocking out of PD-1 and TCR genes using CRISPR/Cas in CAR T Cells	Solid Tumor, Adult	NCT03545815
	NY-ESO-1 redirected autologous T cells with CRISPR edited endogenous TCR and PD-1	University of Pennsylvania	Autologous T cells manipulated with a lentiviral vector for expressing NY-ESO-1 and transfected with CRISPR guide RNA to for knocking out of endogenous TCR α , TCR β and PD-1 (NYCE T Cells)	Multiple Myeloma	NCT03399448
	Universal Dual Specificity CD19 and CD20 or CD22 CAR-T Cewlls	Chinese PLA General Hospital	Using CRISPR/Cas9 to targetCD19 and CD20 or CD22 in CAR-T Cells for treatment of Relapsed or Refractory Leukemia and Lymphoma	Leukemia Lymphoma	NCT03398967

Abordagens de TG como CRISPR / Cas revolucionaram o campo da terapia gênica

Conclusão

Roots Analysis no 'Gene Therapy Market (2nd Edition), 2018-2030':

Quase 300 candidatos a produtos estão atualmente em vários estágios de desenvolvimento para uma ampla gama de aplicações

Conclusão

evitar respostas imunes às seqüências de vetores virais

Interações desconhecidas com hospedeiro

Alto custo

Conclusão

