Oceanografia por Satélites

Radar Altimétrico: Aplicação em Medidas de Anomalia da Altura, Ondas de Rossby e Tendências de Longo Termo

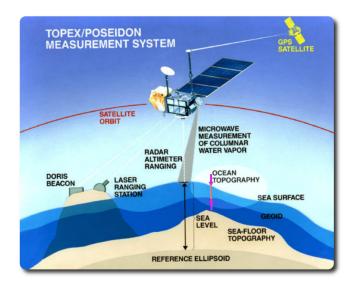
Paulo S. Polito, Ph.D.

polito@usp.br

Instituto Oceanográfico da Universidade de São Paulo http://los.io.usp.br Laboratório de Oceanografia por Satélites

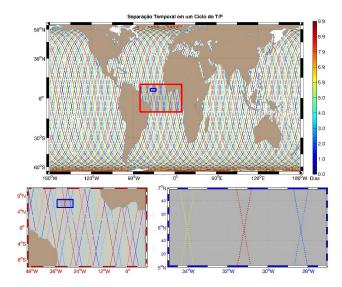
Roteiro

- 🕕 Introdução
 - Princípio de Funcionamento
 - O efeito da Atmosfera
- 2 Altímetro
 - Satélites
 - Correções
- 3 Aplicações
 - Modelo Simplíssimo
 - Termodinâmica
 - Dinâmica
 - Anomalia da Altura
 - Média das Correntes
 - Ondas de Rossby
 - Tendências na Altura

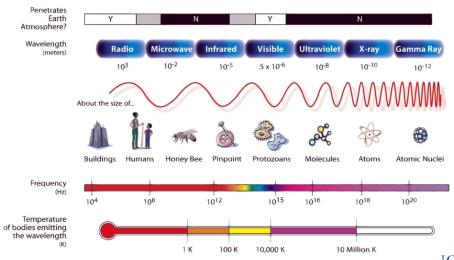


Roteiro

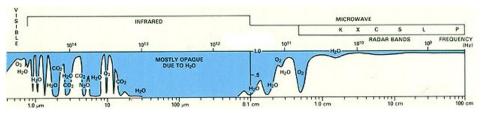
- 🕕 Introdução
 - Princípio de Funcionamento
 - O efeito da Atmosfera
- 2 Altímetro
 - Satélites
 - Correções
- Aplicações
 - Modelo Simplíssimo
 - Termodinâmica
 - Dinâmica
 - Anomalia da Altura
 - Média das Correntes
 - Ondas de Rossby
 - Tendências na Altura



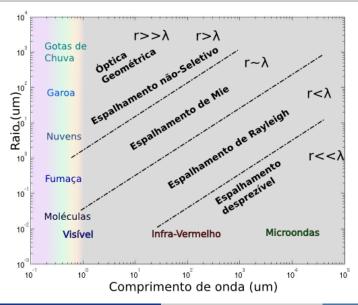
Princípio Básico



Ciclo de Repetição exata



Espectro Eletromagnético



Absorção

- A combinação dos espectros de absorção da atmosfera torna a atmosfera opaca a alguns comprimentos de onda e transparente a outros.
- O altimetro opera em $\nu=13.5$ GHz ou $\lambda=2.2$ cm.
- Portanto trata-se de um radar de microondas que opera na banda K_u .
- A absorção atmosférica nesta banda é pequena e se deve majoritariamente ao vapor dágua.

Espalhamento

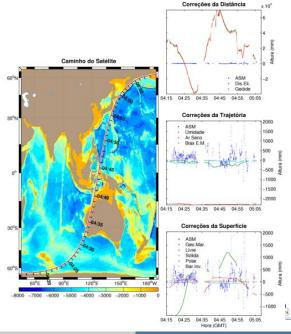
O espalhamento para $\lambda=2.2$ cm depende da presença de gotas de chuva de tamanho apreciável.

Os demais casos podem ser seguramente desprezados.

Roteiro

- Introdução
 - Princípio de Funcionamento
 - O efeito da Atmosfera
- 2 Altímetro
 - Satélites
 - Correções
- Aplicações
 - Modelo Simplíssimo
 - Termodinâmica
 - Dinâmica
 - Anomalia da Altura
 - Média das Correntes
 - Ondas de Rossby
 - Tendências na Altura

Altimetros



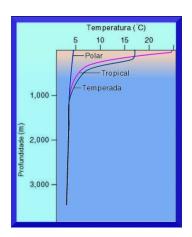
Satélite	Ano	Freq.	Separ.	Rep.	Precisão
		GHz	km	dias	m
Skylab	5/73 - 2/74	13.9	-	-	1
Seasat	6/78 - 10/78	13.5	-	-	.5
Geosat	3/85 - 9/89	13.5	165	17	.1
ERS1/2	6/91 - ativo	13.5	80	35	.1
T/P	9/92 - 10/06	13.5	315	9.9156	.03
GFO	2/98 - ativo	13.5	165	17	.018*
Jason	12/01 - ativo	13.5	315	9.9156	.025

Correções

- Orbitais
 - Órbita
 - Calibração
 - Sistema de Coordenadas
- Geofísicas distância
 - Geóide
 - Marés
 - Ondas (EM bias)
- Geofísicas tempo
 - lonosfera
 - Ar Seco
 - Vapor
- Instrumento
 - Ruído
 - Pulso (tracking)

Correções

Erro	Correção	λ (km)	Resíduo (cm)
Órbita	5 km	10000	10
Calib.	14 cm	∞	2.0
Sist.Coord.	2 m	10000	10
Geóide	100 m	200-40000	50
Marés	1 m	10000	100
Ondas	4 cm	100-1000	2.0
lonosfera	20 cm	20-10000	1.3
Ar Seco	2.3 m	1000	0.7
Vapor	30 cm	50-1000	1.2
Ruído	5 cm	6–20	2.0
Pulso	10 cm	100–1000	-


Roteiro

- Introdução
 - Princípio de Funcionamento
 - O efeito da Atmosfera
- 2 Altímetro
 - Satélites
 - Correções
- 3 Aplicações
 - Modelo Simplíssimo
 - Termodinâmica
 - Dinâmica
 - Anomalia da Altura
 - Média das Correntes
 - Ondas de Rossby
 - Tendências na Altura

Continuamente Estratificado $\rightarrow 1\frac{1}{2}$ Camadas

- A temperatura afeta mais a densidade que a salinidade.
- Podemos aproximar os oceanos com um modelo de duas camadas:
- uma quente e menos densa sobre uma fria e mais densa.
- Termoclina é a interface, onde a temperatura varia rápido na vertical.
- As camadas deslizam umas sobre as outras.

Altura Reflete a Profundidade da Termoclina

• Uma coluna d'água de área A e altura H sujeita a uma variação de densidade $\Delta \rho = \rho_2 - \rho_1$ expande-se até $H + \eta$. Por conservação de massa:

$$AH\rho_1 = A(H+\eta)\rho_2 \quad \Rightarrow \quad H+\eta = \frac{\rho_1}{\rho_2}H \quad \Rightarrow \quad \eta \simeq -\frac{\Delta\rho}{\rho}H$$

- Num modelo de $1\frac{1}{2}$ camadas H é a profundidade da termoclina.
- Portanto a altura da superfície η reflete a profundidade da termoclina H, escalada pela variação de densidade.
- Podemos medir η usando satélites. Mas o que isso tem a ver com aquecimento global?

Altura Reflete a Profundidade da Termoclina

• Uma coluna d'água de área A e altura H sujeita a uma variação de densidade $\Delta \rho = \rho_2 - \rho_1$ expande-se até $H + \eta$. Por conservação de massa:

$$AH\rho_1 = A(H+\eta)\rho_2 \quad \Rightarrow \quad H+\eta = \frac{\rho_1}{\rho_2}H \quad \Rightarrow \quad \eta \simeq -\frac{\Delta\rho}{\rho}H$$

- Num modelo de $1\frac{1}{2}$ camadas H é a profundidade da termoclina.
- Portanto a altura da superfície η reflete a profundidade da termoclina H, escalada pela variação de densidade.
- Podemos medir η usando satélites. Mas o que isso tem a ver com aquecimento global?

Altura Reflete a Profundidade da Termoclina

• Uma coluna d'água de área A e altura H sujeita a uma variação de densidade $\Delta \rho = \rho_2 - \rho_1$ expande-se até $H + \eta$. Por conservação de massa:

$$AH\rho_1 = A(H+\eta)\rho_2 \quad \Rightarrow \quad H+\eta = \frac{\rho_1}{\rho_2}H \quad \Rightarrow \quad \eta \simeq -\frac{\Delta\rho}{\rho}H$$

- Num modelo de $1\frac{1}{2}$ camadas H é a profundidade da termoclina.
- Portanto a altura da superfície η reflete a profundidade da termoclina H, escalada pela variação de densidade.
- Podemos medir η usando satélites. Mas o que isso tem a ver com aquecimento global?

Altura se Correlaciona com Calor Armazenado

• Combinando-se as definições de coeficiente de expansão térmica α e de calor armazenado HS,

$$\Delta \rho = -\rho \alpha \Delta T$$
 $HS = \rho C_D H \Delta T$

• Eliminando-se o aquecimento ΔT e substituindo η :

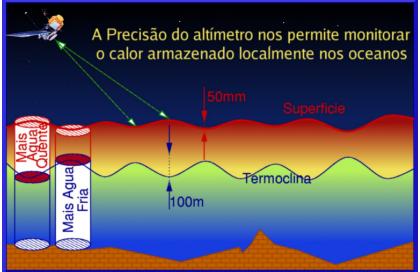
$$HS = \frac{\rho C_p}{\alpha} \eta$$

- Onde ρ , C_D e α podem ser obtidos da climatologia.
- Portanto, podemos monitorar o calor armazenado no oceano medindo η com satélites.

Altura se Correlaciona com Calor Armazenado

• Combinando-se as definições de coeficiente de expansão térmica α e de calor armazenado HS,

$$\Delta \rho = -\rho \alpha \Delta T$$
 $HS = \rho C_D H \Delta T$

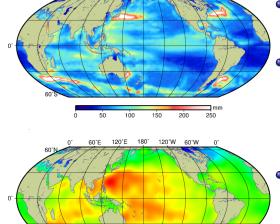

• Eliminando-se o aquecimento ΔT e substituindo η :

$$HS = \frac{\rho C_p}{\alpha} \eta$$

- Onde ρ , C_p e α podem ser obtidos da climatologia.
- Portanto, podemos monitorar o calor armazenado no oceano medindo η com satélites.

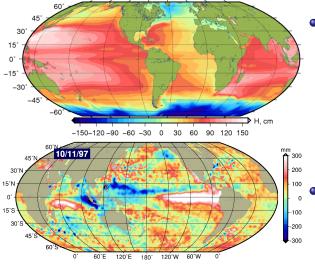
O Altímetro Monitora o Calor Armazenado

Inclinações e Correntes Geostróficas


 As correntes geostróficas são dominantes e estão associadas às inclinações da superfície através do balanço entre a força de Coriolis e o gradiente de pressão:

$$\begin{cases} 2\Omega \sin(\theta)u = -g\frac{\partial \eta}{\partial y} \\ -2\Omega \sin(\theta)v = -g\frac{\partial \eta}{\partial x} \end{cases}$$

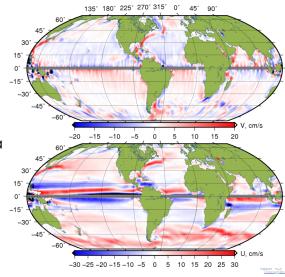
- Ω = velocidade angular da Terra, θ = latitude, u e v = velocidades N-S e E-W.
- Maiores inclinações ⇒ correntes mais intensas → mais instabilidades.


Média e Variabilidade

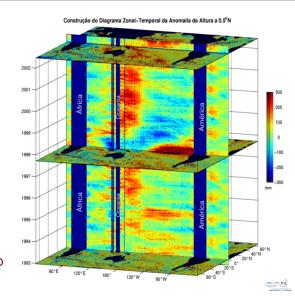
- A anomalia da altura é máxima nas correntes de borda oeste.
- Esta variabilidade inclui meandros, vórtices, ondas etc. e não diferencia entre fenômenos barotrópicos e baroclínicos.
- A média da altura obtida dos próprios dados é suave pois (a) o geóide modelado é suave (b) o cálculo da média suaviza o campo.

500

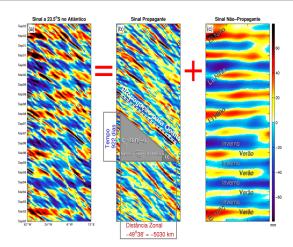
Anomalia da Altura Calor Armazenado


- A média da altura pode ser obtida
 - dos próprios dados
 - de modelos numéricos
 - de satélites geodéticos (GRACE, CHAMP)
- A anomalia da altura com o El Niño de 1997/98 em destaque.

Correntes Geostróficas

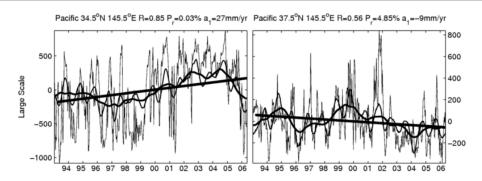

$$\left\{egin{array}{lll} -2\Omega\sin(heta)v &=& -grac{\partial\eta}{\partial\chi}\ 2\Omega\sin(heta)u &=& -grac{\partial\eta}{\partial\gamma} \end{array}
ight.$$

- As velocidades foram obtidas a partir da média da altura (1993–2006).
- O geóide utilizado é a versão obtida pelo GRACE em 2007.
- Feições com comprimento característico maior que 400 km estão bem reproduzidas.

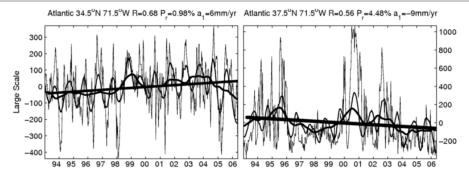

Diagramas de Hovmöller

- Mapas da anomalia da altura η são empilahdos em uma matriz 3D.
- Uma fatia vertical desta matriz é um diagrama de Hovmöller.
- O eixo horizontal é a longitude e o vertical é o tempo.
- Padrões inclinados indicam propagação zonal.

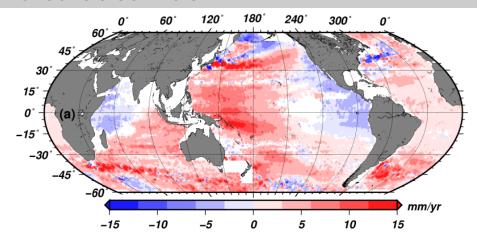
Quantificando a Presença de Ondas


- A inclinação dos padrões inclinados nos dá a velocidade de fase.
- O temp médio entre picos sucessivos nos dá o período.
- O deslocamento médio entre picos sucessivos nos dá o comprimento de onda.

 Filtros digitais 2D podem ser usados para separar os sinais propagantes dos não-propagantes.

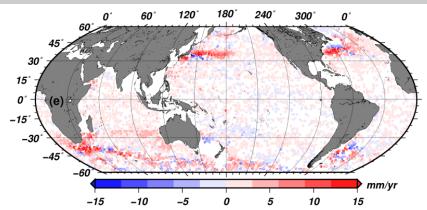

Tendências no Pacífico

- Utiliza-se o major número inteiro de anos.
- Observam-se tendências locais de até 27 mm/ano
- A média global é em torno de 3 mm/ano
- Tendências mudam significativamente em apenas 3°.
- Polito & Sato, J. of Climate, 2008.



Tendências no Atlântico

- Tendências significativas são observadas também no Atlântico.
- Novamente, tendências mudam bastante em apenas (3°).
- As tendências não se dependem do uso de filtros.
- Resultados similares são obtidos por comparação entre as médias de 1993–2000 e 2000–2007.


Tendência da Altura

- A média da tendência é positiva.
- Valores poisitivos ocupam a maior parte dos oceanos.
- Apenas os dados significativos (95%) foram plotados.

Tendência da Amplitude dos Vórtices

- Os maiores valores absolutos ocorrem nas extensões das correntes de borda oeste.
- Valores são comparáveis às tendências da altura.
- Média global: 0.40 mm/ano, Maior média regional: 0.83 mm/ano, no Índico SE.

Muito Obrigado!

