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Problem:

Group of Solid Mechanics

« given a known load (in time and space) obtain the structure response (in time and
space)

e Or, obtain
— displacement,
— velocity
— acceleration
of a loaded structure

Source: Concepts and applications of finite element
analysis, RD Cook, DS Malkus, ME Plesha, RJ Witt 2
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Response history
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Modal methods:
It is necessary to
solve an eigen-

problem Usually no good

for non-linear response

Ritz vectors:
More efficient than
modal methods

Response spectra

Component mode
synthesis
(substructuring) 3



Response history

{D},.. = f {D}, {D},...{D},...{D},.{D},)

i
I
| Implicit direct
|
I
|

/ integration
Direct integration algorithms

methods

~i

{D},., = f ({D}, {D},.{D}, .{D},..)
[MI{D}, +[CHD}, +{R"}, ={R*},

Explicit methods

[MKD}, +[CKD}, +[KKDY, ={R"},; *
el L P e
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*Number of multiplications per
time step implicit/explicit:

«2 for 1D

*15-150 2D

*4000 3D
*Because in implicit, matrix
becomes less narrowly banded
«Implicit requires more storage

Group of Solid Mechanics

Explicit methods Implicit methods

*Unconditionally stable

(calculation remains stable

regardless of time step but

accuracy may suffer)

*Matrices cannot be made

diagonal (coupling)

*High cost per time step but few

steps

Structural dynamics problem:
*Response dominated by
lower modes, eg structure
vibration, earthquacke
*Response spans over
many fundamental periods

«Conditionally stable (a critical

time step must not be exceeded

to avoid instability)

*Matrices can be made diagonal

(uncoupling)

*Low cost per time step but

many steps

*\WWave propagation problem:
*Blast and impact loads
*High modes are important
*Response spans over
small time interval




Explicit direct integration

{D}.., ={D}, + A{D}, +A—t{D} .. @ o1 on o om+1

{D}, , ={D}, - At{D}, +—{D‘}n SN €

1) -2 {D}n - ({D}n+l {D}n 1) — {D}n+1 :{D}n—l +2At{D}n
2At

1)+ (2 {D}n — A_tz({D}n+l o 2{D}n +{D}n—1)

[MI{D}, +[CKD}, +{R"}, ={R™},

r |
M + D ' = Rext . Rmt —M D! _ 1
(Q j{ et = (R, = (R™), + = MI(D), ht }{D}_1 i




The Taylor series is given by
fla+1)=

7(a) + (df(a)/da)t/1! +
(d*f(a)/dz*)t? /2! + ... and
the present method is called
central difference, in
counter—distinction to the

half—step central difference.
See also R.D. Cook, D.S.

Malkus, M.E. Plesha and R.J.
Witt, Concepts and
Applications of Finite
Element Analysis, John Wiley,

2002.

Now, if we expand in Taylor series the displacement w we obtain

. t
and

t?
Up—1 =— Uy — &tﬂ;n -+ T‘ﬂ;n + ...,

from which

. Upt+1 — Up—1 ; Un+1 + Un—1 — 2u
i — n-+ n and it, — n-+ ?12 nj
2At At

allowing the equation of motion

Mii + Cu + Ku = R*™

(M -
Untl =\ Az " 2A¢

2M M C
et — K i A0 Un T - n— .
{R” Unt Xt (Atﬁ QAf) “ 1}

to be written as
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ﬁ[cl({mn-l - {D}n+1) - L [C]({D}n_1 — {D}n)

Use this in the bottom eq. slide 6
to obtain:

__1_ — exty int _2__ B l 1 1
Afz [M]{D}n+1 - {R }n {R }n + ’:AIZM &IC:' {D}n - |:&_r2M — Ec:l {D}n—l

THIS IS EXPLICIT: TO BE IMPLEMENTED IN A PROGRAM

SEE EXERCISE |



& Structural Impact

Remarks on explicit integration

Group of Solid Mechanics

« [M] being diagonal uncouples the system [only if [C] is diagonal]
« The critical time step in the previous equation is

Ms—2 (-8 -¢]
Q,

max

& = damping ratio Itis not
necessary to

o, = largest possible "calculated” frequency form [K]
* Internal forces can be calculated from either

Nels

(R} —[K}D}, Rk =2 ({5de), {uky=[ [BT {o},aV

Minimize n. of integration
points to 1: be carefull with 9
stress calculation though!




Half-step central differences ]

1 1 . . :
A MID)ey = (R, = (R™), 4 (MI((D), + MDY, 1 ) = [CHDY, 1

D}, = 35(D)- D)) and (D1 = 2 (1D}, - (),

) =

. 1/ . .
1D}, = Z}[{D}n+lfl_{])}n—1f2) = ﬁ({D}nH -2{D}, + {D}n—l)
y |
{D}n+1 = {D}n + AI{D}H+L@.

{D}n+1f2 = {D}n-1f2+‘&t{f)}n
{M]{b}n't' [C]{D}n_];g‘*'{ij}n = {Rext}n

10




To start the processes

. 1 : . . : At ..
{0} = = ({0h ~{O}s,) — {O}..={0k {0k
{0k =[MT"({R*}, ~[KHD}, ~[CHDY,) IO +[CHOY +{F"3, ="

(D}, ~{D}, - A{B}, + = (B},

2
Up—1 = Up — At’l:"ln + i_ﬂrn T ey

11




Critical time step

L L Al

At — mesh — mesh C — actual

“ ¢ JElp AL,

 consistent mass matrix gives higher frequencies than
lumped mass matrix

* |lumped mass increases At

* higher order elements have higher frquencies than lower
order ones. Use the latter

12
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Siress In psi at x = 8.78 In (alement 20)

-100
—150 |-~

=200

—-250 L
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I
a
o

|
——————— Exact

Central difference,
C, = 0.966

Illllll.l.ll

Figure 11.12-2, Axial stress
versus time for a 40-element
model of the bar in Fig. 11.12-1.
Central difference solution with
Ar = 2400107 s

(C, = 0.966). Inset shows

1
ll.ll

]

o ] instability that results from too

L 1 1 1 l L L |

i | L
0 0.05 0.1 0.15 0.2 largea At (Ar = 2.500(107%) s,
Time (ms) for which C, = 1.007).

P(t), Ib

P0=100

Ly

0

Figure 11.12-1. One-dimensional uniform bar with instantaneous axial tip

loading. A = 1.0in% E = 30(10% psi, p = 7.4(107%) Ib-s%in®, L; = 20 in. 13
Load P, = 1001bis applied at ¢t = 0.




& Structural Impact

Group of Solid Mechanics

Stress (psi) Stress (psi)

10 N S N s A N Y Y B N B B 200 T T T T T T T T T T T T T
- C, = 0.9997
0: o= LR3T 100  Eq.11.12-12 ignored
—50 :_ i ({D}_-l,rg = {0])
- Or
~100 pr :
i ~100 |
—200 F —-200 :
_250:Lilillllll£]ll —300:||t=|||r||||||
0 0.1 0.2 0 0.1 0.2
Time (ms) Time (ms)
(a) | (b)

Figure 11.12-3. Central difference solutions for axial stress versus time for a 40-
element model of the bar in Fig. 11.12-1. Ar = 2.483(107%) s (C, = 0.9997),
proper and improper initial conditions.

14
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Implicit direct integration
(Newmark family methods)
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* Most of these methods are unconditionable stable: large time keeps the
solution stable, although may compromise accuracy

Average acceleration method

0<7 <AL )
Integracao
At=t  —t com 1
aceleracao i(7) = =(it + it )
u=u(t) cte. 2 ntl n
. . D v -
- u(t) = u, + 5(”n+1 +ii,)
P /I\ dt+At
a| S@+d.) 5
¥ - u(t) = u, + 11 +T—(ii +i,)
t tHAE — n noogq N n+l n .
i 0<7<At




At
step
n+1
(T=At)

Linear acceleration method
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ulT) = un+A—t(un+1—un)
2

L{('T) = an+7un+2A (un+1
¢/ 3

w o T
u(t) = u, + 7, + i, +

2 n 6A(un+1 un)

Group of Solid Mechanics

Integracao
com
aceleracao
linear

IMPLICIT

Average Acceleration (Egs. 11.13-1):

. ) 1 . .
. =, + §At(un+l +ii,)

- Ay T i
Uy = U, +Atu, +=-At"(ii, +ii,)

n+l 4
¥

i

Linear Acceleration (Egs. 11.13-2):

n+1

n+l

N T .
i, + iAt(un+1 +ii,)

u, + Atu, + At (é n+1+;u)

_ 1 . A
U, 1 = U, + EAt(”nH +11,)

16
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Newmark relations
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A University of Sio Paulo

D}, = {D}, + AI[V{D}nH +(1- 7){ﬁ}n} 1

(D},.; = {D}, + A{D}, + %Atz{zﬁ{b}m +(1 - 2,8){1')},1] 2

TABLE 11.13-1. STABILITY AND ACCURACY OF SELECTED IMPLICIT DIRECT INTEGRATION

METHODS.

: . .. Error in {D}

Version [or references] v B Stability condition for & = 0
Newmark Methods
Average acceleration : 3 Unconditional O(AP)
Linear acceleration : ! Qi = 3464ifE =0  OAP)
Fox-Goodwin : S Q. = 2449if € = 0 OAY
Algorithmically damped > >1(y+1)?  Unconditional O(AD)
Hilber-Hughes-Taylor (a-method), -3 <a<0

[2.13,11.55) I(1-20) !(1-® Unconditional 0P 17




[}, = ﬁi\ﬁ({m”“ - (D), ~ (b}, )-(55- 1)}, pe (2
)1 = 55 (Dbt - 01, ~(%-1) by, - (- 1)y, e (1

[MI{D} ., +[C{D}. ., +[KI{D}., ={R*™}..,  {O%=IMI"({R"}-[KKD},-[CKD})

[Keff]{D}n_,_ — {ReXt}n+ + [M]{ D s
1 1 BA7 ﬁ'A { | ( TR ){D}n
-7 _ ' o i3
Implicit: to implement * [C]{BA D}, +(3 1){D}n+At(§E“ 1){D}n}
[Keff] — K
BA BA 1+ K] 18




Frequéncia Natural

[MI{D}, +[CKD}, +{R™}, ={R™},
[MI{D}, +[CI{D}, +[K{D}, ={R*},

D = Xsin(wt)

19
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Exercise |l
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1. Atribua dimensdes e material realistas a ponte de pedestres
abaixo e calcule suas frequéncias naturais e modos de vibrar.
Em seguida, adicione o carregamento indicadoaond 1 e
calcule a amplitude da forca para que o deslocamento do né 2
seja L/10. Use os métodos implicitos e explicitos. Plote a
resposta do n6 2 no intervalo [0..4T ].

N

+ Funcao seno

T=metade do primeiro

periodo natural da estrutura
N

7z

t

Entrega de
Exercicios | e |l
via e-disc até
22/03 22hs
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